EP2916966A1 - Système et procédé d'application de nanofibres sur un substrat - Google Patents

Système et procédé d'application de nanofibres sur un substrat

Info

Publication number
EP2916966A1
EP2916966A1 EP13788854.1A EP13788854A EP2916966A1 EP 2916966 A1 EP2916966 A1 EP 2916966A1 EP 13788854 A EP13788854 A EP 13788854A EP 2916966 A1 EP2916966 A1 EP 2916966A1
Authority
EP
European Patent Office
Prior art keywords
substrate
nanofiber
tank
applicator
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13788854.1A
Other languages
German (de)
English (en)
Inventor
Michael B. Budai
Eric E. Gardner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Publication of EP2916966A1 publication Critical patent/EP2916966A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/20Arrangements for agitating the material to be sprayed, e.g. for stirring, mixing or homogenising
    • B05B15/25Arrangements for agitating the material to be sprayed, e.g. for stirring, mixing or homogenising using moving elements, e.g. rotating blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1409Arrangements for supplying particulate material specially adapted for short fibres or chips

Definitions

  • Nanofibers are generally defined as fibers having a diameter of less than about 1000 nm in diameter and may have lengths from a few centimeters to less than one millimeter . Such fibers have come into use in various fields, including medical applications, protective materials, general textiles and filtration media.
  • a liquid such as a polymer
  • a stream of hot gas such as air.
  • Thread or fibers are formed which are dried and collected on a collector by use of a vacuum applied through the collector.
  • such a method has lower energy requirements than known systems, requiring less heat input to form such nanofibers.
  • such a system and method produce nanofibers on a commercial scale that is less capital intensive than known systems and produces a higher output as well as a higher throughput than known systems.
  • FIG. 1 is a schematic illustration of an exemplary system for the manufacture of nanofibers.
  • FIG. 1 there is shown a schematic illustration of an exemplary system 10 for the application of nano fibers N onto a substrate S.
  • the system 10 includes a feed tank 12 for storing a fluid, such as a liquid polymeric feed solution F, an outlet pump 14, fluid conduits 16, such as piping, hoses or the like, and an applicator head 18.
  • a control system or controller 20 monitors and controls the overall operation of the system 10.
  • a conveyor 22 can be used to move the substrate S along a path P relative to the applicator system 10 and head 18.
  • the tank 12 can be formed of any material suitable and/or compatible with the feed solution F. Such materials include, but are not limited to stainless steel, polypropylene or the like.
  • the system 10 is configured to apply the nanofiber N solution to a substrate S.
  • the nanofiber N can be applied to, for example, a coarse web, a fine web, a non- woven material or essentially any type or construction of suitable substrate.
  • An agitator 24 is positioned in the tank 12 to maintain the nano fibers in solution.
  • One agitator 24 is a multi-blade rotary agitator, preferably powered by a variable speed drive 28.
  • a variable speed drive 28 allows for controlling the consistency of the solution- that is maintaining the nanofiber evenly distributed and suspended in the solution, while minimizing over-working or over-agitating the solution and controlling the power consumption of the agitator 24.
  • agitators that can be used to maintain the nanofibers in solution.
  • the outlet pump 14 provides a metered or precise fluid flow to the applicator head 18.
  • One type of pump 14 is a metering pump (or multiple metering pumps) to provide precise flow to the applicator head 18.
  • the fluid conduits 16 extending between the tank 12 and the pump 14 and the pump 14 and the applicator head 18 are configured to maintain the fiber in solution and to prevent the nanofibers from falling out of solution or settling in the piping or hoses 16.
  • the piping or hoses 16 between the various system components can be designed having straight runs to reduce or eliminate bends, or where necessary an increased the radius of curvature of bends.
  • Conduits 16 having smooth internal surfaces to minimize flow resistance and interferences, cavities (or flow dead spots) and the like, can be used maintain a desired flow rate and /or velocity through the conduits 16.
  • One or more flow meters 30 properly positioned within the system 10 provide for monitoring the inlet of carrier fluid C (e.g., water) to the tank 12 and the flow of the nanofibers in solution N from the tank 12.
  • carrier fluid C e.g., water
  • the materials of the conduits 16 and other process equipment are selected to be suitable and/or compatible with the nanofiber formulation.
  • the applicator head 18 is configured as a building block-type expandable design in which sections can be added or removed depending on the width of the substrate S.
  • the applicator head 18 sections can be made up of a variety of nozzle designs depending on the specific formulation and the intended coat weight of nanofibers on the substrate S.
  • the applicator head 18 can atomize the formulation through pressure generated from the pump 14 at the outlet side of the tank 12. Exemplary of such applicators are those described in Budai, U.S. Patent Application Serial No. 13/547,685, which application is commonly assigned with the present application and is incorporated herein by reference in its entirety.
  • the system 10 is controlled by the controller 20.
  • the controller 20 can, for example, monitor the line speed of the substrate S and vary the nanofiber formulation output flow based on the line speed of the substrate S, the density at which the nanofiber formulation is applied to substrate S (coating weight), the pump 14 outputs and inputs, and like process parameters.
  • the controller 20 can also monitor and control the agitator 24, process temperatures and the like. It is anticipated that the controller 20 will be of a menu driven type.
  • the present system 10 is configured to apply nanofiber to a wide variety of substrates S.
  • Exemplary nanofiber is that formulated from cellulose acetate, polypropylene, polyethylene, polyester, nylon, polyphthalamide (PPA), polymethyl methacrylate (PMMA), polyactic acid, poly aniline, poly vinyl alcohol, poly acrylonitrile and the like.
  • PPA polyphthalamide
  • PMMA polymethyl methacrylate
  • polyactic acid poly aniline
  • poly vinyl alcohol poly vinyl alcohol
  • poly acrylonitrile polyacrylonitrile
  • suitable polymers will be appreciated by those skilled in the art.
  • the polymer can be carried in a wide variety of suitable liquid carriers C, such as water.
  • Other additives may be used to create a desired viscosity or nanofiber suspension, including for example, surfactants such as glycerin.
  • a method of applying nanofibers to a substrate S includes providing a substrate and a system 10 for applying the nano fiber solution to the substrate and moving the substrate S and system 10 relative to one another. It is anticipated that the substrate S will move relative to the applicator head 18. The method further includes conveying, from a storage vessel such as a tank 12, a liquid formulation of nanofibers N in suspension, through one or more fluid conduits 16, to the applicator head 18.
  • a storage vessel such as a tank 12
  • a liquid formulation of nanofibers N in suspension through one or more fluid conduits 16, to the applicator head 18.
  • the fluid flow is carefully controlled and monitored. As such the flow can be measured, as by one or more flow meters 30 or like device, at the tank 12 outlet (e.g., the pumped fluid) and the flow rate monitored to ensure that a desired flow rate is maintained. To assure that the formulation in the tank 12 is maintained (e.g., the concentration of nanofibers in the solution), the carrier C inlet to the tank 12 can also be monitored.
  • the formulation in the tank 12 e.g., the concentration of nanofibers in the solution
  • the carrier C inlet to the tank 12 can also be monitored.
  • the liquid formulation of nanofibers in suspension is transported through a system that reduces the number of bends or other interferences in flow.
  • the method further includes applying the formulation to a substrate through an applicator head 18 such as that described above.
  • the nanofiber formulation will be applied at a predetermined coat weight and may depend upon the specific formulation used and the intended use of the resultant coated substrate. It is anticipated that the formulation may be applied by spray, atomization (effected by pump pressure) or like methods.
  • the present system 10 and method can greatly reduce the energy requirements for applying nanofibers N to substrates S. It is expected that the overall cost of nanofiber production can be reduced by as much as fifty percent with production yields being twenty times greater than known methods such as electrospinning.
  • the present process can be carried out at or about room temperature, thus greatly reducing the energy costs over known systems and methods.
  • functional composites can be made by selectively incorporating materials such as silica, clay, silver particles, titanium and aluminum-based materials and the like.
  • nanofibers can be produced for use in the medical, energy, filtration and lighting industries, as well as for use in general textiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Spray Control Apparatus (AREA)

Abstract

La présente invention concerne un système (10) destiné à l'application de nanofibre sur un substrat (S), qui comprend un réservoir (12) ayant une sortie, un agitateur (24) disposé dans le réservoir, une pompe (14) située au niveau de la sortie du réservoir et un applicateur (18) disposé près du substrat (S). Une ou plusieurs conduites (16) de fluide s'étendent du réservoir à la pompe et de la pompe à l'applicateur. Les conduites de fluide sont conçues pour minimiser les courbures et les interférences. Le système comprend un dispositif de commande (20). Une formule (N) de nanofibre dans un vecteur fluidique dans le réservoir est pompée du réservoir vers l'applicateur, pour application sur le substrat à un débit prédéfini. La pompe (14) est commandée par le dispositif de commande (20) afin de faire varier la sortie de la pompe (14) pour qu'elle corresponde au débit prédéfini et la formule de nanofibre est appliquée par la tête (18) d'applicateur à un poids de revêtement prédéfini sur le substrat. L'invention concerne également un procédé d'application de nanofibre sur un substrat.
EP13788854.1A 2012-11-09 2013-10-25 Système et procédé d'application de nanofibres sur un substrat Withdrawn EP2916966A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261724717P 2012-11-09 2012-11-09
US13/968,736 US20140134346A1 (en) 2012-11-09 2013-08-16 System and method for application of nano staple
PCT/US2013/066851 WO2014074328A1 (fr) 2012-11-09 2013-10-25 Système et procédé d'application de nanofibres sur un substrat

Publications (1)

Publication Number Publication Date
EP2916966A1 true EP2916966A1 (fr) 2015-09-16

Family

ID=50681951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13788854.1A Withdrawn EP2916966A1 (fr) 2012-11-09 2013-10-25 Système et procédé d'application de nanofibres sur un substrat

Country Status (4)

Country Link
US (1) US20140134346A1 (fr)
EP (1) EP2916966A1 (fr)
JP (1) JP2016504177A (fr)
WO (1) WO2014074328A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190210060A1 (en) * 2016-07-11 2019-07-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Mist coating forming apparatus and mist coating forming method
CN107952607B (zh) * 2017-12-29 2020-05-12 旭威电子(重庆)有限公司 一种话筒壳体涂漆装置
CN111036445B (zh) * 2019-12-20 2021-06-08 王敏雪 一种玩具喷涂装置
CN110976147A (zh) * 2019-12-23 2020-04-10 山东鲁阳浩特高技术纤维有限公司 一种用于制备纳米绝热毡的疏水剂引入设备及方法
CN112403773A (zh) * 2020-11-06 2021-02-26 苏州立科工业设计有限公司 风力发电设备金属外壳的表面防锈处理设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2354105B2 (de) * 1973-10-29 1976-12-30 Wilhelm Fleissner KG, 7110 Öhringen Verfahren und vorrichtung zum luftlosen aufspritzen fliessbarer stoffe
US4614300A (en) * 1982-04-19 1986-09-30 E. I. Du Pont De Nemours And Company Computerized spray machine
US4798694A (en) * 1985-08-09 1989-01-17 Canon Kabushiki Kaisha Method for producing composite materials
JPS63158149A (ja) * 1986-12-23 1988-07-01 Nec Corp 磁性塗料供給装置
US5195680A (en) * 1988-08-29 1993-03-23 Hose Specialties/Capri, Inc. Coaxial paint hose and supply system
CA2052852A1 (fr) * 1990-10-30 1992-05-01 Carl Rande Shervin Methode de determination du temps de melange dans des cuves a agitation
US5450777A (en) * 1991-12-03 1995-09-19 Nordson Corporation Method and apparatus for processing chopped fibers from continuous tows
US5772116A (en) * 1993-12-02 1998-06-30 Holt; Earl R. Recirculating paint system having an improved spray gun
JPH08155366A (ja) * 1994-12-09 1996-06-18 Inax Corp スラリー定量供給装置
US5507574A (en) * 1995-01-13 1996-04-16 Dickey; Douglas Variable speed mixer
JPH09192586A (ja) * 1996-01-17 1997-07-29 Nippon Parkerizing Co Ltd 静電粉体塗装方法
US6045056A (en) * 1996-12-26 2000-04-04 Concurrent Technologies Corporation Optimized spray device (OSD) apparatus and method
US6484121B1 (en) * 2000-09-07 2002-11-19 Ford Global Technologies, Inc. System for automatically measuring paint film thickness
JP4306990B2 (ja) * 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 非線形光学素子
US7641826B2 (en) * 2002-11-14 2010-01-05 Mbachu Reginald A Methods for monitoring binder mix loading of fiber glass mats
KR101161668B1 (ko) * 2004-02-19 2012-07-02 도레이 카부시키가이샤 나노섬유 배합용액, 유액 및 겔상물 및 그 제조방법 및 나노섬유 합성지 및 그 제조방법
CN100500304C (zh) * 2004-10-22 2009-06-17 中国科学院力学研究所 一种将纳米颗粒粉体均匀定量送粉的方法及装置
DE602004025992D1 (de) * 2004-11-12 2010-04-22 Hak-Yong Kim Verfahren zur herstellung von endlosfilament aus nanofasern
JP4505810B2 (ja) * 2005-03-29 2010-07-21 富士フイルム株式会社 塗布方法及び防眩性フィルムの製造方法
CA2520691C (fr) * 2005-09-22 2012-05-01 Galvatech 2000 Pompe a pulveriser sans air et methode de pulverisation d'un liant en solution avec particules en suspension
JP2007103276A (ja) * 2005-10-07 2007-04-19 Pioneer Electronic Corp 塗工装置、塗工方法、および、プラズマディスプレイパネルの製造方法
US20070084786A1 (en) * 2005-10-14 2007-04-19 General Electric Company Filter, filter media, and methods for making same
JP2007268385A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 塗布装置、塗布方法、および光学フィルムの製造方法
US8020508B2 (en) * 2006-09-19 2011-09-20 The Board Of Regents Of The University Of Oklahoma Methods and apparatus for depositing nanoparticles on a substrate
US7846493B1 (en) * 2006-10-02 2010-12-07 Dynasty Foorwear, Ltd. Spraying of fibers from a container that includes an agitator
US20110038936A1 (en) * 2009-08-17 2011-02-17 Kimberly Ann Griswold System and method for electrospun drug loaded biodegradable chemotherapy applications
JP5885463B2 (ja) * 2010-11-02 2016-03-15 三菱マテリアル株式会社 カーボンナノファイバー分散液、ならびに塗料組成物およびペースト組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014074328A1 *

Also Published As

Publication number Publication date
WO2014074328A1 (fr) 2014-05-15
JP2016504177A (ja) 2016-02-12
US20140134346A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
US20140134346A1 (en) System and method for application of nano staple
SalehHudin et al. Multiple-jet electrospinning methods for nanofiber processing: A review
EP2520695B1 (fr) Appareil d'électrofilature destiné à produire des nanofibres et capable de régler la température et l'humidité d'une zone de filage
JP6506938B2 (ja) エアゾール生成方法およびエアゾール生成システム
CN101985793B (zh) 静电纺丝法连续制备无纺布制品的装置
EP2868390B1 (fr) Systèmes de création d'aérosols
JP2006524739A (ja) ポリマー配合物を静電加工する装置及び方法
CN201924106U (zh) 静电纺丝法连续制备无纺布制品的装置
WO2012109215A2 (fr) Appareils et procédés de production de microfibres et de nanofibres
US20210107020A1 (en) Methods and systems for creating aerosols
CN102080269A (zh) 纺丝装置、非织造布制造装置、非织造布的制造方法和非织造布
CN102828260A (zh) 一种离心式无针头静电纺丝装置
WO2005042813A1 (fr) Equipement electrostatique de centrifugation et procede de preparation de nanofibres mettant en oeuvre ledit equipement
JP2014062351A (ja) 電気紡糸ノズルパック及びそれを含む電気紡糸システム
CN105369367A (zh) 一种精密供液的无针喷头静电纺丝设备
CN105268382A (zh) 用于生成气溶胶的方法和系统
CN105332068A (zh) 熔融静电纺丝设备
CN100464015C (zh) 纳米纤维非织造布纺丝机
Liu et al. Scale-up strategies for electrospun nanofiber production
KR20050015610A (ko) 전기방사를 이용한 나노섬유의 코팅방법
CN111809253B (zh) 一种循环纺丝装置及其在均一纳米纤维隔膜制备中的应用
CN103301970B (zh) 液体注入式微点雾喷射装置
KR20110079109A (ko) 용융전기방사용 광폭 노즐블럭 및 이를 구비하는 용융전기방사장치
US20240052524A1 (en) Handheld/portable apparatus for the production of fine fibers
CN106149066B (zh) 一种高效笼状针式喷头静电纺丝装置及其在无机材料纳米纤维制备中的应用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 9/03 20060101ALI20181116BHEP

Ipc: B05B 7/14 20060101ALI20181116BHEP

Ipc: B05B 15/25 20180101AFI20181116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190109

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/14 20060101ALI20181116BHEP

Ipc: B05B 9/03 20060101ALI20181116BHEP

Ipc: B05B 15/25 20180101AFI20181116BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190501