EP2904727B1 - Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen - Google Patents
Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen Download PDFInfo
- Publication number
- EP2904727B1 EP2904727B1 EP13715020.7A EP13715020A EP2904727B1 EP 2904727 B1 EP2904727 B1 EP 2904727B1 EP 13715020 A EP13715020 A EP 13715020A EP 2904727 B1 EP2904727 B1 EP 2904727B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transmission
- csi
- hypothesis
- interference
- csi report
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 217
- 238000005259 measurement Methods 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 52
- 238000004891 communication Methods 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 17
- 230000011664 signaling Effects 0.000 claims description 14
- 230000006978 adaptation Effects 0.000 claims description 10
- 230000008054 signal transmission Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- 230000002452 interceptive effect Effects 0.000 claims description 5
- 230000008901 benefit Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 12
- 229920006934 PMI Polymers 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Definitions
- the present disclosure relates generally to wireless communications systems, and in particular to systems and methods for improving the link adaptation in a wireless communications system.
- Multi-antenna techniques can significantly increase the data rates and reliability of a wireless communication system. The performance is particularly improved if both the transmitter and the receiver are equipped with multiple antennas, which results in a multiple-input multiple-output (MIMO) communication channel.
- MIMO multiple-input multiple-output
- Such systems and/or related techniques are commonly referred to as MIMO.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- a core component in LTE is the support of MIMO antenna deployments and MIMO related techniques.
- a current working assumption in LTE-Advanced is the support of an 8-layer spatial multiplexing mode, possibly with channel dependent precoding.
- the focus of the spatial multiplexing mode is to achieve high data rates in favorable channel conditions.
- An illustration of the spatial multiplexing mode is provided in Figure 1 .
- the information carrying symbol vector s is multiplied by an NT x r precoder matrix W N T ⁇ r , which serves to distribute the transmit energy in a subspace of the NT (corresponding to NT antenna ports) dimensional vector space.
- the precoder matrix is typically selected from a codebook of possible precoder matrices, and typically indicated by means of a precoder matrix indicator (PMI).
- PMI precoder matrix indicator
- the PMI specifies a unique precoder matrix in the codebook. If the precoder matrix is confined to have orthonormal columns, then the design of the codebook of precoder matrices corresponds to a Grassmannian subspace packing problem.
- Each of the r symbols in s corresponds to a layer and r is referred to as the transmission rank.
- the transmission rank In this way, spatial multiplexing is achieved since multiple symbols can be transmitted simultaneously over the same resource element (RE).
- the number of symbols r is typically adapted to suit the current channel properties.
- the precoder, W N T ⁇ r can be a wideband precoder, which is constant over frequency, or frequency selective.
- the precoder matrix is often chosen to match the characteristics of the N R x N T MIMO channel H, resulting in so-called channel dependent precoding. This is also commonly referred to as closed-loop precoding and essentially strives for focusing the transmit energy into a subspace which is strong in the sense of conveying much of the transmitted energy to the UE. In addition, the precoder matrix may also be selected to strive for orthogonalizing the channel. This means that the inter-layer interference is reduced after proper linear equalization at the UE.
- CSI-RS a new reference symbol sequence
- CRS common reference symbols
- the CSI-RS provides several advantages over basing the CSI feedback on the common reference symbols (CRS), as was done in previous releases of LTE.
- the CSI-RS is not used for demodulation of the data signal, and thus does not require the same density (i.e., the overhead of the CSI-RS is substantially less).
- CSI-RS provides a much more flexible means to configure CSI feedback measurements. For example, which CSI-RS resource to measure on can be configured in a UE specific manner.
- the support of antenna configurations larger than four (4) antennas must resort to CSI-RS, since the CRS is only defined for at most four (4) antennas.
- a UE By measuring on a CSI-RS, a UE can estimate the effective channel the CSI-RS is traversing including the radio propagation channel, antenna gains, and any possible antenna virtualizations (i.e., a CSI-RS port may be precoded so that it is virtualized over multiple physical antenna ports. That is, the CSI-RS port can be transmitted on multiple physical antenna ports, possibly with different gains and phases).
- a CSI-RS port may be precoded so that it is virtualized over multiple physical antenna ports. That is, the CSI-RS port can be transmitted on multiple physical antenna ports, possibly with different gains and phases).
- Zero-power CSI-RS resources are configured just as regular CSI-RS resources, so that a UE knows that the data transmission is mapped around those resources.
- the intent of the zero-power CSI-RS resources is to enable the network to mute the transmission on the corresponding resources as to boost the SINR of a corresponding non-zero power CSI-RS, possibly transmitted in a neighbor cell/transmission point.
- a special zero-power CSI-RS that a UE is mandated to use for measuring interference plus noise is under discussion. As the name indicates, a UE can assume that the Transmission Points (TPs) of interest are not transmitting on the muted CSI-RS resource and the received power can therefore be used as a measure of the interference plus noise level.
- TPs Transmission Points
- the UE can estimate the effective channel and noise plus interference, and consequently also determine which rank, precoder and transport format to recommend that best match the particular channel.
- an interference measurement configuration e.g. a muted CSI-RS resource
- LTE For CSI feedback LTE has adopted an implicit CSI mechanism where a UE does not explicitly report, e.g., the complex valued elements of a measured effective channel, but rather, recommends a transmission configuration for the measured effective channel.
- the recommended transmission configuration thus implicitly gives information about the underlying channel state.
- the CSI feedback is given in terms of a transmission rank indicator (RI), a precoder matrix indicator (PMI), and channel quality indicator(s) (CQI).
- RI transmission rank indicator
- PMI precoder matrix indicator
- CQI channel quality indicator
- the CQI/RI/PMI report can be wideband or frequency selective depending on which reporting mode that is configured.
- the RI corresponds to a recommended number of streams that are to be spatially multiplexed, and thus, transmitted in parallel over the effective channel.
- the PMI identifies a recommended precoder (in a codebook) for the transmission, which relates to the spatial characteristics of the effective channel.
- the CQI represents a recommended transport block size (i.e., coderate). Thus, there is a relation between a CQI and an SINR of the spatial stream(s) over which the transport block is transmitted.
- the implicit feedback framework has many advantages over more explicit feedback, most notably
- Explicit CSI feedback has the disadvantage that the UE receiver implementation is typically not included in the reporting, and it becomes increasingly difficult for the network/UE to manage/utilize different UE receiver implementations. Moreover, it is generally more difficult to provide effective interoperability testing for such CSI feedback mechanisms.
- CQI is interpreted to mean SINR, but that is not the proper definition in LTE contexts. Most notably, reporting an SINR corresponds to the category of explicit CSI, whereas CQI as defined above falls in the implicit CSI category.
- CoMP Coordinated Multipoint
- TP Transmission Point
- CoMP is a tool introduced in LTE to improve the coverage of high data rates, the cell-edge throughput and/or to increase system throughput.
- the goal is to distribute the user perceived performance more evenly in the network by taking control of the interference in the system, either by reducing the interference and/or by predicting the interference more accurately.
- CoMP operation targets many different deployments, including coordination between sites and sectors in cellular macro deployments, as well as different configurations of Heterogeneous deployments, where for instance a macro node coordinates the transmission with pico nodes within the macro coverage area.
- a common denominator for the CoMP transmission schemes is that the network needs CSI information not only for the serving TP, but also for the channels linking the neighboring TPs to a terminal. For example, by configuring a unique CSI-RS resource per TP, a UE can resolve the effective channels for each TP by measurements on the corresponding CSI-RS.
- a CSI-RS resource can loosely be described as the pattern of resource elements on which a particular CSI-RS configuration is transmitted.
- a CSI-RS resource is determined by a combination of "resourceConfig", "subframeConfig", and "antennaPortsCount", which are configured by Radio Resource Control (RRC) signaling.
- RRC Radio Resource Control
- a joint search may, however, be too computationally demanding for the UE, and a simplified form of aggregation is to evaluate an aggregate CQI and RI, which are combined with per CSI-RS resource PMIs.
- Such a scheme also has the advantage that the aggregated feedback may share much information with a per CSI-RS resource feedback. This is beneficial because many CoMP transmission schemes require per CSI-RS resource feedback, and to enable eNodeB flexibility in dynamically selecting CoMP scheme, aggregated feedback would typically be transmitted in parallel with per CSI-RS resource feedback.
- per CSI-RS resource PMIs can be augmented with co-phasing information enabling the eNodeB to rotate the per CSI-RS resource PMIs so that the signals coherently combine at the receiver.
- the UE can effectively measure the interference observed from all other TPs (or all other cells), which will be the relevant interference level in an upcoming data transmission. Such interference measurements are typically performed by analyzing the residual interference on CRS resources (after the UE subtracts the impact of the CRS signal).
- LTE Release-11 For the purpose of improved interference measurements, new functionality is introduced in LTE Release-11, where the agreement is that the network will be able to configure which particular TFREs are to be used for interference measurements for a particular UE.
- the network can thus control the interference seen on those TFREs by muting all TPs within a coordination cluster on those TFREs, for example, in which case the terminal will effectively measure the inter-CoMP cluster interference.
- the UE can report two (or generally multiple) CQIs corresponding to different interference hypotheses.
- the eNodeB can perform post processing on a reported CQI as to estimate the relevant CQIs for the relevant interference hypothesis.
- the UE will not know which CoMP transmission scheme a particular network is capable of or intends to use.
- a UE needs to provide CSI reports that are relevant for numerous CoMP schemes, regardless if whether the network intends to use the information. This results in unnecessarily excessive uplink overhead.
- "Implicit Feedback in Support of Downlink CoMP” 3GPP DRAFT R1-094141, CATT discloses feedback hypotheses analysis.
- the present disclosure provides a system and method for improving the link adaptation in a wireless communication system.
- the method is performed at a User Equipment (UE) and comprises the UE receiving a configuration message from an eNodeB.
- the configuration message specifies at least one Channel State Information (CSI) report that, in turn, specifies an interference hypothesis and a desired signal hypothesis that corresponds to a hypothetical data transmission over an effective channel that is characterized by a reference signal.
- the UE also estimates interference according to the specified interference hypothesis, and estimates properties of the effective channel. Based on the interference estimation and on the estimated properties of the effective channel, the UE determines at least one CSI report, and transmits the CSI report to the eNodeB.
- CSI Channel State Information
- the present disclosure provides a UE according to claim 9.
- the present disclosure also provides an eNodeB and corresponding method according to claims 30 and 17, respectively.
- the embodiments of the present disclosure provide the eNodeB with the flexibility to configure a CSI report to match a specific CoMP transmission hypothesis, which is a candidate for a downlink transmission to said UE.
- the present disclosure provides advantages that conventional systems and methods are not able to provide.
- the present disclosure provides the flexibility needed for the eNodeB to configure CSI reporting only for the CoMP transmission hypotheses that are candidates for a subsequent transmission. This reduces uplink overhead by eliminating reporting of CSI for non-candidate CoMP transmission hypotheses, such as CoMP transmissions the eNodeB is not capable of transmitting, for example.
- the present disclosure also provides increased flexibility for a wireless network to configure CSI reports that are relevant for a particular implementation, which is often different from any generic scheme considered for standardization. This improves the link-adaptation and downlink spectral efficiency.
- the present disclosure decreases UE processing by minimizing the number of CSI reports that a UE needs to compute, thereby reducing the draw on the battery and saving battery resources.
- the present disclosure decreases downlink overhead by not requiring a network to provide interference measurement resources for interference hypotheses that are not candidates for downlink transmission.
- FIG. 2 illustrates a functional block diagram of a LTE network 10, including a core network 12 (i.e., the evolved packet core) and a Radio Access network 14 (i.e., the Evolved Universal Terrestrial Radio Access Network, or E-UTRAN).
- the evolved packet core network 12 comprises a plurality of nodes 16 including those having the functionality of a Mobile Management Entity (MME) and a Signaling Gateway (S-GW).
- MME Mobile Management Entity
- S-GW Signaling Gateway
- the E-UTRAN nodes include evolved Node B's (eNodeB) 18 that communicatively connect to each other over the logical X2 interface and to the MME/SGWs nodes 16 over the logical S1 interface. Additionally, the eNodeBs 18 also communicate with one or more user terminals, referred to herein as User Equipment (UE) 20, over an air interface to provide the UEs 20 with access to the evolved packet core network 12.
- UE User Equipment
- a UE receives, from an eNodeB, a configuration message that specifies a CSI report.
- the CSI report is specified by a particular interference hypothesis and a particular desired signal hypothesis corresponding to data transmission over at least one effective channel characterized by a specific reference signal.
- the UE may further be configured to perform interference estimation according to the interference hypothesis, and/or estimate at least one effective channel by performing measurements on the specific reference signal.
- the UE is configured to determine a CSI report based on the interference estimation and the estimated effective channel, and is also configured to transmit the CSI report to an eNodeB.
- the present disclosure provides the eNodeB with the flexibility to configure a CSI report to match a specific CoMP transmission hypothesis, which is a candidate for a downlink transmission to said UE.
- a plurality of CSI reports are configured, wherein the eNodeB configures said CSI reports to match a plurality of corresponding CoMP transmission hypothesis.
- an eNodeB can also configure the number of the CSI reports.
- Such embodiments are useful in the context of CoMP, where an eNodeB is capable of coordinated transmissions from multiple transmission points, and the eNodeB needs CSI for each of multiple hypotheses of coordinated transmissions (e.g., wherein a neighbouring point is muted or not muted, or wherein a neighbouring point is participating in the data transmission or not).
- a desired signal hypothesis for a specific CSI report is configured by signalling, from which a UE can determine a bitmap.
- Each bit is associated with one of a plurality of reference signals, and the value of each bit specifies whether a UE should assume, for the specific CSI report, that the desired signal is transmitted over the effective channel identified by the reference signal associated with the bit.
- an eNodeB can configure the signal hypothesis (or there can be a predetermined contract) such that whenever two or more bits in the bitmap indicate a desired signal on the two or more associated effective channels, the specific UE should assume for the CSI report that the eNodeB transmits a desired signal incoherently between the two or more effective channels.
- the advantage of this embodiment is that it is often demanding for a network to guarantee a coherent transmission from multiple transmission points. Particularly, the relative phases between two effective channels (associated with the two transmission points) may change substantially between the point the CSI report is determined/estimated and the time of an actual transmission that follow the CSI report. In these cases it is often better to transmit using an incoherent transmission scheme, wherein the link adaptation will be improved if the UE assumes the same incoherent transmission scheme, for example, the CQI reporting.
- an eNodeB can configure the signal hypothesis (or there can be a predetermined contract) such that a specific pattern of frequency selective relative phase shifts (which could be static, or fully or partially pseudo random) should be applied to the transmissions between the two or more effective channels.
- a specific pattern of frequency selective relative phase shifts which could be static, or fully or partially pseudo random
- the transmission can be guaranteed to have incoherent frequency selective relative phase shifts for maximum diversity in the combining of signals from the different transmit points.
- an eNodeB can configure the signal hypothesis (or there can be a predetermined contract) such that whenever two or more bits in the bitmap indicate a desired signal, the specific UE should assume for the CSI report that the eNodeB transmits a desired signal coherently over the plurality of associated effective channels.
- the assumed transmitted signal is transmitted using specific wideband relative phase shifts among each such effective channel.
- each such relative phase is zero radians.
- the advantage with such a convention is that there will not be any need to signal any phase information for the transmissions between separate transmission points, since the CQI and other elements of the precoder report will be conditioned on a specific set of relative phases (that are also known by the eNodeB).
- the UE can therefore report per TP PMIs (typically restricted to be of the same rank) which can be used to form the recommended transmission by the network. More specifically, even a fixed phase configuration the randomness of the effective channels over frequency will ensure that with high probability there will be at least some subbands in which the effective channels match the fixed relative phases.
- an eNodeB can select to transmit to the particular UE on these particularly accurately matched subbands, and possibly allocate the remaining (ill-matched) subbands to other UEs.
- the CSI report further comprises a recommended aggregate precoder that includes recommended relative phase information for transmissions over the plurality of effective channels.
- a recommended aggregate precoder that includes recommended relative phase information for transmissions over the plurality of effective channels.
- other elements of the CSI report assume that an eNodeB transmits according to the recommended aggregate precoder.
- the advantage with this embodiment is that the UE can explicitly recommend how to co-phase the transmissions from separate transmission points. For example, if this information is provided at a per-subband granularity, then the eNodeB is provided with information on how to transmit with constructive coherence on all subbands.
- an aggregated CQI is reported assuming an eNodeB transmits according to the recommended aggregate precoder.
- the bitmap can be derived from an index that indicates which of the plurality of reference signals corresponding to the single effective channel over which the desired signal is assumed to be transmitted. Further, such an index is explicitly or implicitly configured by an eNodeB for the specific CSI report.
- This embodiment has advantage that if no CSI reports corresponding to joint transmission are needed by the network, then the downlink overhead can be reduced since a full bitmap does not need to be signalled. Instead, only an index specifying which bit in the bitmap is non-zero needs to be signalled. Even if the system supports joint transmissions, an eNodeB can to a large extent derive the required CSI from multiple per-TP CSI reports.
- the specific CSI report reuses elements determined for the second CSI report.
- This embodiment is useful when the feedback overhead and/or UE computational complexity is taken into account. Particularly, some information can be shared between multiple reports, and therefore, only determined once. Practical useful examples include, but are not limited to, situations in which per TP PMI recommendations have been derived for a set of single point transmissions. In such cases, the PMIs are simply reused for a joint transmission hypothesis among these transmission points.
- a predetermined contract exists between an eNodeB and the specific UE associating a predetermined desired signal hypothesis with each of a plurality of CSI reports.
- One of the advantages of specifying (e.g., as part of the standard) that each CSI report will assume a specific desired signal transmission hypothesis is that the overhead is minimized.
- a UE implementation may take advantage of this knowledge in the implementation to optimize performance.
- the eNodeB only needs to ensure/configure that the UE is assuming the correct interference hypothesis for each CSI report. Examples of such predetermined contracts include embodiments in which the n:th CSI report assumes a desired signal over the effective channel associated with the n:th reference signal in a CoMP Measurement Set (which may be separately configured).
- the UE is configured to use a specific set of time-frequency resource elements for an interference measurement on which the UE bases the particular interference hypothesis for the specific CSI report.
- This embodiment has the advantage that the eNodeB can configure a pattern of TFREs (e.g., a zero power CSI-RS resource, or a non-zero power CSI-RS) on which the terminal measures the interference.
- the eNodeB can configure a pattern on which the interference closely corresponds to what is seen in a CoMP transmission corresponding to the hypothesis assumed for the CSI report. For example, the UE can mute any data from a neighbouring point.
- a contract exists between an eNodeB and a UE regarding a reference resource for which the UE autonomously performs an interference measurement, on which the UE may base the particular interference hypothesis for the specific CSI report.
- the advantage of this embodiment is that it minimizes the configuration overhead since the UE itself determines a relevant interference measurement for the CSI report.
- an eNodeB further configures an interference hypothesis for the specific CSI report.
- the eNodeB may signal the UE to amend the interference measurement by artificially adding interference from at least one virtual interfering transmission over an effective channel characterized by a reference signal that is identified by the configuration.
- interference which may be difficult to measure e.g., interference that is not transmitted on any pattern of TFREs
- the UE will actively estimate the interference for a particular transmit point.
- the UE may assume that an isotropic signal of a certain power (could be predetermined or configured) is transmitted over a measured effective channel, and add (inject) this interference to the (passive) interference measurement.
- an isotropic signal of a certain power could be predetermined or configured
- this embodiment can alleviate the network overhead by having multiple interference hypotheses share a common interference denominator in a shared pattern of TFREs, and by having the UE artificially inject the distinguishing interference for each individual interference hypothesis.
- the interference hypothesis is configured by signalling from which a second bitmap can be determined by a UE.
- each bit is associated with one out of a second plurality of reference signals, and the value of each bit specifies whether a UE should amend the interference measurement by artificially adding interference from a virtual transmission over the effective channel characterized by the reference signal associated with said bit.
- the advantage of this embodiment is that the eNodeB is provided with the full flexibility to configure a UE to construct the interference hypothesis by adding all or some interfering sources to the interference hypothesis.
- none of the bits of the second bitmap is associated with a reference signal that corresponds to an effective channel that is assumed for a desired signal transmission for the specific CSI hypothesis.
- the plurality of reference signals and/or second plurality of reference signals are channel state information reference signals (CSI-RS) configured in a CoMP Measurement Set.
- CSI-RS channel state information reference signals
- an eNodeB configures the specific UE (or there is a predetermined contract with the UE) with a list of possible interference hypotheses, and/or a particular desired signal hypothesis, and/or pairs thereof, from which the eNodeB configures the specific CSI report by signalling an index to an element in said list.
- This embodiment has the advantage that it can achieve reduced configuration overhead and a simpler UE implementation by restricting the possible interference/desired signal hypotheses to a predetermined set for which the implementation can be targeted.
- this embodiment provides the possibility to actively eliminate irrelevant interference/desired signal combinations, and thereby reduces the overhead.
- an eNodeB configured according to the present disclosure acquires CSI reports for a plurality of CoMP transmission hypotheses for transmission points associated with reference signals belonging to a CoMP Measurement Set that is configured for a specific UE.
- the eNodeB mutes the transmission points on a specific set of TFREs, and configures the specific UE to use the set of TFREs for interference measurements for at least one specific CSI report.
- the eNodeB configures the specific CSI report to correspond to a dynamic point blanking hypothesis.
- a first transmission point is transmitting a desired signal, and at least a second transmission point is muted, by configuring the CSI report to associate the desired signal with a single reference signal corresponding to the first transmission point.
- the eNodeB configures an interference hypothesis not including interference from at least the second transmission point.
- configuring the interference hypothesis further comprises configuring the UE to artificially add interference from at least one third transmission point by signalling to the UE an index (or bitmap) identifying a reference signal transmitted from the third transmission point, and to inform the UE that the interference measurement should be amended with virtual interference transmitted over the effective channel associated with the reference signal.
- the eNodeB configures the specific CSI report to correspond to a single point transmission hypothesis.
- a transmission point transmits a desired signal by configuring the CSI report to associate the desired signal with a single reference signal corresponding to the transmission point.
- the eNodeB configures an interference hypothesis not including interference from the transmission point.
- configuring the interference hypothesis further comprises configuring the UE to artificially add interference from at least one second transmission point by signalling to the UE an index (or bitmap) identifying a reference signal transmitted from the transmission point, and informing the UE that the interference measurement should be amended with virtual interference transmitted over the effective channel associated with said reference signal.
- the eNodeB configures the specific CSI report to correspond to a joint transmission hypothesis in which a plurality of transmission points are transmitting a desired signal, by configuring the CSI report to associate the desired signal with a plurality of reference signals corresponding to the plurality of transmission points.
- the eNodeB may configure an interference hypothesis not including interference from at least the plurality of transmission points.
- configuring the interference hypothesis further comprises configuring the UE to artificially add interference from at least one transmission point that is not in the set of the plurality of transmission points associated with desired signals. This may be accomplished, for example, by signalling to the UE an index (or bitmap) identifying a reference signal transmitted from said transmission point, and informing the UE that the interference measurement should be amended with virtual interference transmitted over the effective channel associated with said reference signal.
- the eNodeB configures the specific CSI report to reuse the rank indicator from a second CSI report corresponding to a single point transmission hypothesis, and/or a dynamic point blanking hypothesis corresponding to a desired signal transmitted from one of the plurality of transmission points.
- the eNodeB configures the specific CSI report to reuse the per point precoder matrix indicators from a plurality of CSI reports corresponding to single point transmission hypotheses and/or dynamic point blanking hypotheses.
- each of the plurality of CSI reports corresponds to a desired signal transmitted from one of the plurality of transmission points in the joint transmission hypothesis.
- each of the said plurality of CSI reports is restricted to the same rank as the said joint transmission hypothesis.
- each of the plurality of CSI reports corresponds to a unique signal transmission point within the plurality of transmission points associated with the joint transmission hypothesis.
- FIG. 3 is a functional block diagram illustrating some components of an exemplary UE 20 configured to operate according to one or more embodiments of the present disclosure.
- UE 20 comprises a programmable controller 22, a memory 24, a user I/O interface 26, and a communications interface 28.
- the user I/O interface 26 provides the components necessary for a user to interact with the UE 20.
- the communications interface 28 comprises a transceiver that facilitates the communications with the eNodeBs 18 of the E-UTRAN over the appropriate air interface. In one embodiment, the communications interface communicates signals and data with the eNodeBs 18 in accordance with the LTE standards.
- the memory 24 may comprise any solid state memory or computer readable media known in the art. Suitable examples of such media include, but are not limited to, ROM, DRAM, Flash, or a device capable of reading computer-readable media, such as optical or magnetic media.
- the programmable controller 22 may be implemented by one or more microprocessors, hardware, firmware, or a combination thereof, and generally controls the operation and functions of the UE 20 according to the appropriate standards. Such operations and functions include, but are not limited to, communicating with the eNodeBs 18 as previously described in this application.
- the programmable controller 22 may be configured to implement logic and instructions stored in memory 24 to perform the method of the present disclosure to improve the link adaptation.
- FIG 4 is a flow diagram illustrating a method 30 performed by a UE 20 according to one embodiment of the present disclosure.
- Method 30 begins with the UE 20 receiving a configuration message from an eNodeB (box 32).
- the configuration message specifies at least one Channel State Information (CSI) report that specifies an interference hypothesis, as well as a desired signal hypothesis that corresponds to a hypothetical data transmission over an effective channel characterized by a reference signal.
- the UE 20 estimates interference according to the specified interference hypothesis and the estimating properties of the effective channel (box 34), and determines at least one CSI report based on the interference estimation and the estimated properties of the effective channel (box 36). Once determined, the UE 20 transmits the CSI report to the eNodeB (box 38).
- CSI Channel State Information
- the configuration message may, for example, specify a CSI process with which the CSI report is associated.
- the interference hypothesis is specified, at least in part, by a Channel State Information - Interference Measurement (CSI-IM) configuration
- the desired signal hypothesis is specified by a Channel State Information - Reference Signal (CSI-RS) configuration.
- both the interference hypothesis and the desired signal hypothesis are specified, at least in part, by respective CSI-IM and CSI-RS configurations.
- Figure 5 illustrates a method 40 in which the UE 20 generates the CSI report according to one embodiment.
- the UE 20 determines a bitmap for the CSI report from the configuration message (box 42). Each bit in the bitmap is associated with one of a plurality of reference signals, and each reference signal is associated with a different effective channel. Then, based on a value of a given bit, the UE 20 determines whether at least parts of the hypothetical data transmission is assumed transmitted over the effective channel identified by the reference signal associated with the given bit (box 44). Then, for each component of the hypothetical data transmission, the UE 20 determines whether that component is assumed to have been transmitted coherently, incoherently, or on a single effective channel based on a predetermined contract, or on information in the configuration message (box 46).
- the UE 20 may further determine a second bitmap based on signals sent by the eNodeB (box 48). In one embodiment, the UE 20 determines the second bit map such that each bit in the second bitmap has a value and is associated with a corresponding one of a second plurality of reference signals. Further, each reference signal corresponds to an effective channel. In such cases, the UE 20 may determine, based on the value of the bits in the second bitmap, whether to modify the interference measurement by artificially adding an interference measurement from a virtual transmission over the effective channel identified by the reference signal associated with the bit (box 50).
- one or both of the plurality of reference signals and the second plurality of reference signals comprise CSI-RS configured in a Coordinated Multi-Point (CoMP) Measurement Set.
- CoMP Coordinated Multi-Point
- the configuration message, or a further configuration message, received at the UE 20 may further specify a second CSI report that corresponds to a second desired signal hypothesis, and a second interference hypothesis.
- the UE 20 may, in one embodiment, configure the CSI report to reuse a rank indicator computed according to the second CSI report (box 52).
- the further configuration message specifies a further CSI process with which the second CSI report is associated.
- different configuration messages e.g. Radio Resource Control (RRC) messages, received by the UE 20 from the eNB, may specify different CSI reports thereby enabling the UE to provide different CSI reports independently of each other.
- RRC Radio Resource Control
- the UE 20 may configure the CSI report to reuse a per point precoder matrix indicator computed according to a plurality of CSI reports (box 54).
- each of the plurality of CSI reports corresponds to a desired signal transmitted from one of a plurality of transmission points in a joint transmission hypothesis, is restricted to a same rank as the joint transmission hypothesis, and correspond to a unique signal transmission point within the plurality of transmission points associated with the joint transmission hypothesis.
- FIG 6 is a functional block diagram of some components of an exemplary eNodeB 18 configured according to one embodiment of the present disclosure.
- the eNodeB 18 comprises a programmable controller 60, a communications interface 62, and a memory 64.
- the communications interface 62 may, for example, comprise a transmitter and receiver configured to operate in an LTE system or other similar system. As is known in the art, the transmitter and receiver are coupled to one or more antennas (not shown) and communicate with the UE 20 over the LTE-based air interface.
- Memory 64 may comprise any solid state memory or computer readable media known in the art. Suitable examples of such media include, but are not limited to, ROM, DRAM, Flash, or a device capable of reading computer-readable media, such as optical or magnetic media.
- the programmable controller 60 controls the operation of the eNodeB 18 in accordance with the LTE standard.
- the functions of the controller 60 may be implemented by one or more microprocessors, hardware, firmware, or a combination thereof, and include performing the functions previously described.
- the controller 60 may be configured to according to logic and instructions stored in memory 64 to communicate with the UE 20, as well as to improve the link adaptation using the method previously described.
- Figure 7 is a flow diagram that illustrates a method 70 of performing an embodiment of the present disclosure at the eNodeB 18.
- Method 70 begins with the eNodeB 18 transmitting a configuration message to a UE 20 (box 72).
- the eNodeB 18 transmits the configuration message to configure the UE to determine the CSI report according to the previously described embodiments.
- the configuration message specifies at least one CSI report specifying an interference hypothesis and a desired signal hypothesis that corresponds to a hypothetical data transmission over an effective channel characterized by a reference signal.
- the eNodeB 18 transmits the configuration message to configure the UE 20 to estimate interference according to the specified interference hypothesis, to estimate properties of the effective channel, and to determine the at least one CSI report based on the interference estimation and the estimated properties of the effective channel. Thereafter, the eNodeB 18 receives the CSI report from the UE 20 (box 74).
- the configuration message may specify a CSI process with which the CSI report is associated, and further, may specify one or both of the interference hypothesis and the desired signal hypothesis, at least in part, by a CSI-IM, configuration, and a CSI-RS configuration, respectively.
- Figures 8A-8C are flow diagrams illustrating a method 80 for performing embodiments of the present disclosure at the eNodeB 18.
- the eNodeB 18 may, in one embodiment, configure a plurality configuration messages to send to the UE (box 82).
- Each configuration message specifies a CSI report and is configured to match a corresponding coordinated multi-point (CoMP) scheme that is a candidate for a downlink transmission to the UE 20.
- CoMP coordinated multi-point
- the eNodeB 18 may configure the CSI report to comprise a bitmap having a plurality of bits (box 84). Each bit would be associated with one of a plurality of reference signals, and each reference signal would be associated with a different effective channel. Further, each bit would have a corresponding value configured to indicate to the UE that a desired signal is transmitted over the effective channel identified by the reference signal associated with the bit. The eNodeB 18 would then set two or more bits in the bitmap to indicate the transmission of desired signals on two or more effective channels (box 86). The two or more bits could indicate to the UE 20 whether the desired signals are transmitted coherently or incoherently between the two or more effective channels, based on a predetermined contract or on information in the configuration message.
- the eNodeB 18 could configure a plurality of hierarchically-ordered CSI reports in which the configuration for any given CSI report is based on at least one other CSI report (box 88). For example, in such scenarios, the eNodeB 18 may configure the given CSI report using selected information from a previous CSI report (box 90).
- the eNodeB 18 may, in one embodiment, also configure the interference hypothesis by signaling the UE 20 to modify an interference measurement (box 92). Particularly, the eNodeB 18 may signal the UE 20 to add an interference measurement from at least one virtual interfering transmission over an effective channel characterized by a reference signal that is identified by the configuration. The eNodeB 18 may then indicate to the UE 20 how a second bitmap can be determined by the UE 20 (box 94). Particularly, each bit is to be associated with one of a second plurality of reference signals.
- each bit indicates whether the UE 20 should add an interference measurement from a virtual transmission over the effective channel characterized by the reference signal associated with a given bit in the second bitmap to modify the interference measurement.
- the plurality of reference signals and the second plurality of reference signals comprise CSI-RS configured in a coordinated multi-point (CoMP) measurement set.
- the eNodeB 18 configures the UE 20 with a list of one or both of the possible interference hypotheses and the desired signal hypothesis, or pairs of possible interference and desired signal hypotheses (box 96). From this information, the eNodeB 18 may configure the CSI report by signalling an index to an element in the list, for example.
- the eNodeB 18 may configure CSI reports for a plurality of CoMP transmission hypotheses for transmission points (TPs) associated with reference signals associated with a CoMP Measurement Set configured for the UE (box 98).
- the eNodeB 18 may, in some embodiments, mute the TPs on a given set of time-frequency resources (TFREs), and configure the UE 20 to use the set of TFREs for interference measurements for at least one CSI report (box 100). Thereafter, the eNodeB 18 may configure the CSI report to correspond to a dynamic point blanking hypothesis so that a first transmission point transmits a desired signal, and so that a second transmission point is muted (box 102).
- TFREs time-frequency resources
- configuring the CSI report may comprise, for example, the eNodeB 18 configuring the CSI report to associate the desired signal with a single reference signal that corresponds to the first transmission point (box 104), and also configuring an interference hypothesis to omit information regarding interference from at least the second transmission point (box 106).
- the eNodeB 18 may configure the CSI report to reuse a rank indicator from a CSI report (box 108).
- the rank indicator corresponds to one or both of a single point transmission hypothesis and a dynamic point blanking hypothesis.
- Each of the hypotheses corresponds to a desired signal transmitted from one of the plurality of transmission points.
- the eNodeB 18 configures the CSI report to reuse a per point precoder matrix indicator from a plurality of CSI reports that correspond to one or both of a single point transmission hypotheses and a dynamic point blanking hypotheses (box 110).
- each of the plurality of the CSI reports correspond to a desired signal transmitted from one of the plurality of transmission points in the joint transmission hypothesis, are restricted to the same rank as the joint transmission hypothesis, or correspond to a unique signal transmission point within the plurality of transmission points associated with the joint transmission hypothesis.
- the present disclosure may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the disclosure.
- the present disclosure also includes the embodiments described in Appendix A.
- terminology from 3GPP LTE has been used in this disclosure to exemplify embodiments of the disclosure, those of ordinary skill in the art will readily appreciate that this if for illustrative purposes only, and that the present disclosure is not limited in scope to only the aforementioned system.
- Other wireless systems including, but not limited to, WCDMA, WiMax, UMB and GSM, may also benefit from using the methods described herein.
- eNodeB and UE is also nonlimiting, and further, does not imply any particular hierarchical relation between the two.
- an "eNodeB” could be considered as a first device and an “UE” could be considered as a second device that communicates with each other over some radio channel.
- UE could be considered as a second device that communicates with each other over some radio channel.
- the description specifically focuses on wireless transmissions in the downlink this is for illustrative purposes only. Those skilled in the art will readily appreciate that the present disclosure is equally applicable to wireless transmissions on the uplink.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Claims (42)
- Verfahren zum Verbessern von Linkanpassung in einem drahtlosen Kommunikationssystem (10), wobei das Verfahren bei einer Anwenderausrüstung, UE (User Equipment), (20) ausgeführt wird, und umfassend:Empfangen (32) einer Konfigurationsnachricht von einem eNodeB (18), wobei die Konfigurationsnachricht mit einer koordinierten Mehrpunkt, CoMP (Coordinated Multipoint), hypothetischen Datenübertragung übereinstimmt, die ein Kandidat für Downlink-Übertragung an die UE ist, wobei die hypothetische Datenübertragung einem Übertragungsschema entspricht, das von einer Gruppe ausgewählt ist, bestehend aus einem dynamischen Punktaustastungsschema, einem dynamischen Punktauswahlschema, einem koordinierten Strahlformungsschema und einem Gemeinschaftsübertragungsschema, wobei die Konfigurationsnachricht mindestens eines einer ersten Kanalstatusinformations-, CSI (Channel State Information), -meldung, die eine Interferenzhypothese spezifiziert, und einer gewünschten Signalhypothese, entsprechend der hypothetischen Datenübertragung über einen effektiven Kanal, der durch ein Referenzsignal gekennzeichnet ist, spezifiziert, wobei sowohl die Interferenzhypothese als auch die gewünschte Signalhypothese mindestens zum Teil durch eine Kanalzustandsinformation - Interferenzmessung, CSI-IM (Channel State Information - Interference Measurement), Konfiguration beziehungsweise eine Kanalzustandsinformation - Referenzsignal, CSI-RS (Channel State Information - Reference Signal), Konfiguration spezifiziert sind;Schätzen (34) von Interferenz gemäß der spezifizierten Interferenzhypothese und Schätzen von Eigenschaften des effektiven Kanals; wobei die geschätzten Eigenschaften einen Funkausbreitungskanal, Antennengewinne und/oder irgendwelche möglichen Antennenvirtualisierungen des effektiven Kanals umfassen;Ermitteln (38) mindestens einer CSI-Meldung basierend auf der Interferenzschätzung und der geschätzten Eigenschaften des effektiven Kanals; undÜbertragen (38) der ermittelten mindestens einen CSI-Meldung an den eNodeB (18).
- Verfahren nach Anspruch 1, wobei die Konfigurationsnachricht einen CSI-Prozess spezifiziert, dem mindestens eine erste CSI-Meldung zugehörig ist.
- Verfahren nach einem der Ansprüche 1-2, weiters umfassend:Ermitteln (42) einer Bitmap für die mindestens eine erste CSI-Meldung aus der Konfigurationsnachricht, wobei jedes Bit in der Bitmap einem einer Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem unterschiedlichen effektiven Kanal zugehörig ist;Ermitteln (44), basierend auf einem Wert eines vorgegebenen Bits, ob für mindestens Teile der hypothetischen Datenübertragung angenommen wird, über den effektiven Kanal übertragen zu werden, der vom Referenzsignal identifiziert wird, das dem vorgegebenen Bit zugehörig ist; undErmitteln (46), für jede Komponente der hypothetischen Datenübertragung, ob von der Komponente angenommen wird, kohärent, inkohärent oder auf einem einzelnen effektiven Kanal übertragen worden zu sein, basierend auf einem vorbestimmten Vertrag oder auf Informationen in der Konfigurationsnachricht.
- Verfahren nach einem der Ansprüche 1-3, weiters umfassend;
Ermitteln (48) einer zweiten Bitmap, basierend auf Signalen, die vom eNodeB (18) gesendet werden, wobei jedes Bit in der zweiten Bitmap einen Wert hat und einem entsprechenden einer zweiten Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem effektiven Kanal entspricht; und
Ermitteln (50), basierend auf dem Wert der Bits in der zweiten Bitmap, ob die Interferenzmessung durch künstliches Hinzufügen einer Interferenzmessung aus einer virtuellen Übertragung über den effektiven Kanal, der durch das Referenzsignal identifiziert wird, das dem Bit zugehörig ist, zu modifizieren ist. - Verfahren nach einem der Ansprüche 1-4, wobei eines oder beide der Vielzahl von Referenzsignalen und einer zweiten Vielzahl von Referenzsignalen Kanalzustandsinformationsreferenzsignale, CSI-RS, umfassen, die in einem koordinierten Mehrpunkt, CoMP, Messungssatz konfiguriert sind.
- Verfahren nach einem der Ansprüche 1-5, wobei die Konfigurationsnachricht oder eine weitere Konfigurationsnachricht weiters eine zweite erste CSI-Meldung entsprechend einer zweiten gewünschten Signalhypothese, und eine zweite Interferenzhypothese spezifiziert.
- Verfahren nach Anspruch 6, weiters umfassend Konfigurieren (52) der mindestens einen ersten CSI-Meldung, einen Rangindikator wiederzuverwenden, der gemäß der zweiten ersten CSI-Meldung errechnet ist.
- Verfahren nach Anspruch 7, weiters umfassend Konfigurieren (54) der mindestens einen CSI-Meldung, um einen Pro-Punkt-Precoder-Matrixindikator wiederzuverwenden, der gemäß einer Vielzahl von CSI-Meldungen errechnet wird, und wobei jede der Vielzahl erster CSI-Meldungen:einem gewünschten Signal entspricht, das von einem einer Vielzahl von Übertragungspunkten in einer Gemeinschaftsübertragungshypothese übertragen wird;auf einen selben Rang wie die Gemeinschaftsübertragungshypothese begrenzt ist; undeinem einzigartigen Signalübertragungspunkt innerhalb der Vielzahl von Übertragungspunkten entspricht, die der Gemeinschaftsübertragungshypothese zugehörig sind.
- Anwenderausrüstung, UE, (20), die konfiguriert ist, Linkanpassung in einem drahtlosen Kommunikationssystem (10) zu verbessern, die UE (20) umfassend:eine Kommunikationsschnittstelle (28), die konfiguriert ist, eine Konfigurationsnachricht von einem eNodeB (18) zu empfangen, wobei die Konfigurationsnachricht mit einer koordinierten Mehrpunkt, CoMP, hypothetischen Datenübertragung übereinstimmt, die ein Kandidat für Downlink-Übertragung an die UE ist, wobei die hypothetische Datenübertragung einem Übertragungsschema entspricht, das von einer Gruppe ausgewählt ist, bestehend aus einem dynamischen Punktaustastungsschema, einem dynamischen Punktauswahlschema, einem koordinierten Strahlformungsschema und einem Gemeinschaftsübertragungsschema, wobei die Konfigurationsnachricht mindestens eines einer ersten Kanalstatusinformations-, CSI, -meldung, die eine Interferenzhypothese spezifiziert, und einer gewünschten Signalhypothese, entsprechend der hypothetischen Datenübertragung über einen effektiven Kanal, der durch ein Referenzsignal gekennzeichnet ist, spezifiziert, wobei sowohl die Interferenzhypothese als auch die gewünschte Signalhypothese mindestens zum Teil durch eine Kanalzustandsinformation - Interferenzmessung, CSI-IM, Konfiguration beziehungsweise eine Kanalzustandsinformation - Referenzsignal, CSI-RS, Konfiguration spezifiziert sind; undeine Steuerung (22), konfiguriert zum:Schätzen von Interferenz gemäß der spezifizierten Interferenzhypothese und Schätzen der Eigenschaften des effektiven Kanals; wobei die geschätzten Eigenschaften einen Funkausbreitungskanal umfassen; Antennengewinne und/oder irgendwelche möglichen Antennenvirtualisierungen des effektiven Kanals;Ermitteln mindestens einer CSI-Meldung basierend auf der Interferenzschätzung und der geschätzten Eigenschaften des effektiven Kanals; undSenden der mindestens einen ermittelten CSI-Meldung an den eNodeB (18).
- UE nach Anspruch 9, wobei die Konfigurationsnachricht einen CSI-Prozess spezifiziert, dem die mindestens eine erste CSI-Meldung zugehörig ist.
- UE nach einem der Ansprüche 9-10, wobei die Steuerung (22) weiters konfiguriert ist zum:Ermitteln einer Bitmap für die mindestens eine erste CSI-Meldung aus der Konfigurationsnachricht, wobei jedes Bit in der Bitmap einem einer Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem unterschiedlichen effektiven Kanal zugehörig ist;Ermitteln, basierend auf einem Wert eines vorgegebenen Bits, ob für mindestens Teile der hypothetischen Datenübertragung angenommen wird, über den effektiven Kanal übertragen zu werden, der vom Referenzsignal identifiziert wird, das dem vorgegebenen Bit zugehörig ist; undErmitteln, für jede Komponente der hypothetischen Datenübertragung, ob für die Komponente angenommen wird, kohärent, inkohärent oder auf einem einzelnen effektiven Kanal übertragen worden zu sein, basierend auf einem vorbestimmten Vertrag oder auf Informationen in der Konfigurationsnachricht.
- UE nach einem der Ansprüche 9-11, wobei die Steuerung (22) weiters konfiguriert ist zum:Ermitteln einer zweiten Bitmap, basierend auf Signalen, die vom eNodeB (18) gesendet werden, wobei jedes Bit in der zweiten Bitmap einen Wert hat und einem entsprechenden einer zweiten Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem effektiven Kanal entspricht; undErmitteln, basierend auf dem Wert der Bits in der zweiten Bitmap, ob die Interferenzmessung durch künstliches Hinzufügen einer Interferenzmessung aus einer virtuellen Übertragung über den effektiven Kanal, der durch das Referenzsignal identifiziert wird, das dem Bit zugehörig ist, zu modifizieren ist.
- UE nach einem der Ansprüche 9-12, wobei eines oder beide der Vielzahl von Referenzsignalen und einer zweiten Vielzahl von Referenzsignalen Kanalzustandsinformationsreferenzsignale, CSI-RS, umfassen, die in einem koordinierten Mehrpunkt, CoMP, Messungssatz konfiguriert sind.
- UE nach einem der Ansprüche 9-13, wobei die Konfigurationsnachricht oder eine weitere Konfigurationsnachricht eine zweite erste CSI-Meldung entsprechend einer zweiten gewünschten Signalhypothese, und eine zweite Interferenzhypothese spezifiziert.
- UE nach Anspruch 14, wobei die Steuerung (22) weiters konfiguriert ist, die mindestens eine erste CSI-Meldung zu konfigurieren, einen Rangindikator wiederzuverwenden, der gemäß der zweiten ersten CSI-Meldung errechnet ist.
- UE nach Anspruch 15, wobei die Steuerung (22) weiters konfiguriert ist, die mindestens eine erste CSI-Meldung zu konfigurieren, einen Pro-Punkt-Precoder-Matrixindikator wiederzuverwenden, der gemäß einer Vielzahl erster CSI-Meldungen errechnet ist, in der jede erste CSI-Meldung:einem gewünschten Signal entspricht, das von einem einer Vielzahl von Übertragungspunkten in einer Gemeinschaftsübertragungshypothese übertragen wird;auf einen selben Rang wie die Gemeinschaftsübertragungshypothese begrenzt ist; undeinem einzigartigen Signalübertragungspunkt innerhalb der Vielzahl von Übertragungspunkten entspricht, die der Gemeinschaftsübertragungshypothese zugehörig sind.
- Verfahren zum Verbessern von Linkanpassung in einem drahtlosen Kommunikationssystem (10), wobei das Verfahren bei einem eNodeB (18) ausgeführt wird, und umfassend:Spezifizieren sowohl einer Interferenzhypothese als auch einer gewünschten Signalhypothese mindestens zum Teil durch eine Kanalzustandsinformation - Interferenzmessung, CSI-IM, Konfiguration beziehungsweise eine Kanalzustandsinformation - Referenzsignal, CSI-RS, Konfiguration;Übertragen (72) einer Konfigurationsnachricht an eine UE (20), wobei die Konfigurationsnachricht mit einer koordinierten Mehrpunkt, CoMP, hypothetischen Datenübertragung übereinstimmt, die ein Kandidat für Downlink-Übertragung an die UE ist, wobei die Konfigurationsnachricht weiters mindestens eine erste Kanalzustandsinformations-, CSI, -meldung spezifiziert, die die Interferenzhypothese und die gewünschte Signalhypothese entsprechend einer hypothetischen Datenübertragung über einen effektiven Kanal spezifiziert, der durch ein Referenzsignal gekennzeichnet ist, um die UE (20) zu konfigurieren, wobei die hypothetische Datenübertragung einem Übertragungsschema entspricht, ausgewählt aus einer Gruppe, bestehend aus einem dynamischen Punktaustastungsschema, einem dynamischen Punktauswahlschema, einem koordinierten Strahlformungsschema und einem Gemeinschaftsübertragungsschema, zum:Schätzen von Interferenz gemäß der spezifizierten Interferenzhypothese;Schätzen von Eigenschaften des effektiven Kanals, wobei die geschätzten Eigenschaften einen Funkausbreitungskanal, Antennengewinne und/oder irgendwelche möglichen Antennenvirtualisierungen des effektiven Kanals umfassen; undErmitteln der mindestens einen CSI-Meldung basierend auf der Interferenzschätzung und der geschätzten Eigenschaften des effektiven Kanals; undEmpfangen (74), von der UE, der mindestens einen ermittelten CSI-Meldung.
- Verfahren nach Anspruch 17, wobei die Konfigurationsnachricht einen CSI-Prozess spezifiziert, dem die mindestens eine CSI-Meldung zugehörig ist.
- Verfahren nach einem der Ansprüche 17-18, weiters umfassend Konfigurieren (82) einer Vielzahl von Konfigurationsnachrichten, die an die UE (20) zu senden sind, wobei jede Konfigurationsnachricht eine erste CSI-Meldung spezifiziert und konfiguriert ist, mit einem entsprechenden koordinierten Mehrpunkt, CoMP, Schema übereinzustimmen, das ein Kandidat für eine Downlink-Übertragung an die UE (20) ist.
- Verfahren nach einem der Ansprüche 17-19, weiters umfassend:Konfigurieren (84) der ersten CSI-Meldung, eine Bitmap mit einer Vielzahl von Bits zu umfassen, wobei jedes Bit in der Bitmap einem einer Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem unterschiedlichen effektiven Kanal zugehörig ist und wobei jedes Bit einen entsprechenden Wert hat, der konfiguriert ist, der UE (20) anzuzeigen, dass ein gewünschtes Signal über den effektiven Kanal übertragen wird, der durch das Referenzsignal identifiziert wird, das dem Bit zugehörig ist; undEinstellen (86) von zwei oder mehr Bits in der Bitmap, um die Übertragung von gewünschten Signalen auf zwei oder mehreren effektiven Kanälen anzuzeigen, und wobei die zwei oder mehreren Bits der UE (20) anzeigen, ob die gewünschten Signale kohärent oder inkohärent zwischen den zwei oder mehreren effektiven Kanälen übertragen werden, basierend auf einem vorbestimmten Vertrag oder auf Informationen in der Konfigurationsnachricht.
- Verfahren nach einem der Ansprüche 17-20, weiters umfassend:Konfigurieren (88) einer Vielzahl hierarchisch gereihter erster CSI-Meldungen, wobei die Konfiguration für irgendeine vorgegebene erste CSI-Meldung auf mindestens einer anderen ersten CSI-Meldung basiert; undKonfigurieren (90) der vorgegebenen ersten CSI-Meldung unter Verwendung ausgewählter Informationen aus einer vorigen CSI-Meldung.
- Verfahren nach Anspruch 17-18, weiters umfassend Konfigurieren (92) der Interferenzhypothese durch Signalisieren der UE (20), eine Interferenzmessung durch Hinzufügen einer Interferenzmessung aus mindestens einer virtuell interferierenden Übertragung über einen effektiven Kanal zu modifizieren, der durch ein Referenzsignal gekennzeichnet ist, das durch die Konfiguration identifiziert wird.
- Verfahren nach Anspruch 22, weiters umfassend Konfigurieren (94) der Interferenzhypothese durch Anzeigen der UE (20), wie eine zweite Bitmap von der UE (20) ermittelt werden kann, wobei jedes Bit einem einer zweiten Vielzahl von Referenzsignalen zugehörig ist und wobei der Wert jedes Bits anzeigt, ob die UE (20) die Interferenzmessung durch Hinzufügen einer Interferenzmessung aus einer virtuellen Übertragung über den effektiven Kanal modifizieren sollte, der durch das Referenzsignal gekennzeichnet ist, das einem vorgegebenen Bit in der zweiten Bitmap zugehörig ist.
- Verfahren nach einem der Ansprüche 20-23, wobei eines oder beide der Vielzahl von Referenzsignalen und der zweiten Vielzahl von Referenzsignalen Kanalzustandsinformationsreferenzsignale, CSI-RS, umfassen, die in einem koordinierten Mehrpunkt, CoMP, Messungssatz konfiguriert sind.
- Verfahren nach einem der Ansprüche 17-24, weiters umfassend Konfigurieren (96) der UE (20) mit einer Liste einer oder beider möglicher Interferenzhypothesen und einer gewünschten Signalhypothese oder Paaren davon, von denen der eNodeB (18) die erste CSI-Meldung durch Signalisieren eines Index zu einem Element in der Liste konfiguriert.
- Verfahren nach Anspruch 17-25, wobei der eNodeB (18) erste CSI-Meldungen für eine Vielzahl von CoMP Übertragungshypothesen für Übertragungspunkte, TPs (Transmission Points), konfiguriert (98), die Referenzsignalen zugehörig sind, die einem CoMP Messungssatz zugehörig sind, der für die UE (20) konfiguriert ist.
- Verfahren nach Anspruch 26, wobei der eNodeB (18) die Übertragungspunkte auf einem vorgegebenen Satz von Zeitfrequenzressourcen, TFREs (Time-Frequency Ressources), stummschaltet (100) und die UE (20) konfiguriert, den Satz von TFREs für Interferenzmessungen für mindestens eine erste CSI-Meldung zu verwenden und weiters umfassend:
Konfigurieren (102) der ersten CSI-Meldung, damit sie einer dynamischen Punktaustastungshypothese entspricht, sodass ein erster Übertragungspunkt ein gewünschtes Signal überträgt und sodass ein zweiter Übertragungspunkt stummgeschaltet ist, wobei Konfigurieren der ersten CSI-Meldung umfasst:Konfigurieren (104) der ersten CSI-Meldung, das gewünschte Signal mit einem einzelnen Referenzsignal zu verknüpfen, das dem ersten Übertragungspunkt entspricht; undKonfigurieren (106) einer Interferenzhypothese, Informationen bezüglich Interferenz von mindestens dem zweiten Übertragungspunkt wegzulassen. - Verfahren nach einem der Ansprüche 25-26, weiters umfassend Konfigurieren (108) der ersten CSI-Meldung, einen Rangindikator aus einer ersten CSI-Meldung wiederzuverwenden, wobei der Rangindikator einer oder beiden einer einzelnen Punktübertragungshypothese und einer dynamischen Punktaustastungshypothese entspricht und wobei jede der Hypothesen einem gewünschten Signal entspricht, das von einem der Vielzahl von Übertragungspunkten übertragen wird.
- Verfahren nach Anspruch 28, weiters umfassend Konfigurieren (110) der ersten CSI-Meldung, einen Pro-Punkt-Precoder-Matrixindikator aus einer Vielzahl erster CSI-Meldungen wiederzuverwenden, die einer oder beiden einer einzelnen Punktübertragungshypothese und einer dynamischen Punktaustastungshypothese entsprechen, und wobei jede der Vielzahl von ersten CSI-Meldungen:einem gewünschten Signal entspricht, das von einem einer Vielzahl von Übertragungspunkten in einer Gemeinschaftsübertragungshypothese übertragen wird;auf einen selben Rang wie die Gemeinschaftsübertragungshypothese begrenzt ist; undeinem einzigartigen Signalübertragungspunkt innerhalb der Vielzahl von Übertragungspunkten entspricht, die der Gemeinschaftsübertragungshypothese zugehörig sind.
- eNodeB (18) konfigurierte Linkanpassung in einem drahtlosen Kommunikationssystem (10), der eNodeB (18) umfassend:eine Kommunikationsschnittstelle (62); undeine Steuerung (70), die betriebsfähig mit der Kommunikationsschnittstelle verbunden ist und konfiguriert ist zum, über die Kommunikationsschnittstelle (62):Übertragen einer Konfigurationsnachricht an eine UE (20), wobei die Konfigurationsnachricht mit einer koordinierten Mehrpunkt, CoMP, hypothetischen Datenübertragung übereinstimmt, die ein Kandidat für Downlink-Übertragung an die UE ist, die Konfigurationsnachricht weiters mindestens eine erste Kanalzustandsinformations-, CSI, -meldung spezifiziert, die eine Interferenzhypothese und eine gewünschte Signalhypothese entsprechend einer hypothetischen Datenübertragung über einen effektiven Kanal spezifiziert, der durch ein Referenzsignal gekennzeichnet ist, um die UE (20) zu konfigurieren, wobei die hypothetische Datenübertragung einem Übertragungsschema entspricht, ausgewählt aus einer Gruppe, bestehend aus einem dynamischen Punktaustastungsschema, einem dynamischen Punktauswahlschema, einem koordinierten Strahlformungsschema und einem Gemeinschaftsübertragungsschema, zum:Schätzen von Interferenz gemäß der spezifizierten Interferenzhypothese;Schätzen von Eigenschaften des effektiven Kanals, wobei die geschätzten Eigenschaften einen Funkausbreitungskanal, Antennengewinne und/oder irgendwelche möglichen Antennenvirtualisierungen des effektiven Kanals umfassen; undErmitteln der mindestens einen CSI-Meldung basierend auf der Interferenzschätzung und den geschätzten Eigenschaften des effektiven Kanals; undEmpfangen, von der UE (20), der mindestens einen ermittelten CSI-Meldung, wobei die Steuerung (60) weiters konfiguriert ist, sowohl die Interferenzhypothese als auch die gewünschte Signalhypothese mindestens zum Teil durch eine Kanalzustandsinformation - Interferenzmessung, CSI-IM, Konfiguration beziehungsweise eine Kanalzustandsinformation - Referenzsignal, CSI-RS, Konfiguration zu spezifizieren.
- eNodeB nach Anspruch 30, wobei die Konfigurationsnachricht einen CSI-Prozess spezifiziert, dem die mindestens eine erste CSI-Meldung zugehörig ist.
- eNodeB nach einem der Ansprüche 30-31, wobei die Steuerung (60) weiters konfiguriert ist, mehrere Konfigurationsnachrichten zu konfigurieren, die an die UE (20) zu senden sind, wobei jede Konfigurationsnachricht eine erste CSI-Meldung spezifizieren und konfiguriert ist, ein entsprechendes koordiniertes Mehrpunkt, CoMP, Schema übereinzustimmen, das ein Kandidat für eine Downlink-Übertragung an die UE (20) ist.
- eNodeB nach einem der Ansprüche 30-32, wobei die Steuerung (60) weiters konfiguriert ist zum:Konfigurieren der CSI-Meldung, eine Bitmap mit einer Vielzahl von Bits zu umfassen, wobei jedes Bit in der Bitmap einem einer Vielzahl von Referenzsignalen zugehörig ist und wobei jedes Referenzsignal einem unterschiedlichen effektiven Kanal zugehörig ist und wobei jedes Bit einen entsprechenden Wert hat, der konfiguriert ist, der UE anzuzeigen, dass ein gewünschtes Signal über den effektiven Kanal übertragen wird, der durch das Referenzsignal identifiziert wird, das dem Bit zugehörig ist; undEinstellen von zwei oder mehr Bits in der Bitmap, um die Übertragung von gewünschten Signalen auf zwei oder mehreren effektiven Kanälen anzuzeigen, und wobei die zwei oder mehreren Bits der UE (20) anzeigen, ob die gewünschten Signale kohärent oder inkohärent zwischen den zwei oder mehreren effektiven Kanälen übertragen werden, basierend auf einem vorbestimmten Vertrag oder auf Informationen in der Konfigurationsnachricht.
- eNodeB nach einem der Ansprüche 30-33, wobei die Steuerung (60) weiters konfiguriert ist zum:Konfigurieren einer Vielzahl hierarchisch gereihter erster CSI-Meldungen, wobei die Konfiguration für irgendeine vorgegebene erste CSI-Meldung auf mindestens einer anderen ersten CSI-Meldung basiert; undKonfigurieren der vorgegebenen ersten CSI-Meldung unter Verwendung ausgewählter Informationen aus einer vorigen CSI-Meldung.
- eNodeB nach Anspruch 30-31, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren der Interferenzhypothese durch Signalisieren der UE (20), eine Interferenzmessung durch Hinzufügen einer Interferenzmessung aus mindestens einer virtuell interferierenden Übertragung über einen effektiven Kanal zu modifizieren, der durch ein Referenzsignal gekennzeichnet ist, das von der Konfiguration identifiziert wird.
- eNodeB nach Anspruch 35, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren der Interferenzhypothese durch Anzeigen der UE (20), wie eine zweite Bitmap von der UE (20) ermittelt werden kann, wobei jedes Bit einem einer zweiten Vielzahl von Referenzsignalen zugehörig ist und wobei der Wert jedes Bits anzeigt, ob die UE (20) die Interferenzmessung durch Hinzufügen einer Interferenzmessung aus einer virtuellen Übertragung über den effektiven Kanal modifizieren sollte, der durch das Referenzsignal gekennzeichnet ist, das einem vorgegebenen Bit in der zweiten Bitmap zugehörig ist.
- eNodeB nach einem der Ansprüche 33-36, wobei eines oder beide der Vielzahl von Referenzsignalen und der zweiten Vielzahl von Referenzsignalen Kanalzustandsinformationsreferenzsignale, CSI-RS, umfassen, die in einem CoMP-Messungssatz konfiguriert sind.
- eNodeB nach einem der Ansprüche 30-37, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren der UE (20) mit einer Liste einer oder beider einer möglichen Interferenzhypothese und einer gewünschten Signalhypothese oder Paaren davon, von denen der eNodeB (18) die erste CSI-Meldung durch Signalisieren eines Index zu einem Element in der Liste konfiguriert.
- eNodeB nach Anspruch 30-38, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren erster CSI-Meldungen für eine Vielzahl von CoMP Übertragungshypothesen für Übertragungspunkte, TPs, die Referenzsignalen zugehörig sind, die einem CoMP Messungssatz zugehörig sind, der für die UE (20) konfiguriert ist.
- eNodeB nach Anspruch 39, wobei die Steuerung (60) weiters konfiguriert ist zum:Stummschalten der Übertragungspunkte auf einem vorgegebenen Satz von Zeitfrequenzressourcen, TFREs;Konfigurieren der UE (20), den Satz oder TFREs für Interferenzmessungen für mindestens eine erste CSI-Meldung zu verwenden; undKonfigurieren der ersten CSI-Meldung, damit sie einer dynamischen Punktaustastungshypothese entspricht, sodass ein erster Übertragungspunkt ein gewünschtes Signal überträgt und sodass ein zweiter Übertragungspunkt stummgeschaltet ist, wobei, um die erste CSI-Meldung zu konfigurieren, die Steuerung (60) konfiguriert ist zum:Konfigurieren der ersten CSI-Meldung, das gewünschte Signal mit einem einzelnen Referenzsignal zu verknüpfen, das dem ersten Übertragungspunkt entspricht; undKonfigurieren einer Interferenzhypothese, Informationen bezüglich Interferenz aus mindestens dem zweiten Übertragungspunkt wegzulassen.
- eNodeB nach einem der Ansprüche 38-40, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren der ersten CSI-Meldung, einen Rangindikator aus einer ersten CSI-Meldung wiederzuverwenden, wobei der Rangindikator einer oder beiden einer einzelnen Punktübertragungshypothese und einer dynamischen Punktaustastungshypothese entspricht und wobei jede der Hypothesen einem gewünschten Signal entspricht, das von einem der Vielzahl von Übertragungspunkten übertragen wird.
- eNodeB nach Anspruch 41, wobei die Steuerung (60) weiters konfiguriert ist zum Konfigurieren der ersten CSI-Meldung, einen Pro-Punkt-Precoder-Matrixindikator aus einer Vielzahl erster CSI-Meldungen wiederzuverwenden, die einer oder beiden einer einzelnen Punktübertragungshypothese und einer dynamischen Punktaustastungshypothese entsprechen und wobei jede der Vielzahl von ersten CSI-Meldungen:einem gewünschten Signal entspricht, das von einem einer Vielzahl von Übertragungspunkten in einer Gemeinschaftsübertragungshypothese übertragen wird;auf einen selben Rang wie die Gemeinschaftsübertragungshypothese begrenzt ist; undeinem einzigartigen Signalübertragungspunkt innerhalb der Vielzahl von Übertragungspunkten entspricht, die der Gemeinschaftsübertragungshypothese zugehörig sind.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13715020T PL2904727T3 (pl) | 2012-03-19 | 2013-03-13 | Konfiguracja hipotez dotyczących skoordynowanej transmisji wielopunktowej dla raportowania informacji o stanie kanału |
EP19179275.3A EP3565154A1 (de) | 2012-03-19 | 2013-03-13 | Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261612920P | 2012-03-19 | 2012-03-19 | |
PCT/SE2013/050235 WO2013141781A1 (en) | 2012-03-19 | 2013-03-13 | Configuration of coordinated multipoint transmission hypotheses for channel state information reporting |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19179275.3A Division EP3565154A1 (de) | 2012-03-19 | 2013-03-13 | Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2904727A1 EP2904727A1 (de) | 2015-08-12 |
EP2904727B1 true EP2904727B1 (de) | 2019-06-12 |
Family
ID=48050888
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13715020.7A Active EP2904727B1 (de) | 2012-03-19 | 2013-03-13 | Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen |
EP19179275.3A Withdrawn EP3565154A1 (de) | 2012-03-19 | 2013-03-13 | Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19179275.3A Withdrawn EP3565154A1 (de) | 2012-03-19 | 2013-03-13 | Konfiguration von koordinierten mehrpunktübertragungshypothesen zur meldung von kanalstatusinformationen |
Country Status (16)
Country | Link |
---|---|
US (4) | US9337970B2 (de) |
EP (2) | EP2904727B1 (de) |
JP (1) | JP6171000B2 (de) |
KR (1) | KR102190628B1 (de) |
CN (1) | CN104335514B (de) |
BR (1) | BR112014023380B1 (de) |
CA (1) | CA2867841C (de) |
ES (1) | ES2743726T3 (de) |
HU (1) | HUE044544T2 (de) |
IL (1) | IL234733A (de) |
IN (1) | IN2014DN08784A (de) |
PH (1) | PH12014502069A1 (de) |
PL (1) | PL2904727T3 (de) |
RU (1) | RU2636101C2 (de) |
TR (1) | TR201909430T4 (de) |
WO (1) | WO2013141781A1 (de) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10085164B2 (en) * | 2011-04-28 | 2018-09-25 | Qualcomm Incorporated | System and method for managing invalid reference subframes for channel state information feedback |
KR101946370B1 (ko) * | 2012-03-07 | 2019-05-10 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 |
US20130265959A1 (en) * | 2012-04-10 | 2013-10-10 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving a feedback signal in a mobile communication system |
US9723506B2 (en) * | 2012-04-13 | 2017-08-01 | Lg Electronics Inc. | Method and apparatus for reporting channel state information in wireless communication system |
US20130303230A1 (en) * | 2012-05-10 | 2013-11-14 | Samsung Electronics Co., Ltd | Method and apparatus for aggregated cqi for coordinated multipoint transmission |
CN104428998B (zh) * | 2012-07-02 | 2019-07-05 | Lg电子株式会社 | 在无线通信系统中报告信道状态信息的方法和装置 |
US10645599B2 (en) | 2012-07-02 | 2020-05-05 | Lg Electronics Inc. | Method and device for reporting channel state information in wireless communication system |
WO2014048498A1 (en) * | 2012-09-28 | 2014-04-03 | Nokia Siemens Networks Oy | Method, apparatuses and computer program for reporting in- device coexistence information |
KR101600494B1 (ko) * | 2012-11-09 | 2016-03-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태 정보를 피드백하는 방법 및 이를 위한 장치 |
GB2512634A (en) * | 2013-04-04 | 2014-10-08 | Nec Corp | Communication system |
EP2993804B1 (de) * | 2013-05-01 | 2019-06-26 | LG Electronics Inc. | Verfahren zur übertragung von feedbackinformationen durch ein endgerät zur geteilten strahlformung in einem drahtloskommunikationssystem und vorrichtung dafür |
EP3107324B1 (de) * | 2014-02-13 | 2020-04-08 | Huawei Technologies Co., Ltd. | Rs-snr-melde- und -empfangsverfahren, und vorrichtungen |
CN104955152B (zh) * | 2014-03-28 | 2019-01-25 | 上海诺基亚贝尔股份有限公司 | 一种用于基于CoMP的进行资源分配的方法、装置和系统 |
EP3127265B1 (de) | 2014-04-03 | 2020-07-22 | Telefonaktiebolaget LM Ericsson (publ) | Verfahren zur schätzung der signalqualität einer übertragung an ein benutzergerät von einem übertragungspunkt |
US9813216B2 (en) * | 2014-04-04 | 2017-11-07 | Lg Electronics Inc. | Method for reporting channel state information having interference cancellation capability reflected therein, and apparatus therefor |
US10819491B2 (en) * | 2014-04-25 | 2020-10-27 | Lg Electronics Inc. | Method and device for channel state reporting |
JPWO2015166861A1 (ja) * | 2014-04-28 | 2017-04-20 | シャープ株式会社 | 端末装置および集積回路 |
US10128927B2 (en) * | 2014-05-19 | 2018-11-13 | Panasonic Intellectual Property Corporation Of America | Channel state information reporting enhancement for network assisted interference cancellation and suppression |
DE102015209441A1 (de) * | 2014-05-23 | 2015-12-10 | Samsung Electronics Co., Ltd. | Schema zum Senden eines Referenzsignals in einem drahtlosen Kommunikationssystem |
KR102231078B1 (ko) | 2014-06-03 | 2021-03-24 | 삼성전자 주식회사 | 이동 통신 시스템에서 피드백 송수신 방법 및 장치 |
KR20170051410A (ko) * | 2014-09-01 | 2017-05-11 | 엘지전자 주식회사 | 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법 |
CN106797649B (zh) * | 2014-10-10 | 2021-06-04 | 瑞典爱立信有限公司 | 与灵活的csi配置和关联反馈有关的系统和方法 |
JP2017228813A (ja) * | 2014-11-06 | 2017-12-28 | シャープ株式会社 | 基地局装置、端末装置および通信方法 |
US9973249B2 (en) * | 2014-12-23 | 2018-05-15 | Samsung Electronics Co., Ltd. | Channel state information feedback schemes for FD-MIMO |
ES2934716T3 (es) | 2015-03-27 | 2023-02-24 | Samsung Electronics Co Ltd | Dispositivo y método de asignación de recursos en un sistema de antenas a gran escala |
CN108141265B (zh) * | 2015-10-12 | 2021-12-07 | 瑞典爱立信有限公司 | 确定无线通信网络中的信道状态测量的无线设备、网络节点及其中的方法 |
US10517082B2 (en) | 2016-04-01 | 2019-12-24 | Huawei Technologies Co., Ltd. | Mechanisms for multi-tier distributed co-operative multi-point technology |
JP6562981B2 (ja) | 2016-07-29 | 2019-08-21 | 華碩電腦股▲ふん▼有限公司 | 無線通信システムにおけるビーム操作のためのチャネル状態情報報告のための方法及び装置 |
US10448408B2 (en) * | 2016-08-04 | 2019-10-15 | Samsung Electronics Co., Ltd. | Method and apparatus for coordinating multi-point transmission in advanced wireless systems |
US10158555B2 (en) | 2016-09-29 | 2018-12-18 | At&T Intellectual Property I, L.P. | Facilitation of route optimization for a 5G network or other next generation network |
US10602507B2 (en) | 2016-09-29 | 2020-03-24 | At&T Intellectual Property I, L.P. | Facilitating uplink communication waveform selection |
US10171214B2 (en) | 2016-09-29 | 2019-01-01 | At&T Intellectual Property I, L.P. | Channel state information framework design for 5G multiple input multiple output transmissions |
US10644924B2 (en) | 2016-09-29 | 2020-05-05 | At&T Intellectual Property I, L.P. | Facilitating a two-stage downlink control channel in a wireless communication system |
US10206232B2 (en) | 2016-09-29 | 2019-02-12 | At&T Intellectual Property I, L.P. | Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks |
WO2018058600A1 (en) * | 2016-09-30 | 2018-04-05 | Qualcomm Incorporated | Advanced channel state information feedback design |
US10355813B2 (en) | 2017-02-14 | 2019-07-16 | At&T Intellectual Property I, L.P. | Link adaptation on downlink control channel in a wireless communications system |
GB2562707B (en) * | 2017-03-24 | 2021-02-17 | Samsung Electronics Co Ltd | Improvements in and relating to non-coherent joint detection in telecommunication systems |
US11115241B2 (en) * | 2017-03-24 | 2021-09-07 | Apple Inc. | DM-RS grouping and CSI reporting for CoMP |
US10237759B1 (en) * | 2017-03-29 | 2019-03-19 | Sprint Spectrum L.P. | Coordinated multipoint set selection based on donor status |
CN108810932A (zh) * | 2017-05-05 | 2018-11-13 | 华为技术有限公司 | 信道状态信息处理方法及其装置 |
US10560161B2 (en) * | 2017-06-29 | 2020-02-11 | Telefonaktiebolaget Lm Ericsson (Publ) | High spatial resolution beam space CSI feedback |
CN110581726B (zh) | 2018-06-08 | 2022-07-19 | 中兴通讯股份有限公司 | 信号的发送、信道状态信息的上报方法、装置及存储介质 |
US11558097B2 (en) * | 2019-11-08 | 2023-01-17 | Qualcomm Incorporated | Enhancements to channel state information reporting |
US11785637B2 (en) | 2020-04-29 | 2023-10-10 | Qualcomm Incorporated | Multiple channel state feedback reports for MU-MIMO scheduling assistance |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2639467B2 (ja) * | 1987-10-01 | 1997-08-13 | クラミ木材株式会社 | 屋根用部材及び屋根工法 |
JPH01120405A (ja) * | 1987-11-04 | 1989-05-12 | Sumitomo Heavy Ind Ltd | コンポジットバルブ |
US8451915B2 (en) | 2007-03-21 | 2013-05-28 | Samsung Electronics Co., Ltd. | Efficient uplink feedback in a wireless communication system |
US8417252B2 (en) * | 2008-10-24 | 2013-04-09 | Qualcomm Incorporated | Method and apparatus for interference reporting in a N-MIMO communication system |
US8953642B2 (en) * | 2009-09-15 | 2015-02-10 | Lg Electronics Inc. | Method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas |
US20110317656A1 (en) * | 2009-12-23 | 2011-12-29 | Qualcomm Incorporated | Cluster-specific reference signals for communication systems with multiple transmission points |
KR101754970B1 (ko) * | 2010-01-12 | 2017-07-06 | 삼성전자주식회사 | 무선 통신 시스템의 채널 상태 측정 기준신호 처리 장치 및 방법 |
US8599708B2 (en) * | 2010-01-14 | 2013-12-03 | Qualcomm Incorporated | Channel feedback based on reference signal |
US8619542B2 (en) * | 2010-01-15 | 2013-12-31 | Motorola Mobility Llc | Closed-loop feedback in wireless communications system |
US9130607B2 (en) * | 2010-03-30 | 2015-09-08 | Qualcomm Incorporated | Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems |
CN102934476B (zh) | 2010-04-05 | 2016-07-06 | 株式会社Ntt都科摩 | 基站装置、移动台装置以及参考信号发送方法 |
JP5373706B2 (ja) * | 2010-06-21 | 2013-12-18 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置、移動端末装置および通信制御方法 |
US20110319027A1 (en) | 2010-06-25 | 2011-12-29 | Motorola, Inc. | Method for channel quality feedback in wireless communication systems |
JP5917794B2 (ja) * | 2010-07-07 | 2016-05-18 | 三井化学株式会社 | トルエンジカルバメート組成物の製造方法、および、トルエンジイソシアネートの製造方法 |
US8750887B2 (en) * | 2010-07-16 | 2014-06-10 | Texas Instruments Incorporated | Multi-cell signaling of channel state information-reference signal and physical downlink shared channel muting |
JP4938117B2 (ja) * | 2010-08-16 | 2012-05-23 | 株式会社エヌ・ティ・ティ・ドコモ | シグナリング方法、基地局装置、移動端末装置及び無線通信システム |
KR101901927B1 (ko) * | 2010-09-28 | 2018-09-27 | 엘지전자 주식회사 | 무선 통신 시스템에서 셀간 간섭 조정 방법 및 장치 |
US9544108B2 (en) * | 2011-02-11 | 2017-01-10 | Qualcomm Incorporated | Method and apparatus for enabling channel and interference estimations in macro/RRH system |
US8537911B2 (en) * | 2011-02-21 | 2013-09-17 | Motorola Mobility Llc | Method and apparatus for reference signal processing in an orthogonal frequency division multiplexing communication system |
US8478190B2 (en) * | 2011-05-02 | 2013-07-02 | Motorola Mobility Llc | Multi-cell coordinated transmissions in wireless communication network |
US8289917B1 (en) * | 2011-05-02 | 2012-10-16 | Renesas Mobile Corporation | Method and apparatus for defining resource elements for the provision of channel state information reference signals |
CN102291764A (zh) * | 2011-08-05 | 2011-12-21 | 电信科学技术研究院 | 配置测量信息和进行上报的方法、系统及设备 |
CN102291229B (zh) * | 2011-08-16 | 2014-06-04 | 电信科学技术研究院 | 一种信道状态信息的反馈方法、接收方法及其设备 |
CN102291228B (zh) * | 2011-08-16 | 2014-08-06 | 电信科学技术研究院 | 信道状态信息的反馈、接收方法和设备 |
WO2013048567A1 (en) * | 2011-09-30 | 2013-04-04 | Intel Corporation | Methods to transport internet traffic over multiple wireless networks simultaneously |
WO2013052918A1 (en) * | 2011-10-05 | 2013-04-11 | Huawei Technologies Co., Ltd. | System and method for coordinated transmission in digital communications |
GB2493224B (en) * | 2011-11-07 | 2013-07-03 | Renesas Mobile Corp | Wireless communication network |
GB2496205A (en) * | 2011-11-07 | 2013-05-08 | Renesas Mobile Corp | Applying a biasing parameter associated with a transmission scheme to a channel quality parameter |
US9509377B2 (en) * | 2011-11-07 | 2016-11-29 | Google Technology Holdings LLC | Method and apparatus for rank adaptation in an orthogonal frequency division multiplexing communication system |
US8953699B2 (en) * | 2011-11-07 | 2015-02-10 | Google Technology Holdings LLC | Method and apparatus for CSI feedback for joint processing schemes in an orthogonal frequency division multiplexing communication system with coordinated multi-point transmission |
EP2807763B1 (de) * | 2012-01-27 | 2019-05-08 | Samsung Electronics Co., Ltd. | Verfahren und vorrichtung zur bereitstellung eines datendienstes mittels rundfunksignalen |
JP5526165B2 (ja) | 2012-01-30 | 2014-06-18 | 株式会社Nttドコモ | 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法 |
-
2013
- 2013-03-13 HU HUE13715020 patent/HUE044544T2/hu unknown
- 2013-03-13 TR TR2019/09430T patent/TR201909430T4/tr unknown
- 2013-03-13 RU RU2014142021A patent/RU2636101C2/ru active
- 2013-03-13 BR BR112014023380-2A patent/BR112014023380B1/pt active IP Right Grant
- 2013-03-13 JP JP2015501622A patent/JP6171000B2/ja active Active
- 2013-03-13 CA CA2867841A patent/CA2867841C/en active Active
- 2013-03-13 US US13/877,799 patent/US9337970B2/en not_active Expired - Fee Related
- 2013-03-13 KR KR1020147029181A patent/KR102190628B1/ko active IP Right Grant
- 2013-03-13 CN CN201380026190.8A patent/CN104335514B/zh active Active
- 2013-03-13 WO PCT/SE2013/050235 patent/WO2013141781A1/en active Application Filing
- 2013-03-13 EP EP13715020.7A patent/EP2904727B1/de active Active
- 2013-03-13 IN IN8784DEN2014 patent/IN2014DN08784A/en unknown
- 2013-03-13 PL PL13715020T patent/PL2904727T3/pl unknown
- 2013-03-13 EP EP19179275.3A patent/EP3565154A1/de not_active Withdrawn
- 2013-03-13 ES ES13715020T patent/ES2743726T3/es active Active
-
2014
- 2014-09-18 PH PH12014502069A patent/PH12014502069A1/en unknown
- 2014-09-18 IL IL234733A patent/IL234733A/en active IP Right Grant
-
2016
- 2016-04-08 US US15/094,546 patent/US9961582B2/en active Active
-
2018
- 2018-03-29 US US15/940,851 patent/US10313912B2/en active Active
-
2019
- 2019-06-03 US US16/429,545 patent/US10827375B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3565154A1 (de) | 2019-11-06 |
RU2014142021A (ru) | 2016-05-20 |
IN2014DN08784A (de) | 2015-05-22 |
PH12014502069B1 (en) | 2014-12-10 |
CN104335514B (zh) | 2017-10-03 |
TR201909430T4 (tr) | 2019-07-22 |
US10827375B2 (en) | 2020-11-03 |
US9961582B2 (en) | 2018-05-01 |
KR102190628B1 (ko) | 2020-12-14 |
BR112014023380B1 (pt) | 2022-05-31 |
US20190289484A1 (en) | 2019-09-19 |
EP2904727A1 (de) | 2015-08-12 |
CA2867841A1 (en) | 2013-09-26 |
US20160227430A1 (en) | 2016-08-04 |
RU2636101C2 (ru) | 2017-11-20 |
BR112014023380A2 (de) | 2017-06-20 |
PL2904727T3 (pl) | 2020-01-31 |
CA2867841C (en) | 2022-02-15 |
US9337970B2 (en) | 2016-05-10 |
US20140112173A1 (en) | 2014-04-24 |
HUE044544T2 (hu) | 2019-10-28 |
JP6171000B2 (ja) | 2017-07-26 |
CN104335514A (zh) | 2015-02-04 |
US10313912B2 (en) | 2019-06-04 |
IL234733A (en) | 2017-04-30 |
PH12014502069A1 (en) | 2014-12-10 |
ES2743726T3 (es) | 2020-02-20 |
KR20140142297A (ko) | 2014-12-11 |
JP2015514351A (ja) | 2015-05-18 |
WO2013141781A1 (en) | 2013-09-26 |
US20180220321A1 (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10827375B2 (en) | Configuration of coordinated multipoint transmission hypotheses for channel state information reporting | |
US9307523B2 (en) | Reference signal design for coordinated multipoint transmission | |
EP2828984B1 (de) | Künstliche interferenzinjektion zur meldung von kanalstatusinformationen | |
EP3444994B1 (de) | Verfahren uno anordnungen fur csi-meldung | |
JP2015514351A5 (de) | ||
US9743304B2 (en) | Method of feeding back MU-CQI in a communication system, transmission point device, and user equipment | |
US9660784B2 (en) | Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150331 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160915 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1143962 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013056486 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E044544 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190912 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190913 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1143962 Country of ref document: AT Kind code of ref document: T Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191014 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013056486 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
26N | No opposition filed |
Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190612 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240326 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240222 Year of fee payment: 12 Ref country code: DE Payment date: 20240327 Year of fee payment: 12 Ref country code: CZ Payment date: 20240227 Year of fee payment: 12 Ref country code: GB Payment date: 20240327 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240228 Year of fee payment: 12 Ref country code: SE Payment date: 20240327 Year of fee payment: 12 Ref country code: PL Payment date: 20240222 Year of fee payment: 12 Ref country code: IT Payment date: 20240321 Year of fee payment: 12 Ref country code: FR Payment date: 20240325 Year of fee payment: 12 Ref country code: BE Payment date: 20240327 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240402 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240401 Year of fee payment: 12 |