EP2922986B1 - Method for the nanostructuring and anodization of a metal surface - Google Patents

Method for the nanostructuring and anodization of a metal surface Download PDF

Info

Publication number
EP2922986B1
EP2922986B1 EP13805735.1A EP13805735A EP2922986B1 EP 2922986 B1 EP2922986 B1 EP 2922986B1 EP 13805735 A EP13805735 A EP 13805735A EP 2922986 B1 EP2922986 B1 EP 2922986B1
Authority
EP
European Patent Office
Prior art keywords
approximately
metal
radiation
laser
metal alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13805735.1A
Other languages
German (de)
French (fr)
Other versions
EP2922986A2 (en
Inventor
Erhard Brandl
Ante Kurtovic
Tobias Mertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2922986A2 publication Critical patent/EP2922986A2/en
Application granted granted Critical
Publication of EP2922986B1 publication Critical patent/EP2922986B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Definitions

  • the invention relates to a method for nanostructuring and oxidation of a surface comprising an anodizable metal and / or anodizable metal alloy, both of which may be coated with an oxide layer, by means of laser or particle radiation in an inert or reactive atmosphere and subsequent anodization.
  • anodization of metals and metal alloys is a well-known method.
  • a material of an anodizable metal or anodizable metal alloy is used as an anode in an electrolytic cell, which further comprises a cathode connected to the anode (usually made of precious metal) and an electrolyte with a suitable oxidizing agent.
  • a cathode connected to the anode (usually made of precious metal) and an electrolyte with a suitable oxidizing agent.
  • the surface of the metal or metal alloy is oxidized.
  • the process may be conducted so that a smaller portion of the oxidized surface is continually redissolved by the electrolyte, while a larger portion of the surface is still oxidized , In this way, structures of micrometer or nanometer dimensions, in the special case of titanium in the form of nanotubes, can be created on the oxidized surface.
  • these surfaces comprise areas that do not have nanostructures after anodization.
  • the invention relates to a method according to claim 1.
  • Advantageous embodiments of the invention are the subject of the dependent claims.
  • sequential treatment of a metal or metal alloy surface optionally having an oxide coating of a material can be provided by nanostructuring by laser or particle radiation in an inert or reactive atmosphere followed by anodization on the entire surface nanostructures of an oxide of the metal or metal alloy which in the case of titanium may be in the form of nanotubes. After this treatment, no areas of the surface remain that have no nanostructuring. Furthermore, it has been found that the nanostructures thus produced are finer and the nanostructure more homogeneous than those produced solely by anodization of the material.
  • the roughening or structuring in the nanometer range of surfaces is particularly important for a good adhesion of adhesives, paints, biological tissue and other coatings, such as heat protection layers and metallic adhesion promoter layers, essential.
  • a single or multiple irradiation with a pulsed laser beam or a continuous particle beam in an inert or reactive atmosphere under the conditions mentioned in the method described above can produce nanostructured surfaces suitable for good adhesion e.g. adhesives, lacquers, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings such as coatings to protect against chemical or thermal exposure. If necessary, even by sole joining under pressure, two materials can be adhesively bonded together if such nanostructures have been produced on at least one material.
  • Embodiment generally open-pored, fissured and / or fractal-like nanostructures, such as open-pore hill and valley structures, open-pore undercut structures and cauliflower or bulbous structures have. These structures typically cover the entire radiation treated metal or metal alloy surface.
  • the scanning of the output surface with the laser or particle beam can be repeated one or more times with the same process parameters and the same laser or particle beam or with different process parameters with the same laser or particle beam or with different laser and / or particle beams with the same process parameters or with different process parameters be performed. By repeated sampling under certain circumstances an even finer structure can be produced.
  • the starting surface comprising the metal or metal alloy and / or optionally an oxide layer thereon is not pretreated or cleaned prior to scanning with the laser or particle beam, but may also be e.g. be cleaned or pickled with a solvent.
  • Structuring with a laser or particle beam alone provides many materials, especially for good adhesion.
  • a simultaneous oxidation of the surface is desired or required, which is more uniform and / or has a greater layer thickness and in particular is even more porous than one optionally after treatment with the laser or Particle jet remaining oxide layer (if it has been assumed by an oxide-coated surface).
  • the metal and / or metal alloy encompassed by the surface are selected from anodisable metals and / or metal alloys. These include in particular aluminum, titanium, magnesium, iron, cobalt, zinc, niobium, zirconium, hafnium, tantalum, vanadium and / or their alloys and steel. In addition to pure titanium, in particular cobalt-chromium alloys, cobalt-chromium-molybdenum alloys and the alloys Ti-6Al-4V, Mg-4Al1-Zn, Ta-10W, Al 2024 (Al-4.4Cu-1.5Mg-0.6 Mn) and V2A steel (X5CrNi18-10).
  • the metal and / or the metal alloy which may optionally be at least partially coated with an oxide layer, may also be present in a metal-ceramic composite or a composite of a metal and / or a metal alloy containing the heat-conductive carbonaceous and / or boron nitride-containing Contain particles and / or fibers present.
  • pressure is generally in the range of about 10 -17 bar to about 10 -4 bar when working in vacuo, and in the range of about 10 -6 bar to about atmospheric pressure at particle beams and up to about 15 bar at Laser beams when operating in an atmosphere of intentionally added inert or reactive gas or gas mixture.
  • the temperature outside the laser or particle beam is generally in the range of about -50 ° C - about 350 ° C (in the jet of course much higher temperatures may be present).
  • the data of the underlying metal or metal alloy are used for the evaporation or decomposition point at normal pressure, the specific heat capacity c p under normal conditions and the specific thermal conductivity ⁇ under normal conditions.
  • Values of ⁇ which must result from the parameters of Equation 1 given above, in order to produce the desired surface structuring according to the invention, are preferably about 0.07 ⁇ ⁇ ⁇ about 2000, more preferably about 0.07 ⁇ ⁇ ⁇ about 1500 ,
  • the laser wavelength ⁇ may be about 100 nm to about 11000 nm.
  • the pulse length of the laser pulses t is preferably about 0.1 ns to about 300 ns, more preferably about 5 ns to about 200 ns.
  • the pulse peak power of the exiting laser radiation Pp is preferably about 1 kW to about 1800 kW, more preferably about 3 kW to about 650 kW.
  • the average power of the exiting laser radiation P m is preferably about 5 W to about 28,000 W, more preferably about 20 W to about 9500 W.
  • the repetition rate of the laser pulses f is preferably about 10 kHz to about 3000 kHz, more preferably about 10 kHz to about 950 kHz.
  • the scanning speed at the workpiece surface v is preferably about 30 mm / s to about 19000 mm / s, more preferably about 200 mm / s to about 9000 mm / s.
  • the diameter of the laser beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • ⁇ 1 which must result from the parameters of Equation 2 given above, so that the desired surface structuring according to the invention is produced, are preferably approximately 0.07 ⁇ ⁇ 1 ⁇ approximately 1500, more preferably approximately 0.9 ⁇ ⁇ 1 ⁇ about 1200.
  • the laser wavelength ⁇ is about 100 nm to about 11000 nm.
  • the pulse length of the radiation t is preferably about 0.005 ns to about 0.01 ns, more preferably about 0.008 ns to about 0.01 ns.
  • the peak pulse power of the exiting radiation Pp is preferably about 100 kW to about 30,000 kW, more preferably about 150 kW to about 25,000 kW.
  • the average power of the exiting radiation P m is preferably about 5 W to about 25,000 W, more preferably about 20 W to about 9500 W.
  • the repetition rate of the radiation f is preferably about 100 kHz to about 80,000 kHz, more preferably about 120 kHz to about 20,000 kHz.
  • the scanning speed at the workpiece surface v is preferably about 30 mm / s to about 60,000 mm / s, more preferably about 200 mm / s to about 50,000 mm / s.
  • the diameter of the laser beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • ⁇ 2 which must result from the parameters of Equation 3 given above in order to produce the surface structuring according to the invention are preferably about 0.07 ⁇ ⁇ 2 ⁇ about 1400, more preferably about 0.9 ⁇ ⁇ 2 ⁇ about 1100.
  • the average power of the exiting radiation P m is preferably about 1 W to about 25,000 W, more preferably about 20 W to about 9500 W.
  • the scanning speed at the workpiece surface v is preferably about 100 mm / sec to about 8,000,000 mm / sec, more preferably about 200 mm / sec to about 7,000,000 mm / sec.
  • the diameter of the particle beam on the workpiece d is preferably about 20 ⁇ m to about 4500 ⁇ m, more preferably about 50 ⁇ m to about 3500 ⁇ m.
  • the ratio of beam diameter to scan speed is limited, namely, d / v ⁇ about 7000 ns.
  • Suitable radiation sources for electron and ion beams and beams of uncharged particles are known to those skilled in the art.
  • the atmosphere in which the process according to the invention is used may be a vacuum or a gas or gas mixture which is inert to the surface under the process conditions, the inert gases being a noble gas, eg argon, helium or neon, depending on the surface and process conditions, or in many cases also nitrogen or CO 2 , or a mixture of these gases.
  • the inert gas or gas mixture is selected so that it does not react with the metal, metal alloy or oxide layer on a given metal, metal alloy or oxide layer thereon under the pressure and temperature operating conditions.
  • the pressure is when working in a vacuum without addition of gas, preferably at 10 -17 to 10 -4 bar.
  • the pressure is generally 10 -6 to 1 bar when using particle beams and up to 15 bar when using laser beams.
  • Ambient pressure and temperature are preferred if permitted by the given surface.
  • the atmosphere in which the process according to the invention is carried out may comprise a reactive gas which chemically modifies the surface material according to the invention.
  • the reactive gases in which the process can be carried out include, for example, inorganic gases or gas mixtures such as hydrogen, air, oxygen, nitrogen, halogens, carbon monoxide, carbon dioxide, ammonia, nitrogen monoxide, nitrogen dioxide, nitrous oxide, sulfur dioxide, hydrogen sulfide, boranes and / or silanes (eg monosilane and / or disilane).
  • Organic gases or gases with organic groups can also be used. These include e.g. lower, optionally halogenated alkanes, alkenes and alkynes, such as methane, ethane, ethene (ethylene), propene (propylene), ethyne (acetylene), methyl fluoride, methyl chloride and methyl bromide, and also methylamine and methylsilane. Also, a mixture of an inorganic and organic or organic group-containing gas may be used.
  • a gas component thereof or a mixture of a plurality of gas components is a reactive gas; the remainder may be an inert gas, usually a noble gas.
  • the concentration of the reacting gas or gas mixture may be of a few ppb, e.g. 5 ppb, up to more than 99 vol% vary.
  • the selection of the reactive gas or gas mixture depends on the intended modification of the surface material of the invention. If an oxide-containing surface is to be reduced, e.g. Of course, to introduce hydroxide groups, one will use a reducing gas such as hydrogen as the reactive gas (optionally in admixture with an inert gas). For oxidation of the surface, however, e.g. consider an oxygen-containing gas. The person skilled in the art knows which reactive gas to choose in order to achieve a desired effect on a given surface material according to the invention.
  • the pressure of the reactive gas or gas mixture is generally in the range of about 10 -6 bar to about 1 bar when using a particle beam and up to about 15 bar when using a laser beam. Atmospheric pressure is preferred. It may be used at gas temperatures that are generally outside the laser beam in the range of about -50 ° C to about 350 ° C. Of course, much higher temperatures can occur in the laser beam.
  • XPS X-Ray Photoelectron Spectroscopy
  • EDX energy dispersive X-ray analysis
  • FTIR spectroscopy Time of Flight Secondary Ion Mass Spectrometry
  • TOF -SIMS Time of Flight Secondary Ion Mass Spectrometry
  • EELS electroence-to-elastoma spectroscopy
  • HAADF high angle annular dark field
  • NIR near infrared spectroscopy
  • the metal and / or the metal alloy on the material surface has been nanostructured as described above, it is subjected to anodization in which the workpiece forming the anode is immersed in an electrolytic solution, connected to a cathode usually comprising noble metal, and then put on a Tension anodized.
  • the electrolyte In general, the generation of highly porous and / or present in the form of nanotubes oxide layers by means of anodization that the electrolyte must have a dual function: on the one hand continuously oxidize the metal or metal alloy and on the other hand partially dissolve the oxide formed again. This results in highly porous or nanotube structures. Accordingly, the electrolyte must contain an effective oxidizing agent and at the same time an agent which provides for the redissolution of the oxide.
  • an electrolytic solution containing, as the oxidizing agent usually either an oxidizing inorganic or organic acid or an oxidizing acid salt or a hydroxide-based alkaline oxidizing agent is used.
  • the usable inorganic acids and acidic salts include, for example, sulfuric acid, chromic acid, phosphoric acid, nitric acid and ammonium sulfate, to the usable organic acids such as toluenesulfonic acid, benzenesulfonic acid and tartaric acid.
  • Hydrochloric acid can be used to set a suitable pH. Hydroxide-containing alkaline oxidizing agents are often based on caustic soda.
  • a portion of the oxide formed is redissolved. This can be done with an acid, which may be another acid or, in some cases, the same acid as that used for oxidation, or with an acidic salt. Often, the counterion of the acid or the anion of the salt is a complexing agent for the anodized metal or anodized metal alloy.
  • tartaric acid the anion of which is a complexing agent
  • oxide dissolving agent for example, in conjunction with phosphoric acid as the (further) oxidizing agent.
  • hydrofluoric acid or, if appropriate, ammonium fluoride is also used to re-dissolve the oxide.
  • oxidizing acid is identical to the oxide redissolving agent is phosphoric acid in the case of anodization of aluminum, the sole use of which results in the formation of a micro or nanostructure.
  • concentrations of the oxidizing agent and the oxide-dissolving agent which is often used in a lower molar concentration compared to the oxidizing agent, and the pH of the electrolytic solution vary depending on the metal or metal alloy and the desired layer thickness and porosity. This also applies to the voltage and temperature used in the respective process.
  • ammonium sulfate can be advantageously used as the oxidizing agent together with ammonium fluoride as the oxide-dissolving agent, which avoids the handling of the extremely toxic hydrofluoric acid and is particularly preferred in the process according to the invention.
  • the aqueous electrolyte generally comprises 10 to 1000 g / l, eg 100 to 500 or 160 g / l, preferably 120 to 140 g / l and especially 130 g / l of ammonium sulfate and generally 0.1 to 10 g / l, preferably 2 to 6 g / l and in particular Ammonium fluoride, wherein the temperatures are generally at 20 to 50 ° C, preferably at 22 to 28 ° C and in particular at 25 ° C and a voltage of 1 to 60 V, preferably 10 to 20 V over a period of 4 min to 24 h, preferably 27 to 33 minutes, and especially 30 minutes, when an oxide layer having a layer thickness in the range of 100 to 1000 nm, for example 200 to 450 nm or 300 to 400 nm and for some purposes preferably 340 to 360 nm generated is to be covered whose entire surface of nanotubes with a diameter in the range of 10 to 300 nm
  • oxide layers which are completely present on the surface in nanostructured form, in particular in the form of nanotubes, on any metals coated with thin oxide layers and / or metal alloys can be produced which completely cover the metals or metal alloys.
  • the oxide layers on metals or metal alloys according to the invention which have the above-described nanostructures, in particular nanotubes, ensure excellent adhesion of, for example, adhesives, paints, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings, such as chemical protection coatings or heat. Further, when at least one workpiece has a surface made according to the invention, two such workpieces or one workpiece with one workpiece having a surface of another material can be satisfactorily bonded by merely joining under elevated pressure at room temperature or at elevated temperatures get connected.
  • the surfaces produced according to the invention can also serve for other purposes than the improvement of adhesion.
  • the oxidation and nanostructuring causes changes in the physical and / or chemical interaction of the surface with light or matter.
  • the reduces electrical conductivity and increases corrosion resistance. Color or emissivity of the surface are also changed.
  • the large increase in the surface area due to the formation of nanostructures, in particular of nanotubes, can also greatly increase the catalytic effects of the surface itself or of a thin and / or nanoscale coating on the same e.g. with dyes or metal catalysts result because heterogeneous catalysis is known to be a surface phenomenon. Even purely physical phenomena, such as the increase in the number of points at which nuclei or nuclei can form, can be used.
  • metal prostheses and implants which are e.g. Titanium or a titanium alloy include.
  • the porous surfaces ensure that the biological materials in the body, with which they are supposed to grow together, stick to them excellently.
  • a voltage of 10 to 25 V was applied for 30 minutes.
  • the resulting surface, which has large areas without structuring ( ⁇ -phase of the Ti-6Al-4V structure) on the surface in addition to areas with nanotubes, is in Fig. 1 shown.
  • a pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Nd YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • the surface obtained is in Fig. 2 shown. It can be seen that the surface has a nodular nanostructure throughout, but no nanotubes.
  • Example 1 Nanostructuring of a Ti-6Al-4V surface using pulsed laser radiation in an inert atmosphere followed by anodization
  • a pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Nd YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.
  • Fig. 3 The surface obtained is in Fig. 3 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.
  • a Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.
  • YVO 4 neodymium-pumped yttrium orthovanadate
  • the surface obtained is in Fig. 4 shown. It can be seen that the surface despite partial oxidation by the oxygen atmosphere, which was detected by means of photoelectron spectroscopy (XPS analysis), although throughout a nodular nanostructure, but no nanotubes.
  • XPS analysis photoelectron spectroscopy
  • Example 2 Nanostructuring of a Ti-6Al-4V surface by means of pulsed laser radiation in a reactive atmosphere and subsequent anodization
  • a Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength ⁇ : 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.
  • YVO 4 neodymium-pumped yttrium orthovanadate
  • Fig. 5 The surface obtained is in Fig. 5 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)
  • Chemically Coating (AREA)

Description

Gebiet der ErfindungField of the invention

Die Erfindung betrifft ein Verfahren zur Nanostrukturierung und Oxidation einer Oberfläche, die ein anodisierbares Metall und/oder eine anodisierbare Metalllegierung umfasst, die beide mit einer Oxidschicht überzogen sein können, mittels Laser- oder Teilchenstrahlung in einer inerten oder reaktiven Atmosphäre und anschließender Anodisation.The invention relates to a method for nanostructuring and oxidation of a surface comprising an anodizable metal and / or anodizable metal alloy, both of which may be coated with an oxide layer, by means of laser or particle radiation in an inert or reactive atmosphere and subsequent anodization.

Hintergrund der ErfindungBackground of the invention

Die Anodisation von Metallen und Metalllegierungen ist ein altbekanntes Verfahren. Bei diesem wird ein Werkstoff aus einem anodisierbaren Metall oder einer anodisierbaren Metalllegierung als Anode in einer elektrolytischen Zelle eingesetzt, die ferner eine mit der Anode verbundene Kathode (meist aus Edelmetall) und einen Elektrolyten mit einem geeigneten Oxidationsmittel umfasst. Beim Anlegen einer Spannung wird die Oberfläche des Metalls oder der Metalllegierung oxidiert. In Elektrolyten, die ferner einen das Metalloxid wieder auflösenden Zusatz in geeigneter Konzentration enthalten, kann unter geeigneten Bedingungen das Verfahren so geführt werden, dass fortwährend ein kleinerer Teil der oxidierten Oberfläche durch den Elektrolyten wieder herausgelöst wird, während ein größerer Teil der Oberfläche weiterhin oxidiert wird. Auf diese Weise können auf der oxidierten Oberfläche Strukturen von Mikro- oder Nanometerabmessungen, im speziellen Fall von Titan in Form von Nanoröhren, geschaffen werden.The anodization of metals and metal alloys is a well-known method. In this, a material of an anodizable metal or anodizable metal alloy is used as an anode in an electrolytic cell, which further comprises a cathode connected to the anode (usually made of precious metal) and an electrolyte with a suitable oxidizing agent. Upon application of a voltage, the surface of the metal or metal alloy is oxidized. In electrolytes which also contain a metal oxide redissolving additive in a suitable concentration, under suitable conditions, the process may be conducted so that a smaller portion of the oxidized surface is continually redissolved by the electrolyte, while a larger portion of the surface is still oxidized , In this way, structures of micrometer or nanometer dimensions, in the special case of titanium in the form of nanotubes, can be created on the oxidized surface.

In vielen Fällen umfassen diese Oberflächen nach der Anodisation jedoch Bereiche, die keine Nanostrukturen aufweisen.In many cases, however, these surfaces comprise areas that do not have nanostructures after anodization.

Aus DAOAI WANG ET AL: "Engineering a Titanium Surface with Controllable Oleaphobicity and Switchable Oil Adhesion", JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 114, Nr 21, 3. Juni 2010 (2010-06-03), Seiten 9938-9944, XP055123253, ISSN: 1932-7447, DOI: 10.1021/jp1023185 ist ein Verfahren zur Erzeugung von oleophoben Nanostrukuren auf Titanoberflächen bekannt, bei dem zunächst die Oberfläche mit einem Laserstrahl mit einer Wellenlänge von 1064 nm und einer Repetitionsrate der Strahlungsimpulse von 10 kHz und einer Impulslänge der Impulse von 5-25 ns mikrostrukturiert wird, um ein Strukturmuster mit unterschiedlichen Tiefen zu erzeugen, wobei die mit Mikrostrukturen versehene Oberfläche anschließend anodisiert wird.Out DAOAI WANG ET AL: "Engineering a Titanium Surface with Controllable Oleaphobicity and Switchable Oil Adhesion", JOURNAL OF PHYSICAL CHEMISTRY C, Vol. 114, No. 21, 3 June 2010 (2010-06-03), pages 9938-9944, XP055123253 , ISSN: 1932-7447, DOI: 10.1021 / jp1023185 discloses a method for producing oleophobic nanostructures on titanium surfaces, in which first the surface is microstructured with a laser beam having a wavelength of 1064 nm and a repetition rate of the radiation pulses of 10 kHz and a pulse length of the pulses of 5-25 ns to form a pattern at different depths, with the microstructured surface subsequently anodized.

Aus MACAK J M ET AL: "Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by TI anodization", JOURNAL OF ELECTROCERAMICS; KLUWER ACADEMIC PUBLISHERS; BO, Bd 16, Nr. 1, 1. Februar 2006 (2006-02-01), Seiten 29-34 XP019208330, ISSN: 1573-8663; DOI: 10.1007/S10832-006-3904-0 , ist die Bildung von Nanoröhren auf Ti-Oberflächen durch Anodisierung ohne verherige Strukturierung bekannt.Out MACAK JM ET AL: "Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by TI anodization", JOURNAL OF ELECTROCERAMICS; KLUWER ACADEMIC PUBLISHERS; BO, Vol 16, No. 1, 1 February 2006 (2006-02-01), pages 29-34 XP019208330, ISSN: 1573-8663; DOI: 10.1007 / S10832-006-3904-0 , the formation of nanotubes on Ti surfaces is known by anodization without previous structuring.

Aus der US 2008/011175 A1 ist ein Verfahren zur Erzeugung einer Mikrostruktur auf einer Aluminiumoberfläche bekannt, bei der die Oberfläche mittels Sandstrahlen oder mittels eines Lasers vorstrukturiert und anschließend anodisiert wird.From the US 2008/011175 A1 For example, a method for producing a microstructure on an aluminum surface is known in which the surface is pre-structured by sand blasting or by means of a laser and then anodized.

Aus der US 2001/0010973 A1 ist ein Verfahren zum Erzeugen von regelmäßig angeordneten engen sehr linearen Poren beschrieben, bei dem zunächst die Oberfläche mit einem Teilchenstrahl in Form eines Elektronenstrahls oder lonenstrahls derart bestrahlt wird, dass diskrete Startpunkte zum Bilden der Poren an mit einem Abstand von 5 nm bis 1000 nm beabstandeten Stellen ausgebildet werden. Anschließend wird eine anodische Oxidation an dem so bestrahlten Werkstück ausgeführt, um die engen Poren in dem Werkstück auszubilden.From the US 2001/0010973 A1 For example, there is described a method for producing regularly arranged narrow very linear pores, in which first the surface is irradiated with a particle beam in the form of an electron beam or ion beam such that discrete starting points for forming the pores are spaced apart by a distance of 5 nm to 1000 nm Jobs are trained. Subsequently, anodic oxidation is performed on the thus irradiated workpiece to form the narrow pores in the workpiece.

Zusammenfassung der ErfindungSummary of the invention

Die Erfindung betrifft ein Verfahren nach Anspruch 1. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.The invention relates to a method according to claim 1. Advantageous embodiments of the invention are the subject of the dependent claims.

Die Erfindung beschreibt ein Verfahren zur Nanostrukturierung und Oxidation einer Oberfläche eines Werkstoffs, die ein anodisierbares Metall und/oder eine anodisierbare Metalllegierung, die beide zumindest teilweise mit einer Oxidschicht überzogen sein können, umfasst, bei dem die Oberfläche des Metalls und/oder der Metalllegierung und/oder der Oxidschicht auf dem Metall oder/oder der Metalllegierung, die für eine Laserbestrahlung oder für eine Bestrahlung mit einem Teilchenstrahl zugänglich ist und auf der die Strukturen zu erzeugen sind, mit einem gepulsten Laserstrahl oder einem kontinuierlichen Teilchenstrahl, der aus einem Elektronen- oder Ionenstrahl oder einem Strahl von ungeladenen Partikeln oder einer Kombination derselben ausgewählt ist, vollständig ein- oder mehrmals auf solche Weise abgetastet wird, dass benachbarte Lichtflecke des Laserstrahls oder Abtastflecke des Teilchenstrahls lückenlos aneinander stoßen oder sich überlappen, wobei die folgenden Bedingungen eingehalten werden:

  • wenn mit einem Laserstrahl abgetastet wird und die Impulslänge der Laserimpulse t etwa 0,1 ns bis etwa 2000 ns ist,
    • ein ε-Wert von etwa 0,07 ≤ ε ≤ etwa 2300,
    wobei ε = P P 2 P m f α t κ d 2 v T V c P λ 10 3
    Figure imgb0001
    oder, wenn mit einem Laserstrahl bei einer Wellenlänge des Lasers λ von etwa 100 ≤ λ ≤ etwa 11000 nm abgetastet wird und die Impulslänge der Laserimpulse t < etwa 0,1 ns, ein ε1-Wert von etwa 0,5 ≤ ε1 ≤ etwa 1650,
    wobei ε 1 = P P P m f α t κ d 2 v T v c P 10 3
    Figure imgb0002
    worin in Gleichung 1 und Gleichung 2:
    • Pp: Impulsspitzenleistung der austretenden Strahlung [kW];
    • t: Impulslänge der Impulse [ns];
    • f: Repetitionsrate der Strahlungsimpulse [kHz];
    • v: Abtastgeschwindigkeit an der Werkstückoberfläche [mm/s];
    • d: Durchmesser der energetischen Strahlung an der Materialoberfläche [µm];
    • α: Absorption der energetischen Strahlung des bestrahlten Materials [%] bei der eingestrahlten Wellenlänge bei Normalbedingungen;
    oder,
    wenn mit einem Teilchenstrahl abgetastet wird, eine ε2-Wert von etwa 0,5 ≤ ε2 ≤ etwa 1550,
    wobei ε 2 = P m 2 κ α d 3 v T v c P 10 2
    Figure imgb0003
    worin in Gleichung 3:
    • v: Abtastgeschwindigkeit an der Werkstückoberfläche [mm/s];
    • d: Durchmesser der energetischen Strahlung an der Materialoberfläche [µm]; mit der Maßgabe, dass d/v < etwa 7000 ns;
    • α: Absorption der energetischen Strahlung des bestrahlten Materials [%] bei Normalbedingungen;
    und in Gleichung 1, Gleichung 2 und Gleichung 3:
  • Pm: Mittlere Leistung der austretenden Strahlung [W];
  • Tv: Verdampfungs- bzw. Zersetzungstemperatur des Materials [K] bei Normaldruck
  • cp: Spezifische Wärmekapazität [J/kgK] bei Normalbedingungen
  • κ: Spezifische Wärmeleitfähigkeit [W/mK] bei Normalbedingungen und gemittelt über die verschiedenen Raumrichtungen,
wobei die Atmosphäre, in der das Verfahren stattfindet,
Vakuum oder ein gegenüber der Oberfläche unter den Verfahrensbedingungen inertes Gas oder Gasgemisch ist oder
ein gegenüber dem Metall und/oder der Metalllegierung und/oder der Oxidschicht auf dem Metall oder/oder der Metalllegierung der Oberfläche unter den Verfahrensbedingungen reaktives Gas oder Gasgemisch ist, durch welches das Metall und/oder die Metalllegierung und/oder die Oxidschicht auf dem Metall oder/oder der Metalllegierung bei oder nach dem Abtasten mit dem Laser- oder Teilchenstrahl gegenüber seiner bzw. ihrer Zusammensetzung vor dem Abtasten mit dem Laser- oder Teilchenstrahl chemisch modifiziert wird;
und die Oberfläche anschließend durch Eintauchen in eine Elektrolytlösung, die sowohl ein Oxidationsmittel als auch ein das Oxid wieder auflösendes Agens enthält, das gegebenenfalls identisch mit den Oxidationsmittel sein kann, Verbinden mit einer Kathode und Anlegen einer Spannung anodisiert wird.The invention describes a method for nanostructuring and oxidation of a surface of a material comprising an anodizable metal and / or anodizable metal alloy, both of which may be at least partially coated with an oxide layer, wherein the surface of the metal and / or the metal alloy and or the oxide layer on the metal or / and the metal alloy which is accessible for laser irradiation or for irradiation with a particle beam and on which the structures are to be produced, with a pulsed laser beam or a continuous particle beam consisting of an electron beam or Ion beam or a beam of uncharged particles or a combination thereof is scanned completely one or more times in such a way that adjacent light spots of the laser beam or scanning spots of the particle beam abut each other or overlap gap, the following conditions be respected:
  • when sampled with a laser beam and the pulse length of the laser pulses t is about 0.1 ns to about 2000 ns,
    • an ε value of about 0.07 ≤ ε ≤ about 2300,
    in which ε = P P 2 P m f α t κ d 2 v T V c P λ 10 3
    Figure imgb0001
    or, when scanning with a laser beam at a wavelength of the laser λ of about 100 ≦ λ ≦ about 11000 nm and the pulse length of the laser pulses t <about 0.1 ns, an ε1 value of about 0.5 ε 1 ≦ about 1650,
    in which ε 1 = P P P m f α t κ d 2 v T v c P 10 3
    Figure imgb0002
    wherein in Equation 1 and Equation 2:
    • P p : peak pulse power of the emitted radiation [kW];
    • t: pulse length of the pulses [ns];
    • f: repetition rate of the radiation pulses [kHz];
    • v: scanning speed on the workpiece surface [mm / s];
    • d: diameter of the energetic radiation at the material surface [μm];
    • α: absorption of the energetic radiation of the irradiated material [%] at the irradiated wavelength under normal conditions;
    or,
    when it is scanned with a particle beam, an ε 2 value of approximately 0.5 ≤ ε ≤ 2 about 1550,
    in which ε 2 = P m 2 κ α d 3 v T v c P 10 2
    Figure imgb0003
    wherein in equation 3:
    • v: scanning speed on the workpiece surface [mm / s];
    • d: diameter of the energetic radiation at the material surface [μm]; with the proviso that d / v <about 7000 ns;
    • α: absorption of the energetic radiation of the irradiated material [%] under normal conditions;
    and in equation 1, equation 2 and equation 3:
  • P m : mean power of the exiting radiation [W];
  • T v : Evaporation or decomposition temperature of the material [K] at normal pressure
  • c p : Specific heat capacity [J / kgK] under normal conditions
  • κ: specific thermal conductivity [W / mK] under normal conditions and averaged over the different spatial directions,
the atmosphere in which the process takes place
Vacuum or a gas or gas mixture inert to the surface under the process conditions, or
a gas or gas mixture reactive with the metal and / or the metal alloy and / or the oxide layer on the metal and / or the metal alloy of the surface under the process conditions, through which the metal and / or the metal alloy and / or the oxide layer on the metal and / or the metal alloy is chemically modified during or after scanning with the laser or particle beam relative to its or their composition prior to scanning with the laser or particle beam;
and then the surface is anodized by immersion in an electrolyte solution containing both an oxidizing agent and an oxide redissolving agent, which may optionally be identical to the oxidizing agent, bonding to a cathode and applying a voltage.

Kurze Beschreibung der FigurenBrief description of the figures

  • Figur 1 zeigt die Oberfläche einer Ti-6AI-4V-Legierung nach einfacher Anodisation. FIG. 1 shows the surface of a Ti-6AI-4V alloy after simple anodization.
  • Figur 2 zeigt die Oberfläche einer Ti-6Al-4V-Legierung nach Nanostrukturierung mittels Laserstrahls. FIG. 2 shows the surface of a Ti-6Al-4V alloy after nanostructuring by laser beam.
  • Figur 3 zeigt die Oberfläche einer Ti-6AI-4V-Legierung nach Nanostrukturierung mittels Laserstrahls in Argonatmosphäre und anschließender Anodisation. FIG. 3 shows the surface of a Ti-6AI-4V alloy after nanostructuring by laser beam in argon atmosphere and subsequent anodization.
  • Figur 4 zeigt die Oberfläche einer Ti-6AI-4V-Legierung nach Nanostrukturierung mittels Laserstrahls unter Sauerstoffatmosphäre. FIG. 4 shows the surface of a Ti-6AI-4V alloy after nanostructuring by laser beam under oxygen atmosphere.
  • Figur 5 zeigt die Oberfläche einer Ti-6AI-4V-Legierung nach Nanostrukturierung mittels Laserstrahls unter Sauerstoffatmosphäre und anschließender Anodisation. FIG. 5 shows the surface of a Ti-6AI-4V alloy after nanostructuring by laser beam under oxygen atmosphere and subsequent anodization.
Detaillierte BeschreibungDetailed description

Es wurde überraschend gefunden, dass eine aufeinanderfolgende Behandlung einer gegebenenfalls einen Oxidüberzug aufweisende Metall- oder Metalllegierungsoberfläche eines Werkstoffs durch Nanostrukturierung mittels Laser- oder Teilchenstrahlung in inerter oder reaktiver Atmosphäre und anschließende Anodisation auf der gesamten Oberfläche Nanostrukturen eines Oxids des Metalls oder der Metalllegierung geschaffen werden können, die im Fall von Titan in Form von Nanoröhren vorliegen können. Nach dieser Behandlung bleiben keine Bereiche der Oberfläche zurück, die keine Nanostrukturierung aufweisen. Ferner wurde gefunden, dass die so erzeugten Nanostrukturen feiner und die Nanostruktur homogener ausgeprägt sind als jene, die allein durch Anodisation des Werkstoffs entstehen.It has surprisingly been found that sequential treatment of a metal or metal alloy surface optionally having an oxide coating of a material can be provided by nanostructuring by laser or particle radiation in an inert or reactive atmosphere followed by anodization on the entire surface nanostructures of an oxide of the metal or metal alloy which in the case of titanium may be in the form of nanotubes. After this treatment, no areas of the surface remain that have no nanostructuring. Furthermore, it has been found that the nanostructures thus produced are finer and the nanostructure more homogeneous than those produced solely by anodization of the material.

Die Aufrauung bzw. Strukturierung im Nanometer-Bereich von Oberflächen ist insbesondere für eine gute Haftung von Klebstoffen, Lacken, biologischem Gewebe und sonstigen Beschichtungen, wie Wärmeschutzschichten und metallischen Haftvermittlerschichten, essentiell.The roughening or structuring in the nanometer range of surfaces is particularly important for a good adhesion of adhesives, paints, biological tissue and other coatings, such as heat protection layers and metallic adhesion promoter layers, essential.

Eine einmalige oder mehrmalige Bestrahlung mit einem gepulsten Laserstrahl oder einem kontinuierlichen Teilchenstrahl in inerter oder reaktiver Atmosphäre unter den im vorstehend beschriebenen Verfahren genannten Bedingungen kann nanostrukturierte Oberflächen erzeugen, die für eine gute Haftung z.B. von Klebstoffen, Lacken, Lot, Dichtmittel, Knochenzement, Haftvermittler oder biologischem Gewebe sowie von anderen Beschichtungen wie Beschichtungen zum Schutz vor chemischer oder Wärmeeinwirkung sorgen. Es können gegebenenfalls sogar durch alleiniges Zusammenfügen unter Druck zwei Werkstoffe miteinander haftfest verbunden werden, wenn auf mindestens einem Werkstoff solche Nanostrukturen erzeugt worden sind.A single or multiple irradiation with a pulsed laser beam or a continuous particle beam in an inert or reactive atmosphere under the conditions mentioned in the method described above can produce nanostructured surfaces suitable for good adhesion e.g. adhesives, lacquers, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings such as coatings to protect against chemical or thermal exposure. If necessary, even by sole joining under pressure, two materials can be adhesively bonded together if such nanostructures have been produced on at least one material.

Die durch Laser- oder Teilchenstrahlung erzeugten, mit Oberflächenstrukturen versehenen Oberflächen, die beim Arbeiten in reaktiver Atmosphäre gegenüber der Ausgangsoberfläche chemisch modifiziert sind, können je nach Ausführungsform im Allgemeinen offenporige, zerklüftete und/oder fraktalartige Nanostrukturen, wie offenporige Berg- und Tal-Strukturen, offenporige hinterschnittene Strukturen und blumenkohl- oder knollenartige Strukturen, aufweisen. Diese Strukturen bedecken in der Regel die gesamte mit der Strahlung behandelte Metall- oder Metalllegierungsoberfläche.The surface-structured surfaces produced by laser or particle radiation which are chemically modified when working in a reactive atmosphere relative to the starting surface may vary Embodiment generally open-pored, fissured and / or fractal-like nanostructures, such as open-pore hill and valley structures, open-pore undercut structures and cauliflower or bulbous structures have. These structures typically cover the entire radiation treated metal or metal alloy surface.

Das Abtasten der Ausgangoberfläche mit dem Laser- oder Teilchenstrahl kann einmal oder mehrmals hintereinander mit denselben Prozessparametern und demselben Laser- oder Teilchenstrahl oder mit unterschiedlichen Prozessparametern mit demselben Laser- oder Teilchenstrahl oder mit unterschiedlichen Laser- und/oder Teilchenstrahlen mit denselben Prozessparametern oder mit unterschiedlichen Prozessparametern durchgeführt werden. Durch mehrmaliges Abtasten kann unter Umständen eine noch feinere Struktur erzeugt werden.The scanning of the output surface with the laser or particle beam can be repeated one or more times with the same process parameters and the same laser or particle beam or with different process parameters with the same laser or particle beam or with different laser and / or particle beams with the same process parameters or with different process parameters be performed. By repeated sampling under certain circumstances an even finer structure can be produced.

Es muss erwähnt werden, dass naturgemäß nur solche Oberflächenbereiche behandelt werden können, die von einem Laser- oder Teilchenstrahl erreicht werden können. Bereiche, die vollständig "im Schatten" (z.B. bei hinterschnittenen Geometrien) liegen, können auf die hierin beschriebene Weise nicht strukturiert werden.It must be mentioned that naturally only those surface areas can be treated that can be achieved by a laser or particle beam. Regions that are completely "in the shade" (e.g., undercut geometries) can not be patterned in the manner described herein.

Häufig wird die Ausgangsoberfläche, die das Metall oder die Metalllegierung und/der gegebenenfalls eine Oxidschicht auf denselben umfasst, vor dem Abtasten mit dem Laser- oder Teilchenstrahl nicht vorbehandelt oder gereinigt, sie kann aber auch z.B. mit einem Lösungsmittel gereinigt oder gebeizt werden.Often, the starting surface comprising the metal or metal alloy and / or optionally an oxide layer thereon is not pretreated or cleaned prior to scanning with the laser or particle beam, but may also be e.g. be cleaned or pickled with a solvent.

Eine Strukturierung mit einem Laser- oder Teilchenstrahl allein sorgt, wie oben angeführt, insbesondere für eine gute Anhaftung viele Materialien. Es gibt jedoch auch viele Fälle, in denen zusammen mit einer Nanostrukturierung eine gleichzeitige Oxidation der Oberfläche erwünscht oder erforderlich ist, die gleichmäßiger ist und/oder eine größere Schichtdicke aufweist und insbesondere noch poröser ist als eine gegebenenfalls nach der Behandlung mit dem Laser-oder Teilchenstrahl verbleibende Oxidschicht (falls von einer mit Oxid überzogenen Oberfläche ausgegangen worden ist).Structuring with a laser or particle beam alone, as noted above, provides many materials, especially for good adhesion. However, there are also many instances where, along with nanostructuring, a simultaneous oxidation of the surface is desired or required, which is more uniform and / or has a greater layer thickness and in particular is even more porous than one optionally after treatment with the laser or Particle jet remaining oxide layer (if it has been assumed by an oxide-coated surface).

Das bzw. die von der Oberfläche umfasste Metall und/oder Metalllegierung, die gegebenenfalls zumindest teilweise mit einer Oxidschicht überzogen sein können, sind aus anodisierbaren Metallen und/oder Metalllegierungen ausgewählt. Dazu zählen insbesondere Aluminium, Titan, Magnesium, Eisen, Cobalt, Zink, Niob, Zirconium, Hafnium, Tantal, Vanadium und/oder deren Legierungen sowie Stahl. Neben Rein-Titan sind insbesondere Cobalt-Chrom-Legierungen, Cobalt-Chrom-Molybdän-Legierungen und die Legierungen Ti-6Al-4V, Mg-4Al1-Zn, Ta-10W, Al 2024 (Al-4.4Cu-1.5Mg-0.6Mn) und V2A-Stahl (X5CrNi18-10) zu nennen.The metal and / or metal alloy encompassed by the surface, which may optionally be at least partially coated with an oxide layer, are selected from anodisable metals and / or metal alloys. These include in particular aluminum, titanium, magnesium, iron, cobalt, zinc, niobium, zirconium, hafnium, tantalum, vanadium and / or their alloys and steel. In addition to pure titanium, in particular cobalt-chromium alloys, cobalt-chromium-molybdenum alloys and the alloys Ti-6Al-4V, Mg-4Al1-Zn, Ta-10W, Al 2024 (Al-4.4Cu-1.5Mg-0.6 Mn) and V2A steel (X5CrNi18-10).

Das Metall und/oder die Metalllegierung, die gegebenenfalls zumindest teilweise mit einer Oxidschicht überzogen sein können, können auch in einem MetallKeramik-Verbundwerkstoff oder einem Verbundwerkstoff aus einem Metall und/oder einer Metalllegierung, das bzw. die wärmeleitende kohlenstoffhaltige und/oder Bornitrid-haltige Teilchen und/oder Fasern enthält, vorliegen.The metal and / or the metal alloy, which may optionally be at least partially coated with an oxide layer, may also be present in a metal-ceramic composite or a composite of a metal and / or a metal alloy containing the heat-conductive carbonaceous and / or boron nitride-containing Contain particles and / or fibers present.

Der beim erfindungsgemäßen Verfahren vorliegende Druck liegt im Allgemeinen im Bereich von etwa 10-17 bar bis etwa 10-4 bar, wenn im Vakuum gearbeitet wird, und im Bereich von etwa 10-6 bar bis etwa Atmosphärendruck bei Teilchenstrahlen und bis etwa 15 bar bei Laserstrahlen, wenn in einer Atmosphäre aus einem absichtlich zugesetzten inerten oder reaktiven Gas oder Gasgemisch gearbeitet wird. Die Temperatur außerhalb des Laser- oder Teilchenstrahls liegt im Allgemeinen im Bereich von etwa -50°C - etwa 350°C (im Strahl können natürlich wesentlich höhere Temperaturen vorliegen).The present in the process according to the invention pressure is generally in the range of about 10 -17 bar to about 10 -4 bar when working in vacuo, and in the range of about 10 -6 bar to about atmospheric pressure at particle beams and up to about 15 bar at Laser beams when operating in an atmosphere of intentionally added inert or reactive gas or gas mixture. The temperature outside the laser or particle beam is generally in the range of about -50 ° C - about 350 ° C (in the jet of course much higher temperatures may be present).

Der Verdampfungs- bzw. Zersetzungspunkt bei Normaldruck, die spezifische Wärmekapazität cp bei Normalbedingungen, die über die verschiedenen Raumrichtungen gemittelte spezifische Wärmeleitfähigkeit κ bei Normalbedingungen und die bei Laserstrahlung von der Wellenlänge der Laserstrahlung abhängige Absorption der energetischen Strahlung des bestrahlten Material α bei Normalbedingungen, die in den oben erwähnten Ausdruck für ε oder ε1 oder ε2 einzusetzen sind, sind Materialeigenschaften des behandelten Metalls oder der behandelten Metalllegierung. Bei mit einer Oxidschicht bedeckten Metallen oder Metalllegierungen werden für den Verdampfungs- bzw. Zersetzungspunkt bei Normaldruck, die spezifische Wärmekapazität cp bei Normalbedingungen und die spezifische Wärmeleitfähigkeit κ bei Normalbedingungen die Daten des bzw. der zugrunde liegenden Metalls oder Metalllegierung verwendet.The evaporation or decomposition point at atmospheric pressure, the specific heat capacity c p under normal conditions, the averaged over the different spatial directions specific thermal conductivity κ under normal conditions and the laser radiation at the wavelength of the laser radiation dependent absorption of the energy radiation of the irradiated material α under normal conditions, the in the above-mentioned expression for ε or ε 1 or ε 2 are used, are material properties of the treated metal or the treated metal alloy. In the case of metals or metal alloys covered with an oxide layer, the data of the underlying metal or metal alloy are used for the evaporation or decomposition point at normal pressure, the specific heat capacity c p under normal conditions and the specific thermal conductivity κ under normal conditions.

Gleichung 1Equation 1

Werte von ε, die sich aus den Parametern der oben angegebenen Gleichung 1 ergeben müssen, damit die erfindungsgemäß angestrebte Oberflächenstrukturierung erzeugt wird, liegen bevorzugt bei etwa 0,07 ≤ ε ≤ etwa 2000, mehr bevorzugt bei etwa 0,07 ≤ ε ≤ etwa 1500.Values of ε, which must result from the parameters of Equation 1 given above, in order to produce the desired surface structuring according to the invention, are preferably about 0.07 ≦ ε ≦ about 2000, more preferably about 0.07 ≦ ε ≦ about 1500 ,

Im Folgenden werden bevorzugte Parameter des Verfahrens der Erfindung für die Gleichung 1 angegeben. Es muss betont werden, dass alle Parameter unabhängig voneinander variiert werden können.Hereinafter, preferred parameters of the method of the invention are given for equation 1. It must be emphasized that all parameters can be varied independently.

Die Laserwellenlänge λ kann etwa 100 nm bis etwa 11000 nm betragen.The laser wavelength λ may be about 100 nm to about 11000 nm.

Die Impulslänge der Laserimpulse t beträgt vorzugsweise etwa 0,1 ns bis etwa 300 ns, mehr bevorzugt etwa 5 ns bis etwa 200 ns.The pulse length of the laser pulses t is preferably about 0.1 ns to about 300 ns, more preferably about 5 ns to about 200 ns.

Die Impulsspitzenleistung der austretenden Laserstrahlung Pp beträgt vorzugsweise etwa 1 kW bis etwa 1800 kW, mehr bevorzugt etwa 3 kW bis etwa 650 kW.The pulse peak power of the exiting laser radiation Pp is preferably about 1 kW to about 1800 kW, more preferably about 3 kW to about 650 kW.

Die mittlere Leistung der austretenden Laserstrahlung Pm beträgt vorzugsweise etwa 5 W bis etwa 28.000 W, mehr bevorzugt etwa 20 W bis etwa 9500 W.The average power of the exiting laser radiation P m is preferably about 5 W to about 28,000 W, more preferably about 20 W to about 9500 W.

Die Repetitionsrate der Laserimpulse f beträgt vorzugsweise etwa 10 kHz bis etwa 3000 kHz, mehr bevorzugt etwa 10 kHz bis etwa 950 kHz.The repetition rate of the laser pulses f is preferably about 10 kHz to about 3000 kHz, more preferably about 10 kHz to about 950 kHz.

Die Abtastgeschwindigkeit an der Werkstückoberfläche v beträgt vorzugsweise etwa 30 mm/s bis etwa 19000 mm/s, mehr bevorzugt etwa 200 mm/s bis etwa 9000 mm/s.The scanning speed at the workpiece surface v is preferably about 30 mm / s to about 19000 mm / s, more preferably about 200 mm / s to about 9000 mm / s.

Der Durchmesser des Laserstrahls am Werkstück d beträgt vorzugsweise etwa 20 µm bis etwa 4500 µm, mehr bevorzugt etwa 50 µm bis etwa 3500 µm.The diameter of the laser beam on the workpiece d is preferably about 20 μm to about 4500 μm, more preferably about 50 μm to about 3500 μm.

Gleichung 2Equation 2

Der Werte von ε1, die sich aus den Parametern der oben angegebenen Gleichung 2 ergeben müssen, damit die erfindungsgemäß angestrebte Oberflächenstrukturierung erzeugt wir, liegen bevorzugt bei etwa 0,07 ≤ ε1 ≤ etwa 1500 , mehr bevorzugt bei etwa 0,9 ≤ ε1 ≤ etwa 1200.The values of ε 1 , which must result from the parameters of Equation 2 given above, so that the desired surface structuring according to the invention is produced, are preferably approximately 0.07 ≦ ε 1 ≦ approximately 1500, more preferably approximately 0.9 ≦ ε 1 ≤ about 1200.

Die Laserwellenlänge λ beträgt etwa 100 nm bis etwa 11000 nm.The laser wavelength λ is about 100 nm to about 11000 nm.

Im Folgenden werden bevorzugte Parameter des Verfahrens der Erfindung für die Gleichung 2 angegeben. Es muss betont werden, dass alle Parameter unabhängig voneinander variiert werden können.Hereinafter, preferred parameters of the method of the invention are given for equation 2. It must be emphasized that all parameters can be varied independently.

Die Impulslänge der Strahlung t beträgt vorzugsweise etwa 0,005 ns bis etwa 0,01 ns, mehr bevorzugt etwa 0,008 ns bis etwa 0,01 ns.The pulse length of the radiation t is preferably about 0.005 ns to about 0.01 ns, more preferably about 0.008 ns to about 0.01 ns.

Die Impulsspitzenleistung der austretenden Strahlung Pp beträgt vorzugsweise etwa 100 kW bis etwa 30.000 kW, mehr bevorzugt etwa 150 kW bis etwa 25.000 kW.The peak pulse power of the exiting radiation Pp is preferably about 100 kW to about 30,000 kW, more preferably about 150 kW to about 25,000 kW.

Die mittlere Leistung der austretenden Strahlung Pm beträgt vorzugsweise etwa 5 W bis etwa 25.000 W, mehr bevorzugt etwa 20 W bis etwa 9500 W.The average power of the exiting radiation P m is preferably about 5 W to about 25,000 W, more preferably about 20 W to about 9500 W.

Die Repetitionsrate der Strahlung f beträgt vorzugsweise etwa 100 kHz bis etwa 80.000 kHz, mehr bevorzugt etwa 120 kHz bis etwa 20.000 kHz.The repetition rate of the radiation f is preferably about 100 kHz to about 80,000 kHz, more preferably about 120 kHz to about 20,000 kHz.

Die Abtastgeschwindigkeit an der Werkstückoberfläche v beträgt vorzugsweise etwa 30 mm/s bis etwa 60.000 mm/s, mehr bevorzugt etwa 200 mm/s bis etwa 50.000 mm/s.The scanning speed at the workpiece surface v is preferably about 30 mm / s to about 60,000 mm / s, more preferably about 200 mm / s to about 50,000 mm / s.

Der Durchmesser des Laserstrahls am Werkstück d beträgt vorzugsweise etwa 20 µm bis etwa 4500 µm, mehr bevorzugt etwa 50 µm bis etwa 3500 µm.The diameter of the laser beam on the workpiece d is preferably about 20 μm to about 4500 μm, more preferably about 50 μm to about 3500 μm.

Als Laser können gepulste Festkörperlaser wie z.B. Nd:YAG (λ = 1064 nm oder 533 nm oder 266 nm), Nd:YVO4 (λ = 1064 nm), Diodenlaser mit z.B. λ = 808 nm, Gaslaser, wie z.B. Excimer-Laser, mit z.B. KrF (λ = 248 nm) oder H2 (λ = 123 nm bzw. 116 nm) oder ein CO2-Laser (10600 nm) benutzt werden.Pulsed solid-state lasers such as Nd: YAG (λ = 1064 nm or 533 nm or 266 nm), Nd: YVO 4 (λ = 1064 nm), diode lasers with eg λ = 808 nm, gas lasers, such as eg excimer lasers, with, for example, KrF (λ = 248 nm) or H 2 (λ = 123 nm or 116 nm) or a CO 2 laser (10600 nm).

Gleichung 3Equation 3

Der Werte von ε2, die sich aus den Parametern der oben angegebenen Gleichung 3 ergeben müssen, damit die erfindungsgemäß angestrebte Oberflächenstrukturierung erzeugt wir, liegen bevorzugt bei etwa 0,07 ≤ ε2 ≤ etwa 1400, mehr bevorzugt bei etwa 0,9 ≤ ε2 ≤ etwa 1100.The values of ε 2 which must result from the parameters of Equation 3 given above in order to produce the surface structuring according to the invention are preferably about 0.07 ≦ ε 2 ≦ about 1400, more preferably about 0.9 ≦ ε 2 ≤ about 1100.

Im Folgenden werden bevorzugte Parameter des Verfahrens der Erfindung für die Gleichung 2 angegeben. Es muss betont werden, dass alle Parameter unabhängig voneinander variiert werden können.Hereinafter, preferred parameters of the method of the invention are given for equation 2. It must be emphasized that all parameters can be varied independently.

Die mittlere Leistung der austretenden Strahlung Pm beträgt vorzugsweise etwa 1 W bis etwa 25.000 W, mehr bevorzugt etwa 20 W bis etwa 9500 W.The average power of the exiting radiation P m is preferably about 1 W to about 25,000 W, more preferably about 20 W to about 9500 W.

Die Abtastgeschwindigkeit an der Werkstückoberfläche v beträgt vorzugsweise etwa 100 mm/s bis etwa 8.000.000 mm/s, mehr bevorzugt etwa 200 mm/s bis etwa 7.000.000 mm/s.The scanning speed at the workpiece surface v is preferably about 100 mm / sec to about 8,000,000 mm / sec, more preferably about 200 mm / sec to about 7,000,000 mm / sec.

Der Durchmesser des Teilchenstrahls am Werkstück d beträgt vorzugsweise etwa 20 µm bis etwa 4500 µm, mehr bevorzugt etwa 50 µm bis etwa 3500 µm.The diameter of the particle beam on the workpiece d is preferably about 20 μm to about 4500 μm, more preferably about 50 μm to about 3500 μm.

Das Verhältnis von Strahldurchmesser zu Abtastgeschwindigkeit unterliegt einer Beschränkung, es muss nämlich d/v < etwa 7000 ns sein.The ratio of beam diameter to scan speed is limited, namely, d / v <about 7000 ns.

Geeignete Strahlenquellen für Elektronen- und Ionenstrahlen und Strahlen aus ungeladenen Teilchen sind dem Fachmann bekannt.Suitable radiation sources for electron and ion beams and beams of uncharged particles are known to those skilled in the art.

Die Atmosphäre, in der beim erfindungsgemäßen Verfahren gearbeitet wird, kann Vakuum oder ein gegenüber der Oberfläche unter den Verfahrensbedingungen inertes Gas oder Gasgemisch sein, wobei es sich bei den inerten Gasen je nach Oberfläche und Verfahrensbedingungen um ein Edelgas, z.B. Argon, Helium oder Neon, oder in vielen Fällen auch um Stickstoff oder CO2, oder ein Gemisch dieser Gase handeln kann. Das inerte Gas oder Gasgemisch wird so ausgewählt, dass es bei einem bzw. einer gegebenen Metall, Metalllegierung oder Oxidschicht auf denselben unter den Arbeitsbedingungen von Druck und Temperatur keine Reaktion mit dem Metall, der Metalllegierung oder einer Oxidschicht darauf eingeht.The atmosphere in which the process according to the invention is used may be a vacuum or a gas or gas mixture which is inert to the surface under the process conditions, the inert gases being a noble gas, eg argon, helium or neon, depending on the surface and process conditions, or in many cases also nitrogen or CO 2 , or a mixture of these gases. The inert gas or gas mixture is selected so that it does not react with the metal, metal alloy or oxide layer on a given metal, metal alloy or oxide layer thereon under the pressure and temperature operating conditions.

Der Druck liegt, wenn im Vakuum ohne Gaszusatz gearbeitet wird, bevorzugt bei 10-17 bis 10-4 bar. Wenn mit inertem Gaszusatz gearbeitet wird, liegt der Druck im Allgemeinen bei 10-6 bis 1 bar, wenn Teilchenstrahlen verwendet werden, und bis 15 bar, wenn Laserstrahlen verwendet werden. Umgebungsdruck und -temperatur sind bevorzugt, wenn es die gegebene Oberfläche zulässt.The pressure is when working in a vacuum without addition of gas, preferably at 10 -17 to 10 -4 bar. When working with inert gas additive, the pressure is generally 10 -6 to 1 bar when using particle beams and up to 15 bar when using laser beams. Ambient pressure and temperature are preferred if permitted by the given surface.

Andererseits kann die Atmosphäre, in der beim erfindungsgemäßen Verfahren gearbeitet wird, ein reaktives Gas umfassen, durch das das erfindungsgemäße Oberflächenmaterial chemisch modifiziert wird. Zu den reaktiven Gasen, in denen das Verfahren durchgeführt werden kann, gehören beispielsweise anorganische Gase oder Gasgemische, wie z.B. Wasserstoff, Luft, Sauerstoff, Stickstoff, Halogene, Kohlenstoffmonoxid, Kohlenstoffdioxid, Ammoniak, Stickstoffmonoxid, Stickstoffdioxid, Distickstoffmonoxid, Schwefeldioxid, Schwefelwasserstoff, Borane und/oder Silane (z.B. Monosilan und/oder Disilan).On the other hand, the atmosphere in which the process according to the invention is carried out may comprise a reactive gas which chemically modifies the surface material according to the invention. The reactive gases in which the process can be carried out include, for example, inorganic gases or gas mixtures such as hydrogen, air, oxygen, nitrogen, halogens, carbon monoxide, carbon dioxide, ammonia, nitrogen monoxide, nitrogen dioxide, nitrous oxide, sulfur dioxide, hydrogen sulfide, boranes and / or silanes (eg monosilane and / or disilane).

Organische Gase oder Gase mit organischen Gruppen können ebenfalls eingesetzt werden. Dazu gehören z.B. niedere, gegebenenfalls halogenierte Alkane, Alkene und Alkine, wie Methan, Ethan, Ethen (Ethylen), Propen (Propylen), Ethin (Acetylen), Methylfluorid, Methylchlorid und Methylbromid, sowie Methylamin und Methylsilan. Auch eine Mischung eines anorganischen und organischen oder organische Gruppen enthaltenden Gases kann verwendet werden.Organic gases or gases with organic groups can also be used. These include e.g. lower, optionally halogenated alkanes, alkenes and alkynes, such as methane, ethane, ethene (ethylene), propene (propylene), ethyne (acetylene), methyl fluoride, methyl chloride and methyl bromide, and also methylamine and methylsilane. Also, a mixture of an inorganic and organic or organic group-containing gas may be used.

Wenn ein Gasgemisch vorliegt, genügt es, dass ein Gasbestandteil desselben oder eine Mischung von mehreren Gasbestandteilen ein reaktives Gas ist; bei dem Rest kann es sich um ein inertes Gas, in der Regel ein Edelgas, handeln. Die Konzentration des reagierenden Gases oder Gasgemisches kann von wenigen ppb, z.B. 5 ppb, bis zu mehr als 99 Vol.-% variieren.When a gas mixture is present, it is sufficient that a gas component thereof or a mixture of a plurality of gas components is a reactive gas; the remainder may be an inert gas, usually a noble gas. The concentration of the reacting gas or gas mixture may be of a few ppb, e.g. 5 ppb, up to more than 99 vol% vary.

Die Auswahl des reaktiven Gases oder Gasgemisches hängt natürlich von der beabsichtigten Modifikation des erfindungsgemäßen Oberflächenmaterials ab. Wenn eine oxidhaltige Oberfläche reduziert werden soll, um z.B. Hydroxidgruppen einzuführen, wird man natürlich ein reduzierendes Gas wie Wasserstoff als reaktives Gas (gegebenenfalls in Mischung mit einem inerten Gas) verwenden. Für eine Oxidation der Oberfläche wird man hingegen z.B. ein sauerstoffhaltiges Gas in Betracht ziehen. Dem Fachmann ist bekannt, welches reaktive Gas er wählen muss, um damit bei einem gegebenen erfindungsgemäßen Oberflächenmaterial einen gewünschten Effekt zu erzielen.The selection of the reactive gas or gas mixture, of course, depends on the intended modification of the surface material of the invention. If an oxide-containing surface is to be reduced, e.g. Of course, to introduce hydroxide groups, one will use a reducing gas such as hydrogen as the reactive gas (optionally in admixture with an inert gas). For oxidation of the surface, however, e.g. consider an oxygen-containing gas. The person skilled in the art knows which reactive gas to choose in order to achieve a desired effect on a given surface material according to the invention.

Der Druck des reaktiven Gases oder Gasgemisches, das gegebenenfalls nur einen reaktiven Gasanteil umfasst, liegt im Allgemeinen im Bereich von etwa 10-6 bar bis etwa 1 bar, wenn ein Teilchenstrahl verwendet wird, und bis etwa 15 bar, wenn ein Laserstrahl verwendet wird. Atmosphärendruck ist bevorzugt. Es kann bei Gastemperaturen gearbeitet werden, die außerhalb des Laserstrahls im Allgemeinen im Bereich von etwa -50°C bis etwa 350°C liegen. Im Laserstrahl können natürlich wesentlich höhere Temperaturen entstehen.The pressure of the reactive gas or gas mixture, optionally including only a reactive gas portion, is generally in the range of about 10 -6 bar to about 1 bar when using a particle beam and up to about 15 bar when using a laser beam. Atmospheric pressure is preferred. It may be used at gas temperatures that are generally outside the laser beam in the range of about -50 ° C to about 350 ° C. Of course, much higher temperatures can occur in the laser beam.

Ob eine chemische Modifikation eines gegebenen Oberflächenmaterials erfolgt ist, kann der Fachmann durch geeignete Analyseverfahren, wie X-Ray Photoelectron Spectroscopy (XPS), EDX (energy dispersive X-ray analysis), FTIR-Spektroskopie, Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS), EELS (electron energy loss spectroscopy), HAADF (high angle annular dark field) oder NIR (near infrared spectroscopy) in Erfahrung bringen.Whether a chemical modification of a given surface material has been carried out, the skilled person can by suitable analysis methods, such as X-Ray Photoelectron Spectroscopy (XPS), EDX (energy dispersive X-ray analysis), FTIR spectroscopy, Time of Flight Secondary Ion Mass Spectrometry (TOF -SIMS), EELS (electron energy loss spectroscopy), HAADF (high angle annular dark field) or NIR (near infrared spectroscopy) in experience.

Wenn das Metall und/oder die Metalllegierung auf der Werkstoffoberfläche wie vorstehend beschrieben nanostrukturiert worden ist, wir diese einer Anodisation unterzogen, bei der das Werkstück, das die Anode bildet, in eine Elektrolytlösung eingetaucht, mit einer gewöhnlich Edelmetall umfassenden Kathode verbunden und unter Anlegen einer Spannung anodisiert.When the metal and / or the metal alloy on the material surface has been nanostructured as described above, it is subjected to anodization in which the workpiece forming the anode is immersed in an electrolytic solution, connected to a cathode usually comprising noble metal, and then put on a Tension anodized.

Allgemein gilt für die Erzeugung von hoch porösen und/oder in Form von Nanoröhren vorliegenden Oxidschichten mittels Anodisation, dass der Elektrolyt eine Doppelfunktion aufweisen muss: er muss einerseits fortlaufend das Metall oder die Metalllegierung oxidieren und andererseits das gebildete Oxid teilweise wieder lösen. Auf diese Weise entstehen hoch poröse oder Nanoröhren-Strukturen. Demgemäß muss der Elektrolyt ein wirksames Oxidationsmittel und gleichzeitig ein Agens enthalten, das für die Wiederauflösung des Oxids sorgt.In general, the generation of highly porous and / or present in the form of nanotubes oxide layers by means of anodization that the electrolyte must have a dual function: on the one hand continuously oxidize the metal or metal alloy and on the other hand partially dissolve the oxide formed again. This results in highly porous or nanotube structures. Accordingly, the electrolyte must contain an effective oxidizing agent and at the same time an agent which provides for the redissolution of the oxide.

Der Fachmann kennt zahlreiche Elektrolyte und Verfahrensbedingungen für die Anodisation.The person skilled in the art knows numerous electrolytes and process conditions for the anodization.

Bei der Anodisation wird eine Elektrolytlösung eingesetzt, die als Oxidationsmittel gewöhnlich entweder eine oxidierende anorganische oder organische Säure oder ein oxidierendes saures Salz oder ein alkalisches Oxidationsmittel auf Hydroxid-Basis enthält. Zu den einsetzbaren anorganischen Säuren und sauren Salzen zählen z.B. Schwefelsäure, Chromsäure, Phosphorsäure, Salpetersäure und Ammoniumsulfat, zu den einsetzbaren organischen Säuren z.B. Toluolsulfonsäure, Benzolsulfonsäure und Weinsäure. Salzsäure kann zur Einstellung eines geeigneten pH verwendet werden. Hydroxidhaltige alkalische Oxidationsmittel basieren häufig auf Natronlauge.In the anodization, an electrolytic solution containing, as the oxidizing agent, usually either an oxidizing inorganic or organic acid or an oxidizing acid salt or a hydroxide-based alkaline oxidizing agent is used. The usable inorganic acids and acidic salts include, for example, sulfuric acid, chromic acid, phosphoric acid, nitric acid and ammonium sulfate, to the usable organic acids such as toluenesulfonic acid, benzenesulfonic acid and tartaric acid. Hydrochloric acid can be used to set a suitable pH. Hydroxide-containing alkaline oxidizing agents are often based on caustic soda.

Zur Erzielung einer Mikro- oder Nanostruktur wird ein Teil des gebildeten Oxids wieder in Lösung gebracht. Dies kann mit einer Säure, bei der es sich um eine andere Säure oder in manchen Fällen auch um die gleiche Säure wie die zur Oxidation eingesetzte handeln kann, oder mit einem saures Salz geschehen. Häufig ist das Gegenion der Säure oder das Anion des Salzes ein Komplexbildner für das anodisierte Metall oder die anodisierte Metalllegierung.To achieve a micro or nanostructure, a portion of the oxide formed is redissolved. This can be done with an acid, which may be another acid or, in some cases, the same acid as that used for oxidation, or with an acidic salt. Often, the counterion of the acid or the anion of the salt is a complexing agent for the anodized metal or anodized metal alloy.

So kann Weinsäure, deren Anion ein Komplexbildner ist, als das oxidlösende Agens verwendet werden, beispielweise in Verbindung mit Phosphorsäure als dem (weiteren) Oxidationsmittel. Häufig wird auch Flusssäure oder gegebenenfalls Ammoniumfluorid zur Wiederauflösung des Oxids eingesetzt.Thus, tartaric acid, the anion of which is a complexing agent, can be used as the oxide dissolving agent, for example, in conjunction with phosphoric acid as the (further) oxidizing agent. Frequently, hydrofluoric acid or, if appropriate, ammonium fluoride is also used to re-dissolve the oxide.

Ein Beispiel, bei dem die oxidierende Säure identisch ist mit dem das Oxid wieder lösenden Agens, ist Phosphorsäure im Fall der Anodisation von Aluminium, deren alleiniger Einsatz zur Bildung einer Mikro- oder Nanostruktur führt.An example in which the oxidizing acid is identical to the oxide redissolving agent is phosphoric acid in the case of anodization of aluminum, the sole use of which results in the formation of a micro or nanostructure.

Die Konzentrationen des Oxidationsmittels und des oxidlösenden Agens, das häufig in geringerer molarer Konzentration im Vergleich zum Oxidationsmittel eingesetzt wird, und der pH der Elektrolytlösung variieren je nach Metall oder Metalllegierung und der gewünschten Schichtdicke und Porosität. Dies gilt auch für die im jeweiligen Verfahren verwendete Spannung und Temperatur.The concentrations of the oxidizing agent and the oxide-dissolving agent, which is often used in a lower molar concentration compared to the oxidizing agent, and the pH of the electrolytic solution vary depending on the metal or metal alloy and the desired layer thickness and porosity. This also applies to the voltage and temperature used in the respective process.

Bei einigen Metallen, insbesondere Titan und Titanlegierungen, kann vorteilhaft Ammoniumsulfat als Oxidationsmittel zusammen mit Ammoniumfluorid als oxidlösendem Agens verwendet werden, was die Handhabung der äußerst toxischen Flusssäure vermeidet und im erfindungsgemäßen Verfahren besonders bevorzugt ist.For some metals, in particular titanium and titanium alloys, ammonium sulfate can be advantageously used as the oxidizing agent together with ammonium fluoride as the oxide-dissolving agent, which avoids the handling of the extremely toxic hydrofluoric acid and is particularly preferred in the process according to the invention.

Zum Beispiel umfasst der wässrige Elektrolyt in dieser bevorzugen Verfahrensvariante im Allgemeinen 10 bis 1000 g/l, z.B. 100 bis 500 oder 160 g/l, bevorzugt 120 bis 140 g/l und insbesondere 130g/l Ammoniumsulfat sowie im Allgemeinen 0,1 bis 10 g/l, bevorzugt 2 bis 6 g/l und insbesondere Ammoniumfluorid, wobei die Temperaturen im Allgemeinen bei 20 bis 50°C, bevorzugt bei 22 bis 28°C und insbesondere bei 25°C liegen und eine Spannung von 1 bis 60 V, bevorzugt 10 bis 20 V über eine Zeitspanne von 4 min bis 24 h, vorzugsweise 27 bis 33 Minuten und insbesondere 30 Minuten angelegt wird, wenn eine Oxidschicht mit einer Schichtdicke im Bereich von 100 bis 1000 nm, beispielsweise von 200 bis 450 nm oder 300 bis 400 nm und für manche Zwecke bevorzugt von 340 bis 360 nm erzeugt werden soll, deren gesamte Oberfläche von Nanoröhren mit einem Durchmesser im Bereich von 10 bis 300 nm, beispielsweise von 20 bis 220 nm oder auch 180 nm, besonders bevorzugt von 30 bis 100 oder 40 bis 80 nm bedeckt ist.For example, in this preferred process variant, the aqueous electrolyte generally comprises 10 to 1000 g / l, eg 100 to 500 or 160 g / l, preferably 120 to 140 g / l and especially 130 g / l of ammonium sulfate and generally 0.1 to 10 g / l, preferably 2 to 6 g / l and in particular Ammonium fluoride, wherein the temperatures are generally at 20 to 50 ° C, preferably at 22 to 28 ° C and in particular at 25 ° C and a voltage of 1 to 60 V, preferably 10 to 20 V over a period of 4 min to 24 h, preferably 27 to 33 minutes, and especially 30 minutes, when an oxide layer having a layer thickness in the range of 100 to 1000 nm, for example 200 to 450 nm or 300 to 400 nm and for some purposes preferably 340 to 360 nm generated is to be covered whose entire surface of nanotubes with a diameter in the range of 10 to 300 nm, for example from 20 to 220 nm or even 180 nm, more preferably from 30 to 100 or 40 to 80 nm.

Mit dem erfindungsgemäßen Verfahren können auf eventuell mit dünnen Oxidschichten überzogenen Metallen und/oder Metalllegierungen Oxidschichten erzeugt werden, die an der Oberfläche vollständig in nanostrukturierter Form, insbesondere in Form von Nanoröhren vorliegen und die Metalle oder Metalllegierungen vollständig bedecken.With the method according to the invention, oxide layers which are completely present on the surface in nanostructured form, in particular in the form of nanotubes, on any metals coated with thin oxide layers and / or metal alloys can be produced which completely cover the metals or metal alloys.

Die erfindungsgemäß erzeugten Oxidschichten auf Metallen oder Metalllegierungen, die die oben beschriebenen Nanostrukturen, insbesondere Nanoröhren aufweisen, sorgen für eine ausgezeichnete Haftung von beispielweise Klebstoffen, Lacken, Lot, Dichtmittel, Knochenzement, Haftvermittler oder biologischem Gewebe sowie von anderen Beschichtungen wie Beschichtungen zum Schutz vor chemischer oder Wärmeeinwirkung. Ferner können, wenn mindestens ein Werkstück eine gemäß der Erfindung hergestellte Oberfläche aufweist, zwei derartige Werkstücke oder ein derartiges Werkstück mit einem mit einem Werkstück mit einer Oberfläche aus einem anderen Werkstoff durch bloßes Fügen unter erhöhtem Druck bei Raumtemperatur oder bei erhöhten Temperaturen mit zufriedenstellender Haftung miteinander verbunden werden.The oxide layers on metals or metal alloys according to the invention, which have the above-described nanostructures, in particular nanotubes, ensure excellent adhesion of, for example, adhesives, paints, solder, sealants, bone cement, adhesion promoters or biological tissue as well as other coatings, such as chemical protection coatings or heat. Further, when at least one workpiece has a surface made according to the invention, two such workpieces or one workpiece with one workpiece having a surface of another material can be satisfactorily bonded by merely joining under elevated pressure at room temperature or at elevated temperatures get connected.

Die erfindungsgemäß erzeugten Oberflächen können aber auch für andere Zwecke als die Verbesserung der Haftung dienen. Die Oxidation und Nanostrukturierung bewirkt Änderungen der physikalischen und/oder chemischen Wechselwirkung der Oberfläche mit Licht oder Materie. Insbesondere ist die elektrische Leitfähigkeit verringert und die Korrosionsbeständigkeit erhöht. Farbe oder Emissivität der Oberfläche sind ebenfalls verändert.However, the surfaces produced according to the invention can also serve for other purposes than the improvement of adhesion. The oxidation and nanostructuring causes changes in the physical and / or chemical interaction of the surface with light or matter. In particular, the reduces electrical conductivity and increases corrosion resistance. Color or emissivity of the surface are also changed.

Die starke Vergrößerung der Oberfläche durch die Bildung von Nanostrukturen, insbesondere von Nanoröhren, kann ferner eine starke Erhöhung von katalytischen Wirkungen der Oberfläche selbst oder einer dünnen und/oder nanoskaligen Beschichtung auf derselben z.B. mit Farbstoffen oder Metallkatalysatoren zur Folge haben, da heterogene Katalyse bekanntlich ein Oberflächenphänomen ist. Auch rein physikalische Phänomene, wie die Erhöhung der Zahl der Punkte, an denen sich Kristallkeime oder Blasenkeime bilden können, können genutzt werden.The large increase in the surface area due to the formation of nanostructures, in particular of nanotubes, can also greatly increase the catalytic effects of the surface itself or of a thin and / or nanoscale coating on the same e.g. with dyes or metal catalysts result because heterogeneous catalysis is known to be a surface phenomenon. Even purely physical phenomena, such as the increase in the number of points at which nuclei or nuclei can form, can be used.

Ein Bespiel für besonders bevorzugte Werkstücke mit erfindungsgemäß hergestellter Oberfläche sind Metallprothesen und -implantate, die z.B. Titan oder eine Titanlegierung umfassen. Die porösen Oberflächen sorgen dafür, dass die biologischen Materialien im Körper, mit denen sie verwachsen sollen, hervorragend an ihnen haften.An example of particularly preferred workpieces with surface produced according to the invention are metal prostheses and implants, which are e.g. Titanium or a titanium alloy include. The porous surfaces ensure that the biological materials in the body, with which they are supposed to grow together, stick to them excellently.

Das folgende Beispiel erläuterte die Erfindung näher.The following example explained the invention in more detail.

BeispieleExamples Vergleichsbeispiel 1- Anodisation einer Ti-6Al-4V-OberflächeComparative Example 1- Anodization of a Ti-6Al-4V surface

Eine gebeizte Ti-6Al-4V-Oberfläche wurde wie folgt anodisiert:

  • Ein Werkstück aus Ti-6Al-4V mit gebeizter Oberfläche wurde in eine wässrige Elektrolyt-Lösung bei 25°C getaucht, die 130 g/l Ammoniumsulfat und 0,5 g/l Ammoniumfluorid enthielt.
A pickled Ti-6Al-4V surface was anodized as follows:
  • A pickled surface Ti-6Al-4V workpiece was immersed in an aqueous electrolyte solution at 25 ° C containing 130 g / L of ammonium sulfate and 0.5 g / L of ammonium fluoride.

Zwischen dem Ti-6Al-4V-Werkstück, das als Anode verwendet wurde, und einer Edelmetallkathode wurde über 30 min eine Spannung von 10 bis 25 V angelegt. Die erhaltene Oberfläche, die neben Bereichen mit Nanoröhren große Bereiche ohne Strukturierung (α-Phase des Ti-6Al-4V-Gefüges) auf der Oberfläche aufweist, ist in Fig. 1 gezeigt.Between the Ti-6Al-4V workpiece used as the anode and a noble metal cathode, a voltage of 10 to 25 V was applied for 30 minutes. The resulting surface, which has large areas without structuring (α-phase of the Ti-6Al-4V structure) on the surface in addition to areas with nanotubes, is in Fig. 1 shown.

Vergleichsbeispiel 2 - Nanostrukturierung einer Ti-6Al-4V-Oberfläche mittels gepulster Laserstrahlung in inerter AtmosphäreComparative Example 2 Nanostructuring of a Ti-6Al-4V surface by means of pulsed laser radiation in an inert atmosphere

Ein Ti-6Al-4V-Werkstück mit gebeizter Oberfläche wurde einmal mit einem diodengepumpten Nd:YVO4 (Neodym-gepumptem Yttrium-Orthovanadat)-Laser (Wellenlänge λ: 1064 nm) unter Argonatmosphäre bei Umgebungsdruck und Umgebungstemperatur abgetastet.A pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength λ: 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.

Die übrigen Verfahrensparameter waren:

  • Pp (Impulsspitzenleistung der austretenden Laserstrahlung): 38 kW
  • Pm (mittlere Leistung der austretenden Laserstrahlung): 6 W
  • t (Impulslänge der Laserimpulse): 17 ns
  • f (Repetitionsrate der Laserimpulse) 10 kHz
  • v (Abtastgeschwindigkeit an der Werkstückoberfläche): 800 mm/s
  • d (Durchmesser des Laserstrahls am Werkstück): 80 µm
  • α (Absorption der Laserstrahlung des bestrahlten Material): 15 %
  • Tv (Siedepunkt des Materials bei Normaldruck): 3560 K
  • cp (Spezifische Wärmekapazität): 580 J/kgK
  • κ (Spezifische Wärmeleitfähigkeit) 22 W/mK
The remaining process parameters were:
  • Pp (pulse peak power of the exiting laser radiation): 38 kW
  • P m (mean power of the exiting laser radiation): 6 W
  • t (pulse length of the laser pulses): 17 ns
  • f (repetition rate of the laser pulses) 10 kHz
  • v (scanning speed on the workpiece surface): 800 mm / s
  • d (diameter of the laser beam on the workpiece): 80 μm
  • α (absorption of the laser radiation of the irradiated material): 15%
  • T v (boiling point of the material at atmospheric pressure): 3560 K
  • c p (specific heat capacity): 580 J / kgK
  • κ (specific thermal conductivity) 22 W / mK

Daraus ergibt sich ε = 1,2, d.h. ε liegt im Bereich, der durch vorstehende Gleichung 1 gefordert wird.This results in ε = 1.2, ie ε is within the range required by Equation 1 above.

Die erhaltene Oberfläche ist in Fig. 2 gezeigt. Man kann erkennen, dass die Oberfläche durchgehend eine knöllchenartige Nanostruktur, aber keine Nanoröhren aufweist.The surface obtained is in Fig. 2 shown. It can be seen that the surface has a nodular nanostructure throughout, but no nanotubes.

Beispiel 1. Nanostrukturierung einer Ti-6Al-4V-Oberfläche mittels gepulster Laserstrahlung in inerter Atmosphäre und anschließender AnodisationExample 1. Nanostructuring of a Ti-6Al-4V surface using pulsed laser radiation in an inert atmosphere followed by anodization

Ein Ti-6Al-4V-Werkstück mit gebeizter Oberfläche wurde einmal mit einem diodengepumpten Nd:YVO4 (Neodym-gepumptem Yttrium-Orthovanadat)-Laser (Wellenlänge λ: 1064 nm) unter Argonatmosphäre bei Umgebungsdruck und Umgebungstemperatur abgetastet.A pickled surface Ti-6Al-4V workpiece was scanned once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength λ: 1064 nm) under argon atmosphere at ambient pressure and ambient temperature.

Die übrigen Verfahrensparameter waren ebenfalls wie im vorstehenden Vergleichsbeispiel 2 beschrieben.The other process parameters were also as described in Comparative Example 2 above.

Anschließend wurde das Werkstück, das eine wie vorstehend beschriebene nanostrukturierte Oberfläche aufwies, einer wie im vorstehenden Vergleichsbeispiel 1 beschriebenen Anodisation unterzogen.Subsequently, the workpiece having a nanostructured surface as described above was subjected to anodization as described in Comparative Example 1 above.

Die erhaltene Oberfläche ist in Fig. 3 gezeigt. Es ist zu erkennen, dass die gesamte Oberfläche von feinen Nanoröhren bedeckt ist und dass keinerlei unstrukturierte Bereiche vorhanden sind.The surface obtained is in Fig. 3 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.

Vergleichsbeispiel 3 - Nanostrukturierung einer Ti-6Al-4V-Oberfläche mittels gepulster Laserstrahlung in reaktiver AtmosphäreComparative Example 3 Nanostructuring of a Ti-6Al-4V surface by means of pulsed laser radiation in a reactive atmosphere

Ein Ti-6Al-4V-Werkstück mit gebeizter Oberfläche wurde einmal mit einem diodengepumpten Nd:YVO4 (Neodym-gepumptem Yttrium-Orthovanadat)-Laser (Wellenlänge λ: 1064 nm) unter Sauerstoffatmosphäre (Druck ca. 1,5 bar) bei Umgebungstemperatur abgetastet.A Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength λ: 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.

Die übrigen Verfahrensparameter waren:

  • Pp (Impulsspitzenleistung der austretenden Laserstrahlung): 38 kW
  • Pm (mittlere Leistung der austretenden Laserstrahlung): 6 W
  • t (Impulslänge der Laserimpulse): 17 ns
  • f (Repetitionsrate der Laserimpulse) 10 kHz
  • v (Abtastgeschwindigkeit an der Werkstückoberfläche): 800 mm/s
  • d (Durchmesser des Laserstrahls am Werkstück): 80 µm
  • α (Absorption der Laserstrahlung des bestrahlten Material): 15 %
  • Tv (Siedepunkt des Materials bei Normaldruck): 3560 K
  • cp (Spezifische Wärmekapazität): 580 J/kgK
  • κ (Spezifische Wärmeleitfähigkeit) 22 W/mK
The remaining process parameters were:
  • Pp (pulse peak power of the exiting laser radiation): 38 kW
  • P m (mean power of the exiting laser radiation): 6 W
  • t (pulse length of the laser pulses): 17 ns
  • f (repetition rate of the laser pulses) 10 kHz
  • v (scanning speed on the workpiece surface): 800 mm / s
  • d (diameter of the laser beam on the workpiece): 80 μm
  • α (absorption of the laser radiation of the irradiated material): 15%
  • T v (boiling point of the material at atmospheric pressure): 3560 K
  • c p (specific heat capacity): 580 J / kgK
  • κ (specific thermal conductivity) 22 W / mK

Daraus ergibt sich ε = 1,2, d.h. ε liegt im erfindungsgemäßen Bereich, der durch vorstehende Gleichung 1 gefordert wird.This results in ε = 1.2, ie ε is in the range according to the invention, which is required by equation 1 above.

Die erhaltene Oberfläche ist in Fig. 4 gezeigt. Man kann erkennen, dass die Oberfläche trotz teilweiser Oxidation durch die Sauerstoffatmosphäre, die mittels Photoelektronenspektroskopie (XPS-Analyse) nachgewiesen wurde, zwar durchgehend eine knöllchenartige Nanostruktur, aber keine Nanoröhren aufweist.The surface obtained is in Fig. 4 shown. It can be seen that the surface despite partial oxidation by the oxygen atmosphere, which was detected by means of photoelectron spectroscopy (XPS analysis), although throughout a nodular nanostructure, but no nanotubes.

Beispiel 2 - Nanostrukturierung einer Ti-6Al-4V-Oberfläche mittels gepulster Laserstrahlung in reaktiver Atmosphäre und anschließender AnodisationExample 2 - Nanostructuring of a Ti-6Al-4V surface by means of pulsed laser radiation in a reactive atmosphere and subsequent anodization

Ein Ti-6Al-4V-Werkstück mit gebeizter Oberfläche wurde einmal mit einem diodengepumpten Nd:YVO4 (Neodym-gepumptem Yttrium-Orthovanadat)-Laser (Wellenlänge λ: 1064 nm) unter Sauerstoffatmosphäre (Druck ca. 1,5 bar) bei Umgebungstemperatur abgetastet.A Ti-6Al-4V pickled surface workpiece was cast once with a diode-pumped Nd: YVO 4 (neodymium-pumped yttrium orthovanadate) laser (wavelength λ: 1064 nm) under oxygen atmosphere (pressure about 1.5 bar) at ambient temperature sampled.

Die übrigen Verfahrensparameter waren ebenfalls wie im vorstehenden Vergleichsbeispiel 3 beschrieben.The other process parameters were also as described in Comparative Example 3 above.

Anschließend wurde das Werkstück, das eine wie vorstehend beschriebene nanostrukturierte Oberfläche aufwies, einer wie im vorstehenden Vergleichsbeispiel 1 beschriebenen Anodisation unterzogen.Subsequently, the workpiece having a nanostructured surface as described above was subjected to anodization as described in Comparative Example 1 above.

Die erhaltene Oberfläche ist in Fig. 5 gezeigt. Es ist zu erkennen, dass die gesamte Oberfläche von feinen Nanoröhren bedeckt ist und dass keinerlei unstrukturierte Bereiche vorhanden sind.The surface obtained is in Fig. 5 shown. It can be seen that the entire surface is covered by fine nanotubes and that there are no unstructured areas.

Claims (15)

  1. A method for nanostructuring and oxidizing a surface of a material that comprises an anodizable metal and/or an anodizable metal alloy, which can both be at least partially coated with an oxide layer,
    wherein first the surface of the metal and/or of the metal alloy and/or of the oxide layer on the metal and/or the metal alloy, which is accessible to laser irradiation or to irradiation using a particle beam and on which the structures are to be generated, is nanostructured, wherein for generating nanostructures in the form of open-pored, rimose and/or fractal-like nanostructures, in the form of open-pored mountain and valley structures, open-pored undercut structures or cauliflower- or nodule-like structures, the surface is completely scanned once or multiple times using a pulsed laser beam, or a continuous particle beam, which is selected from an electron beam or an ion beam or an uncharged particle beam or a combination thereof, in such a way that neighboring light spots of the laser beam or scanning spots of the particle beam abut each other without gaps or overlap each other, wherein the following conditions are adhered to:
    when scanning is carried out using a laser beam and the pulse duration of the laser pulses t is 0.1 ns to 2000 ns, an ε value of 0.07 ε 2300 ,
    Figure imgb0010
    wherein ε = P P 2 P m f α t κ d 2 v T V c P λ 10 3
    Figure imgb0011
    or,
    when scanning is carried out using a laser beam at a wavelength of the laser λ of 100 ≤ λ ≤ 11,000 nm, and the pulse duration of the laser pulses t < 0.1 ns, an ε 1 value of 0.5 ε 1 1650 ,
    Figure imgb0012
    wherein ε 1 = P P P m f α t κ d 2 v T V c P 10 3
    Figure imgb0013
    wherein in Equation 1 and Equation 2:
    Pp: pulse peak power of the exiting radiation [kW];
    t: pulse duration of the pulses [ns];
    f: repetition rate of the radiation pulses [kHz];
    v: scanning speed on the workpiece surface [mm/s];
    d: diameter of the energetic radiation on the material surface [µm];
    α: absorption of the energetic radiation of the irradiated material [%] at the incident wavelength under normal conditions;
    or,
    when scanning is carried out using a particle beam, an ε 2 value of 0.5 ε 2 1550 ,
    Figure imgb0014
    wherein ε 2 = P m 2 κ α d 3 v T V c P 10 2
    Figure imgb0015
    wherein in Equation 3:
    v: scanning speed on the workpiece surface [mm/s];
    d: diameter of the energetic radiation on the material surface [µm]; with the proviso that d/v < 7000 ns;
    α: absorption of the energetic radiation of the radiated material [%] under normal conditions;
    and wherein in Equation 1, Equation 2 and Equation 3:
    Pm: average power of the exiting radiation [W];
    Tv: evaporation or decomposition temperature of the material [K] at normal pressure;
    cp: specific heat capacity [J/kgK] at normal conditions;
    K: specific thermal conductivity [W/mK] at normal conditions and averaged across the different spatial directions;
    wherein the atmosphere in which the method is carried out is
    a vacuum or a gas or gas mixture that is inert with respect to the surface under the method conditions, or
    a gas or gas mixture that is reactive with respect to the metal and/or the metal alloy and/or the oxide layer on the metal and/or the metal alloy of the surface under the method conditions, the gas or gas mixture chemically modifying the metal and/or the metal alloy and/or the oxide layer on the metal and/or the metal alloy during or after scanning using the laser beam or particle beam compared to the composition of the same prior to scanning using the laser beam or particle beam;
    and the surface having nanostructures is subsequently anodized by immersion in an electrolyte solution, which contains both an oxidizing agent and an agent dissolving the oxide again, which may optionally be identical to the oxidizing agent, by connecting to a cathode, and by applying a voltage.
  2. The method according to claim 1, wherein the metal or the metal alloy is selected from aluminum, titanium, magnesium, iron, cobalt, zinc, niobium, zirconium, hafnium, tantalum, vanadium and/or the alloys thereof, and steel.
  3. The method according to claim 1 or 2, wherein, when the atmosphere is a vacuum, the pressure is in the range of 10-17 bar to approximately 10-4 bar, when the atmosphere is a gas or a gas mixture that is inert or reactive with respect to the surface under the conditions of the method the pressure is in the range of approximately 10-6 bar to approximately 1 bar when using particle radiation, and up to 15 bar when using laser radiation, and the temperature outside the laser beam or particle beam is in the range of approximately -50°C to approximately 350°C.
  4. A method according to any one of claims 1 to 3, wherein approximately 0,07 ≤ ε ≤ approximately 2000, more preferably approximately 0.07 ≤ ε ≤ approximately 1500.
  5. A method according to any one of claims 1 to 4, wherein in Equation 1 the pulse duration of the laser pulses t is approximately 0.1 ns to approximately 300 ns, more preferably approximately 5 ns to approximately 200 ns and/or the pulse peak power of the exiting laser radiation Pp is approximately 1 kW to approximately 1800 kW and/or the average power of the exiting laser beam Pm is approximately 5 W to approximately 28,000 W and/or the repetition rate of the laser pulses f is approximately 10 kHz to approximately 3000 kHz and/or the scanning speed on the workpiece surface v is approximately 30 mm/s to approximately 19,000 mm/s and/or the diameter of the laser beam on the workpiece d is approximately 20 µm to approximately 4500 µm.
  6. A method according to any one of claims 1 to 3, wherein approximately 0.7 ≤ ε1 ≤ approximately 1500, more preferably approximately 0.9 ≤ ε1 ≤ approximately 1200.
  7. A method according to any one of claims 1 to 3 and 6, wherein in Equation 2 the pulse duration of the radiation t is approximately 0.005 ns to approximately 0.01 ns, preferably approximately 0.008 ns to approximately 0.01 ns and/or the pulse peak power of the exiting radiation Pp is approximately 100 kW to approximately 30,000 kW, preferably approximately 150 kW to approximately 25,000 kW and/or the repetition rate of the radiation f is preferably approximately 100 kHz to approximately 80,000 kHz, more preferably approximately 120 kHz to approximately 20,000 kHz and/or the average power of the exiting particle radiation Pm is approximately 1 W to approximately 25,000 W, preferably approximately 20 W to approximately 9500 W and/or the scanning speed on the workpiece surface v is approximately 30 mm/s to approximately 60,000 mm/s, preferably approximately 200 mm/s to approximately 50,000 mm/s and/or the diameter of the laser beam on the workpiece d is approximately 20 µm to approximately 4500 µm, preferably approximately 50 µm to approximately 3500 µm.
  8. A method according to any one of claims 1 to 3, wherein approximately 0.7 ≤ ε2 ≤ approximately 1400, more preferably approximately 0.9 ≤ ε2 ≤ approximately 1100.
  9. A method according to any one of claims 1 to 3 and 8, wherein in Equation 3 the average power of the exiting radiation Pm is approximately 1 W to approximately 25,000 W, preferably approximately 20 W to approximately 9500 W and/or the scanning speed on the workpiece surface v is approximately 100 mm/s to approximately 8,000,000 mm/s, preferably approximately 200 mm/s to approximately 7,000,000 mm/s and/or the diameter of the particle beam on the workpiece d is approximately 20 µm to approximately 4500 µm, preferably approximately 50 µm to approximately 3500 µm, with the proviso that the ratio of the diameter of the particle beam on the workpiece to the scanning speed d/v < approximately 7000 ns.
  10. A method according to any one of claims 1 to 9, wherein the metal and/or the metal alloy is titanium and/or a titanium alloy.
  11. A method according to any one of claims 1 to 10, wherein the electrolyte solution contains fluoride ions.
  12. The method according to claim 11, wherein the electrolyte solution contains 10 to 1000 g/l ammonium sulfate and 0.1 to 10 g/l ammonium fluoride and is free of hydrofluoric acid.
  13. The method according to claim 12, wherein the voltage is 10 to 60 volts, and the anodizing is carried out at a temperature of 20 to 50 °C over a time period of 4 minutes to 24 hours.
  14. A method according to any one of claims 1 to 13, wherein the metal or the metal alloy is completely covered by metal oxide or metal alloy oxide, which on the entire surface thereof has surface structures in the nanometer range, and in the case of titanium or a titanium alloy in particular has nanotubes preferably having a diameter of 10 to 300 nm.
  15. A method according to any one of claims 1 to 14, wherein the surface obtained by the method is joined to a further material, which is selected in particular from inorganic materials, organic materials, inorganic-organic materials, such as complex compounds, composite materials made of inorganic materials and organic materials, and biological materials.
EP13805735.1A 2012-11-22 2013-10-10 Method for the nanostructuring and anodization of a metal surface Active EP2922986B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012022758 2012-11-22
DE102012022759 2012-11-22
PCT/DE2013/000582 WO2014079402A2 (en) 2012-11-22 2013-10-10 Method for the nanostructuring and anodization of a metal surface

Publications (2)

Publication Number Publication Date
EP2922986A2 EP2922986A2 (en) 2015-09-30
EP2922986B1 true EP2922986B1 (en) 2016-11-30

Family

ID=49765737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13805735.1A Active EP2922986B1 (en) 2012-11-22 2013-10-10 Method for the nanostructuring and anodization of a metal surface

Country Status (4)

Country Link
US (1) US10619263B2 (en)
EP (1) EP2922986B1 (en)
DE (1) DE112013005613A5 (en)
WO (1) WO2014079402A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121545B4 (en) * 2011-12-20 2013-07-11 Eads Deutschland Gmbh Process for structuring and chemical modification of a surface of a workpiece
CN106757263B (en) * 2016-12-15 2018-12-18 河海大学常州校区 A kind of metal surface nanosecond pulse plasma prepares the solution and preparation method of nano particle
CN106480482B (en) * 2016-12-15 2018-12-18 河海大学常州校区 A kind of cathode surface nanosecond pulse plasma prepares the solution and preparation method of catalytic nanometer perforated membrane
CN113249723B (en) * 2021-06-28 2021-11-30 成都飞机工业(集团)有限责任公司 CMT arc surface cladding method based on database system
CN113897653B (en) * 2021-11-11 2023-03-31 浙江工业大学 Method for preparing soft-hard interphase bionic coating on surface of medical titanium alloy by micro-arc oxidation and composite laser nitridation
EP4215346A1 (en) 2022-01-20 2023-07-26 Airbus Operations GmbH Cryogenic storage tank, aircraft with a cryogenic storage tank and method for forming a hybrid metal polymer joint
DE102022206126A1 (en) 2022-06-20 2023-03-09 Carl Zeiss Smt Gmbh Component for use in a projection exposure system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532634B2 (en) * 1998-12-25 2010-08-25 キヤノン株式会社 Method for producing pores
JP5225623B2 (en) 2006-07-12 2013-07-03 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト Method for manufacturing member in contact with substrate
CN101519783B (en) * 2009-04-07 2010-10-27 吉林大学 Titanium alloy surface self-lubricating layer and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014079402A2 (en) 2014-05-30
EP2922986A2 (en) 2015-09-30
US10619263B2 (en) 2020-04-14
WO2014079402A3 (en) 2014-12-24
US20150275387A1 (en) 2015-10-01
DE112013005613A5 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
EP2922986B1 (en) Method for the nanostructuring and anodization of a metal surface
DE102011121545B4 (en) Process for structuring and chemical modification of a surface of a workpiece
DE102011121546B4 (en) Method for structuring a surface of a workpiece
DE69218061T2 (en) Maintenance of workpieces made of corroded super alloys or corroded heat-resistant steel and parts repaired in this way
DE69126507T2 (en) Chromate-free cobalt conversion coating
EP0545230A1 (en) Process for preparing modified oxide ceramic coatings on barrier-layer metals and products obtained
WO2008119675A1 (en) Agent for the production of anticorrosive layers on metal surfaces
DE4116910A1 (en) METHOD FOR PRODUCING OXIDE-CERAMIC SURFACE LAYERS ON LIGHT METAL CAST ALLOYS
EP1911862B1 (en) Electropolishing method for niobium and tantalum
WO2016015720A1 (en) Metallic workpiece of titanium and/or a titanium alloy and/or nickel-titanium alloys and also nitinol with a porous surface and production process
EP2853616B1 (en) Method for the preparation of wear and/or corrosion resistant oxide layers
DE102006046503A1 (en) Laser oxidation of magnesium, titanium or aluminum materials
EP2669041B1 (en) Method for the nanostructuring and chemical modification of ceramic, glass, carbon, boron, silicon and composite materials
DE2516842A1 (en) ARTICLE PROVIDED WITH A CERAMIC COATING WITH A METALLIC SURFACE NOT ENOUGH ELECTROCHEMICALLY ACTIVE FOR AN ELECTROPHORETIC COATING AND A METALLIC PROCESS FOR ITS MANUFACTURING
EP1611266B1 (en) Method for producing pieces having a modified surface
DE102011055644B4 (en) Process for producing a black oxide ceramic surface layer on a light metal alloy component
DE2322159C3 (en) Process for producing a molten treatment bath for producing a layer of vanadium, niobium or tantalum carbide on the surface of workpieces made of iron, iron alloys or cemented carbide and containing at least 0.05 percent by weight of carbon
DE102008029385B4 (en) A process for producing rare earth metal oxide layers and transition metal oxide layers, use of an apparatus for producing rare earth metal oxide layers and transition metal oxide layers, and use of a metal nitrate
EP2955250B1 (en) Method for coating a substrate
DE102018101183A1 (en) Passive electrical component with insulating layer
WO2023110154A1 (en) Method for producing a highly abrasion-resistant, coated material with a conversion layer on an, in particular strip-shaped, aluminium substrate
DE102021134572A1 (en) Method of applying a partial coating
EP1141449B1 (en) Method for darkening a zinciferous surface layer of a piece of material
EP0504705A1 (en) Pretreatment of metallic material for the electrodeposition coating with metal
EP4382641A1 (en) Method for electrolytic deposition of a phosphate layer on zinc surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20161024

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 849888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005613

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005613

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 849888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 11

Ref country code: DE

Payment date: 20231020

Year of fee payment: 11