EP2918315A1 - Darts game device - Google Patents

Darts game device Download PDF

Info

Publication number
EP2918315A1
EP2918315A1 EP13853304.7A EP13853304A EP2918315A1 EP 2918315 A1 EP2918315 A1 EP 2918315A1 EP 13853304 A EP13853304 A EP 13853304A EP 2918315 A1 EP2918315 A1 EP 2918315A1
Authority
EP
European Patent Office
Prior art keywords
image
main body
target
darts game
game apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13853304.7A
Other languages
German (de)
French (fr)
Other versions
EP2918315A4 (en
Inventor
Tsutomu NARITA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sega Corp
Dartslive Co Ltd
Original Assignee
Dartslive Co Ltd
Sega Games Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dartslive Co Ltd, Sega Games Co Ltd filed Critical Dartslive Co Ltd
Publication of EP2918315A1 publication Critical patent/EP2918315A1/en
Publication of EP2918315A4 publication Critical patent/EP2918315A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J3/00Targets for arrows or darts, e.g. for sporting or amusement purposes
    • F41J3/02Indicators or score boards for arrow or dart games
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J3/00Targets for arrows or darts, e.g. for sporting or amusement purposes
    • F41J3/0009Dartboards
    • F41J3/0014Dartboard holders
    • F41J3/0028Dart cabinets, i.e. cabinets adapted for the dartboard or dartboard accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J3/00Targets for arrows or darts, e.g. for sporting or amusement purposes
    • F41J3/0009Dartboards
    • F41J3/0033Dartboards for use with safety darts
    • F41J3/0042Dartboards for use with safety darts having perforations for receiving blunt tip darts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J3/00Targets for arrows or darts, e.g. for sporting or amusement purposes
    • F41J3/0009Dartboards
    • F41J3/0061Target faces
    • F41J3/0071Non-conventional target faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/04Electric hit-indicating systems; Detecting hits by actuation of electric contacts or switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J9/00Moving targets, i.e. moving when fired at
    • F41J9/14Cinematographic targets, e.g. moving-picture targets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/10Cinematographic hit-indicating systems

Definitions

  • the present invention is directed to a darts game apparatus.
  • a darts game apparatus so called as a soft dart is well known, in which a dart having a tip of plastic or the like at the leading edge is thrown to a target which is formed with a plurality of holes (pits) made of a resin material such as plastic, and skills are competed by gain points set at respective target portions to which the thrown dart hits.
  • the darts game apparatus to provide a situation where players (or competitors) of a darts game can be more enthused about the darts game by displaying a gain point corresponding to the result of throwing the dart, and displaying performance when the gain point exceeds a fixed point.
  • a darts game apparatus corresponding the above situation is an invention described in the patent document 1, which the present applicant has previously proposed.
  • a target is provided on the front surface of a game housing, and a display unit is provided at an upper portion of the target to display performance when gain points become more than a fixed point.
  • displaying of performance is similarly performed on a display unit at the upper portion of the game housing as previously proposed by the applicant, and a dart target board face is divided into a plurality of target segments, each of which is illuminated with different modes so that performance effects are raised.
  • the shape of a target is formed as being divided by a plurality of concentric circles and dividing lines so that a plurality of segments are defined.
  • the present applicant further had proposed the configuration such that an image of a dart target is displayed on an image display device, and a transparent panel body, which can hold a tip is provided in front of the display surface of the image display device. (See patent document 3) By this configuration, various modes of the target are obtained according to changes of images displayed on the image display device.
  • Patent Documents
  • performance is displayed within the size of a target board face, and the performance is inevitably limited, even if the configuration is such that the target board face is illuminated or a target image is displayed on the image display device, according to the patent documents 2, 3.
  • a darts game apparatus including: a main body; a holding member positioned on at least a partial region of the surface of the main body and configured to retain the leading end of a dart which has hit a target; an image degeneration unit configured to generate image data, which is displayed in at least the partial region of the surface of the main body; and a projection device configured to project the image corresponding to the generated image data in at least the partial region of the surface of the main body.
  • the projection device projects the image corresponding to the generated image data on the surface of the main body as covering at least a portion of the holding member.
  • the projection device includes a plurality of projectors, which project the image corresponding to the image data from respectively different directions.
  • the image data generated by the image generation unit includes at least an image of a dart, and the plurality of projectors are provided at both of upper and lower portions of the main body, and intensity of light projected respectively from the plurality of projectors becomes equal at least at the position of displaying the image of the dart.
  • the darts game apparatus further includes a sensor unit provided on at least a portion of the surface of the main body, wherein a position at which the sensor is provided is displayed by the image projected by the projection device.
  • Fig. 1 is a schematic diagram indicating an outer shape of an embodiment of the darts game apparatus.
  • (1) is a front view of the darts game apparatus, and (2) is a side view of the darts game apparatus.
  • the darts game apparatus comprises a tabular main body 1 of an apparatus housing, and at least one projector, which projects an image on the surface of the main body1.
  • projectors 2, 3 are provided on both upper and lower portions of the main body 1, but it may be possible to include at least one projector.
  • Fig. 2 is an example of a performance image projected on the surface of the main body 1 by the projector 2, 3.
  • Fig. 2 (1) is an example of that the darts game apparatus displays an advertising screen.
  • An advertising image is projected on the surface of the main body 1 from the projectors 2, 3.
  • a video indicating results in past darts games is displayed in the areas 4, 5 of the projected image, or performance images telling attraction of the darts game are displayed to attract players during the darts game being not performed.
  • a projection image 6 is displayed to indicate an area position for detecting data of a card held up, so that game fees are received by a card settlement.
  • the card is held up on the projected image 6, which indicates the detection position of the card data, as indicated in Fig. 2 (1), and player's data (data recorded on a credit card or member's card and the like) are read.
  • Fig. 2 (2) is an example of a projection image when the player's data are read and the darts game is moved to a start mode.
  • a target image 7 for darts, a score board 8 and a plurality of selection button (touch sensor) positions 9 are displayed.
  • Fig. 2 (3) is an example displaying a performance image, when a predetermined score is achieved during the darts game.
  • the target image 7 performs the performance, which celebrates the score achievement by varying display of a plurality of colors.
  • a score of competition results or other messages are displayed on the score board 8.
  • Performance messages are also displayed by an image 10.
  • target image 7 is not limited as a round shape which used to be standard in conventional darts game apparatuses, but is possible to be freely modified such as a square shape or the like.
  • displaying images projected by the above projectors 2, 3 are performed by employing a projection mapping, which is a well-known technique.
  • the projection mapping is a technology such that unevenness of a building or the like is converted to three dimensional digitized data in advance, and a three dimensional video is projected on the building by a projector. Hence, even the surface of the main body 1 has unevenness, projection is possible in consideration of the unevenness.
  • Fig. 3 is a diagram explaining the structure of the main body 1, which is a housing of the darts game apparatus.
  • FIG. 3 (1a) and (1b) are diagrams showing the outline of front and side sectional views of the first embodiment of the main body 1.
  • Fig. 3 (2a) and (2b) are diagrams showing the outline of front and side sectional views of the second embodiment of the main body 1.
  • a target unit 20 has a front surface, which can hold tips of darts, and a rear side, on which sensors are provided to detect hit darts.
  • the target unit 20 has a size as positioned about the center area of the main body 1, while in the case of Fig. 3 (2a), (2b), the target unit 20 has a size as same as the entire of the front surface of the main body 1.
  • a front surface color of the target unit 20 is desired as mono-chromatic color such as light-colored, not affecting on the projected image.
  • FIG. 4 A structural example of the target unit 20 is depicted in Fig. 4 .
  • the structural example is shown in the case of Fig. 3 (1a), (1b), but is the same even in the case of Fig. 3 (2a), (2b).
  • the target unit 20 comprises a plurality of target segments 21 of the same shape as indicated in Fig. 4 (1).
  • Each of the plurality of target segments 21 comprises a plurality of receiving holes 22, which receive and hold tips of darts as shown in Fig. 4 (2).
  • the target unit 20 is replaceable for each target segment 21.
  • the receiving hole 22 is easy to be deformed and degraded due to plural time collisions by tips of darts, and thus it is important that the target unit 20 is replaceable for each target segment 21.
  • the target unit 20 is configured by a plurality of same shape target segments 21, so that easiness of replacement of the target segment 21 is improved, and loads of an administrator for a darts game apparatus can be reduced, compared with the case of using target segments having different shapes.
  • Fig. 5 is a diagram explaining a receiving hole 22 of the target segment 21, and the explanation will be made by indicating the sectional view of one target segment 21, as easily understood.
  • Fig. 5 (1) indicates the state immediately before the dart hits the target segment 21, and Fig. 5 (2) indicates the state such that the dart 100 is stuck in the target segment 21, and due to the impact thereof, the target segment 21 is displaced toward the rear. Further, Fig. 5 (3) indicates the state such that the target segment 21 returns from the state of Fig. 5 (2) to the position shown in Fig. 5 (3), in the state of the dart 100 being stuck in the target segment 21.
  • an elastic body 21 b fixed to a projection 21 a at the rear side of the target segment 21 does not give any pushing force to a sensor sheet 21 c, when the dart 100 is not stuck, and thus, not shown membrane switch provided inside of the sensor sheet 21 c is kept off.
  • the dart tip is received in the receiving hole 22 of the target segment 21, when the dart 100 hits the target segment 21, and at the same time, the target segment 21 is displaced to the rear so that the elastic body 21 c strongly pushes the sensor sheet 21 c to turn on contacts of the membrane switch and output a hitting detection signal from the sensor sheet 21 c.
  • the segment 21 is returned to an original position by the elastic force of the elastic body 21 b, in the state such that the dart tip, which is the distal portion of the dart 100, is kept in the receiving hole 22, as shown in Fig. 5 (3).
  • a method for detecting the state of the dart hitting the target segment 21 is not limited to the way of employing the sensor sheet 21 c as indicated in Fig. 5 .
  • the hitting can be determined according to whether or not the tip of the dart 100 obstructs a light from a light emitting device by using light emitting and receiving devices, or a camera is provided which shoots the target segment 100, and a shot image is processed to determine the hitting.
  • the distant sensor includes a camera which shoots the target segment 21, a radiant section which radiates infrared rays, and a detection section which detects the infrared rays reflected from the target segment 21 and the dart 100.
  • a virtual three dimensional space is generated based on the captured image data from the camera and the reflected infrared rays detected by the detection section, and distant (depth) information (largeness of Z axis direction) is generated for each pixel of the virtual three dimensional space image in an image angle of view at each certain cycle (one frame).
  • the tip of the dart 100 by connecting coordinate points, sizes of which are small in the Z axis direction, when compared with the distance to the target segment 21. Accordingly, the point at which the largeness of the tip in Z axis direction is consistence with the target segment 21 is the leading end of the tip, and the point to which the dart 100 hits can be obtained from the coordinate of the leading end.
  • Fig. 6 is a diagram showing an embodiment of a control circuit, which controls the darts game apparatus as explained above.
  • This circuit is provided in the back side space of the main body 1 or in the spaces where the projector 2 is located at an upper position and the projector 3 is located at a lower position.
  • control block 200 is a circuit structure to control performance
  • control block 300 is a circuit structure to control sensors.
  • control block 200 includes projectors 2, 3 provided in the upper and lower portions of the main body 1.
  • the operation in the block 200 is performed by the CPU (1) 202, which executes a control program installed in the ROM 201.
  • the image data to be projected on the main body 1 as explained in Fig. 2 are written in the RAM 203.
  • the image data read out by the CPU (I) 202 from the RAM 203 according to the control program are converted and drawn as video data in the video RAM 204.
  • the video data drawn in the video RAM 204 are sequentially read out and projected by the projectors 2, 3.
  • Fig. 7 is a diagram explaining the distortion of projected image according to the shape of the projection plane.
  • the video on the projection plane is distorted as shown in Fig. 7 (2), when an image as shown in Fig. 7 (1) is projected on a spherical surface.
  • a distortion compensation process is performed which gives a reverse distortion corresponding to such the distortion on the projected image in advance.
  • Fig. 7 an image data is given with a pre-distortion reverse to the distortion of the video on the projected plane of Fig. 7 (2), as shown in Fig. 7 (3), and thereafter, is projected.
  • a video on the projection plane is given as less distorted video corresponding to Fig. 7 (1).
  • a projection image is generated by a projection mapping
  • a viewing point and a view screen are supposed, and points, which are lined with equal intervals on the view screen are defined as projection points viewed from the viewing point.
  • an intersecting point at which straight lines connecting the projection points and the viewing point intersects with a screen, that is, the front surface of the main body 1 is considered as projection points projected by the projectors 2, 3.
  • a projection image without distortion can be obtained by tracing from the viewing point and projecting the projection points by the projectors.
  • distortion compensation control circuits 205, 206 are provided correspondingly at the input sites of the projectors 2, 3.
  • viewing points are traced by the projection mapping technique so that the output image data are compensated as corresponding to determined points to be projected, and are input correspondingly to the projectors 2, 3.
  • projection areas by the projectors 2, 3 are not necessary to be fixed. Namely, a target image may be projected on either of areas of the main body 1, if the target unit 20 is provided on the whole surface of the main body 1 as shown in Fig. 3 (2a), (2b).
  • positons of the projected target image are biased to the upper portion or lower portion of the main body 1.
  • a distortion of a target image projected by one projector becomes larger than a distortion of the target image projected by the other projector.
  • CPU (I) 202 adaptively controls the amount of distortion compensation correspondingly to the image data in the distortion compensation control circuits 205, 206 corresponding to projectors 2, 3.
  • a shadow of the dart 100 is generated and is elongated in one direction, when the dart hits the target segment 21 and is held by the receiving hole 22, if the image is projected on the surface of the main body 1 from the same direction, even in the case of using one projector or a plurality of projectors is employed. That is, there is generated an area where a projected image cannot be displayed. Hence, a game is obstructed, so that a player lacks the ability to concentrate. Accordingly, it is preferable to provide respective projectors, as explained above.
  • projection lights from plural projectors are of almost same strength in respective opposed directions at the position of the target image to be projected.
  • the CPU (I) 202 controls distortion amounts as corresponding to positions of projected target images, and controls projection lights projected by the projector 2 and the projector 3 to be the same strength at target image positions.
  • a card sensor 301, a touch sensor 302, and a sensor sheet 303 are provided as various sensors.
  • the card sensor 301 corresponding to cards such as a magnetic sensor or an RFID sensor is embedded on the surface panel of the main body1 correspondingly to a position indicated by the projection image 6, shown in Fig. 2 (1).
  • the touch sensor 302 is formed on the surface panel of the main body 1 correspondingly to the selection button position 9 indicated by the projection image 6, shown in Fig. 2 (2).
  • the sensor sheet 303 corresponds to the sensor sheet 21 c previously explained in Fig. 5 .
  • sensor outputs obtained by the card sensor 301, the touch sensor 302 and the sensor sheet 303 are input to I/O control board 304.
  • a CPU (II) 305 provided in the control block 300 processes sensor outputs, which are input to the I/O control board 304, according to a control program stored in the ROM 306.
  • the card sensor 301 recognizes a card held by a player in the state of projecting images in Fig. 2 (1), and the CPU (II) 305 controls a CPU (I) 202 to generate and project a start image ( Fig. 2 (2)) of the darts game.
  • the CPU (II) 305 When the touch sensor 302 detects that either touch sensor is touched, the CPU (II) 305 notifies the CPU (I) 202 to generate and project a corresponding production image.
  • the CPU (II) 305 detects the output of the sensor sheet 303, the CPU (II) 305 records, accumulates, and notifies the result thereof to the CPU (II) 305 to generate and project a corresponding production image.
  • the senor which detects a position of a hit dart is explained as present in the main body 1, but the present invention is not restricted to this.
  • the structure of the darts game apparatus is explained as a single device in Fig. 6 , but is not limited this. There is a case wherein skills are competed between plural darts game players.
  • Fig. 8 depicts a conceptual diagram of a darts game apparatus, which is comprised of a plurality of game terminals T1-Tn, having the same configuration as the darts game apparatus as explained in Fig. 6 , and being connected to a server SV through a network NW such as an internet or LAN.
  • NW such as an internet or LAN.
  • Each configuration of the plurality of darts game terminals T1-Tn is basically the same as that explained in Fig. 6 .
  • Each of the darts game terminals T1-Tn is connected to the network NW via the NW port 308.
  • the plurality of darts game terminals T1-Tn are not controlled to execute by respective CPUs, but the server SV collectively controls game progresses in the plurality of darts game terminals T1-Tn.
  • an effect display for a total system is controlled by the server SV as shown in Fig. 9 .
  • all surfaces of the plurality of darts game terminals T1-Tn are supposed as one display area to produce a display of a large image 500.
  • the server SV sends each of corresponding part images to the respective darts game terminals T1-Tn, which respectively display a part of the large image 500.
  • Each of the darts game terminals T1-Tn synchronizes with clocks controlled by the server SV to project image data sent from the server SV by the projectors 2, 3 as explained in Fig. 6 , so that a production image generated as a total system is displayed as shown in Fig. 9 .
  • a large performance display can be possible without enlarging the housing of the darts game apparatus, by entire of the main body 1 of the darts game apparatus being functioned as a display.
  • an effective display was restricted only in a particular portion (for example, upper portion of the housing) in conventional apparatuses, but an entire surface of the housing can be used, so that it is possible to enhance the freedom of effective production by the apparatus according to the present invention.
  • the target of the darts game apparatus it is not necessary to limit the target of the darts game apparatus to a specific portion, and the shape of the target can be made without limiting to a round shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

Provided is a darts game apparatus whereby, without making the housing of a darts game apparatus large, it is possible to display special effects with the entire device. The darts game apparatus comprises: a main body; a holding member positioned on at least a partial region of the surface of the main body and configured to retain the leading end of a dart which has hit a target; an image degeneration unit configured to generate image data, which is displayed in at least the partial region of the surface of the main body; and a projection device configured to project the image corresponding to the generated image data in at least the partial region of the surface of the main body.

Description

    FIELD
  • The present invention is directed to a darts game apparatus.
  • BACKGROUND
  • A darts game apparatus so called as a soft dart is well known, in which a dart having a tip of plastic or the like at the leading edge is thrown to a target which is formed with a plurality of holes (pits) made of a resin material such as plastic, and skills are competed by gain points set at respective target portions to which the thrown dart hits.
  • Here, it is significant for the darts game apparatus to provide a situation where players (or competitors) of a darts game can be more enthused about the darts game by displaying a gain point corresponding to the result of throwing the dart, and displaying performance when the gain point exceeds a fixed point.
  • A darts game apparatus corresponding the above situation is an invention described in the patent document 1, which the present applicant has previously proposed. In the game apparatus described in the patent document 1, a target is provided on the front surface of a game housing, and a display unit is provided at an upper portion of the target to display performance when gain points become more than a fixed point.
  • Further, as another technique, displaying of performance is similarly performed on a display unit at the upper portion of the game housing as previously proposed by the applicant, and a dart target board face is divided into a plurality of target segments, each of which is illuminated with different modes so that performance effects are raised. (See patent document 2)
  • Furthermore, in conventional darts game apparatuses, the shape of a target is formed as being divided by a plurality of concentric circles and dividing lines so that a plurality of segments are defined.
  • Therefore, the present applicant further had proposed the configuration such that an image of a dart target is displayed on an image display device, and a transparent panel body, which can hold a tip is provided in front of the display surface of the image display device. (See patent document 3) By this configuration, various modes of the target are obtained according to changes of images displayed on the image display device.
  • Prior Arts Patent Documents:
    • Patent document 1: Japanese patent No. 4,674,605
    • Patent document 2: Japanese Laid-Open Patent Publication No. 2009-133604
    • Patent document 3: Japanese patent No. 4,682,986
    SUMMARY Purposes of the invention
  • In the above conventional techniques, the position of a target is fixed, and the display unit, which displays performance is positioned at the upper portion of the target. Hence, it will be inconvenient such that a total size of the darts game apparatus becomes large, if a display size for displaying the performance is enlarged. Because of this, it is also necessary to enlarge a space for installation of the darts game apparatus.
  • Further, performance is displayed within the size of a target board face, and the performance is inevitably limited, even if the configuration is such that the target board face is illuminated or a target image is displayed on the image display device, according to the patent documents 2, 3.
  • Accordingly, it is an object of the invention to provide a darts game apparatus, which enables to display performance in a total of the darts game apparatus without enlarging a housing of the darts game apparatus.
  • Means for solving the purposes
  • According to the invention to solve the above purpose, as a first aspect, a darts game apparatus including: a main body; a holding member positioned on at least a partial region of the surface of the main body and configured to retain the leading end of a dart which has hit a target; an image degeneration unit configured to generate image data, which is displayed in at least the partial region of the surface of the main body; and a projection device configured to project the image corresponding to the generated image data in at least the partial region of the surface of the main body.
  • As one aspect of the invention to solve the above purpose, the projection device projects the image corresponding to the generated image data on the surface of the main body as covering at least a portion of the holding member.
  • As one aspect of the invention to solve the above purpose, the projection device includes a plurality of projectors, which project the image corresponding to the image data from respectively different directions.
  • As one aspect of the invention to solve the above purpose, the image data generated by the image generation unit includes at least an image of a dart, and the plurality of projectors are provided at both of upper and lower portions of the main body, and intensity of light projected respectively from the plurality of projectors becomes equal at least at the position of displaying the image of the dart.
  • As one aspect of the invention to solve the above purpose, the darts game apparatus further includes a sensor unit provided on at least a portion of the surface of the main body, wherein a position at which the sensor is provided is displayed by the image projected by the projection device.
  • As one aspect of the invention to solve the above purpose, the holding member, which retains the leading end of a dart which has hit a target comprises a plurality of target segments, and each of the plurality of target segments forms a same shape, which includes a plurality of reception holes to retain dart tip, and is replaceable.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 is a conceptual diagram indicating a front view of a darts game apparatus.
    • Fig. 2 is a diagram indicating an example of that the darts game apparatus displays an advertising screen.
    • Fig. 3 is a diagram indicating a diagram showing the structure of a main body.
    • Fig. 4 is a diagram indicating an example of a target unit.
    • Fig. 5 is a diagram indicating an example of a receiving hole in a target segment.
    • Fig. 6 is a diagram indicating a diagram showing an embodiment of a control circuit, which controls the darts game apparatus.
    • Fig. 7 is a diagram explaining distortion of a projection image depending on the shape of a projection plane.
    • Fig. 8 is a conceptual diagram of a darts game apparatus configured by a plurality of darts game terminals.
    • Fig. 9 is a diagram indicating modes that displaying performance by a total system is controlled by a server SV in Fig. 8.
    DESCRI PTION OF EMBODIMENTS
  • The embodiments will be explained below according to drawings.
  • Fig. 1 is a schematic diagram indicating an outer shape of an embodiment of the darts game apparatus. In Fig. 1, (1) is a front view of the darts game apparatus, and (2) is a side view of the darts game apparatus.
  • The darts game apparatus comprises a tabular main body 1 of an apparatus housing, and at least one projector, which projects an image on the surface of the main body1. In the example indicated in Fig. 1, projectors 2, 3 are provided on both upper and lower portions of the main body 1, but it may be possible to include at least one projector.
  • It is possible to prevent a shadow of a dart, which hits a target and is retained from elongating in one direction by adjusting intensity of lights from the projectors 2,3, as explained in detailed later, by providing the projectors 2, 3 on the both of the upper and lower portions of the main body 1.
  • Fig. 2 is an example of a performance image projected on the surface of the main body 1 by the projector 2, 3.
  • Fig. 2 (1) is an example of that the darts game apparatus displays an advertising screen. An advertising image is projected on the surface of the main body 1 from the projectors 2, 3. As an example, a video indicating results in past darts games is displayed in the areas 4, 5 of the projected image, or performance images telling attraction of the darts game are displayed to attract players during the darts game being not performed.
  • Further, in Fig. 2 (2), when a darts game is started, a projection image 6 is displayed to indicate an area position for detecting data of a card held up, so that game fees are received by a card settlement.
  • The card is held up on the projected image 6, which indicates the detection position of the card data, as indicated in Fig. 2 (1), and player's data (data recorded on a credit card or member's card and the like) are read.
  • Fig. 2 (2) is an example of a projection image when the player's data are read and the darts game is moved to a start mode. A target image 7 for darts, a score board 8 and a plurality of selection button (touch sensor) positions 9 are displayed.
  • Further, Fig. 2 (3) is an example displaying a performance image, when a predetermined score is achieved during the darts game. The target image 7 performs the performance, which celebrates the score achievement by varying display of a plurality of colors. A score of competition results or other messages are displayed on the score board 8. Performance messages are also displayed by an image 10.
  • It should be noted that the target image 7 is not limited as a round shape which used to be standard in conventional darts game apparatuses, but is possible to be freely modified such as a square shape or the like.
  • Here, displaying images projected by the above projectors 2, 3 are performed by employing a projection mapping, which is a well-known technique.
  • The projection mapping is a technology such that unevenness of a building or the like is converted to three dimensional digitized data in advance, and a three dimensional video is projected on the building by a projector. Hence, even the surface of the main body 1 has unevenness, projection is possible in consideration of the unevenness.
  • Fig. 3 is a diagram explaining the structure of the main body 1, which is a housing of the darts game apparatus.
  • In Fig. 3, (1a) and (1b) are diagrams showing the outline of front and side sectional views of the first embodiment of the main body 1. In Fig. 3, (2a) and (2b) are diagrams showing the outline of front and side sectional views of the second embodiment of the main body 1.
  • In Fig. 3, a target unit 20 has a front surface, which can hold tips of darts, and a rear side, on which sensors are provided to detect hit darts. In the case of Fig. 3 (1a), (1b), the target unit 20 has a size as positioned about the center area of the main body 1, while in the case of Fig. 3 (2a), (2b), the target unit 20 has a size as same as the entire of the front surface of the main body 1.
  • It should be noted that a front surface color of the target unit 20 is desired as mono-chromatic color such as light-colored, not affecting on the projected image.
  • A structural example of the target unit 20 is depicted in Fig. 4. The structural example is shown in the case of Fig. 3 (1a), (1b), but is the same even in the case of Fig. 3 (2a), (2b).
  • The target unit 20 comprises a plurality of target segments 21 of the same shape as indicated in Fig. 4 (1). Each of the plurality of target segments 21 comprises a plurality of receiving holes 22, which receive and hold tips of darts as shown in Fig. 4 (2). The target unit 20 is replaceable for each target segment 21. The receiving hole 22 is easy to be deformed and degraded due to plural time collisions by tips of darts, and thus it is important that the target unit 20 is replaceable for each target segment 21. It should be noted that the target unit 20 is configured by a plurality of same shape target segments 21, so that easiness of replacement of the target segment 21 is improved, and loads of an administrator for a darts game apparatus can be reduced, compared with the case of using target segments having different shapes.
  • Fig. 5 is a diagram explaining a receiving hole 22 of the target segment 21, and the explanation will be made by indicating the sectional view of one target segment 21, as easily understood.
  • Fig. 5 (1) indicates the state immediately before the dart hits the target segment 21, and Fig. 5 (2) indicates the state such that the dart 100 is stuck in the target segment 21, and due to the impact thereof, the target segment 21 is displaced toward the rear. Further, Fig. 5 (3) indicates the state such that the target segment 21 returns from the state of Fig. 5 (2) to the position shown in Fig. 5 (3), in the state of the dart 100 being stuck in the target segment 21.
  • As shown in Fig. 5 (1), an elastic body 21 b fixed to a projection 21 a at the rear side of the target segment 21 does not give any pushing force to a sensor sheet 21 c, when the dart 100 is not stuck, and thus, not shown membrane switch provided inside of the sensor sheet 21 c is kept off.
  • Then, as shown in Fig. 5 (2), the dart tip is received in the receiving hole 22 of the target segment 21, when the dart 100 hits the target segment 21, and at the same time, the target segment 21 is displaced to the rear so that the elastic body 21 c strongly pushes the sensor sheet 21 c to turn on contacts of the membrane switch and output a hitting detection signal from the sensor sheet 21 c.
  • Moreover, the segment 21 is returned to an original position by the elastic force of the elastic body 21 b, in the state such that the dart tip, which is the distal portion of the dart 100, is kept in the receiving hole 22, as shown in Fig. 5 (3).
  • Here, a method for detecting the state of the dart hitting the target segment 21 is not limited to the way of employing the sensor sheet 21 c as indicated in Fig. 5. For example, the hitting can be determined according to whether or not the tip of the dart 100 obstructs a light from a light emitting device by using light emitting and receiving devices, or a camera is provided which shoots the target segment 100, and a shot image is processed to determine the hitting.
  • In addition, as another method, it is possible to use a distance sensor, which employs a technique similar to "Kinect" (registered trademark) equipment of Microsoft Corporation, U.S.A. Namely, the distant sensor includes a camera which shoots the target segment 21, a radiant section which radiates infrared rays, and a detection section which detects the infrared rays reflected from the target segment 21 and the dart 100.
  • A virtual three dimensional space is generated based on the captured image data from the camera and the reflected infrared rays detected by the detection section, and distant (depth) information (largeness of Z axis direction) is generated for each pixel of the virtual three dimensional space image in an image angle of view at each certain cycle (one frame).
  • As a result, it is possible to recognize the tip of the dart 100 by connecting coordinate points, sizes of which are small in the Z axis direction, when compared with the distance to the target segment 21. Accordingly, the point at which the largeness of the tip in Z axis direction is consistence with the target segment 21 is the leading end of the tip, and the point to which the dart 100 hits can be obtained from the coordinate of the leading end.
  • In this way, internal switches are unnecessary, when the sensor sheet 21 c shown in Fig. 5 is not used as a method to detect the state of hitting. Hence, freedom of performance is improved, and selection of the target segment 21 becomes free in largeness. Further, it is possible to simplify the structure of the apparatus. Hence, the cost for device components are also reduced.
  • Fig. 6 is a diagram showing an embodiment of a control circuit, which controls the darts game apparatus as explained above.
  • This circuit is provided in the back side space of the main body 1 or in the spaces where the projector 2 is located at an upper position and the projector 3 is located at a lower position.
  • In Fig. 6, the control block 200 is a circuit structure to control performance, and the control block 300 is a circuit structure to control sensors.
  • In Fig. 6 the control block 200 includes projectors 2, 3 provided in the upper and lower portions of the main body 1.
  • The operation in the block 200 is performed by the CPU (1) 202, which executes a control program installed in the ROM 201. The image data to be projected on the main body 1 as explained in Fig. 2 are written in the RAM 203.
  • The image data read out by the CPU (I) 202 from the RAM 203 according to the control program are converted and drawn as video data in the video RAM 204. The video data drawn in the video RAM 204 are sequentially read out and projected by the projectors 2, 3.
  • Here, it is well known that a projected image is distorted when projected by the projectors 2, 3, according to shapes of projection plane.
  • Fig. 7 is a diagram explaining the distortion of projected image according to the shape of the projection plane.
  • For example, the video on the projection plane is distorted as shown in Fig. 7 (2), when an image as shown in Fig. 7 (1) is projected on a spherical surface. Thus, it is possible to make the distortion of the video on the projected plane small, when a distortion compensation process is performed which gives a reverse distortion corresponding to such the distortion on the projected image in advance. Namely, in Fig. 7, an image data is given with a pre-distortion reverse to the distortion of the video on the projected plane of Fig. 7 (2), as shown in Fig. 7 (3), and thereafter, is projected. Hence, a video on the projection plane is given as less distorted video corresponding to Fig. 7 (1).
  • In fact, when a projection image is generated by a projection mapping, a viewing point and a view screen are supposed, and points, which are lined with equal intervals on the view screen are defined as projection points viewed from the viewing point. Then, an intersecting point at which straight lines connecting the projection points and the viewing point intersects with a screen, that is, the front surface of the main body 1 is considered as projection points projected by the projectors 2, 3. In this way, a projection image without distortion can be obtained by tracing from the viewing point and projecting the projection points by the projectors.
  • Accordingly, as returning to Fig. 6, distortion compensation control circuits 205, 206 are provided correspondingly at the input sites of the projectors 2, 3. In the distortion compensation control circuits 205, 206, viewing points are traced by the projection mapping technique so that the output image data are compensated as corresponding to determined points to be projected, and are input correspondingly to the projectors 2, 3.
  • Here, projection areas by the projectors 2, 3 are not necessary to be fixed. Namely, a target image may be projected on either of areas of the main body 1, if the target unit 20 is provided on the whole surface of the main body 1 as shown in Fig. 3 (2a), (2b).
  • Namely, it is considered as one production effect that a target image is shifted in a timely fashion, and displayed on different positions of the main body 1.
  • Hence, in some cases, positons of the projected target image are biased to the upper portion or lower portion of the main body 1. In these cases, a distortion of a target image projected by one projector becomes larger than a distortion of the target image projected by the other projector.
  • To avoid this inconvenience, in Fig. 6, CPU (I) 202 adaptively controls the amount of distortion compensation correspondingly to the image data in the distortion compensation control circuits 205, 206 corresponding to projectors 2, 3.
  • Now, in the case that a plurality of projectors are used as the present embodiment, it is preferable to provide respective projectors, which respectively project images on the surface of the main body 1 from different directions. Namely, a shadow of the dart 100 is generated and is elongated in one direction, when the dart hits the target segment 21 and is held by the receiving hole 22, if the image is projected on the surface of the main body 1 from the same direction, even in the case of using one projector or a plurality of projectors is employed. That is, there is generated an area where a projected image cannot be displayed. Hence, a game is obstructed, so that a player lacks the ability to concentrate. Accordingly, it is preferable to provide respective projectors, as explained above.
  • Further, in order to make a shadow hardly be generated, it is preferable that projection lights from plural projectors are of almost same strength in respective opposed directions at the position of the target image to be projected.
  • Accordingly, the CPU (I) 202 controls distortion amounts as corresponding to positions of projected target images, and controls projection lights projected by the projector 2 and the projector 3 to be the same strength at target image positions.
  • Next, the control block 300, which controls sensors will be explained in Fig. 6. A card sensor 301, a touch sensor 302, and a sensor sheet 303 are provided as various sensors.
  • The card sensor 301 corresponding to cards such as a magnetic sensor or an RFID sensor is embedded on the surface panel of the main body1 correspondingly to a position indicated by the projection image 6, shown in Fig. 2 (1).
  • Similarly, the touch sensor 302 is formed on the surface panel of the main body 1 correspondingly to the selection button position 9 indicated by the projection image 6, shown in Fig. 2 (2).
  • The sensor sheet 303 corresponds to the sensor sheet 21 c previously explained in Fig. 5.
  • Returning to Fig. 6, sensor outputs obtained by the card sensor 301, the touch sensor 302 and the sensor sheet 303 are input to I/O control board 304.
  • A CPU (II) 305 provided in the control block 300 processes sensor outputs, which are input to the I/O control board 304, according to a control program stored in the ROM 306.
  • Namely, the card sensor 301 recognizes a card held by a player in the state of projecting images in Fig. 2 (1), and the CPU (II) 305 controls a CPU (I) 202 to generate and project a start image (Fig. 2 (2)) of the darts game.
  • When the touch sensor 302 detects that either touch sensor is touched, the CPU (II) 305 notifies the CPU (I) 202 to generate and project a corresponding production image.
  • Further, when the CPU (II) 305 detects the output of the sensor sheet 303, the CPU (II) 305 records, accumulates, and notifies the result thereof to the CPU (II) 305 to generate and project a corresponding production image.
  • In the above explanation, the sensor, which detects a position of a hit dart is explained as present in the main body 1, but the present invention is not restricted to this. For example, it is possible to project the projection light from the projector as sequentially scanned on the surface of the main body 1, and a sensor, which detects a reflection light corresponding to the projection light is provided at the projector, side.
  • Namely, it is possible to detect whether or not a dart is present according to the strength of a reflection light to the projection light.
  • Now, the structure of the darts game apparatus is explained as a single device in Fig. 6, but is not limited this. There is a case wherein skills are competed between plural darts game players.
  • Fig. 8 depicts a conceptual diagram of a darts game apparatus, which is comprised of a plurality of game terminals T1-Tn, having the same configuration as the darts game apparatus as explained in Fig. 6, and being connected to a server SV through a network NW such as an internet or LAN.
  • Each configuration of the plurality of darts game terminals T1-Tn is basically the same as that explained in Fig. 6. Each of the darts game terminals T1-Tn is connected to the network NW via the NW port 308.
  • In the case of such the configuration, it is possible that the plurality of darts game terminals T1-Tn are not controlled to execute by respective CPUs, but the server SV collectively controls game progresses in the plurality of darts game terminals T1-Tn.
  • Further, an effect display for a total system is controlled by the server SV as shown in Fig. 9. For example, in Fig. 9, all surfaces of the plurality of darts game terminals T1-Tn are supposed as one display area to produce a display of a large image 500. In this case, the server SV sends each of corresponding part images to the respective darts game terminals T1-Tn, which respectively display a part of the large image 500.
  • Each of the darts game terminals T1-Tn synchronizes with clocks controlled by the server SV to project image data sent from the server SV by the projectors 2, 3 as explained in Fig. 6, so that a production image generated as a total system is displayed as shown in Fig. 9.
  • As explained above, in the present invention, a large performance display can be possible without enlarging the housing of the darts game apparatus, by entire of the main body 1 of the darts game apparatus being functioned as a display.
  • That is, an effective display was restricted only in a particular portion (for example, upper portion of the housing) in conventional apparatuses, but an entire surface of the housing can be used, so that it is possible to enhance the freedom of effective production by the apparatus according to the present invention.
  • Furthermore, it is not necessary to limit the target of the darts game apparatus to a specific portion, and the shape of the target can be made without limiting to a round shape.
  • Expalnation of signs
  • 1
    main body
    2, 3
    projectors
    4-10
    production images
    7 a
    target image
    20
    a target unit
    21
    a target segment
    22
    receiving hole of the target segment
    100
    darts
    200, 300
    a control block
    NW
    a network
    SV
    a server
    T1-Tn
    darts game terminals

Claims (6)

  1. A darts game apparatus comprising:
    a main body;
    a holding member positioned on at least a partial region of the surface of the main body and configured to retain the leading end of a dart which has hit a target;
    an image degeneration unit configured to generate image data, which are displayed in at least a partial region of the surface of the main body; and
    a projection device configured to project an image corresponding to the generated image data in at least the partial region of the surface of the main body.
  2. The darts game apparatus according to claim 1, wherein the projection device projects the image corresponding to the generated image data on the surface of the main body as covering at least a portion of the holding member.
  3. The darts game apparatus according to claim 2, wherein the projection device comprises a plurality of projectors, which project the image corresponding to the image data from respectively different directions.
  4. The darts game apparatus according to claim 3, wherein the image data generated by the image generation unit includes at least an image of a dart, and
    the plurality of projectors are provided at both of upper and lower portions of the main body, and intensity of light projected respectively from the plurality of projectors becomes equal at least at the position of displaying the image of the dart.
  5. The darts game apparatus according to any one of claims 1 through 4, further comprising a sensor unit provided on at least a portion of the surface of the main body, wherein a position at which the sensor is provided is displayed by the image projected by the projection device.
  6. The darts game apparatus according to any one of claims 1 through 5, wherein the holding member, which retains the leading end of the dart which has hit the target comprises a plurality of target segments, and each of the plurality of target segments forms a same shape, which includes a plurality of reception holes to retain a dart tip, and is replaceable.
EP13853304.7A 2012-11-09 2013-11-07 Darts game device Withdrawn EP2918315A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012247298A JP6139105B2 (en) 2012-11-09 2012-11-09 Dart game machine
PCT/JP2013/080117 WO2014073607A1 (en) 2012-11-09 2013-11-07 Darts game device

Publications (2)

Publication Number Publication Date
EP2918315A1 true EP2918315A1 (en) 2015-09-16
EP2918315A4 EP2918315A4 (en) 2016-07-27

Family

ID=50684707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13853304.7A Withdrawn EP2918315A4 (en) 2012-11-09 2013-11-07 Darts game device

Country Status (5)

Country Link
US (1) US20150233684A1 (en)
EP (1) EP2918315A4 (en)
JP (1) JP6139105B2 (en)
CN (1) CN104797305A (en)
WO (1) WO2014073607A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473971A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system providing lesson image
EP3473972A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system
EP3473968A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system outputting event effect
EP3473969A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Target dart game apparatus and dart game system with illumination unit
EP3473967A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system equipped with image projector
EP3663701A4 (en) * 2017-07-31 2021-05-05 Kabushiki Kaisha Sega Games doing Business as Sega Games Co., Ltd. Darts game device and program

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027714A (en) * 2012-08-27 2014-03-07 주식회사 홍인터내셔날 Dart game apparatus interconnecting outer devices
KR101353319B1 (en) * 2012-08-27 2014-01-20 주식회사 홍인터내셔날 Dart game system
KR20170027079A (en) * 2015-09-01 2017-03-09 주식회사 홍인터내셔날 Method, apparatus and computer program stored in computer readable medium for providing wagering dart game
DE102016201183A1 (en) * 2016-01-27 2017-07-27 Joerg Zilske Shooting cinema for bow, crossbow, and darts
JP2017140154A (en) * 2016-02-09 2017-08-17 株式会社ユニバーサルエンターテインメント Game machine and method of manufacturing game machine
JP6669516B2 (en) * 2016-02-09 2020-03-18 株式会社ユニバーサルエンターテインメント Game machine manufacturing method
JP6669517B2 (en) * 2016-02-09 2020-03-18 株式会社ユニバーサルエンターテインメント Game machine manufacturing method
JP2017140153A (en) * 2016-02-09 2017-08-17 株式会社ユニバーサルエンターテインメント Game machine and method of manufacturing game machine
JP6669518B2 (en) * 2016-02-09 2020-03-18 株式会社ユニバーサルエンターテインメント Game machine manufacturing method
JP6669519B2 (en) * 2016-02-09 2020-03-18 株式会社ユニバーサルエンターテインメント Game machine manufacturing method
KR101832822B1 (en) * 2016-03-10 2018-02-27 주식회사 홍인터내셔날 Server, dart game apparatus and computer program stored in computer-readable medium for providing image related to dart game
KR20180000845A (en) * 2016-06-24 2018-01-04 주식회사 홍인터내셔날 Dart game device for providing a river system
CN106197166A (en) * 2016-08-26 2016-12-07 段明述 A kind of dartboard
JP2019060529A (en) * 2017-09-26 2019-04-18 株式会社セガゲームス Segment member and assembly therewith
WO2019078393A1 (en) * 2017-10-17 2019-04-25 주식회사 홍인터내셔날 Dart game device having beverage provision function
KR101963770B1 (en) * 2017-10-17 2019-03-29 주식회사 홍인터내셔날 Dart game apparatus and dart game system with display unit
CN110411280B (en) * 2018-04-27 2022-10-04 何明政 Optical induction arrow target
KR102039942B1 (en) * 2019-02-11 2019-11-04 주식회사 피닉스다트 Dart game apparatus and dart game system providing event effect
KR102548103B1 (en) 2022-08-16 2023-06-27 주식회사 피닉스다트 Method, computer program, and device for identifying hit location of dart pin

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2483056Y (en) * 2001-06-14 2002-03-27 北京华控技术有限责任公司 Electronic game type boomerang apparatus
US7361083B2 (en) * 2003-07-01 2008-04-22 Gaelco, S.A. Multimedia system and method for remote monitoring or refereeing in dart machines
JP2005131232A (en) * 2003-10-31 2005-05-26 Sega Corp Game apparatus and game method
US20060066053A1 (en) * 2004-09-28 2006-03-30 Skala Ted P Game apparatus where darts are thrown into a projected video game image and software conducts the game progress by locating the darts with digital cameras
KR100913653B1 (en) 2004-12-31 2009-08-24 가부시키가이샤 세가 Dart game device
JP2006212224A (en) * 2005-02-03 2006-08-17 Sega Corp Dart and dart game device
US7487971B2 (en) * 2005-05-03 2009-02-10 Angles Eric W Portable dart playing field
WO2007010916A1 (en) 2005-07-20 2007-01-25 Sega Corporation Game device, game system and game program
JP2007097743A (en) * 2005-10-03 2007-04-19 Toyo Trading Kk Game machine
JP4815982B2 (en) * 2005-10-07 2011-11-16 株式会社セガ Game device
US20110053120A1 (en) * 2006-05-01 2011-03-03 George Galanis Marksmanship training device
JP4757150B2 (en) * 2006-09-06 2011-08-24 株式会社タイトー Dart game machine
CN201079678Y (en) * 2007-06-18 2008-07-02 柳州市蓝海科技有限公司 Recreational body-building machine
JP2009089813A (en) * 2007-10-05 2009-04-30 Aruze Corp Game machine
JP5216950B2 (en) * 2007-11-02 2013-06-19 株式会社セガ Dart game machine
JP2009225984A (en) * 2008-03-21 2009-10-08 Aruze Corp Darts game machine
JP2010190487A (en) * 2009-02-18 2010-09-02 Sega Corp Game system, game device, and program
US20110037225A1 (en) * 2009-05-20 2011-02-17 Woodhall Steven L Projectile golf game
JP2011036689A (en) * 2010-09-24 2011-02-24 Sega Corp Game apparatus and game method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663701A4 (en) * 2017-07-31 2021-05-05 Kabushiki Kaisha Sega Games doing Business as Sega Games Co., Ltd. Darts game device and program
US10762800B2 (en) 2017-10-17 2020-09-01 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system providing lesson video
US11898826B2 (en) 2017-10-17 2024-02-13 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system with an image projector
TWI693091B (en) * 2017-10-17 2020-05-11 韓商鳳凰飛鏢有限公司 Dart game apparatus providing event effect
EP3473967A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system equipped with image projector
CN109937076A (en) * 2017-10-17 2019-06-25 洪国际有限公司 It is equipped with the dart game device and darts system of image projector
CN109952136A (en) * 2017-10-17 2019-06-28 洪国际有限公司 Dart game device and darts system
US20200033099A1 (en) * 2017-10-17 2020-01-30 Hong International Corp. Dart game apparatus and dart game system comprising illumination unit
US20200056863A1 (en) * 2017-10-17 2020-02-20 Hong International Corp. Dart game apparatus and dart game system providing event effect
JP2020505078A (en) * 2017-10-17 2020-02-20 フェニックスダーツ カンパニー リミテッド Dart game device and dart game system
JP2020505079A (en) * 2017-10-17 2020-02-20 フェニックスダーツ カンパニー リミテッド Dart game device and dart game system that output event effects
JP2020505957A (en) * 2017-10-17 2020-02-27 フェニックスダーツ カンパニー リミテッド Darts game device and dart game system provided with image irradiator
JP2020506730A (en) * 2017-10-17 2020-03-05 フェニックスダーツ カンパニー リミテッド Target dart game device and dart game system with lighting unit
EP3473969A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Target dart game apparatus and dart game system with illumination unit
EP3473968A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system outputting event effect
US11280592B2 (en) 2017-10-17 2022-03-22 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system with an image projector
JP2021166829A (en) * 2017-10-17 2021-10-21 フェニックスダーツ カンパニー リミテッド Dart game apparatus
JP2021166830A (en) * 2017-10-17 2021-10-21 フェニックスダーツ カンパニー リミテッド Dart game apparatus
JP2021168944A (en) * 2017-10-17 2021-10-28 フェニックスダーツ カンパニー リミテッド Dart game device
EP3954965A1 (en) * 2017-10-17 2022-02-16 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system outputting event effect
EP3967967A1 (en) * 2017-10-17 2022-03-16 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system outputting event effect
EP3967968A1 (en) * 2017-10-17 2022-03-16 Phoenixdarts Co., Ltd. Dart game apparatus and dart game system outputting event effect
EP3473972A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system
JP7108759B2 (en) 2017-10-17 2022-07-28 フェニックスダーツ カンパニー リミテッド darts game device
JP2022126854A (en) * 2017-10-17 2022-08-30 フェニックスダーツ カンパニー リミテッド Dart game device
CN109937076B (en) * 2017-10-17 2022-11-04 凤凰飞镖有限公司 Dart game device equipped with image projector and dart game system
JP7399433B2 (en) 2017-10-17 2023-12-18 フェニックスダーツ カンパニー リミテッド darts game device
EP3473971A1 (en) * 2017-10-17 2019-04-24 Hong International Corp. Dart game apparatus and dart game system providing lesson image

Also Published As

Publication number Publication date
WO2014073607A1 (en) 2014-05-15
JP2014095508A (en) 2014-05-22
CN104797305A (en) 2015-07-22
JP6139105B2 (en) 2017-05-31
US20150233684A1 (en) 2015-08-20
EP2918315A4 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
EP2918315A1 (en) Darts game device
US10099144B2 (en) Sports simulation system
JP3686919B2 (en) GAME DEVICE, GAME PROCESSING METHOD, AND READABLE STORAGE MEDIUM
CN1897644B (en) Method and system for catching pictures
KR101594023B1 (en) Laser beam shooting system
US9430059B2 (en) Multi-user pointing apparaus and method
WO2009120299A2 (en) Computer pointing input device
US9707471B2 (en) Display for a pinball game
US10537814B2 (en) Screen coding methods and camera based game controller for video shoot game
US9724613B2 (en) Game device, control method of game device, program, and information storage medium
JP2015009008A (en) Golf swing analysis system
US9733048B2 (en) Shooting training and game system with virtual target
JP5061278B2 (en) Pointed position detection program and pointed position detection apparatus
EP1716896A3 (en) Billiard game input device, billiard game system, game input device, and computer program
US20190155452A1 (en) Presentation of a digital image of an object
JP2001166881A (en) Pointing device and its method
KR101637143B1 (en) Apparatus for sensing impact point of an object on a screen and simulation system using it
JP2003083715A (en) Method and apparatus for detecting indication position as well as gun controller-type game machine
US20190234714A1 (en) Device for locating an impact against a transparent interactive surface
JP2010282661A (en) Program and device for detection of indicated position
JP3744590B2 (en) Target hitting game machine
JP2001218982A (en) Game apparatus
CN211440080U (en) Hit detection device and hit detecting system
CN105617646A (en) Shooting training and game system provided with virtual targets
KR101575192B1 (en) Ball sensing system using ir sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160628

RIC1 Information provided on ipc code assigned before grant

Ipc: F41J 3/00 20060101ALI20160622BHEP

Ipc: F41J 3/02 20060101AFI20160622BHEP

Ipc: F41J 9/14 20060101ALI20160622BHEP

Ipc: F41J 5/10 20060101ALN20160622BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160906