EP2922986B1 - Procédé de nanostructuration et d'anodisation d'une surface métallique - Google Patents

Procédé de nanostructuration et d'anodisation d'une surface métallique Download PDF

Info

Publication number
EP2922986B1
EP2922986B1 EP13805735.1A EP13805735A EP2922986B1 EP 2922986 B1 EP2922986 B1 EP 2922986B1 EP 13805735 A EP13805735 A EP 13805735A EP 2922986 B1 EP2922986 B1 EP 2922986B1
Authority
EP
European Patent Office
Prior art keywords
approximately
metal
radiation
laser
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13805735.1A
Other languages
German (de)
English (en)
Other versions
EP2922986A2 (fr
Inventor
Erhard Brandl
Ante Kurtovic
Tobias Mertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2922986A2 publication Critical patent/EP2922986A2/fr
Application granted granted Critical
Publication of EP2922986B1 publication Critical patent/EP2922986B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Definitions

  • the invention relates to a method for nanostructuring and oxidation of a surface comprising an anodizable metal and / or anodizable metal alloy, both of which may be coated with an oxide layer, by means of laser or particle radiation in an inert or reactive atmosphere and subsequent anodization.
  • anodization of metals and metal alloys is a well-known method.
  • a material of an anodizable metal or anodizable metal alloy is used as an anode in an electrolytic cell, which further comprises a cathode connected to the anode (usually made of precious metal) and an electrolyte with a suitable oxidizing agent.
  • a cathode connected to the anode (usually made of precious metal) and an electrolyte with a suitable oxidizing agent.
  • the surface of the metal or metal alloy is oxidized.
  • the process may be conducted so that a smaller portion of the oxidized surface is continually redissolved by the electrolyte, while a larger portion of the surface is still oxidized , In this way, structures of micrometer or nanometer dimensions, in the special case of titanium in the form of nanotubes, can be created on the oxidized surface.
  • these surfaces comprise areas that do not have nanostructures after anodization.
  • the invention relates to a method according to claim 1.
  • Advantageous embodiments of the invention are the subject of the dependent claims.
  • sequential treatment of a metal or metal alloy surface optionally having an oxide coating of a material can be provided by nanostructuring by laser or particle radiation in an inert or reactive atmosphere followed by anodization on the entire surface nanostructures of an oxide of the metal or metal alloy which in the case of titanium may be in the form of nanotubes. After this treatment, no areas of the surface remain that have no nanostructuring. Furthermore, it has been found that the nanostructures thus produced are finer and the nanostructure more homogeneous than those produced solely by anodization of the material.
  • the roughening or structuring in the nanometer range of surfaces is particularly important for a good adhesion of adhesives, paints, biological tissue and other coatings, such as heat protection layers and metallic adhesion promoter layers, essential.
  • a single or multiple irradiation with a pulsed laser beam or a continuous particle beam in an inert or reactive atmosphere under the conditions mentioned in the method described above can produce nanostructured surfaces suitable for good adhesion e.g. adhesives, lacquers, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings such as coatings to protect against chemical or thermal exposure. If necessary, even by sole joining under pressure, two materials can be adhesively bonded together if such nanostructures have been produced on at least one material.
  • Embodiment generally open-pored, fissured and / or fractal-like nanostructures, such as open-pore hill and valley structures, open-pore undercut structures and cauliflower or bulbous structures have. These structures typically cover the entire radiation treated metal or metal alloy surface.
  • the scanning of the output surface with the laser or particle beam can be repeated one or more times with the same process parameters and the same laser or particle beam or with different process parameters with the same laser or particle beam or with different laser and / or particle beams with the same process parameters or with different process parameters be performed. By repeated sampling under certain circumstances an even finer structure can be produced.
  • the starting surface comprising the metal or metal alloy and / or optionally an oxide layer thereon is not pretreated or cleaned prior to scanning with the laser or particle beam, but may also be e.g. be cleaned or pickled with a solvent.
  • Structuring with a laser or particle beam alone provides many materials, especially for good adhesion.
  • a simultaneous oxidation of the surface is desired or required, which is more uniform and / or has a greater layer thickness and in particular is even more porous than one optionally after treatment with the laser or Particle jet remaining oxide layer (if it has been assumed by an oxide-coated surface).
  • the metal and / or metal alloy encompassed by the surface are selected from anodisable metals and / or metal alloys. These include in particular aluminum, titanium, magnesium, iron, cobalt, zinc, niobium, zirconium, hafnium, tantalum, vanadium and / or their alloys and steel. In addition to pure titanium, in particular cobalt-chromium alloys, cobalt-chromium-molybdenum alloys and the alloys Ti-6Al-4V, Mg-4Al1-Zn, Ta-10W, Al 2024 (Al-4.4Cu-1.5Mg-0.6 Mn) and V2A steel (X5CrNi18-10).
  • the metal and / or the metal alloy which may optionally be at least partially coated with an oxide layer, may also be present in a metal-ceramic composite or a composite of a metal and / or a metal alloy containing the heat-conductive carbonaceous and / or boron nitride-containing Contain particles and / or fibers present.
  • pressure is generally in the range of about 10 -17 bar to about 10 -4 bar when working in vacuo, and in the range of about 10 -6 bar to about atmospheric pressure at particle beams and up to about 15 bar at Laser beams when operating in an atmosphere of intentionally added inert or reactive gas or gas mixture.
  • the temperature outside the laser or particle beam is generally in the range of about -50 ° C - about 350 ° C (in the jet of course much higher temperatures may be present).
  • the data of the underlying metal or metal alloy are used for the evaporation or decomposition point at normal pressure, the specific heat capacity c p under normal conditions and the specific thermal conductivity ⁇ under normal conditions.
  • Values of ⁇ which must result from the parameters of Equation 1 given above, in order to produce the desired surface structuring according to the invention, are preferably about 0.07 ⁇ ⁇ ⁇ about 2000, more preferably about 0.07 ⁇ ⁇ ⁇ about 1500 ,
  • the laser wavelength ⁇ may be about 100 nm to about 11000 nm.
  • the pulse length of the laser pulses t is preferably about 0.1 ns to about 300 ns, more preferably about 5 ns to about 200 ns.
  • the pulse peak power of the exiting laser radiation Pp is preferably about 1 kW to about 1800 kW, more preferably about 3 kW to about 650 kW.
  • the average power of the exiting laser radiation P m is preferably about 5 W to about 28,000 W, more preferably about 20 W to about 9500 W.
  • the repetition rate of the laser pulses f is preferably about 10 kHz to about 3000 kHz, more preferably about 10 kHz to about 950 kHz.
  • the scanning speed at the workpiece surface v is preferably about 30 mm / s to about 19000 mm / s, more preferably about 200 mm / s to about 9000 mm / s.
  • the diameter of the laser beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • ⁇ 1 which must result from the parameters of Equation 2 given above, so that the desired surface structuring according to the invention is produced, are preferably approximately 0.07 ⁇ ⁇ 1 ⁇ approximately 1500, more preferably approximately 0.9 ⁇ ⁇ 1 ⁇ about 1200.
  • the laser wavelength ⁇ is about 100 nm to about 11000 nm.
  • the pulse length of the radiation t is preferably about 0.005 ns to about 0.01 ns, more preferably about 0.008 ns to about 0.01 ns.
  • the peak pulse power of the exiting radiation Pp is preferably about 100 kW to about 30,000 kW, more preferably about 150 kW to about 25,000 kW.
  • the average power of the exiting radiation P m is preferably about 5 W to about 25,000 W, more preferably about 20 W to about 9500 W.
  • the repetition rate of the radiation f is preferably about 100 kHz to about 80,000 kHz, more preferably about 120 kHz to about 20,000 kHz.
  • the scanning speed at the workpiece surface v is preferably about 30 mm / s to about 60,000 mm / s, more preferably about 200 mm / s to about 50,000 mm / s.
  • the diameter of the laser beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • ⁇ 2 which must result from the parameters of Equation 3 given above in order to produce the surface structuring according to the invention are preferably about 0.07 ⁇ ⁇ 2 ⁇ about 1400, more preferably about 0.9 ⁇ ⁇ 2 ⁇ about 1100.
  • the average power of the exiting radiation P m is preferably about 1 W to about 25,000 W, more preferably about 20 W to about 9500 W.
  • the scanning speed at the workpiece surface v is preferably about 100 mm / sec to about 8,000,000 mm / sec, more preferably about 200 mm / sec to about 7,000,000 mm / sec.
  • the diameter of the particle beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • the ratio of beam diameter to scan speed is limited, namely, d / v ⁇ about 7000 ns.
  • Suitable radiation sources for electron and ion beams and beams of uncharged particles are known to those skilled in the art.
  • the atmosphere in which the process according to the invention is used may be a vacuum or a gas or gas mixture which is inert to the surface under the process conditions, the inert gases being a noble gas, eg argon, helium or neon, depending on the surface and process conditions, or in many cases also nitrogen or CO 2 , or a mixture of these gases.
  • the inert gas or gas mixture is selected so that it does not react with the metal, metal alloy or oxide layer on a given metal, metal alloy or oxide layer thereon under the pressure and temperature operating conditions.
  • the pressure is when working in a vacuum without addition of gas, preferably at 10 -17 to 10 -4 bar.
  • the pressure is generally 10 -6 to 1 bar when using particle beams and up to 15 bar when using laser beams.
  • Ambient pressure and temperature are preferred if permitted by the given surface.
  • the atmosphere in which the process according to the invention is carried out may comprise a reactive gas which chemically modifies the surface material according to the invention.
  • the reactive gases in which the process can be carried out include, for example, inorganic gases or gas mixtures such as hydrogen, air, oxygen, nitrogen, halogens, carbon monoxide, carbon dioxide, ammonia, nitrogen monoxide, nitrogen dioxide, nitrous oxide, sulfur dioxide, hydrogen sulfide, boranes and / or silanes (eg monosilane and / or disilane).
  • Organic gases or gases with organic groups can also be used. These include e.g. lower, optionally halogenated alkanes, alkenes and alkynes, such as methane, ethane, ethene (ethylene), propene (propylene), ethyne (acetylene), methyl fluoride, methyl chloride and methyl bromide, and also methylamine and methylsilane. Also, a mixture of an inorganic and organic or organic group-containing gas may be used.
  • a gas component thereof or a mixture of a plurality of gas components is a reactive gas; the remainder may be an inert gas, usually a noble gas.
  • the concentration of the reacting gas or gas mixture may be of a few ppb, e.g. 5 ppb, up to more than 99 vol% vary.
  • the selection of the reactive gas or gas mixture depends on the intended modification of the surface material of the invention. If an oxide-containing surface is to be reduced, e.g. Of course, to introduce hydroxide groups, one will use a reducing gas such as hydrogen as the reactive gas (optionally in admixture with an inert gas). For oxidation of the surface, however, e.g. consider an oxygen-containing gas. The person skilled in the art knows which reactive gas to choose in order to achieve a desired effect on a given surface material according to the invention.
  • the pressure of the reactive gas or gas mixture is generally in the range of about 10 -6 bar to about 1 bar when using a particle beam and up to about 15 bar when using a laser beam. Atmospheric pressure is preferred. It may be used at gas temperatures that are generally outside the laser beam in the range of about -50 ° C to about 350 ° C. Of course, much higher temperatures can occur in the laser beam.
  • XPS X-Ray Photoelectron Spectroscopy
  • EDX energy dispersive X-ray analysis
  • FTIR spectroscopy Time of Flight Secondary Ion Mass Spectrometry
  • TOF -SIMS Time of Flight Secondary Ion Mass Spectrometry
  • EELS electroence-to-elastoma spectroscopy
  • HAADF high angle annular dark field
  • NIR near infrared spectroscopy
  • the metal and / or the metal alloy on the material surface has been nanostructured as described above, it is subjected to anodization in which the workpiece forming the anode is immersed in an electrolytic solution, connected to a cathode usually comprising noble metal, and then put on a Tension anodized.
  • the electrolyte In general, the generation of highly porous and / or present in the form of nanotubes oxide layers by means of anodization that the electrolyte must have a dual function: on the one hand continuously oxidize the metal or metal alloy and on the other hand partially dissolve the oxide formed again. This results in highly porous or nanotube structures. Accordingly, the electrolyte must contain an effective oxidizing agent and at the same time an agent which provides for the redissolution of the oxide.
  • an electrolytic solution containing, as the oxidizing agent usually either an oxidizing inorganic or organic acid or an oxidizing acid salt or a hydroxide-based alkaline oxidizing agent is used.
  • the usable inorganic acids and acidic salts include, for example, sulfuric acid, chromic acid, phosphoric acid, nitric acid and ammonium sulfate, to the usable organic acids such as toluenesulfonic acid, benzenesulfonic acid and tartaric acid.
  • Hydrochloric acid can be used to set a suitable pH. Hydroxide-containing alkaline oxidizing agents are often based on caustic soda.
  • a portion of the oxide formed is redissolved. This can be done with an acid, which may be another acid or, in some cases, the same acid as that used for oxidation, or with an acidic salt. Often, the counterion of the acid or the anion of the salt is a complexing agent for the anodized metal or anodized metal alloy.
  • tartaric acid the anion of which is a complexing agent
  • oxide dissolving agent for example, in conjunction with phosphoric acid as the (further) oxidizing agent.
  • hydrofluoric acid or, if appropriate, ammonium fluoride is also used to re-dissolve the oxide.
  • oxidizing acid is identical to the oxide redissolving agent is phosphoric acid in the case of anodization of aluminum, the sole use of which results in the formation of a micro or nanostructure.
  • concentrations of the oxidizing agent and the oxide-dissolving agent which is often used in a lower molar concentration compared to the oxidizing agent, and the pH of the electrolytic solution vary depending on the metal or metal alloy and the desired layer thickness and porosity. This also applies to the voltage and temperature used in the respective process.
  • ammonium sulfate can be advantageously used as the oxidizing agent together with ammonium fluoride as the oxide-dissolving agent, which avoids the handling of the extremely toxic hydrofluoric acid and is particularly preferred in the process according to the invention.
  • the aqueous electrolyte generally comprises 10 to 1000 g / l, eg 100 to 500 or 160 g / l, preferably 120 to 140 g / l and especially 130 g / l of ammonium sulfate and generally 0.1 to 10 g / l, preferably 2 to 6 g / l and in particular Ammonium fluoride, wherein the temperatures are generally at 20 to 50 ° C, preferably at 22 to 28 ° C and in particular at 25 ° C and a voltage of 1 to 60 V, preferably 10 to 20 V over a period of 4 min to 24 h, preferably 27 to 33 minutes, and especially 30 minutes, when an oxide layer having a layer thickness in the range of 100 to 1000 nm, for example 200 to 450 nm or 300 to 400 nm and for some purposes preferably 340 to 360 nm generated is to be covered whose entire surface of nanotubes with a diameter in the range of 10 to 300 nm
  • oxide layers which are completely present on the surface in nanostructured form, in particular in the form of nanotubes, on any metals coated with thin oxide layers and / or metal alloys can be produced which completely cover the metals or metal alloys.
  • the oxide layers on metals or metal alloys according to the invention which have the above-described nanostructures, in particular nanotubes, ensure excellent adhesion of, for example, adhesives, paints, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings, such as chemical protection coatings or heat. Further, when at least one workpiece has a surface made according to the invention, two such workpieces or one workpiece with one workpiece having a surface of another material can be satisfactorily bonded by merely joining under elevated pressure at room temperature or at elevated temperatures get connected.
  • the surfaces produced according to the invention can also serve for other purposes than the improvement of adhesion.
  • the oxidation and nanostructuring causes changes in the physical and / or chemical interaction of the surface with light or matter.
  • the reduces electrical conductivity and increases corrosion resistance. Color or emissivity of the surface are also changed.
  • the large increase in the surface area due to the formation of nanostructures, in particular of nanotubes, can also greatly increase the catalytic effects of the surface itself or of a thin and / or nanoscale coating on the same e.g. with dyes or metal catalysts result because heterogeneous catalysis is known to be a surface phenomenon. Even purely physical phenomena, such as the increase in the number of points at which nuclei or nuclei can form, can be used.
  • metal prostheses and implants which are e.g. Titanium or a titanium alloy include.
  • the porous surfaces ensure that the biological materials in the body, with which they are supposed to grow together, stick to them excellently.
  • a voltage of 10 to 25 V was applied for 30 minutes.
  • the resulting surface, which has large areas without structuring ( ⁇ -phase of the Ti-6Al-4V structure) on the surface in addition to areas with nanotubes, is in Fig. 1 shown.
  • a pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Nd YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • the surface obtained is in Fig. 2 shown. It can be seen that the surface has a nodular nanostructure throughout, but no nanotubes.
  • Example 1 Nanostructuring of a Ti-6Al-4V surface using pulsed laser radiation in an inert atmosphere followed by anodization
  • a pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Nd YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Fig. 3 The surface obtained is in Fig. 3 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.
  • a Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.
  • YVO 4 neodymium-pumped yttrium orthovanadate
  • the surface obtained is in Fig. 4 shown. It can be seen that the surface despite partial oxidation by the oxygen atmosphere, which was detected by means of photoelectron spectroscopy (XPS analysis), although throughout a nodular nanostructure, but no nanotubes.
  • XPS analysis photoelectron spectroscopy
  • Example 2 Nanostructuring of a Ti-6Al-4V surface by means of pulsed laser radiation in a reactive atmosphere and subsequent anodization
  • a Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.
  • YVO 4 neodymium-pumped yttrium orthovanadate
  • Fig. 5 The surface obtained is in Fig. 5 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)
  • Chemically Coating (AREA)

Claims (15)

  1. Procédé pour la nanostructuration et l'oxydation d'une surface d'un matériau qui inclut un métal susceptible d'être anodisé et/ou un alliage de métaux susceptible d'être anodisé, qui peuvent être tous les deux au moins partiellement recouverts d'une couche d'oxyde,
    dans lequel la surface du métal et/ou de l'alliage de métaux et/ou la couche d'oxyde sur le métal et/ou sur l'alliage de métaux, qui est accessible pour un rayonnement laser et/ou une irradiation avec un faisceau de particules et sur laquelle il s'agit d'engendrer les structures, est tout d'abord nanostructurée, de sorte que pour engendrer des nanostructures sous la forme de nanostructures à pores ouverts, découpées et/ou semblables à des motifs fractals, sous la forme de structures à sommets-et-vallées à pores ouverts, de structures en contre-dépouille à pores ouverts, ou de structures en forme de chou-fleur ou en forme de tubercules, la surface est entièrement balayée une ou plusieurs fois avec un faisceau laser pulsé ou un faisceau de particules continu, sélectionné parmi un faisceau d'électrons ou d'un faisceau d'ions ou encore un faisceau de particules non chargées ou une combinaison de ceux-ci, de telle façon que des taches lumineuses voisines du faisceau laser ou des taches de balayage du faisceau de particules se rejoignent sans lacune ou se chevauchent, et dans lequel on respecte les conditions suivantes :
    lorsque l'on balaye au moyen d'un faisceau laser et que la longueur des impulsions du faisceau laser t est de 0,1 ns à 2000 ns,
    une valeur ε est de 0,07 ≤ ε ≤ 2300,
    dans lequel ε = P P 2 P m f α t κ d 2 v T V c P λ 10 3
    Figure imgb0016
    lorsque l'on balaye au moyen d'un faisceau laser avec une longueur d'onde du laser λ 200 ≤ λ ≤ 11 000 nm et que la longueur des impulsions du faisceau laser t < 0,1 ns
    une valeur ε1 est de 0,5 ≤ ε1 ≤ 1650,
    dans lequel ε 1 = P P P m f α t κ d 2 v T v c P 10 3
    Figure imgb0017
    dans lequel, dans l'équation 1 et l'équation 2 :
    Pp : puissance de pointe des impulsions du rayon sortant [kW] ;
    t : longueur des impulsions [ns] ;
    f : fréquence de répétition des impulsions du rayonnement [kHz] ;
    v : vitesse de balayage au niveau de la surface de la pièce à oeuvrer [mm/s] ;
    d : diamètre du rayonnement énergétique au niveau de la surface du matériau [µm] ;
    α : absorption du rayonnement énergétique du matériau irradié [%] à la longueur d'onde appliquée sous des conditions normales ;
    ou
    lorsque l'on balaye avec un faisceau de particules
    une valeur ε2 est de 0,5 ≤ ε2 ≤ 1550,
    dans lequel ε 2 = P m 2 κ α d 3 v T v c P 10 2
    Figure imgb0018
    dans lequel, dans l'équation 3 :
    v : vitesse de balayage au niveau de la surface de la pièce à oeuvrer [mm/s] ;
    d : diamètre du rayonnement énergétique au niveau de la surface du matériau [µm] ; avec pour condition que d/v < 7000 ns ;
    α : absorption du rayonnement énergétique du matériau irradié [%] sous des conditions normales ;
    et dans l'équation 1, l'équation 2 et l'équation 3 :
    Pm : puissance moyenne du rayon sortant [W] ;
    Tv : température de vaporisation ou de décomposition du matériau [K] à pression normale ;
    Cp : capacité thermique spécifique [J/kgK] sous des conditions normales ;
    K : conductivité thermique spécifique [W/mK] sous des conditions normales et moyennée sur les différentes directions dans l'espace,
    dans lequel l'atmosphère dans laquelle a lieu la procédure,
    est du vide ou un gaz inerte ou un mélange gazeux inerte par rapport à la surface sous les conditions de procédure, ou
    un gaz ou un mélange gazeux réactif vis-à-vis du métal et/ou de l'alliage de métaux et/ou de la couche d'oxyde sur le métal et/ou sur l'alliage de métaux de la surface sous les conditions de la procédure, au moyen duquel le métal et/ou l'alliage de métaux et/ou la couche d'oxyde sur le métal et/ou sur l'alliage de métaux est modifié, lors du balayage ou après le balayage avec le faisceau laser ou le faisceau de particules, par rapport à sa composition avant le balayage avec le faisceau laser ou le faisceau de particules ;
    et la surface présentant les nanostructures et ensuite anodisée par plongée dans une solution d'électrolyte, qui contient à la fois un agent d'oxydation et un agent qui dissout à nouveau l'oxyde, et qui peut le cas échéant être identique avec l'agent d'oxydation, par liaison avec une cathode et par application d'une tension.
  2. Procédé selon la revendication 1, dans lequel le métal ou l'alliage de métaux est sélectionné à partir de aluminium, titane, magnésium, fer, cobalt, zinc, niobium, zirconium, hafnium, tantale, vanadium et/ou leurs alliages et acier.
  3. Procédé selon la revendication 1 ou 2, dans lequel la pression, lorsque l'atmosphère est du vide, et dans la plage de 10-17 à environ 10-4 ou
    lorsque l'atmosphère est un gaz ou un mélange gazeux inerte ou réactif par rapport à la surface sous les conditions de la procédure, dans la plage d'environ 10-6 à environ 1 bar lors de l'utilisation d'un rayonnement de particules et de 15 bars lors de l'utilisation d'un rayonnement laser et
    la température à l'extérieur du rayonnement laser ou du rayonnement de particules est dans la plage d'environ 50° C à environ 350° C.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel environ 0,07 ≤ ε ≤ environ 2000 et de manière plus préférée environ 0,07 ≤ ε ≤ environ 1500.
  5. Procédé selon l'une des revendications 1 à 4, dans lequel dans l'équation 1 la longueur des impulsions laser est d'environ 0,1 ns à environ 300 ns, de façon plus préférée environ 5 ns à environ 200 ns, et/ou la puissance de pointe des impulsions du rayonnement laser sortant Pp est d'environ 1 kW à environ 1800 kW et/ou la puissance moyenne du rayonnement laser sortant Pm est environ 5W à environ 28 000 W, et/ou la fréquence de répétition des impulsions laser f est d'environ 10 kHz à environ 3000 kHz, et/ou la vitesse de balayage au niveau de la surface de la pièce à oeuvrer v est d'environ 30 mm/s à environ 19 000 mm/s, et/ou le diamètre du rayonnement laser au niveau de la pièce à oeuvrer d est d'environ 20 µm à environ 4500 µm.
  6. Procédé selon l'une des revendications 1 à 3, dans lequel environ 0,7 ≤ ε1 ≤ environ 1500, et de façon plus préférée environ 0,9 ≤ ε1 ≤ environ 1200.
  7. Procédé selon l'une des revendications 1 à 3 et 6, dans lequel dans l'équation 2 la longueur des impulsions du rayonnement t est environ 0,005 ns à environ 0,0 1ns, de préférence d'environ 0,008 ns à environ 0,01 ns et/ou la puissance de pointe des impulsions du rayonnement sortant Pp est d'environ 100 kW à environ 30 000 kW, de préférence environ 150 kW à environ 25 000 kW, et/ou la fréquence de répétition du rayonnement f est de préférence d'environ 100 kHz à environ 80 000 kHz, de façon plus préférée environ 120 kHz à environ 20 000 kHz, et/ou la puissance moyenne du rayonnement de particules sortant Pm est d'environ 1 W à environ 25 000 W, de préférence environ 20 W à environ 9500 W et/ou la vitesse de balayage au niveau de la surface de la pièce à oeuvrer v est d'environ 30 mm/s à environ 60 000 mm/s, de préférence d'environ 200 mm/s à environ 50 000 mm/s et/ou le diamètre du rayonnement laser au niveau de la pièce à oeuvrer d est environ 20 µm à environ 4500 µm, de préférence environ 50 µm à environ 3500 µm.
  8. Procédé selon l'une des revendications 1 à 3, dans lequel environ 0,7 ≤ e2 ≤ environ 1400, et de manière plus préférée environ 0,9 ≤ e2 ≤ environ 1100.
  9. Procédé selon l'une des revendications 1 à 3 et 8, dans lequel dans l'équation 3 la puissance moyenne du rayonnement sortant Pm est environ 1 W à environ 25 000 W, de préférence environ 20 W à environ 9500 W, et/ou la vitesse de balayage au niveau de la surface de la pièce à oeuvrer v est d'environ 100 mm/s à environ 8 millions mm/s, de préférence d'environ 200 mm/s à environ 7 millions mm/s, et/ou le diamètre du rayonnement de particules au niveau de la pièce à oeuvrer d est d'environ 20 µm à environ 4500 µm, de préférence d'environ 50 µm à environ 3500 µm, avec pour condition que le rapport du diamètre du faisceau de particules au niveau de la pièce à oeuvrer sur la vitesse de balayage d/v < environ 7000 ns.
  10. Procédé selon l'une des revendications 1 à 9, dans lequel le métal et/ou l'alliage de métaux est du titane et/ou un alliage de titane.
  11. Procédé selon l'une des revendications 1 à 10, dans lequel la solution d'électrolyte contient des ions fluorure.
  12. Procédé selon la revendication 11, dans lequel la solution d'électrolyte contient 10 à 1000 g/l de sulfate d'ammonium et 0,1 à 10 g/l de fluorure d'ammonium et est exempte d'acide fluorhydrique.
  13. Procédé selon la revendication 12, dans lequel la tension est de 10 à 60 V, et l'anodisation est effectuée à une température de 20 à 50° C sur une durée de quatre minutes à 24 heures.
  14. Procédé selon l'une des revendications 1 à 13, dans lequel le métal ou l'alliage de métaux est entièrement recouvert d'oxyde de métal ou d'oxyde d'alliage de métaux, qui présente sur la totalité de sa surface des structures de surface dans la plage des nanomètres, et dans le cas du titane ou d'un alliage de titane en particulier des nanotubes avec de préférence un diamètre de 10 à 300 nm.
  15. Procédé selon l'une des revendications 1 à 14, dans lequel la surface obtenue avec le procédé est reliée à un autre matériau, qui est sélectionné en particulier à partir de matériaux inorganiques, de matériaux organiques, de matériaux inorganiques-organiques, par exemple des composés complexes, des matériaux composites formés de matériaux inorganiques et de matériaux organiques, et les matériaux biologiques.
EP13805735.1A 2012-11-22 2013-10-10 Procédé de nanostructuration et d'anodisation d'une surface métallique Active EP2922986B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012022758 2012-11-22
DE102012022759 2012-11-22
PCT/DE2013/000582 WO2014079402A2 (fr) 2012-11-22 2013-10-10 Procédé de nanostructuration et d'anodisation d'une surface métallique

Publications (2)

Publication Number Publication Date
EP2922986A2 EP2922986A2 (fr) 2015-09-30
EP2922986B1 true EP2922986B1 (fr) 2016-11-30

Family

ID=49765737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13805735.1A Active EP2922986B1 (fr) 2012-11-22 2013-10-10 Procédé de nanostructuration et d'anodisation d'une surface métallique

Country Status (4)

Country Link
US (1) US10619263B2 (fr)
EP (1) EP2922986B1 (fr)
DE (1) DE112013005613A5 (fr)
WO (1) WO2014079402A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121545B4 (de) * 2011-12-20 2013-07-11 Eads Deutschland Gmbh Verfahren zur Strukturierung und chemischen Modifikation einer Oberfläche eines Werkstücks
CN106480482B (zh) * 2016-12-15 2018-12-18 河海大学常州校区 一种阴极表面纳秒脉冲等离子体制备催化纳米多孔膜的溶液及制备方法
CN106757263B (zh) * 2016-12-15 2018-12-18 河海大学常州校区 一种金属表面纳秒脉冲等离子体制备纳米颗粒的溶液及制备方法
CN113249723B (zh) * 2021-06-28 2021-11-30 成都飞机工业(集团)有限责任公司 一种基于数据库系统的cmt电弧表面熔覆方法
CN113897653B (zh) * 2021-11-11 2023-03-31 浙江工业大学 一种微弧氧化复合激光氮化制备医用钛合金表面软硬相间仿生涂层的方法
EP4215346A1 (fr) 2022-01-20 2023-07-26 Airbus Operations GmbH Réservoir de stockage cryogénique, aéronef doté d'un réservoir de stockage cryogénique et procédé de formation d'un joint polymère métallique hybride
DE102022206126A1 (de) 2022-06-20 2023-03-09 Carl Zeiss Smt Gmbh Bauteil zum Einsatz in einer Projektionsbelichtungsanlage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532634B2 (ja) 1998-12-25 2010-08-25 キヤノン株式会社 細孔の製造方法
JP5225623B2 (ja) * 2006-07-12 2013-07-03 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト 被印刷体と接触する部材を製造する方法
CN101519783B (zh) * 2009-04-07 2010-10-27 吉林大学 一种钛合金表面自润滑层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014079402A2 (fr) 2014-05-30
WO2014079402A3 (fr) 2014-12-24
US10619263B2 (en) 2020-04-14
US20150275387A1 (en) 2015-10-01
DE112013005613A5 (de) 2015-12-24
EP2922986A2 (fr) 2015-09-30

Similar Documents

Publication Publication Date Title
EP2922986B1 (fr) Procédé de nanostructuration et d&#39;anodisation d&#39;une surface métallique
DE102011121545B4 (de) Verfahren zur Strukturierung und chemischen Modifikation einer Oberfläche eines Werkstücks
DE102011121546B4 (de) Verfahren zur Strukturierung einer Oberfläche eines Werkstücks
EP1978131B2 (fr) Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques
EP0545230A1 (fr) Procédé de préparation d&#39;une couche d&#39;oxyde céramique modifiée sur des métaux formant couche barrière et produits obtenus
EP3175018B1 (fr) Pièce métallique, à surface poreuse, constituée de titane et/ou d&#39;alliage de titane et/ou d&#39;alliages de nickel-titane ainsi que de nitinol et procédé de fabrication
DE4116910A1 (de) Verfahren zur erzeugung oxidkeramischer oberflaechenschichten auf leichtmetall-gusslegierungen
EP1911862B1 (fr) Procédé d&#39;électropolissage pour niobium et tantale
EP2853616B1 (fr) Procédé de fabrication de couches d&#39;oxyde de protection anti-corrosion et/ou anti-usure
EP2669041B1 (fr) Procédé de nanostructuration et de modification chimique de matériaux en céramique, en verre, en carbone, en bore, en silicium et en matières composites
DE2516842A1 (de) Mit einer keramischen beschichtung versehener gegenstand mit einer fuer eine elektrophoretische beschichtung elektrochemisch nicht genuegend aktiven metallischen oberflaeche und verfahren zu seiner herstellung
EP1611266B1 (fr) Procede de fabrication de pieces modifiees en surface
DE102011055644A1 (de) Verfahren zur Erzeugung einer schwarzen oxidkeramischen Oberflächenschicht auf einem Bauteil aus einer Leichtmetalllegierung
DE102008029385B4 (de) Verfahren zur Herstellung von Seltenerdmetalloxidschichten und Übergangsmetalloxidschichten, Verwendung einer Vorrichtung zur Herstellung von Seltenerdmetalloxidschichten und Übergangsmetalloxidschichten sowie Verwendung eines Metallnitrats
EP2955250B1 (fr) Procédé destiné au revêtement d&#39;un substrat
DE102018101183A1 (de) Passives elektrisches Bauteil mit Isolierschicht
WO2023110154A1 (fr) Procédé de production d&#39;un matériau revêtu hautement résistant à l&#39;abrasion comportant une couche de conversion sur un substrat en aluminium, en particulier en forme de bande
DE102021134572A1 (de) Verfahren zur Auftragung einer partiellen Beschichtung
EP1141449B1 (fr) Procede pour rendre plus sombre une couche superficielle d&#39;un objet, cette couche contenant du zinc
EP0504705A1 (fr) Prétraitement pour matériaux métalliques pour la déposition de métaux par électrolyse
EP4382641A1 (fr) Procédé de dépôt électrolytique d&#39;une couche de phosphate sur des surfaces de zinc
DE19639835A1 (de) Verfahren zur Herstellung feinstkristalliner Metalloxidschichten und -pulver
EP3336219A1 (fr) Procédé de prétraitement de nettoyage et de protection anticorrosion de composants métalliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20161024

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 849888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005613

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005613

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 849888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 11

Ref country code: DE

Payment date: 20231020

Year of fee payment: 11