EP2921369A1 - Procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection - Google Patents

Procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection Download PDF

Info

Publication number
EP2921369A1
EP2921369A1 EP15158359.8A EP15158359A EP2921369A1 EP 2921369 A1 EP2921369 A1 EP 2921369A1 EP 15158359 A EP15158359 A EP 15158359A EP 2921369 A1 EP2921369 A1 EP 2921369A1
Authority
EP
European Patent Office
Prior art keywords
zone
reset
detection equipment
train
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15158359.8A
Other languages
German (de)
English (en)
Other versions
EP2921369B1 (fr
Inventor
Mathieu Bresson
Jocelyn Perrot
Jean-Louis Venencie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport Technologies SAS
Original Assignee
Alstom Transport Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport Technologies SAS filed Critical Alstom Transport Technologies SAS
Publication of EP2921369A1 publication Critical patent/EP2921369A1/fr
Application granted granted Critical
Publication of EP2921369B1 publication Critical patent/EP2921369B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/169Diagnosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/30Trackside multiple control systems, e.g. switch-over between different systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/204Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]

Definitions

  • the present invention relates to a method for resetting an equipment to the path of a secondary detection system, in an automatic train control architecture.
  • the present invention relates more particularly to an architecture for automatic control of trains running on a railway network.
  • Such an architecture is known by the acronym ATC architecture for "Automatic Train Control”.
  • an ATC architecture comprises different systems cooperating with each other to enable the safe circulation of the trains on the network.
  • a CBTC Communication-based Train Control
  • a CBTC architecture is shown schematically in the figure 1 .
  • a CBTC architecture is based on the presence of embedded computers on board trains.
  • the train calculator determines a number of operating parameters and communicates with different ground systems to enable the train to safely perform the mission assigned to it.
  • This on-board computer ensures, on the one hand, the coverage of the functional requirements of the train, that is to say for example the stations to be served, and, on the other hand, the control of security points, that is to say for example to check that the train does not have excessive speed.
  • the computer of a train is connected to an on-board radio communication unit capable of establishing a radio link with base stations of a communication infrastructure, itself connected to a communication network of the CBTC architecture.
  • the CBTC architecture includes a zone controller ZC, an acronym for "Zone Controller" in English.
  • This zone controller is notably in charge, first, to monitor the presence of trains on the rail network and, secondly, in a centralized architecture, to provide movement authorizations to trains, which are likely to guarantee their safety of movement, that is to say for example not to provide a train with a movement authorization that would lead it to go beyond the train that precedes it.
  • Such a zone controller is referenced by the number 50 on the figure 1
  • This ATC architecture is part of a global system, called Signaling System, SS on the figure 1 which is also suitable for controlling a plurality of equipment at the track.
  • Signaling System SS on the figure 1 which is also suitable for controlling a plurality of equipment at the track.
  • the signaling system includes an automatic train supervision system, also called ATS system, according to the acronym "Automatic Train Supervision".
  • ATS system is implemented in an operational central office and comprises man / machine interfaces, enabling operators to intervene on the various systems of the signaling system and, in particular, equipment on the track. For example, the operator can remotely control from the ATS the closing of a signal (switching from a fire to red).
  • the signaling system also includes an interlocking system, also known as "Interlocking" in English.
  • an interlocking system is capable of managing the equipment at the track, such as traffic lights, switching actuators, etc., these equipment to the track allowing the safe movement of the trains and to avoid movements. conflict between them.
  • the interlocking system is now computerized by adapted computers adapted to control the equipment to the track.
  • Such an interlocking calculator is referenced by the number 40 on the figure 1 .
  • the rail network is composed of sections of railroad track, each section of track being subdivided into zones. On the figure 1 three successive zones 14A, 14B and 14C are shown.
  • Occupying an area of a section of track is a fundamental piece of railway safety. The determination of this information will now be described.
  • the zone controller receives information from a primary detection system and from a secondary detection system.
  • the primary detection system allows the determination of the area occupied by a train according to the instantaneous position of the train determined by the train itself. More precisely, the zone controller receives, from each computer 26 on board a train 16, the instantaneous position of this train. This position is determined by the on-board computer from the detection of beacons 24 placed along the track 12 and whose geographical positions are known, and from odometry means equipping the train and allowing the calculator to determine the distance traveled by the train since the last cross tag. In another embodiment, the train uses other means to determine its position: for example an accelerometer (instead of the odometer) or a GPS (instead of beacons).
  • the zone controller From the instantaneous position of a train, the zone controller deduces, by means of a geographical plane of the network, on which each zone is uniquely identified, the zone in which the train is currently located. A first state E1 of the zone in which the train is located then takes the value "occupied".
  • the zone controller continues to extrapolate the position of the train to cover its potential movements.
  • the first state E1 of the zones in which no train is at the current time takes the value "free".
  • a first occupancy information of each zone is determined by the zone controller.
  • the secondary detection system is able to redundant the primary detection system, in case, for example, the radio communication unit 27 of a train 16 no longer functions, the zone controller 50 can not obtain the instantaneous position. of the train.
  • the secondary detection system is able to detect the presence of a train in a particular area.
  • the secondary detection system to detect the presence of a train on an area, the secondary detection system counts the number of axles 17 entering and leaving the area.
  • the secondary system comprises an input sensor 28A located at the entrance to the zone 14B and an output sensor 28B located at the exit of the zone 14B.
  • the input and output sensors are connected by wiring to a device at the channel 30 associated with the zone 14B, hereinafter referred to as detection equipment.
  • the detection equipment is located in a technical room (common with signaling equipment).
  • a sensor can be connected to several detection equipment.
  • the sensor 28B is both the output sensor of the zone 14B and the input sensor of the zone 14C. it will be connected to the zone controller of zone 14B and that of zone 14C.
  • the detection equipment 30 is an electronic card to which the input and output sensors of the zone in question are connected.
  • the detection equipment is able to maintain a variable called axle counter C of the zone.
  • the detection equipment 30 increments the axle counter C of the zone by one unit.
  • the sensing equipment 30 decrement the axle counter C of the zone by one unit.
  • the zone is in a second state E2 taking the value "free" when the axle counter C of the zone is equal to zero. Otherwise, the second state of the zone takes the value "busy".
  • the second state E2 of a zone constitutes a second occupancy information which is periodically transmitted by the detection equipment 30 to the zone controller 50 via the interlocking computer 40.
  • the area controller 50 reconciles the first and second occupancy information. Different strategies are then implemented when these two pieces of information differ from each other.
  • a "pure" CBTC system can only work with primary detection.
  • the secondary detection is present on the one hand to cover the failure modes of the CBTC communication and on the other hand to allow the circulation, on the same railway network, of trains not equipped with CBTC.
  • the secondary detection system of the state of the art has the following operating disadvantage.
  • the train has N axles 17.
  • the input sensor 28A erroneously detects the passage of N-1 axles.
  • the state counter C then takes the value N-1 ("busy" state).
  • the zone controller 50 reconciles the first and second information which originate from the primary detection system and from the secondary detection system.
  • the zone controller 50 places the detection equipment 30 of the zone 14B into the "out of order” mode (OOO for "Out Of Operation”). This means that the status counter associated with this zone has been identified as erroneous and must be reset before being able to be taken into account again.
  • the information that a detection equipment is in the "out of service" mode is transmitted by the zone controller 50 to the ATS system.
  • the information is then displayed on the screen of an operator, for example in the form of an alarm.
  • the operator Before validating such a reset, the operator requests an agent to move along the path to physically see that the area in question is actually unoccupied. Once the operator has received confirmation from the agent, he must then stop the trains that may potentially enter the area during the reset procedure. It then validates the reset, which has the effect of issuing a reset authorization to the zone controller 50.
  • the zone controller 50 Upon receipt of this reset authorization request, the zone controller 50 transmits a reset request to the latch computer 40 managing the detection equipment 30 of the area of interest.
  • the latch computer 40 Upon receipt of the reset request, the latch computer 40 transmits a reset command adapted to the detection equipment 30.
  • the detection equipment 30 Upon receipt of the reset command, the detection equipment 30 is able to assign a default value (in this case zero) to the axle counter to be reset.
  • the detection equipment 30 indicates that the second state E2 of the zone is "free", consistent with the first state E1 of this same zone.
  • the zone controller 50 places the detection equipment 30 back into the "in service” mode.
  • the zone is considered as occupied by all, regardless of the number of axles indicated by the axle counter.
  • this reset method is slow to implement.
  • the primary detection system is not redundant, which presents problems of system availability in the event of failure of the system. radio communication system of a CBTC train or in the case of a non-equipped CBTC train.
  • the operator validates the issuance of a reset authorization to the zone controller.
  • the zone controller Upon receipt of this authorization, the zone controller verifies, by using the primary detection system, not only that no train is present on the area whose status counter is to be reset, but also that no train is within an approach volume around this area.
  • the approach volume defines a distance upstream and downstream of an area, to ensure that no train will return to the area during the implementation of the reset process.
  • the approach volume corresponds to a reset time multiplied by a maximum train speed on the zones upstream and downstream of the zone considered.
  • the approach volume depends on each zone.
  • the reset time takes into account the delay introduced by the communication between the zone controller and the trip computer and between the trip computer and the detection equipment, as well as the time required for the detection equipment for perform the reset itself.
  • the distance from each side of the zone considered is important, for example 300 m upstream or downstream of this zone.
  • the zone controller issues a reset request to the detection equipment only if all zones of the approach volume associated with the zone are in a first "free" state.
  • the zone controller does not issue a reset request to the detection equipment, which remains in the " out of order ". As a result, the alarm does not disappear from the ATS system screen.
  • This reset method has the advantage of being intrinsically safe since it is the signaling system itself that checks the absence of train in and around the area. In other words, this method does not rely on the operator, unlike the previous one. On the other hand, it also presents a certain number of difficulties of implementation. For example, it is impossible to implement it during peak hours of use of the network, the trains being too close to each other, so that the approach volume associated with a zone is only very rarely free. . In this case, the only alternative is a so-called "local" reset of the detection system, that is to say via a human intervention directly on the electronic card of the detection equipment, which has a button of reset ("reset").
  • the present invention aims to overcome the aforementioned problems.
  • the implementation architecture of the method 100 is in accordance with that of the prior art shown schematically in FIG. figure 1 . It differs in that the detection equipment 30 is able to keep up to date, not only an axle counter C, indicating the number of axles on the zone at the current time t, but also a counter of CV variation of the number of axles detected by the input and output sensors of the zone during a sliding time window.
  • the window extends over a predetermined duration D before the current instant t.
  • this CV counter has two states: the first indicates that an interaction with the input / output sensors of the zone has occurred during the duration D preceding the current instant t. The second state indicates instead that no interaction with the input / output sensors of the zone has occurred during the duration D preceding the current time t.
  • the counter of axles C does not take again the value null, one of the input or output sensors of the zone 14B not having detected the good number of axles .
  • the detection equipment 30 transmits a message M0 indicating that the second state E2 of the zone 14B is "busy" towards the switching computer 40.
  • step 120 following receipt of the message M0, the switching computer 40 transmits a message M1 relaying the information that the second state E2 of the zone 14B is "busy" to the zone controller 50.
  • step 130 performed at time t1, zone controller ZC 50 compares the first state E1 of zone 14B with the second state E2 of zone 14B.
  • the first state E1 of the zone 14B is that delivered at the current time t1 by the primary detection system. Train 16 indicates an instantaneous position at time t1 such that zone controller 50 can conclude that the first state E1 of zone 14B is "free".
  • the second state E2 of the zone 14B is that indicated by the secondary detection system in the message M1.
  • the zone controller 50 can conclude that the second state E2 of the zone 14B is "occupied",
  • the zone controller 50 identifying that the primary system is operational, in particular because the zone controller periodically receives instantaneous position information from the computers 26 onboard the trains, he deduces that the inconsistency is caused by an axle counter C which is wrong.
  • the zone controller 50 will first try to reset the detection equipment 30 (as explained after) before deciding whether to put it "out of service” if the reset fails.
  • the zone controller 50 then initiates, by itself, the reinitialization of the axle counter C.
  • the zone controller 50 is able to request a reset of the state counter C of the zone 14B. issuing a reset request RI to the switch computer 46.
  • step 150 following receipt of the request RI, the switching computer 40 issues a reset command CI relaying the information that the axle counter C of the zone 14B must be reset.
  • step 160 the detection equipment 30 receives the CI reset command.
  • step 170 the detection equipment 30 then starts the reset of the counter C.
  • the reset ends at the instant t3.
  • step 180 which starts at time t4 (offset by a predetermined duration after time t3), the detection equipment 30 checks the value of the CV variation counter.
  • the duration D of the window used for the CV counter is greater than or equal to the duration between the instants t1 and t3.
  • the CV variation counter is zero, it means that no train has entered the zone from the time t1 when the zone controller has required the reset.
  • the reset is thus validated by the detection equipment 30.
  • the zone is therefore in the free state at time t4, consistent with the current value the axle counter C reset.
  • the detection equipment 30 then emits a validation message M2 indicating that the reset has been successful and that the zone is in the second "free" state.
  • step 190 following receipt of the message M2, the switching computer 40 transmits a message M3 relaying the information that the second state of the zone 14B is "free" to the zone controller 50.
  • step 200 the zone controller 50 compares the first state E1 of the zone 14B with the second state E2 of the zone 14B. These two states are now coherent with each other.
  • the reset was successful. It is important to note that, from an operational point of view, the detection equipment has never gone into the "out of service” mode. In other words, the reset process was completely transparent to the operator and did not in any way disturb the nominal running of the system as a whole.
  • step 180 ( figure 5 ) the reset is not validated by the detection equipment 30 and the area therefore remains the "busy” state at the current time.
  • the detection equipment 30 then transmits a failed reset message M4 indicating that the reset has not been performed and that the zone 14B is still busy.
  • step 290 the latch computer 40 transmits to the zone controller 50 a message M5 indicating that the zone 14B is still busy.
  • step 300 the zone controller 50 finds that at least one reset attempt has already been made without success. At this time, he places the detection equipment 30 in the "out of service” mode and transmits, in step 310, an alarm message MA to the ATS system.
  • step 320 when the alarm message MA is received, the ATS system displays an alarm on one of the screens of the central control unit.
  • An operator validates the reset of the state counter of the detection equipment 30, by performing a validation gesture, such as pressing a button specific or, in the case of a touch screen, an area of the screen associated with the displayed alarm. This has the effect of the issuing, in step 330, of an authorization in initialization MAI by the supervision system to the zone controller 50.
  • This validation by an operator may involve different sources of information allowing the operator to ensure that the zone 14B is actually free.
  • the zone controller 50 receives the authorization MAI and, as soon as the primary detection system allows the zone controller 30 to conclude that the zone 14B is free, the various steps 140 to 180, then 190 and 200 are then reiterated.
  • the detection equipment 30 indicates that the second state E2 of the zone is "free", consistent with the first state E1 of this same zone. Noting this consistency, the zone controller 50 places the detection equipment 30 back into the "in service” mode (step 410) and transmits a message adapted to the ATS allowing it to stop the alarm displayed on the screen. operator screen (step 420).
  • the first three graphs represent: at time t1, the zone controller 50, knowing from the primary system that the zone 14B is free issues a request for reset; at time t2, the detection equipment 30 receives the corresponding reset command; and at time t3, the axle counter is reset to zero.
  • the detection equipment then emits a successful reset message M2, that is to say a validation message taking the unit value.
  • the zone will therefore return to the "free" state
  • the last two graphs of the figure 6 represent the case of the figure 5 . Since in the sliding window D, between t3-D and t3, the variation counter CV has taken the unit value, an axle of a train entering or leaving the zone 14B having been detected, the reset is not validated and the area remains occupied.
  • the detection equipment transmits a reset message M4 failed, that is to say a validation message taking the value zero. It should be noted that at this moment the detection equipment 30 resets the counter CV.
  • the detection equipment upon receipt of the reset command, the detection equipment is able to verify a first time the current value of the CV variation counter.
  • the detection equipment proceeds to the reset step 170 and, upon resetting, checks the value of the CV change counter a second time as described above with reference to FIG. step 180.
  • step 180 the detection equipment goes directly to step 180 and sends a reset message M4 failed.
  • the process has a number of advantages over the state of the art.
  • a train equipped with an on-board computer circulates on the network. It is stationary in front of a restrictive signal on an area belonging to the approach volume of the out-of-service area. This situation can not be addressed by the state of the art, since the train is in the approach volume of the out-of-service area. With the method described above, the zone is put back into service, since it is detected that no train has entered the zone between the transmission times of the request to reset and the end of the reset.
  • This reset method is simpler than the known methods and leads to the feedback of information to the ATS system only in case of failure of a configurable number (equal to one in the embodiment presented above). in detail) of reset attempts initiated by the zone controller.
  • the first attempts of reinitialization being carried out automatically, a reinitialization is carried out more quickly than by the implementation of the methods of the state of the technical.
  • the automatic character removes the operational procedures to be implemented for the resets according to the state of the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

Ce procédé comporte : l'émission, par un contrôleur de zone (50), d'une requête en réinitialisation d'un l'équipement de détection (30) d'un système secondaire de détection à la voie, suite à la constatation d'une incohérence sur l'état d'occupation de la zone (14B) entre ledit système secondaire et un système primaire de détection ; la réception de la requête en réinitialisation par l'équipement de détection (30) ; et la réinitialisation de l'équipement de détection. A l'issue de la réinitialisation, l'équipement de détection vérifie qu'aucun train n'a été détecté comme entrant et/ou sortant de la zone entre un instant d'émission par le contrôleur de zone de la requête en réinitialisation et un instant de fin de réinitialisation de l'équipement de détection.

Description

  • La présente invention concerne un procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection, dans une architecture de contrôle automatique des trains.
  • La présente invention concerne plus particulièrement une architecture de contrôle automatique des trains circulant sur un réseau ferroviaire. Une telle architecture est connue sous l'acronyme anglais d'architecture ATC, pour « Automatic Train Control ».
  • De manière connue en soi, une architecture ATC comporte différents systèmes coopérant entre eux pour permettre la circulation, en sécurité, des trains sur le réseau.
  • Différentes architectures ATC existent, cependant la présente invention est plus spécifiquement relative à une architecture ATC du type « à gestion des trains basée sur la communication », connue sous l'acronyme anglais d'architecture CBTC, pour « Communication Based Train Control ». Une architecture CBTC est représentée schématiquement à la figure 1.
  • Une architecture CBTC est fondée sur la présence de calculateurs embarqués à bord des trains. Le calculateur d'un train détermine un certain nombre de paramètres de fonctionnement et communique avec différents systèmes au sol pour permettre au train de réaliser, en sécurité, la mission qui lui a été attribuée. Ce calculateur embarqué assure en effet, d'une part, la couverture des besoins fonctionnels du train, c'est-à-dire par exemple les stations à desservir, et, d'autre part, le contrôle de points de sécurité, c'est-à-dire par exemple vérifier que le train n'a pas une vitesse excessive. Le calculateur d'un train est connecté à une unité de communication radio embarquée, propre à établir une liaison radio avec des stations de base d'une infrastructure de communication, elle-même connectée à un réseau de communication de l'architecture CBTC.
  • Au sol, l'architecture CBTC comporte, un contrôleur de zone ZC, acronyme de « Zone Controller » en anglais. Ce contrôleur de zone est notamment en charge, d'une part, de suivre la présence des trains sur le réseau ferroviaire et, d'autre part, dans une architecture centralisée, de fournir des autorisations de mouvement aux trains, qui soient de nature à garantir leur sécurité de déplacement, c'est-à-dire par exemple ne pas fournir à un train une autorisation de mouvement qui le conduirait à aller au-delà du train qui le précède. Un tel contrôleur de zone est référencé par le chiffre 50 sur la figure 1
  • Cette architecture ATC fait partie d'un système global, appelé système de signalisation, SS sur la figure 1, qui est également propre à commander une pluralité d'équipements à la voie.
  • Le système de signalisation comporte un système de supervision automatique des trains, aussi dénommé système ATS, selon l'acronyme anglais « Automatic Train Supervision ». Le système ATS est mis en oeuvre dans un central opérationnel et comporte des interfaces homme / machine, permettant à des opérateurs d'intervenir sur les différents systèmes du système de signalisation et, en particulier, les équipements à la voie. Par exemple, l'opérateur peut commander à distance depuis l'ATS la fermeture d'un signal (passage d'un feu au rouge).
  • Le système de signalisation comporte également un système d'enclenchement, aussi dénommé « Interlocking » en anglais. Un tel système d'enclenchement est propre à gérer les équipements à la voie, tels que des feux de signalisation, des actionneurs d'aiguillage, etc., ces équipements à la voie permettant le mouvement en sécurité des trains et d'éviter des mouvements conflictuels entre ceux-ci. Autrefois à base de relais électromécaniques, le système d'enclenchement est aujourd'hui réalisé informatiquement par des calculateurs adaptés propre à commander les équipements à la voie. Un tel calculateur d'enclenchement est référencé par le chiffre 40 sur la figure 1.
  • Le réseau ferroviaire est composé de sections de voie ferrée, chaque section de voie étant subdivisée en zones. Sur la figure 1, trois zones successives, 14A, 14B et 14C, sont représentées.
  • L'occupation d'une zone d'une section de voie est une donnée fondamentale de la sécurité ferroviaire. La détermination de cette information va maintenant être décrite.
  • Le contrôleur de zone reçoit des informations d'une part d'un système primaire de détection et, d'autre part, d'un système secondaire de détection.
  • Le système primaire de détection permet la détermination de la zone occupée par un train en fonction de la position instantanée du train déterminée par le train lui-même. Plus précisément, le contrôleur de zone reçoit, de chaque calculateur 26 embarqué à bord d'un train 16, la position instantanée de ce train. Cette position est déterminée par le calculateur embarqué à partir de la détection de balises 24 placées le long de la voie 12 et dont les positions géographiques sont connues, et à partir de moyens d'odométrie équipant le train et permettant au calculateur de déterminer la distance parcourue par le train depuis la dernière balise croisée. Dans un autre mode de réalisation, le train utilise d'autres moyens pour déterminer sa position : par exemple un accéléromètre (en lieu et place de l'odomètre) ou encore un GPS (en lieu et place des balises). A partir de la position instantanée d'un train, le contrôleur de zone déduit, au moyen d'un plan géographique du réseau, sur lequel chaque zone est identifiée de manière unique, la zone dans laquelle se trouve actuellement le train. Un premier état E1 de la zone dans laquelle se trouve le train prend alors la valeur « occupé ».
  • Il est à noter que, pour des raisons de sécurité, selon le système primaire de détection, non seulement la zone dans laquelle se trouve le train est dans l'état « occupé », mais également les zones voisines en avant et en arrière de cette zone centrale, de manière à définir un volume de sécurité autour du train. Ce volume supplémentaire couvre la distance maximale que le train pourrait parcourir entre le moment où il calcule la position qu'il va envoyer au contrôleur de zone et le moment où ce contrôleur de zone reçoit l'information.
  • Par ailleurs, tant qu'aucune autre information de position n'est reçue par le contrôleur de zone, celui-ci continue d'extrapoler la position du train pour couvrir ses mouvements potentiels.
  • Le premier état E1 des zones dans lesquelles aucun train ne se trouve à l'instant courant prend la valeur « libre ».
  • De cette manière, une première information d'occupation de chaque zone est déterminée par le contrôleur de zone.
  • Le système secondaire de détection est propre à redonder le système primaire de détection, au cas où, par exemple, l'unité de communication radio 27 d'un train 16 ne fonctionnant plus, le contrôleur de zone 50 ne puisse pas obtenir la position instantanée du train. Par des équipements à la voie adaptés, déposés le long de la voie, le système secondaire de détection est apte à détecter la présence d'un train dans telle ou telle zone.
  • Dans un mode de réalisation actuellement préféré, pour détecter la présence d'un train sur une zone, le système secondaire de détection effectue un comptage du nombre d'essieux 17 entrant et sortant de la zone.
  • Pour ce faire, le système secondaire comporte un capteur d'entrée 28A situé à l'entrée de la zone 14B considérée et un capteur de sortie 28B situé à la sortie de la zone 14B. Les capteurs d'entrée et de sortie sont connectés par des câblages à un équipement à la voie 30 associée à la zone 14B, appelé dans ce qui suit équipement de détection. L'équipement de détection est situé dans un local technique (commun avec les équipements de signalisation).
  • Il y a un équipement de détection par zone. Par contre, un capteur peut être relié à plusieurs équipements de détection. Par exemple, dans le sens de déplacement du train indiqué sur la figure 1, le capteur 28B est à la fois le capteur de sortie de la zone 14B et le capteur d'entrée de la zone 14C. il sera connecté au contrôleur de zone de la zone 14B et à celui de la zone 14C.
  • L'équipement de détection 30 est une carte électronique à laquelle sont connectés les capteurs d'entrée et de sortie de la zone considérée. L'équipement de détection est propre à tenir à jour une variable dénommée compteur d'essieux C de la zone.
  • Lorsque le train passe devant le capteur d'entrée, à chaque détection du passage d'un essieu par le capteur d'entrée, l'équipement de détection 30 incrémente d'une unité le compteur d'essieux C de la zone.
  • Lorsque le train sort de la zone, à chaque détection du passage d'un essieu par le capteur de sortie, l'équipement de détection 30 décrémente d'une unité le compteur d'essieux C de la zone.
  • Ainsi, selon le système de détection secondaire, la zone est dans un second état E2 prenant la valeur « libre » lorsque le compteur d'essieux C de la zone est égal à zéro. A défaut, le second état de la zone prend la valeur « occupé ».
  • Le second état E2 d'une zone constitue une seconde information d'occupation qui est périodiquement transmise par l'équipement de détection 30 au contrôleur de zone 50, via le calculateur d'enclenchement 40.
  • Le contrôleur de zone 50 réconcilie les première et seconde informations d'occupation. Différentes stratégies sont ensuite mises en oeuvre lorsque ces deux informations diffèrent l'une de l'autre.
  • Il est important de noter qu'un système « purement » CBTC peut fonctionner uniquement avec une détection primaire. La détection secondaire est présente pour d'une part couvrir les modes de pannes de la communication CBTC et d'autre part permettre la circulation, sur le même réseau ferroviaire, de trains non équipés en CBTC.
  • Le système secondaire de détection de l'état de la technique présente l'inconvénient de fonctionnement suivant.
  • Comme illustré sur la figure 1, le train comporte N essieux 17.
  • Initialement, aucun train ne se trouve sur la zone 14B de la voie ferrée 12. Le compteur d'essieux CB de la zone 14B est égal à zéro. Le second état E2 de la zone est « libre ».
  • Lorsque le train 16 entre dans la zone 14B, le capteur d'entrée 28A détecte, de manière erronée, le passage de N-1 essieux. Le compteur d'état C prend alors la valeur N-1 (état « occupé »).
  • Lorsque le train 16 quitte la zone 14B, le capteur de sortie 28B détecte de manière correcte le passage de N essieux. Le compteur d'état C est décrémenté de N et prend la valeur -1. Le second état E2 est donc « occupé ».
  • On constate donc qu'en cas de détection erronée du nombre d'essieux par un capteur, le compteur d'essieux conduit à indiquer que le second état de la zone est « occupé », alors qu'aucun train n'occupe physiquement cette zone. En indiquant que le premier état E1 de cette même zone est « libre », le système primaire de détection est donc en contradiction avec le système secondaire.
  • En se référant maintenant à la figure 2, le contrôleur de zone 50 réconcilie les première et seconde informations qui lui proviennent d'une part du système primaire de détection et d'autre part du système secondaire de détection.
  • Alors que le système primaire de détection fonctionne correctement, en cas d'incohérence du type premier état E1 « libre » avec le second état E2 « occupé », le contrôleur de zone 50 place l'équipement de détection 30 de la zone 14B dans le mode « hors service » (OOO pour « Out Of Operation »). Cela signifie que le compteur d'état associé à cette zone a été identifié comme erroné et doit être réinitialisé avant de pouvoir à nouveau être pris en compte.
  • Pour un tel procédé de réinitialisation, l'information qu'un équipement de détection est dans le mode « hors service » est transmise par le contrôleur de zone 50 vers le système ATS. L'information est alors affichée sur l'écran d'un opérateur, par exemple sous la forme d'une alarme.
  • Avant de valider une telle réinitialisation, l'opérateur demande à un agent de se déplacer le long de la voie pour constater physiquement que la zone dont il est question est effectivement inoccupée. Une fois que l'opérateur a reçu la confirmation de l'agent, il doit ensuite arrêter les trains qui risquent potentiellement d'entrer dans la zone pendant la procédure de réinitialisation. Il valide ensuite la réinitialisation, ce qui a pour effet d'émettre une autorisation de réinitialisation à destination du contrôleur de zone 50.
  • Lors de la réception de cette requête d'autorisation de réinitialisation, le contrôleur de zone 50 transmet une requête en réinitialisation au calculateur d'enclenchement 40 gérant l'équipement de détection 30 de la zone concernée.
  • Lors de la réception de la requête en réinitialisation, le calculateur d'enclenchement 40 transmet une commande de réinitialisation adaptée à l'équipement de détection 30.
  • Lors de la réception de la commande de réinitialisation, l'équipement de détection 30 est propre à attribuer une valeur par défaut (en l'occurrence la valeur zéro) au compteur d'essieux à réinitialiser.
  • Une fois le compteur d'essieux réinitialisé, l'équipement de détection 30 indique que le second état E2 de la zone est « libre », en cohérence avec le premier état E1 de cette même zone.
  • Constatant cette cohérence, le contrôleur de zone 50 replace l'équipement de détection 30 dans le mode « en service ».
  • Ainsi, dans ce premier mode de réalisation d'un procédé de réinitialisation du compteur d'essieux d'une zone, il n'y a pas de vérification de l'état réel de la zone par le système de signalisation.
  • Une fois dans le mode « hors service », les informations que pourraient collecter l'équipement de détection de la zone ne sont pas prises en compte. Plus précisément, la zone est par défaut considérée comme occupée, et ceci quel que soit le nombre d'essieux indiqué par le compteur d'essieux.
  • De plus, comme indiqué ci-dessus, la procédure opérationnelle qui précède l'émission par l'opérateur d'une requête en autorisation de réinitialisation est lourde. Il est à noter que toute la sécurité de cette procédure de réinitialisation repose sur les opérateurs qui doivent garantir l'absence de train dans la zone avant et pendant la réinitialisation. Le danger serait de remettre une zone dans l'état « libre » alors qu'un train est réellement présent sur cette zone.
  • En conséquence, ce procédé de réinitialisation est long à mettre en oeuvre. Durant son exécution, sur la ou les zones dont les équipements de détection sont pour le contrôleur de zone « hors service », le système primaire de détection n'est pas redondé, ce qui présente des problèmes de disponibilité du système en cas de panne du système de radiocommunication d'un train CBTC ou en cas de circulation d'un train non-équipé en CBTC.
  • Selon un second procédé de réinitialisation de l'art antérieur, lors de l'affichage d'un message d'alarme sur un écran du système ATS, l'opérateur valide l'émission d'une autorisation de réinitialisation vers le contrôleur de zone.
  • Lors de la réception de cette autorisation, le contrôleur de zone vérifie, en utilisant le système primaire de détection, non seulement qu'aucun train n'est présent sur la zone dont le compteur d'état doit être réinitialisé, mais également qu'aucun train ne se trouve à l'intérieur d'un volume d'approche autour de cette zone.
  • Le volume d'approche définit une distance en amont et en aval d'une zone, permettant de garantir qu'aucun train ne rentrera sur la zone au cours de la mise en oeuvre du procédé de réinitialisation. Le volume d'approche correspond à un temps de réinitialisation multiplié par une vitesse maximum de circulation des trains sur les zones en amont et en aval de la zone considérée. Le volume d'approche dépend de chaque zone.
  • Le temps de réinitialisation prend en compte le retard introduit par la communication entre le contrôleur de zone et le calculateur d'enclenchement et entre le calculateur d'enclenchement et l'équipement de détection, ainsi que le temps nécessaire à l'équipement de détection pour réaliser la réinitialisation proprement dite.
  • La distance de chaque côté de la zone considérée est importante, par exemple 300 m en amont ou en aval de cette zone.
  • Ainsi, le contrôleur de zone n'émet une requête en réinitialisation à destination de l'équipement de détection que si toutes les zones du volume d'approche associé à la zone sont dans un premier l'état « libre ».
  • A défaut, si un train se trouve à l'intérieur du volume d'approche au moment de lancer la réinitialisation, le contrôleur de zone n'émet pas de requête en réinitialisation vers l'équipement de détection, qui reste alors dans le mode « hors service ». En conséquence, l'alarme ne disparaît pas de l'écran du système ATS.
  • Ce procédé de réinitialisation présente l'avantage d'être intrinsèquement de sécurité puisque c'est le système de signalisation lui-même qui vérifie l'absence de train dans et autour de la zone. Autrement dit, ce procédé ne repose pas sur l'opérateur, contrairement au précédent. Par contre, il présente également un certain nombre de difficultés de mise en oeuvre. Il est par exemple impossible de le mettre en oeuvre durant les heures de pointe d'utilisation du réseau, les trains étant trop proches les uns des autres, de sorte que le volume d'approche associé à une zone n'est que très rarement libre. Dans ce cas de figure, la seule alternative est une réinitialisation dite « en local » du système de détection, c'est-à-dire via une intervention humaine directement sur la carte électronique de l'équipement de détection, qui possède un bouton de réinitialisation (« reset »).
  • La présente invention a pour but de pallier les problèmes précités.
  • À cet effet, l'invention a pour objet un procédé de réinitialisation d'un équipement de détection à la voie d'un système secondaire de détection de l'occupation d'une zone d'un réseau ferroviaire, d'une architecture CBTC, ladite architecture CBTC comportant par ailleurs un système primaire de détection de l'occupation de ladite zone, fondé sur une transmission par des calculateurs embarqués à bords des trains circulant sur le réseau de la position instantanée de chaque train, comportant les étapes de :
    • détection par l'équipement de détection du système secondaire de détection des trains entrant et/ou sortant de la zone et émission périodique d'une seconde information d'occupation de la zone à destination d'un contrôleur de zone ;
    • émission, par le contrôleur de zone, d'une requête en réinitialisation de l'équipement de détection suite à la réception d'une seconde information d'occupation de la zone par ledit équipement de détection indiquant que la zone est dans un second état « occupé », alors qu'une première information d'occupation de la zone par le système primaire de détection de l'occupation de la zone indique, au même instant, que la zone est dans un premier état « libre » ;
    • réception de la requête en réinitialisation par l'équipement de détection ; et,
    • réinitialisation de l'équipement de détection,
    caractérisé en ce que, à l'issue de l'étape de réinitialisation de l'équipement de détection, l'équipement de détection vérifie qu'aucun train n'a été détecté comme entrant et/ou sortant de la zone entre un instant d'émission par le contrôleur de zone de la requête en réinitialisation et un instant de fin de réinitialisation de l'équipement de détection ; et, dans l'affirmative, émet un message de réinitialisation réussie au contrôleur de zone, et, dans la négative, émet un message de réinitialisation échouée au contrôleur de zone.
  • Suivant d'autres aspects avantageux de l'invention, le procédé comprend une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :
    • suite à la réception d'une commande de réinitialisation, l'équipement de détection vérifie qu'aucun train n'a été détecté comme entrant et/ou sortant de la zone entre l'instant d'émission par le contrôleur de zone de la requête en réinitialisation et l'instant de réception de la commande de réinitialisation; et, dans l'affirmative, l'équipement de détection exécute l'étape de réinitialisation ; et, dans la négative, n'effectue pas l'étape de réinitialisation et émet un message de réinitialisation échouée au contrôleur de zone ;
    • les communications montantes de l'équipement de détection vers le contrôleur de zone et descendantes du contrôleur de zone vers l'équipement de détection s'effectue par l'intermédiaire d'un calculateur d'enclenchement jouant le rôle d'un relais de communication ;
    • l'équipement de détection étant connecté à deux capteurs d'essieux, respectivement un capteur d'entrée situé à une frontière d'entrée de la zone et un capteur de sortie situé à une frontière de sortie de la zone, la réinitialisation de l'équipement de détection consiste à remettre à zéro un compteur d'essieux ;
    • l'équipement de détection est propre à tenir à jour un compteur de variation du nombre d'essieux détecté sur la zone sur une fenêtre glissante dont une profondeur temporelle par rapport à l'instant courant est supérieure à la durée séparant l'instant d'émission par le contrôleur de zone d'une requête en réinitialisation et l'instant de fin de l'étape de réinitialisation qui suit la réception de ladite requête en réinitialisation par l'équipement de détection ;
    • après un nombre prédéfini de tentatives de réinitialisation de l'équipement de détection (30) par le contrôleur de zone, lors de la réception d'un message de réinitialisation échouée, le contrôleur de zone transmet un message d'alarme, à un système ATC de l'architecture CBTC pour validation, par un opérateur, de la réinitialisation de l'équipement de détection.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins annexés sur lesquels :
    • la figure 1 est une vue schématique d'une architecture de contrôle automatique du trafic ferroviaire sur une voie ferrée et d'un train circulant sur cette voie ferrée ;
    • la figure 2 est une vue schématique des premier et second états d'occupation de zones successives, reçues par le contrôleur de zone de l'architecture de la figure 1 ;
    • les figures 3 à 5 sont des représentations du procédé de réinitialisation selon l'invention ;
    • la figure 6 est un chronogramme représentant les signaux traités par l'équipement de détection selon le procédé des figures 4 et 5 ; et,
    • les figures 7 à 9 sont des schémas représentant des situations que le présent procédé de réinitialisation permet de résoudre sans intervention humaine, contrairement aux procédés de l'état de la technique.
  • Un mode de réalisation préféré du procédé de réinitialisation 100 va maintenant être décrit en référence aux figures 3 et 5.
  • L'architecture de mise en oeuvre du procédé 100 est conforme à celle de l'art antérieur représentée schématiquement à la figure 1. Elle en diffère par le fait que l'équipement de détection 30 est propre à maintenir à jour, non seulement un compteur d'essieux C, indiquant le nombre d'essieux sur la zone à l'instant courant t, mais également un compteur de variation CV du nombre d'essieux détecté par les capteurs d'entrée et de sortie de la zone durant une fenêtre temporelle glissante. La fenêtre s'étend sur une durée D prédéterminée avant l'instant courant t. Plus précisément ce compteur CV a deux états : le premier indique qu'une interaction avec les capteurs d'entrée/sortie de la zone s'est produite pendant la durée D précédant l'instant courant t. Le deuxième état indique au contraire qu'aucune interaction avec les capteurs d'entrée/sortie de la zone ne s'est produite pendant la durée D précédant l'instant courant t.
  • Alors que le train 16 a quitté la zone 14B, le compteur d'essieux C ne reprend pas la valeur nulle, l'un des capteurs d'entrée ou de sortie de la zone 14B n'ayant pas détecté le bon nombre d'essieux.
  • A l'étape 110 (figure 3), l'équipement de détection 30 émet un message M0 indiquant que le second état E2 de la zone 14B est « occupé », vers le calculateur d'enclenchement 40.
  • A l'étape 120, suite à la réception du message M0, le calculateur d'enclenchement 40 émet un message M1 relayant l'information selon laquelle le second état E2 de la zone 14B est « occupé », vers le contrôleur de zone 50.
  • A l'étape 130, réalisée à l'instant t1, le contrôleur de zone ZC 50 compare le premier état E1 de la zone 14B avec le second état E2 de la zone 14B.
  • Le premier état E1 de la zone 14B est celui délivré à l'instant courant t1 par le système primaire de détection. Le train 16 indique une position instantanée à l'instant t1 telle que le contrôleur de zone 50 peut conclure que le premier état E1 de la zone 14B est « libre ».
  • Le second état E2 de la zone 14B est celui indiqué par le système secondaire de détection dans le message M1. Dans le cas de figure indiqué en introduction, le contrôleur de zone 50 peut conclure que le second état E2 de la zone 14B est « occupé »,
  • Il y a donc là une incohérence entre la première information d'occupation délivrée par le système primaire de détection et la seconde information d'occupation délivrée par le système secondaire de détection.
  • Cependant, le contrôleur de zone 50, identifiant que le système primaire est opérationnel, notamment parce que le contrôleur de zone reçoit périodiquement des informations de position instantanée de la part des calculateurs 26 embarqués à bord des trains, il en déduit que l'incohérence est causée par un compteur d'essieux C qui est erroné.
  • Il est à noter que pour l'instant l'équipement de détection 30 est maintenu dans le mode « en service » par le contrôleur de zone 50. Celui-ci va d'abord essayer de réinitialiser l'équipement de détection 30 (comme expliquer après) avant de décider ou non de sa mise « hors service », en cas d'échec de la réinitialisation.
  • Le contrôleur de zone 50 initie alors, de lui-même, la réinitialisation du compteur d'essieux C. A l'étape 140, le contrôleur de zone 50 est propre à requérir une réinitialisation du compteur d'état C de la zone 14B en émettant une requête en réinitialisation RI vers le calculateur d'enclenchement 46.
  • A l'étape 150, suite à la réception de la requête RI, le calculateur d'enclenchement 40 émet une commande de réinitialisation CI relayant l'information selon laquelle le compteur d'essieux C de la zone 14B doit être réinitialisé.
  • A l'instant t2, à l'étape 160, l'équipement de détection 30 reçoit la commande en réinitialisation CI.
  • A l'étape 170, l'équipement de détection 30 lance alors la réinitialisation du compteur C. La réinitialisation se termine à l'instant t3.
  • A l'étape 180, qui débute à l'instant t4 (décalé d'une durée prédéterminée après l'instant t3), l'équipement de détection 30 vérifie la valeur du compteur de variation CV.
  • La durée D de la fenêtre utilisée pour le compteur CV est supérieure ou égale à la durée entre les instants t1 et t3.
  • Ainsi, si le compteur de variation CV est nul, cela signifie qu'aucun train n'est entré sur la zone depuis l'instant t1 où le contrôleur de zone à requis la réinitialisation. La réinitialisation est ainsi validée par l'équipement de détection 30. La zone est donc dans l'état libre à l'instant t4, en cohérence avec la valeur courante le compteur d'essieux C réinitialisé.
  • A l'étape 180 (figure 4), l'équipement de détection 30 émet alors un message de validation M2 indiquant que la réinitialisation s'est effectuée avec succès et que la zone est dans le second état « libre ».
  • A l'étape 190, suite à la réception du message M2, le calculateur d'enclenchement 40 émet un message M3 relayant l'information selon laquelle le second état de la zone 14B est « libre », vers le contrôleur de zone 50.
  • A l'étape 200, le contrôleur de zone 50 compare le premier état E1 de la zone 14B avec le second état E2 de la zone 14B. Ces deux états sont maintenant en cohérence l'un avec l'autre. La réinitialisation a réussi. Il est important de noter que, d'un point de vue opérationnel, l'équipement de détection n'est jamais passé dans le mode « hors service ». Autrement dit, le procédé de réinitialisation a été totalement transparent pour l'opérateur et n'a aucunement perturber la marche nominale du système dans son ensemble.
  • En revanche, dans le cas où le compteur de variation CV n'est pas nul, cela signifie qu'un train est entré sur la zone 14B depuis l'instant t1 où le contrôleur de zone 50 a requis la réinitialisation, la durée D étant dimensionnée de façon à couvrir les temps de transmission entre les différents sous-systèmes.
  • Dans ce cas, à l'étape 180 (figure 5), la réinitialisation n'est pas validée par l'équipement de détection 30 et la zone reste donc l'état « occupé » à l'instant courant.
  • L'équipement de détection 30 émet alors un message de réinitialisation échouée M4 indiquant que la réinitialisation ne s'est pas effectuée et que la zone 14B est toujours occupée.
  • A son tour, à l'étape 290, le calculateur d'enclenchement 40 transmet au contrôleur de zone 50 un message M5 indiquant que la zone 14B est toujours occupée.
  • A l'étape 300, le contrôleur de zone 50 constate qu'au moins une tentative de réinitialisation a déjà été effectuée sans succès. A ce moment, il place l'équipement de détection 30 en mode « hors service » et transmet, à l'étape 310, un message d'alarme MA au système ATS.
  • A l'étape 320, lors de la réception du message d'alarme MA, le système ATS affiche sur l'un des écrans du central de contrôle une alarme.
  • Un opérateur valide la réinitialisation du compteur d'état de l'équipement de détection 30, en effectuant un geste de validation, comme appuyer sur un bouton spécifique ou, dans le cas d'un écran tactile, sur une zone de l'écran associée à l'alarme affichée. Ceci a pour effet l'émission, à l'étape 330, d'une autorisation en initialisation MAI par le système de supervision à destination du contrôleur de zone 50.
  • Cette validation par un opérateur peut impliquer différentes sources d'informations permettant à l'opérateur de s'assurer que la zone 14B est effectivement libre.
  • Le contrôleur de zone 50 reçoit l'autorisation MAI et, dès que le système primaire de détection permet au contrôleur de zone 30 de conclure que la zone 14B est libre, les différentes étapes 140 à 180, puis 190 et 200 sont alors réitérées.
  • Une fois le compteur d'essieux réinitialisé, l'équipement de détection 30 indique que le second état E2 de la zone est « libre », en cohérence avec le premier état E1 de cette même zone. Constatant cette cohérence, le contrôleur de zone 50 replace l'équipement de détection 30 dans le mode « en service » (étape 410) et transmet un message adapté à l'ATS permettant à celui-ci d'arrêter l'alarme affichée sur l'écran de l'opérateur (étape 420).
  • Sur le chronogramme de la figure 6, les trois premiers graphes représentent : à l'instant t1, le contrôleur de zone 50, sachant d'après le système primaire que la zone 14B est libre émet une requête en réinitialisation ; à l'instant t2, l'équipement de détection 30 reçoit la commande de réinitialisation correspondante ; et à l'instant t3, le compteur d'essieux est réinitialisé à la valeur nulle.
  • Les deux graphes suivants représentent le cas de la figure 4. Puisque dans la fenêtre glissante D, entre t3-D et t3, le compteur de variation CV est resté nul, aucun essieu d'un train entrant ou sortant de la zone 14B n'ayant été détecté, la zone 14B est effectivement libre.
  • A l'instant t4, l'équipement de détection émet alors un message M2 de réinitialisation réussi, c'est-à-dire un message de validation prenant la valeur unité. La zone va donc repasser à l'état « libre »
  • Les deux derniers graphes de la figure 6 représentent le cas de la figure 5. Puisque dans la fenêtre glissante D, entre t3-D et t3, le compteur de variation CV a pris la valeur unité, un essieu d'un train entrant ou sortant de la zone 14B ayant été détecté, la réinitialisation n'est pas validée et la zone reste occupée.
  • A l'instant t4, l'équipement de détection émet un message M4 de réinitialisation échouée, c'est-à-dire un message de validation prenant la valeur nulle. Il est à noter qu'à cet instant l'équipement de détection 30 remet à zéro le compteur CV.
  • En variante, lors de la réception de la commande de réinitialisation, l'équipement de détection est propre à vérifier une première fois la valeur courante du compteur de variation CV.
  • Si celle-ci est nulle, l'équipement de détection passe à l'étape 170 de réinitialisation et, à l'issue de la réinitialisaiton, vérifie une seconde fois la valeur du compteur de variation CV comme décrit ci-dessus en référence à l'étape 180.
  • Au contraire, si celle-ci est différente de zéro, l'équipement de détection passe directement à l'étape 180 et émet un message M4 de réinitialisation échouée.
  • Le procédé présente un certain nombre d'avantages par rapport à l'état de la technique.
  • Il permet en particulier la réinitialisation dans les cas d'exploitation suivants, représentés sur les figures 7 à 9.
  • Sur la figure 7, un train non équipé d'un calculateur de bord circule sur le réseau. Il est à l'arrêt sur une zone appartenant au volume d'approche de la zone hors service. Cette situation ne peut être traitée par l'état de la technique, puisque le train se trouve dans le volume d'approche de la zone hors service. Avec le procédé décrit ci-dessus, la zone est remise en service, puisqu'il est détecté qu'aucun train n'est entré sur la zone entre les instants d'émission de la requête en réinitialisation et la fin de la réinitialisation.
  • Sur la figure 8, un train équipé d'un calculateur de bord circule sur le réseau. Il est à l'arrêt devant un signal restrictif sur une zone appartenant au volume d'approche de la zone hors service. Cette situation ne peut être traitée par l'état de la technique, puisque le train se trouve dans le volume d'approche de la zone hors service. Avec le procédé décrit ci-dessus, la zone est remise en service, puisqu'il est détecté qu'aucun train n'est entré sur la zone entre les instants d'émission de la requête en réinitialisation et la fin de la réinitialisation.
  • Sur la figure 9, un train équipé d'un calculateur de bord circule sur le réseau ferroviaire. Il est en mouvement sur une zone du volume d'approche de la zone hors service, mais en aval de celle-ci. Cette situation ne peut être traitée par l'état de la technique, puisque le train se trouve dans le volume d'approche de la zone hors service. Avec le procédé décrit ci-dessus, la zone est remise en service, puisqu'il est détecté qu'aucun train n'est entré sur la zone entre les instants d'émission de la requête en réinitialisation et la fin de la réinitialisation.
  • Ce procédé de réinitialisation est plus simple que les procédés connues et ne conduit à la remontée d'une information vers le système ATS qu'en cas d'échec d'un nombre paramétrables (égal à un dans le mode de réalisation présenté ci-dessus en détail) de tentatives de réinitialisation initiées par le contrôleur de zone. Les premières tentatives de réinitialisation étant réalisées automatiquement, une réinitialisation est réalisée plus rapidement que par la mise en oeuvre des procédés de l'état de la technique. Mais surtout, le caractère automatique supprime les procédures opérationnelles à mettre en place pour les réinitialisations selon l'état de la technique.

Claims (6)

  1. Procédé de réinitialisation d'un équipement de détection (30) à la voie d'un système secondaire de détection de l'occupation d'une zone (14B) d'un réseau ferroviaire, d'une architecture CBTC, ladite architecture CBTC comportant par ailleurs un système primaire de détection de l'occupation de ladite zone, fondé sur une transmission par des calculateurs (26) embarqués à bords des trains (16) circulant sur le réseau de la position instantanée de chaque train, comportant les étapes de :
    - détection par l'équipement de détection (30) du système secondaire de détection des trains entrant et/ou sortant de la zone (14B) et émission périodique d'une seconde information d'occupation de la zone à destination d'un contrôleur de zone (50) ;
    - émission (140), par le contrôleur de zone (50), d'une requête en réinitialisation de l'équipement de détection suite à la réception d'une seconde information d'occupation de la zone par ledit équipement de détection indiquant que la zone (14B) est dans un second état (E2) « occupé », alors qu'une première information d'occupation de la zone par le système primaire de détection de l'occupation de la zone indique, au même instant, que la zone est dans un premier état (E1) « libre » ;
    - réception (160) de la requête en réinitialisation par l'équipement de détection (30) ; et,
    - réinitialisation (170) de l'équipement de détection,
    caractérisé en ce que, à l'issue de l'étape de réinitialisation de l'équipement de détection, l'équipement de détection vérifie (180) qu'aucun train n'a été détecté comme entrant et/ou sortant de la zone (14B) entre un instant (t1) d'émission par le contrôleur de zone de la requête en réinitialisation et un instant (t3) de fin de réinitialisation de l'équipement de détection ; et, dans l'affirmative, émet un message (M2) de réinitialisation réussie au contrôleur de zone (50), et, dans la négative, émet un message (M4) de réinitialisation échouée au contrôleur de zone.
  2. Procédé selon la revendication 1, caractérisé en ce que, suite à la réception d'une commande de réinitialisation, l'équipement de détection (30) vérifie qu'aucun train n'a été détecté comme entrant et/ou sortant de la zone entre l'instant (t1) d'émission par le contrôleur de zone de la requête en réinitialisation et l'instant (t2) de réception de la commande de réinitialisation; et, dans l'affirmative, l'équipement de détection exécute l'étape de réinitialisation (170) ; et, dans la négative, n'effectue pas l'étape de réinitialisation et émet un message (M4) de réinitialisation échouée au contrôleur de zone (50).
  3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que les communications montantes de l'équipement de détection (30) vers le contrôleur de zone (50) et descendantes du contrôleur de zone (50) vers l'équipement de détection (30) s'effectue par l'intermédiaire d'un calculateur d'enclenchement (40) jouant le rôle d'un relais de communication.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'équipement de détection (30) étant connecté à deux capteurs d'essieux (28A, 28B), respectivement un capteur d'entrée situé à une frontière d'entrée de la zone (14B) et un capteur de sortie situé à une frontière de sortie de la zone, la réinitialisation de l'équipement de détection (30) consiste à remettre à zéro un compteur d'essieux (C).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'équipement de détection (30) est propre à tenir à jour un compteur de variation (CV) du nombre d'essieux détecté sur la zone sur une fenêtre glissante dont une profondeur temporelle (D) par rapport à l'instant courant est supérieure à la durée séparant l'instant (t1) d'émission par le contrôleur de zone d'une requête en réinitialisation et l'instant (t3) de fin de l'étape de réinitialisation qui suit la réception de ladite requête en réinitialisation par l'équipement de détection.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, après un nombre prédéfini de tentatives de réinitialisation de l'équipement de détection (30) par le contrôleur de zone (50), lors de la réception d'un message (M4) de réinitialisation échouée, le contrôleur de zone (50) transmet un message d'alarme (MA), à un système ATC de l'architecture CBTC pour validation, par un opérateur, de la réinitialisation de l'équipement de détection.
EP15158359.8A 2014-03-19 2015-03-10 Procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection Active EP2921369B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1452293A FR3018759B1 (fr) 2014-03-19 2014-03-19 Procede de reinitialisation d'un equipement a la voie d'un systeme secondaire de detection

Publications (2)

Publication Number Publication Date
EP2921369A1 true EP2921369A1 (fr) 2015-09-23
EP2921369B1 EP2921369B1 (fr) 2017-05-10

Family

ID=50976866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15158359.8A Active EP2921369B1 (fr) 2014-03-19 2015-03-10 Procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection

Country Status (8)

Country Link
EP (1) EP2921369B1 (fr)
CN (1) CN104925089B (fr)
BR (1) BR102015006010B1 (fr)
CA (1) CA2885395C (fr)
ES (1) ES2629757T3 (fr)
FR (1) FR3018759B1 (fr)
HK (1) HK1209705A1 (fr)
SG (1) SG10201501982WA (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406503A1 (fr) * 2017-05-24 2018-11-28 ALSTOM Transport Technologies Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé
FR3075145A1 (fr) * 2017-12-20 2019-06-21 Alstom Transport Technologies Procede de localisation d'au moins un vehicule ferroviaire dans un reseau ferroviaire
CN114802359A (zh) * 2021-01-27 2022-07-29 株洲中车时代电气股份有限公司 一种机车自动对标停车方法、系统及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075742B1 (fr) * 2017-12-22 2020-01-10 Alstom Transport Technologies Procede de reinitialisation d'un controleur de zone et systeme associe de controle automatique des trains
CN112491685A (zh) * 2020-12-31 2021-03-12 郑州铁路职业技术学院 一种高可靠性的地铁信号传输保护方法
CN113954922B (zh) * 2021-10-15 2023-10-20 浙江众合科技股份有限公司 适用于全线无次级列车占用检测设备的列车出入段方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388480A1 (fr) * 2002-08-08 2004-02-11 Bombardier Transportation GmbH Système et méthode à recouvrement d'enregistrement des trains
DE102004038205A1 (de) * 2004-08-05 2006-03-16 Deutsche Bahn Ag Verfahren und Anordnung zum Durchführen eines Fahrbetriebs von Schienenfahrzeugen
US20100299007A1 (en) * 2009-05-19 2010-11-25 Ghaly Nabil N Method & apparatus for hybrid train control device
WO2012174647A1 (fr) * 2011-06-24 2012-12-27 Thales Canada Inc. Localisation d'un point central de transpondeur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388480A1 (fr) * 2002-08-08 2004-02-11 Bombardier Transportation GmbH Système et méthode à recouvrement d'enregistrement des trains
DE102004038205A1 (de) * 2004-08-05 2006-03-16 Deutsche Bahn Ag Verfahren und Anordnung zum Durchführen eines Fahrbetriebs von Schienenfahrzeugen
US20100299007A1 (en) * 2009-05-19 2010-11-25 Ghaly Nabil N Method & apparatus for hybrid train control device
WO2012174647A1 (fr) * 2011-06-24 2012-12-27 Thales Canada Inc. Localisation d'un point central de transpondeur

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406503A1 (fr) * 2017-05-24 2018-11-28 ALSTOM Transport Technologies Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé
FR3066746A1 (fr) * 2017-05-24 2018-11-30 Alstom Transport Technologies Procede optimise de gestion de la circulation d'un train et systeme de signalisation cbtc associe
CN108928368A (zh) * 2017-05-24 2018-12-04 阿尔斯通运输科技公司 列车的优化的循环管理方法和相关联的cbtc信令系统
US10435053B2 (en) 2017-05-24 2019-10-08 Alstom Transport Technologies Optimized circulation management method of a train and associated CBTC signaling system
CN108928368B (zh) * 2017-05-24 2021-12-28 阿尔斯通运输科技公司 列车的优化的循环管理方法和相关联的cbtc信令系统
FR3075145A1 (fr) * 2017-12-20 2019-06-21 Alstom Transport Technologies Procede de localisation d'au moins un vehicule ferroviaire dans un reseau ferroviaire
CN114802359A (zh) * 2021-01-27 2022-07-29 株洲中车时代电气股份有限公司 一种机车自动对标停车方法、系统及装置
CN114802359B (zh) * 2021-01-27 2023-03-24 株洲中车时代电气股份有限公司 一种机车自动对标停车方法、系统及装置

Also Published As

Publication number Publication date
CA2885395A1 (fr) 2015-09-19
FR3018759A1 (fr) 2015-09-25
SG10201501982WA (en) 2015-10-29
CA2885395C (fr) 2022-08-23
CN104925089B (zh) 2018-11-27
BR102015006010B1 (pt) 2022-06-07
EP2921369B1 (fr) 2017-05-10
ES2629757T3 (es) 2017-08-14
BR102015006010A2 (pt) 2017-05-23
FR3018759B1 (fr) 2016-04-29
CN104925089A (zh) 2015-09-23
HK1209705A1 (en) 2016-04-08

Similar Documents

Publication Publication Date Title
EP2921369B1 (fr) Procédé de réinitialisation d'un équipement à la voie d'un système secondaire de détection
CA3002937A1 (fr) Systeme ameliore de controle automatique des trains et procede associe
EP3406503B1 (fr) Procédé optimisé de gestion de la circulation d'un train et système de signalisation cbtc associé
EP2550191B1 (fr) Méthode et système de gestion d'évènements particuliers liés au déplacement d'un véhicule guidé
FR3075742A1 (fr) Procede de reinitialisation d'un controleur de zone et systeme associe de controle automatique des trains
EP2923915A1 (fr) Équipement pour un système secondaire de détection à la voie et système de signalisation intégrant un tel équipement
EP2891590B1 (fr) Véhicule terrestre guidé comprenant un dispositif de gestion d'un déraillement du véhicule , et procédé de gestion du déraillement associé
FR3048942A1 (fr) Procede de gestion automatique du fonctionnement d'une ligne en cas de panne du systeme de supervision
EP3225500B1 (fr) Installation de controle du trafic sur un reseau ferroviaire et encodeur radio associe
CN109715472B (zh) 用于轨道占用确定的系统和方法
EP3216673B1 (fr) Ensemble ferroviaire comprenant un système d'enclenchement simplifié pour une section d'aiguillage
FR3070661A1 (fr) Procede de controle de la circulation de vehicules dans un reseau
JP2013091409A (ja) 無線列車信号システム
CA2913997C (fr) Procede de discrimination de la presence d'un vehicule ferroviaire sur un canton, procede de calcul d'un intervalle de securite et dispositif associe
JP6006753B2 (ja) 踏切保安システム、中央装置及び踏切制御装置
WO2008131569A1 (fr) Dispositif de controle et de commande de la signalisation routiere et ferroviaire
JP4664009B2 (ja) 線区集中電子連動装置
JP6412375B2 (ja) 電子連動装置及び情報伝送方法
EP3281834B1 (fr) Véhicule ferroviaire avec inhibition de libération des portes d'extrémité
EP3536579A1 (fr) Procédé de contrôle de véhicules ferroviaires, dispositif et système associés
EP3403898A1 (fr) Procédé de transmission d'informations de pilotage à un véhicule ferroviaire système d'enclenchement et installation ferroviaire associés
JPWO2018163509A1 (ja) 信号保安システム、地上管理装置、車上無線装置、及び、列車制御方法
EP3378725A1 (fr) Dispositif de sécurité pour un véhicule ferroviaire, véhicule ferroviaire, procédé de mise en sécurité d'un tel véhicule ferroviaire, et programme d'ordinateur associé
EP2105900A2 (fr) Procédé et dispositif de gestion d'une flotte de véhicules.
JP5373935B2 (ja) 送受信器及び車上装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1209705

Country of ref document: HK

17P Request for examination filed

Effective date: 20160323

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 1/16 20060101ALI20160428BHEP

Ipc: B61L 27/00 20060101AFI20160428BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160606

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TRANSPORT TECHNOLOGIES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 891994

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015002581

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2629757

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 891994

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015002581

Country of ref document: DE

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1209705

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150310

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 10

Ref country code: GB

Payment date: 20240320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240301

Year of fee payment: 10

Ref country code: SE

Payment date: 20240320

Year of fee payment: 10

Ref country code: IT

Payment date: 20240329

Year of fee payment: 10

Ref country code: FR

Payment date: 20240328

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240426

Year of fee payment: 10