EP2897999A2 - 2-k-kaschierklebstoff - Google Patents

2-k-kaschierklebstoff

Info

Publication number
EP2897999A2
EP2897999A2 EP13745662.0A EP13745662A EP2897999A2 EP 2897999 A2 EP2897999 A2 EP 2897999A2 EP 13745662 A EP13745662 A EP 13745662A EP 2897999 A2 EP2897999 A2 EP 2897999A2
Authority
EP
European Patent Office
Prior art keywords
component
composition according
aliphatic
mol
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13745662.0A
Other languages
English (en)
French (fr)
Other versions
EP2897999B1 (de
Inventor
Holger Eichelmann
Hanns Misiak
Christina HÜBNER
Michael HÖLTGEN
Daniela NEITZKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Mitsubishi Gas Chemical Co Inc
Original Assignee
Henkel AG and Co KGaA
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA, Mitsubishi Gas Chemical Co Inc filed Critical Henkel AG and Co KGaA
Priority to PL13745662T priority Critical patent/PL2897999T3/pl
Publication of EP2897999A2 publication Critical patent/EP2897999A2/de
Application granted granted Critical
Publication of EP2897999B1 publication Critical patent/EP2897999B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • C09J177/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/005Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/186Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/54Amino amides>
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1324Flexible food casing [e.g., sausage type, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • the invention relates to a crosslinking 2-component binder based on an epoxy component and an amine component, wherein the amine component has an increased number of polar groups.
  • the invention furthermore relates to a 2K laminating adhesive and a 2K coating composition which contain this binder system and are suitable as a barrier coating.
  • US 7282543 describes an aqueous-based composition containing a polyepoxide resin having at least one tertiary amino group, wherein the amino group has one or two substituents each carrying an epoxy group.
  • Crosslinkers described are aqueous polyamino compounds.
  • EP 1086 190 describes a reactive system for film substrates, which comprises an epoxy resin based on bisphenol A, F, resorcinol or aliphatic polyols having epoxide groups, and also a crosslinker based on amino- or carboxyl-containing compounds. Crosslinking agents containing aromatic groups are not described.
  • EP 1219656 describes a coating composition having gas barrier properties wherein one component is an epoxy resin having at least one epoxyamine moiety and is a derivative of meta-xylylenediamine (mXDA) and the hardener is a compound by reacting XDA with monocarboxylic acid and polyfunctional compounds which subsequently form an amide group.
  • EP 1437393 claims an adhesive comprising an epoxy resin component and a curing agent for this epoxy resin component, wherein the cured reaction product of the epoxy resin and the curing agent comprises at least 40% by weight of XDA structures.
  • the embodiments contain from 57 to 60 wt .-%, based on the cured adhesive composition, a high proportion of XDA structures.
  • the amino group-bearing hardener component is prepared by reaction of mXDA and methacrylic acid. Aliphatic and / or aromatic polyepoxides are not used. The molecular weight of the hardener component is not disclosed.
  • WO201 / 000619 describes 2K epoxy adhesives containing a high proportion of aromatic structures.
  • a reaction product of an excess of aromatic diamines with epoxides is prepared as the amine component. This should preferably still contain monomeric aromatic diamines.
  • mXDA or pXDA are generally used as crosslinking agents. These are primary aliphatic amines.
  • Araliphatic amines consist of at least one aromatic ring and at least one aliphatic radical in which the amino groups are not bound directly to the aromatic ring but are bonded directly to the aliphatic radical, and therefore behave chemically like amino groups of aliphatic amines. These amines may migrate into the film materials under different environmental conditions. Therefore, these low molecular weight amines in adhesives that can come into contact with food in the bonded product, as far as possible or not contained in a reduced amount.
  • the coatings must have good adhesion to various substrates. Since a variety of different substrates are used for such packaging, it is desirable that the adhesive has good adhesion to various polar or non-polar substrates. It is also advantageous if a low viscosity adhesive is used. In addition, In the case of the systems described above, high brittleness or brittleness is frequently observed. Thus, it does not achieve the flexibility required for use in the field of flexible packaging. Likewise, the pot life is often too low.
  • the proportions of unreacted amine compounds should be reduced. It should be obtained flexible adhesive layers. The pot life should be sufficient.
  • Another object of the invention are 2K laminating adhesives or 2K coating compositions, based on the 2K composition.
  • Another object of the invention is the use of such coating compositions for the production of coated films which have only a low permeability to gaseous or diffusible substances, for example for oxygen or flavorings.
  • the object is achieved by providing a two-component composition
  • a component A comprising at least one epoxide having a number average molecular weight (M N ) of 150 to 5000 g / mol with at least 2 epoxide groups per molecule
  • a component B comprising a reaction product, prepared from at least one araliphatic polyamine and optionally one or more further amines, at least one unsaturated carboxylic acid and / or one of its derivatives, preferably unsaturated carboxylic esters, and at least one aliphatic and / or aromatic polyepoxide, preferably diepoxide, in a molar ratio of amine to the sum from unsaturated carboxylic acid and / or its derivatives and polyepoxide from 1: 0.4 to 1: 0.95 to a primary amino-containing product having a number average molecular weight M N below 5000 g / mol.
  • a component of the 2K composition according to the invention consists of the component A which comprises at least one epoxide, for example a polymer or an oligomer, based on polyesters, polyamides, poly (meth) acrylates, polyurethanes and polyethers. rethanen, polyureas, polyolefins, polycarbonates or aromatic and aliphatic polyepoxides. It is necessary according to the invention that these epoxides have two or more epoxide groups per molecule.
  • the various epoxides are also referred to below as epoxy building blocks or polyepoxides.
  • the epoxide groups can be incorporated via epoxide-functional starting compounds directly in the polymer synthesis; alternatively, it is possible that in a double-bond polymer they are converted into epoxide groups.
  • a further possibility is to react polymers with OH groups or with isocyanate groups as the base polymer with low molecular weight epoxide compounds which additionally have a group reactive with the OH group or the isocyanate group. Such reaction processes or polymer-analogous reactions are known to the person skilled in the art.
  • polystyrene resin One class of suitable base polymers are OH-functionalized polyolefins.
  • Polyolefins are known in the art and can be prepared in many molecular weights. Such polyolefins based on ethylene, propylene or higher-chain ⁇ -olefins as homo- or copolymer can be functionalized either by copolymerization of monomers containing functional groups or by grafting reactions.
  • Other olefin (co) polymers such as ethylene-acrylate copolymers may also be used.
  • olefinic polymers which are suitable as base polymers for the preparation of component (A) are, for example, homo- or copolymers of 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2-methyl-1,3 hexadiene, 2-methyl-1, 3-cyclopentadiene and other copolymerizable monomers.
  • polyester polyols are polyester polyols. These can be prepared by polycondensation of one or more polycarboxylic acids and a mixture of polyols. Suitable polycarboxylic acids are those having an aliphatic, cycloaliphatic, aromatic or heterocyclic basic body or their acid anhydrides and esters. As polyol for Implementation with the polycarboxylic acids, a variety of polyols can be used. For example, aliphatic polyols with 2 primary or secondary OH groups per molecule and 2 to 20 carbon atoms are suitable, for example polyether polyols. Such polyester polyols are also commercially available.
  • Another class of base polymers contains a polyamide backbone.
  • Polyamides are reaction products of diamines with di- or polycarboxylic acids. By targeted synthesis, it is possible to introduce terminal OH groups in polyamides.
  • Another class of base polymers are polyols based on acrylates. These are polymers prepared by polymerization of (meth) acrylic esters, such as acrylic acid, methacrylic acid, crotonic acid or maleic acid esters. Conventional C 1 to C 15 alkyl esters of (meth) acrylic acid are preferably polymerized. It may also contain OH-containing monomers. Optionally, other copolymerizable monomers may also be included. Suitable OH-functional poly (meth) acrylates are known to the person skilled in the art. Another procedure results directly acrylate polymers with epoxy groups. In this case, monomers which contain glycidyl groups are copolymerized.
  • OH groups of the said base polymers can be reacted with low molecular weight compounds containing an epoxy group and a reactive with the OH group group by known methods.
  • examples of such groups are NCO groups, halogens, anhydrides or esters.
  • polymers are obtained which have epoxide groups.
  • polyurethanes are polyurethanes. These can be prepared by reacting polyols, in particular diols and / or triols with di- or tri-isocyanate compounds. The proportions are chosen so that terminally NCO-functionalized prepolymers are obtained. In particular, the polymers should be linear, ie be prepared predominantly from diols and diisocyanates.
  • the polyols and polyisocyanates which can be used in the synthesis of the PU polymers and also suitable processes for Production are known in the art. The amount of isocyanates is chosen in such a stoichiometric excess that NCO-functional PU prepolymers are obtained. Subsequently, the isocyanate groups can be reacted with epoxide-containing alcohols.
  • the above-mentioned base polymers may have multiple epoxide groups. It can be used individual polymers or mixtures. However, according to the invention it is necessary to contain on average two or more epoxide groups.
  • the epoxy group-containing polymers or oligomers thus obtained are suitable as component (A) in the context of the invention.
  • epoxides are the known polyepoxide resins which carry at least two epoxide groups per molecule.
  • the polyepoxides may generally be saturated, unsaturated, cyclic or acyclic, aliphatic, alicyclic, cyclic, aromatic or heterocyclic polyepoxide compounds.
  • suitable polyepoxides include the known polyglycidyl ethers prepared by reaction of epichlorohydrin with a polyphenol in the presence of alkali.
  • Suitable polyphenols for this purpose are, for example, resorcinol, pyrocatechol, hydroquinone, bisphenol A (bis (4-hydroxyphenyl) -2,2-propane), bisphenol F (bis (4-hydroxyphenyl) methane) or 1,5-hydroxynaphthalene , It is also possible to react corresponding amine-substituted compounds to epoxy resins. Likewise, aliphatic polyols, such as diols, can be converted into epoxide compounds.
  • Examples thereof are ethanediol diglycidyl ethers, butanediol diglycidyl ethers or digylcidyl ethers of polyethers having a molecular weight of up to 500 g / mol.
  • at room temperature flowable epoxy resins are used, which generally have an epoxide equivalent weight of 70 to about 500 g / mol of epoxide.
  • the component A is at least partially epoxy building blocks having an aliphatic or substituted aliphatic chain. They may be mixtures of aromatic epoxy resins with those based on the above-mentioned polyacrylates. te, urethanes, esters or olefins or in particular with aliphatic polyepoxides.
  • the polyepoxides of component A which are suitable according to the invention should have, on average, 2 to 10 epoxide groups, in particular 2; 3; or 4 per molecule.
  • the polyepoxides may be present individually or as a mixture with different structures.
  • the molecular weight of the epoxide units (number-average molecular weight, M N , determined via GPC against a polystyrene standard) must be 150 to 5000 g / mol, in particular 200 to 2500 g / mol. Low molecular weights are preferred for solvent-free adhesives, and higher molecular weights can be selected for solvent-borne systems.
  • the second component B crosslinking with component A contains reaction products which contain aromatic nuclei, furthermore primary amino groups and also aliphatic constituents. These are prepared as a reaction product from aliphatic polyamines and optionally further amines, unsaturated carboxylic acids and / or their derivatives and aliphatic or aromatic polyepoxides.
  • polyamines are compounds of the formula
  • R 1 H, Ci to Cö-alkyl, in particular H
  • n 1 to 4
  • aminoalkyl-substituted phenyl compounds or aminoalkyl-substituted naphthyl compounds are suitable, in particular di-substituted compounds.
  • di (aminomethyl) naphthalene, xylylenediamine (XDA) are suitable as the amine component for further reaction, in particular mXDA.
  • unsaturated carboxylic acids ⁇ - ⁇ -unsaturated carboxylic acids are preferred.
  • acrylic acid, methacrylic acid or crotonic acid are suitable.
  • derivatives of unsaturated carboxylic acids the corresponding unsaturated carboxylic acid esters are preferably used.
  • esters of acrylic acid, methacrylic acid or crotonic acid include, for example, esters of acrylic acid, methacrylic acid or crotonic acid.
  • the ester group can consist of aliphatic alcohols, for example C 1 - to C 8 -alcohols.
  • the unsaturated carboxylic acid and / or its derivatives are reacted with araliphatic polyamines.
  • the corresponding reaction products must still have amine end groups.
  • At least one further amine may additionally be present in this reaction or in a further reaction step.
  • the corresponding reaction products must have amine end groups.
  • the further amine is preferably an aliphatic amine, in particular a primary aliphatic amine.
  • at least one primary aminoalcohol can be reacted.
  • the primary amino alcohols are compounds which have a primary amino group and one or more OH groups. It is useful if the primary aminoalcohol is an aliphatic aminoalcohol. Examples are ethanolamine and butanolamine. The amount of the polar groups, in particular the H-bonding groups in the crosslinked product can thus be increased.
  • the amount of aminoalcohol is preferably selected so that up to 50 mol% of the araliphatic polyamine is replaced by the aminoalcohol.
  • the amino alcohol is therefore preferably used in an amount of up to 50 mol% based on the sum of araliphatic polyamine and amino alcohol.
  • Ethanolamine is preferably used.
  • Primary aliphatic amines and amine-substituted polyether can be used.
  • Amine-substituted polyethers are preferably used in an amount of up to 90 mol% based on the sum of araliphatic polyamine and the other amines.
  • Another necessary ingredient of the reaction product are polyepoxide compounds. These epoxy compounds cause an extension of the chain.
  • epoxides may be aromatic and / or aliphatic epoxides.
  • the amount of epoxides is chosen so that amine-terminated polymers / oligomers are still obtained after the reaction.
  • the molar ratio of amine to polyepoxide can be from 1: 0.05 to 1: 0.5, in particular 1: 0.1 to 1: 0.4. Diepoxides are preferably suitable.
  • the compounds suitable according to the invention as component B have primary amino groups.
  • the molecular weight of these compounds may be between about 500 to 5000 g / mol, in particular up to about 3000 g / mol (number average molecular weight, M N , determined by GPC against a polystyrene standard).
  • both components are flowable.
  • the viscosity may be below 20,000 mPas (25 ° C., ISO 2555, Brookfield LVT).
  • organic solvents are present in at least one component, ie they are also liquid components. According to the invention, it is preferred that epoxy components with aliphatic chains be used in component B and optionally in component A.
  • the amount of aliphatic epoxides should preferably be from 10% by weight to 50% by weight, in particular from 15 to 40% by weight, based on the amount of all epoxide building blocks. If the proportion is chosen too low, the crosslinked composition is inflexible and brittle. If the amount is set too high, the barrier properties are deteriorated. In this case, the aliphatic Epoxidbaustein be contained in the component A and / or in the component B.
  • the suitable epoxy polymers as component A and the polyamino compounds of component B are used to prepare 2K compositions according to the invention.
  • the two components are mixed in the liquid state, wherein the ratio of primary amino groups in component B and epoxy groups in component A should be approximately equimolar. In particular, the molar ratio is about 0.75: 1 to 1, 25: 1, especially 0.95: 1 to 1, 05: 1, to avoid an excess of unreacted amino groups.
  • the two components are stored separately and mixed before processing. Thereafter, the components crosslink.
  • 2K adhesives can be made from the compositions described above. In these adhesives, it is useful if additional ingredients are included, such as solvents, plasticizers, catalysts, stabilizers, adhesion promoters, pigments and / or fillers.
  • the composition useful in this invention contains at least one tackifying resin.
  • resins can be used which are compatible and form a homogeneous mixture. They may be, for example, aromatic, aliphatic or cycloaliphatic hydrocarbon resins, as well as modified or hydrogenated versions thereof.
  • the resin can be used in an amount of 0 to 50 wt .-%, preferably up to 20 wt .-% based on the composition.
  • Other soluble polymers may also be included in the composition, such as polymers having gas or aroma barrier properties. Examples are polysaccharides such as cellulose ethers or esters.
  • plasticizers may also be present, such as, for example, white oils, naphthenic mineral oils, paraffinic hydrocarbon oils, adipates, benzoate esters, vegetable or animal oils and derivatives thereof.
  • plasticizers are suitable which are harmless under food law, for example citric acid esters or short-chain triglycerides.
  • Suitable stabilizers or antioxidants which may be used are phenols, sterically hindered phenols of high molecular weight, polyfunctional phenols, sulfur and phosphorus-containing phenols or amines.
  • adhesion promoters it is possible to additionally add silane compounds as adhesion promoters to the composition.
  • adhesion promoters it is possible to add the known organofunctional silanes, such as (meth) acryloxy-functional, epoxide-functional, amine-functional or non-reactively substituted silanes. In a preferred embodiment, 0.1 to 5 wt .-% of these silanes are added to the adhesive. Depending on the choice of silane, it is expedient to mix it only in one component. Thus, a premature reaction and a reduction in storage stability can be prevented.
  • a composition may also contain catalysts.
  • catalysts it is possible to use all known compounds which are able to catalyze the reaction of amino group and epoxide group. Examples of these are metal compounds, such as titanates, bismuth compounds, tin carboxylates or zirconium chelates; or amine compounds or their salts with carboxylic acids, such as non-volatile alkylamines, aminoalkanols, morpholine and its derivatives, polyamines, such as triethylenetetramine, guanidine, or 1,8-diazabicyclo [5.4.0] undecene -7 (DBU).
  • the catalyst can be ner amount of 0 to about 5 wt .-% based on the total weight of the adhesive used, preferably from 0.1 to 1 wt .-% catalyst.
  • a particular embodiment of the invention may also contain pigments or fillers in the compositions. It is finely divided pigments, for example, with a particle size ⁇ 5 ⁇ .
  • One embodiment of the invention utilizes platelet-shaped pigments which can be dispersed in a component of the binder. Another approach uses nanoparticles. These usually have a particle size ⁇ 500 nm, in particular less than 100 nm.
  • Such pigments or fillers are known to the person skilled in the art. He can select them according to usual criteria and incorporate by known methods in one or both binder components.
  • the composition may also contain solvents. These are the usual solvents that can evaporate at temperatures up to 120 ° C.
  • the solvents can be selected from the group of aliphatic hydrocarbons, araliphatic hydrocarbons, ketones, in particular C 1 -C 4 -alcohols or also water.
  • the 2K composition is solvent-free.
  • a preferred embodiment consists of a component A comprising polymers having two or more epoxide groups, containing based on the component A alone or partially aliphatic epoxy resins.
  • Component B contains a reaction product of an aromatic diamine with unsaturated carboxylic acid esters in amounts to provide an amine-terminated intermediate. This is then reacted with a mixture of aliphatic and / or aromatic diepoxides in excess to form an amine-terminated polymer.
  • the composition should contain a total of 10 to 50 wt .-% aliphatic Epoxidbausteine (based on the Epoxidanteil).
  • 2K adhesives or 2K coating agents can be made together with the additives. Since the adhesives are particularly suitable for coating large areas, they should have a low viscosity at application temperature of about 20 to 90 ° C.
  • the known adjuvants and additives may be added to component A or component B as long as they do not react with the additives. It may contain solvents, a particular embodiment of the invention, however, operates solvent-free. It can be ensured in particular by the selection of component A and component B that at room temperature such as 25 ° C, a flowable mixture of component A and B is obtained.
  • An adhesive according to the invention can be used in particular as a laminating adhesive.
  • the adhesives are applied to a film in a thin layer. Immediately afterwards any solvents should evaporate. Thereafter, a second film is applied to the adhesive layer and pressed with pressure. In a selection according to the invention of the components with low viscosity solvents can be avoided.
  • thermoplastic plastics in film form, for example polyolefins, such as polyethylene (PE) or polypropylene (PP, CPP, OPP), polyvinyl chloride (PVC), polystyrene (PS), polyesters, such as PET, polyamide, organic polymers, like cellophane, metallised films, films coated with S1O2 or Al2O3, metal foils or paper as substrates are also possible.
  • the film materials may also be modified, for example by modifying the polymers having functional groups, or additional components, for example pigments, dyes, or foamed layers may be contained in the film. It may be colored, printed, colorless or transparent films.
  • a particular embodiment of the invention is the provision of a water-soluble 2K adhesive. It is advantageous if the components have an increased number of polar groups in order to have improved water solubility or water miscibility. In this case, it is additionally advantageous to use emulsifiers or dispersing aids as further constituents. These also support the dispersibility of the components in water in small quantities.
  • the emulsifiers should be mixed in amounts of 0.1 to 5 wt .-% based on the composition. Ionic groups that give permanent water solubility are not included. After networking the two components, a network is formed. This is no longer water-soluble, but has a good bond strength and good barrier properties.
  • Another embodiment of the invention employs 2K compositions for 2K coating agents.
  • These coating compositions may in principle contain the same constituents as described for the laminating adhesives. However, care must be taken when selecting that the coating compositions after crosslinking have a smooth, non-sticky surface. Good adhesion should only exist to the substrate on which the coating agent is applied in liquid form. The person skilled in the art is familiar with those constituents which are to be used only to a slight extent in the production of non-tacky surfaces or are to be avoided.
  • a multilayer film which is adhesively bonded to a laminating adhesive which is suitable according to the invention, in which case the known plastic films can be used as substrates.
  • a continuous layer is produced with an adhesive according to the invention, which is bonded immediately after application with a second identical or different film.
  • an adhesive according to the invention it is also possible to ren steps to produce a multilayer film.
  • An embodiment of the invention works with transparent films, it is expedient if the adhesive according to the invention is also transparent and not discolored.
  • other non-plastic films may also be contained in multilayer films, for example paper or metal foils.
  • the adhesive according to the invention shows a good adhesion between the different layers. It shows no bubbles or imperfections in the adhesive layer.
  • the resulting composite substrates are flexible. Also in the possible further manufacturing steps as packaging, cracks and delaminations are reduced.
  • Another object of the invention is the use of the composition according to the invention for producing coatings on flexible composite substrates.
  • the additives and auxiliaries mentioned above may be contained in the coating composition.
  • the coating agents are liquid or can be applied by heating up to 90 ° C flowable. These coatings are flexible after crosslinking and can therefore be used especially for flexible multilayer films.
  • the coating composition of the invention at an application temperature between 20 to 60 ° C.
  • non-sticky layers are obtained on the surface.
  • Such films can then be further processed in a known manner, either additional laminating layers are applied or they are made up.
  • the composite films produced according to the invention have a high flexibility. They can be transparent, ie they contain only nanoparticles as fillers, no fillers or only small amounts of conventional fillers, so that the adhesive layer does not appear significantly clouded in the composite. It may also be colored or pigmented layers.
  • a be- A particularly advantageous property of the layers according to the invention is an increased barrier effect of the layer. It has been found that flavoring agents can penetrate such multilayer films as an adhesive layer or as a coating worse than conventionally bonded films. Also, an improved stability against diffusion of gases, such as oxygen, or water vapor is noted. Furthermore, it has been found that the amounts of aromatic unbound diamines in the adhesive layer are reduced by the component B constructed according to the invention.
  • compositions according to the invention can be further processed in a simple manner into 2K coating or 2K adhesives.
  • adhesives or coating agents on film substrates, composite films are obtained which have high barrier properties.
  • the barrier properties can be related to various components, for example, the diffusion of oxygen can be reduced.
  • Another embodiment reduces the diffusion of water.
  • Example 1 The adhesion to the different substrate materials is good. Even with mechanical loading of composite materials, such as the bonded films, no separation between bonded surfaces is observed. From the composite materials according to the invention, for example, packaging can be produced. Due to the barrier effect, such packages are suitable for sensitive articles, for example for food or pharmaceutical goods. Another field of application are technical laminating bonds, for example adhesions of flexible circuits or similar objects. Examples: Example 1
  • Example 4 Analogously to Example 2, except that instead of the bisphenol A diglycidyl ether, a mixture of 0.08 mol of bisphenol A diglycidyl ether and butylene glycol 1, 4-diglycidyl ether used.
  • Example 4 a mixture of 0.08 mol of bisphenol A diglycidyl ether and butylene glycol 1, 4-diglycidyl ether used.
  • Example 2 0.5 mol of ethyl acrylate u. 1.0 mol of mXDA were reacted analogously to Example 1. After distilling off the ethanol u. After cooling to RT, 145 g of ethanol (as solvent) were added. Over a period of 10 minutes, 4.5 moles of butylene glycol-1,4-diglycidyl ether were added. The temperature of 70 ° C was maintained for a period of 30 minutes. 5.0 moles of Jeffamine T-403 were added over 3 minutes and stirred for 2 hours. The mixture was then held at 50 ° C for 1 h.
  • the number average molecular weight M N is 600 (GPC). Comparative Example:
  • butanediol diglycidyl ether (Hardener 1) or tetraglycidyl mXDA (Hardener 2) was used.
  • the solvent was removed after application in a drying tunnel at elevated temperature (40-70 ° C) and with air movement, before the substrates were bonded.
  • oxygen transmission rate with a coating according to the invention is better than the film alone. It also shows that the diffusion value is also lower in the bonded substrates. Furthermore, a good bond is achieved.
  • the amino compound of the comparative example is dissolved in ethanol (60% by weight solids) and mixed with hardener 2 (1: 0.313). This mixture is filled into a mold made of PTFE (area: 100 mm ⁇ 100 mm) so that a film of 1 mm thickness is obtained after drying and hardening. Further films were prepared based on the following examples from the above table:
  • the films were released from the mold after one day and dried for another day. The films were then bent (180 °). The based on the comparative example and hardener 2 film breaks it, the films of the invention, however, not. The examples according to the invention thus show improved flexibility.
  • Adhesive and hardener are placed at room temperature (24 ° C) in a wide-necked flask and monitored the evolution of heat over the time course of temperature.
  • the following compositions were prepared and tested.
  • Example 2 The amine component of Example 1 is dissolved in ethanol (50 wt .-% solids) and mixed with hardener 1 (1: 0.27).
  • case a) a much higher temperature increase of up to 40 ° C is shown than in case b) of a maximum of only 33 ° C.
  • the higher reactivity in case a) can lead to premature curing of the mixture in the reservoir of the laminating / laminating machine.
  • the composition according to the invention shows a pot life (ie the maximum period during which processing of the composition is still possible after mixing the components) of over 4 hours, whereas according to case a) already at an earlier point in time shows an increase in viscosity which no longer permits good processing.
  • Detector refractive index detector; Sensitivity 16, 35 ° C
  • strip separators 15 mm wide strips of the composite are cut.
  • the composite is separated by hand or on a hot sealing jaw edge.
  • inserting one end of the composite strip into ethyl acetate may be helpful.
  • the measurement is carried out with a universal tensile testing machine, force range 0-20 N (eg the company Instron or Zwick).
  • the previously sewn composite strip is clamped and the tensile testing machine started at a withdrawal speed of 100 mm / min.
  • the trigger angle is 90 ° (to be maintained manually) and the trigger length is 5 - 10 cm (depending on the fluctuation range).
  • the measurement is repeated three times.
  • the bond strength results as the mean value of this triple measurement.
  • OX-TRAN 2/21 H measuring instruments made by MOCON are used.
  • the test cell of the measuring instruments consists of two halves.
  • the film is placed between the two half cells.
  • Oxygen is passed through the outer half cell as a test gas.
  • the inner half cell is traversed by carrier gas, a mixture of 95% nitrogen and 5% hydrogen (essentially forming gas).
  • the oxygen that permeates the film is taken up by the carrier gas and transported to the detector.
  • the oxygen sensor generates an electrical current in the presence of oxygen that is proportional to the incoming amount of oxygen.
  • the viscosity is determined at the indicated temperature in accordance with standard ISO 2555 using a Brookfield LVT viscometer.
  • the selection of the spindle u. Shear rate depends on the temperature and the viscosity range (eg at RT to ⁇ 30 ° and viscosities of about 1000-5000 mPas are suitable spindle 27 and a shear rate of 5 rpm)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)
  • Wrappers (AREA)
  • Paints Or Removers (AREA)

Abstract

Zwei-Komponenten-Zusannnnensetzung bestehend aus einer Komponente A enthaltend Epoxide mit einem zahlenmittleren Molekulargewicht (MN) von 150 bis 5000 g/mol mit mindestens 2 Epoxidgruppen pro Molekül, einer Komponente B enthaltend ein Umsetzungsprodukt, hergestellt aus araliphatischen Polyaminen und gegebenenfalls weiteren Aminen, ungesättigten Carbonsäuren und/oder ihren Derivaten und aliphatischen und/oder aromatischen Polyepoxiden in einem molaren Verhältnis von Amin zur Summe aus ungesättigter Carbonsäure und/oder ihren Derivaten und Polyepoxid von 1 : 0,4 bis 1 : 0,95 zu einem primäre Aminogruppen aufweisenden Produkt mit einem zahlenmittleren Molekulargewicht (MN) unter 5000 g/mol.

Description

2-K-Kaschierklebstoff
Die Erfindung betrifft ein vernetzendes 2-Komponenten-Bindemittel auf Basis einer Epoxidkomponente und einer Aminkomponente, wobei die Aminkomponente eine erhöhte Anzahl von polaren Gruppen aufweist. Die Erfindung betrifft weiterhin einen 2K-Kaschierklebstoff und ein 2K-Beschichtungsmittel, die dieses Bindemittel- system enthalten und als Barrierebeschichtung geeignet sind.
Die US 7282543 beschreibt eine Zusammensetzung auf wässriger Basis, die ein Polyepoxidharz enthält, das mindestens eine tertiäre Aminogruppe aufweist, wobei die Aminogruppe einen oder zwei Substituenten aufweist, die jeweils eine Epo- xigruppe tragen. Als Vernetzer sind wässrige Polyaminoverbindungen beschrieben.
Die EP 1086 190 beschreibt ein reaktives System für Foliensubstrate, das ein E- poxidharz auf Basis von Bisphenol A, F, Resorcin oder aliphatischen Polyolen mit Epoxidgruppen umfasst, sowie einen Vernetzer auf Basis von Amino- oder Carbo- xylgruppen aufweisenden Verbindungen. Aromatische Gruppen enthaltende Vernetzer werden nicht beschrieben.
Die EP 1219656 beschreibt eine Beschichtungszusammensetzung mit Gasbarriereeigenschaften, wobei eine Komponente ein Epoxidharz ist, dass mindestens eine Epoxiamin-Einheit aufweist und ein Derivat von meta-Xylylendiamin (mXDA) ist, und der Härter eine Verbindung ist, durch Umsetzung von XDA mit Monocar- bonsäure sowie polyfunktionellen Verbindungen, die danach eine Amidgruppe bilden. Die EP 1437393 beansprucht einen Klebstoff mit einer Epoxidharzkomponente und einem Härter für diese Epoxidharzkomponente, wobei das ausgehärtete Reaktionsprodukt des Epoxidharzes und des Härters mindestens 40 Gew.-% von XDA Strukturen aufweist. Die Ausführungsbeispiele enthalten mit 57 bis 60 Gew.-%, bezogen auf die ausgehärtete Klebstoffzusammensetzung, einen hohen Anteil an XDA-Strukturen. Die Aminogruppen-tragende Härterkomponente wird dabei durch Umsetzung von mXDA und Methacryl säure hergestellt. Aliphatische und/oder aromatischen Polyepoxide werden nicht eingesetzt. Das Molekulargewicht der Härterkomponente ist nicht offenbart.
De WO201 1/000619 beschreibt 2K-Epoxidklebstoffe, die einen hohen Anteil aromatischer Strukturen enthalten. Dabei wird als Aminkomponente ein Umsetzungsprodukt aus einem Überschuss von aromatischen Diaminen mit Epoxiden hergestellt. Dieses soll bevorzugt noch monomere aromatische Diamine enthalten.
Bei den 2K-Beschichtungsmitteln des Standes der Technik werden im allgemeinen mXDA oder pXDA als Vernetzer eingesetzt. Es handelt sich dabei um primäre ara- liphatische Amine. Araliphatische Amine bestehen aus mindestens einem aromatischen Ring und mindestens einem aliphatischen Rest, bei denen die Aminogrup- pen nicht direkt am aromatischen Ring, sondern direkt am aliphatischen Rest gebunden vorliegen, und sich daher chemisch wie Aminogruppen aliphatischer Amine verhalten. Diese Amine können unter verschiedenen Umgebungsbedingungen in die Folienmaterialien migrieren. Deswegen sollen diese niedermolekularen Amine in Klebstoffen, die im verklebten Produkt mit Lebensmitteln in Kontakt kommen können, möglichst nicht oder in verminderter Menge enthalten sein.
Ein weiterer Nachteil der oben beschriebenen Systeme ist es in der Praxis, dass die Beschichtungen eine gute Haftung zu verschiedenen Substraten aufweisen müssen. Da für solche Verpackungen eine Vielzahl von unterschiedlichen Substraten eingesetzt wird, ist es zweckmäßig, dass der Klebstoff eine gute Haftung auf verschiedenen polaren oder unpolaren Substraten aufweist. Es ist außerdem vorteilhaft, wenn ein Klebstoff mit niedriger Viskosität eingesetzt wird. Zudem beo- bachtet man bei den oben beschriebenen Systemen häufig eine hohe Sprödigkeit bzw. Brüchigkeit. Es wird also nicht die Flexibilität erreicht, wie sie für den Einsatz im Bereich der flexiblen Verpackungen erforderlich ist. Ebenso ist die Topfzeit häufig zu gering.
Aufgabe der vorliegenden Erfindung ist es deswegen eine 2-Komponenten- Zusammensetzung zur Verfügung zu stellen, die aus einem Epoxid und aus niedrigviskosen Amin-Umsetzungsprodukten besteht. Dabei sollen die Anteile an nicht umgesetzten Aminverbindungen reduziert sein. Es sollen flexible Klebstoffschichten erhalten werden. Die Topfzeit soll ausreichend sein. Ein weiterer Gegenstand der Erfindung sind 2K-Kaschierklebstoffe oder 2K-Überzugsmittel, auf Basis der 2K-Zusammensetzung. Ein weiterer Gegenstand der Erfindung ist die Verwendung solcher Beschichtungsmittel zur Herstellung von beschichteten Folien, die nur eine niedrige Durchlässigkeit für gasförmige oder diffusionsfähige Stoffe aufweisen, beispielsweise für Sauerstoff oder Aromastoffe.
Die Aufgabe wird gelöst durch Bereitstellen einer Zwei-Komponenten- Zusammensetzung bestehend aus einer Komponente A enthaltend mindestens ein Epoxid mit einem zahlenmittleren Molekulargewicht (MN) von 150 bis 5000 g/mol mit mindestens 2 Epoxidgruppen pro Molekül, einer Komponente B enthaltend ein Umsetzungsprodukt, hergestellt aus mindestens einem araliphatischen Polyamin und gegebenenfalls einem oder mehreren weiteren Aminen, mindestens einer ungesättigten Carbonsäure und/oder eines ihrer Derivate, bevorzugt ungesättigte Carbonsäureester, und mindestens einem aliphatischen und/oder aromatischen Polyepoxid, bevorzugt Diepoxid, in einem molaren Verhältnis von Amin zur Summe aus ungesättigter Carbonsäure und/oder ihren Derivaten und Polyepoxid von 1 : 0,4 bis 1 : 0,95 zu einem primäre Aminogruppen aufweisenden Produkt mit einem zahlenmittleren Molekulargewicht MN unter 5000 g/mol.
Ein Bestandteil der erfindungsgemäßen 2K-Zusammensetzung besteht aus der Komponente A, die mindestens ein Epoxid, beispielsweise ein Polymer oder ein Oligomer, auf Basis von Polyestern, Polyamiden, Poly(meth)acrylaten, Polyu- rethanen, Polyharnstoffen, Polyolefinen, Polycarbonaten oder aromatischen sowie aliphatischen Polyepoxiden enthält. Es ist erfindungsgemäß notwendig, dass diese Epoxide zwei oder mehr Epoxidgruppen pro Molekül aufweisen. Die verschiedenen Epoxide werden im Folgenden auch als Epoxidbausteine oder Polyepoxide bezeichnet. Handelt es sich bei dem Epoxid um ein Polymer können die Epoxidgruppen über Epoxid-funktionelle Ausgangsverbindungen direkt bei der Polymersynthese eingebaut werden, alternativ ist es möglich, dass in einem Doppelbindungen aufweisenden Polymer diese in Epoxidgruppen überführt werden. Eine weitere Möglichkeit besteht darin, Polymere mit OH-Gruppen oder mit Isocya- natgruppen als Basispolymer mit niedermolekularen Epoxidverbindungen umzusetzen, die zusätzlich noch eine mit der OH-Gruppe oder der Isocyanatgruppe reaktive Gruppe aufweisen. Solche Reaktionsverfahren oder polymeranaloge Umsetzungen sind dem Fachmann bekannt.
Eine Klasse von geeigneten Basispolymeren sind OH-funktionalisierte Polyolefine. Polyolefine sind dem Fachmann bekannt und können in vielen Molekularmassen hergestellt werden. Solche Polyolefine auf Basis von Ethylen-, Propylen- oder höher- kettigen α-Olefinen als Homo- oder Copolymer können entweder durch Copolymeri- sation von funktionelle Gruppen enthaltenden Monomeren oder durch Pfropfreaktionen funktionalisiert werden. Es können auch andere Olefin(co)polymere, wie beispielsweise Ethylen-Acrylat-Copolymere eingesetzt werden.
Weitere olefinische Polymere, die als Basispolymere zur Herstellung der Komponente (A) geeignet sind, sind beispielsweise Homo- oder Copolymerisate des 1 ,3- Butadiens, 2-Methyl-1 ,3-butadiens (Isoprens), 2-Methyl-1 ,3-hexadiens, 2-Methyl- 1 ,3-cyclopentadiens und weiterer copolymerisierbarer Monomere.
Eine weitere Klasse von geeigneten Basispolymeren sind Polyesterpolyole. Diese können durch Polykondensation einer oder mehrerer Polycarbonsäuren und einem Gemisch aus Polyolen hergestellt werden. Als Polycarbonsäure sind solche mit einem aliphatischen, cycloaliphatischen, aromatischen oder heterocyclischen Grundkörper geeignet oder deren Säureanhydride und Ester. Als Polyol zur Umsetzung mit den Polycarbonsäuren kann eine Vielzahl von Polyolen eingesetzt werden. Beispielsweise sind aliphatische Polyole mit 2 primären oder sekundären OH-Gruppen pro Molekül und 2 bis 20 C-Atomen geeignet, beispielsweise auch Polyetherpolyole. Solche Polyesterpolyole sind auch kommerziell erhältlich.
Eine weitere Klasse von Basispolymeren enthält ein Polyamid-Rückgrat. Polyamide sind Umsetzungsprodukte von Diaminen mit Di- oder Polycarbonsäuren. Durch gezielte Synthese ist es möglich, endständig OH-Gruppen in Polyamide einzuführen.
Eine weitere Klasse von Basispolymeren sind Polyole auf Basis von Acrylaten. Es handelt sich dabei um durch Polymerisation von (Meth)acrylestern hergestellte Polymere, wie Acrylsäure-, Methacrylsäure-, Crotonsäure- oder Maleinsäureester. Bevorzugt werden übliche Ci bis C15 -Alkylester der (Meth)acrylsäure polymerisiert. Es können dabei auch OH-Gruppen tragende Monomere enthalten sein. Gegebenenfalls können auch andere copolymerisierbare Monomere enthalten sein. Geeignete OH-funktionelle Poly(meth)acrylate sind dem Fachmann bekannt. Eine andere Arbeitsweise ergibt direkt Acrylatpolymere mit Epoxidgruppen. Dabei werden Monomere, die Glycidylgruppen enthalten, einpolymerisiert.
OH-Gruppen der genannten Basispolymere können nach bekannten Verfahren mit niedermolekularen Verbindungen umgesetzt werden, die eine Epoxidgruppe enthalten sowie eine mit der OH-Gruppe reagierende Gruppe. Beispiele für solche Gruppen sind NCO-Gruppen, Halogene, Anhydride oder Ester. Nach Reaktion werden Polymere erhalten, die Epoxidgruppen aufweisen.
Eine weitere Klasse von geeigneten Basispolymeren sind Polyurethane. Diese können durch Umsetzung von Polyolen, insbesondere Diolen und/oder Triolen mit Di- oder Tri-Isocyanat-Verbindungen hergestellt werden. Dabei werden die Mengenverhältnisse so gewählt, dass endständig NCO-funktionalisierte Prepolymere erhalten werden. Insbesondere sollen die Polymere linear sein, d.h. überwiegend aus Diolen und Diisocyanaten hergestellt werden. Die bei der Synthese der PU- Polymere einsetzbaren Polyole und Polyisocyanate sowie geeignete Verfahren zur Herstellung sind dem Fachmann bekannt. Die Menge der Isocyanate wird dabei so im stöchiometrischen Überschuss gewählt, dass NCO-funktionelle PU- Prepolymere erhalten werden. Anschließend können die Isocyanatgruppen mit Epoxidgruppen-enthaltenden Alkoholen umgesetzt werden.
Die oben erwähnten Basispolymere können mehrere Epoxidgruppen aufweisen. Es können einzelne Polymere oder Gemische eingesetzt werden. Es ist erfindungsgemäß jedoch notwendig, dass im Durchschnitt zwei oder mehr Epoxidgruppen enthalten sind. Die so erhaltenen Epoxidgruppen-haltigen Polymere oder Oligomere sind als Komponente (A) im Rahmen der Erfindung geeignet.
Als Epoxide sind außerdem auch die bekannten Polyepoxidharze geeignet, die mindestens zwei Epoxidgruppen pro Molekül tragen. Die Polyepoxide können grundsätzlich gesättigte, ungesättigte, cyclische oder acyclische, aliphatische, ali- cyclische, aromatische oder heterocyclische Polyepoxidverbindungen sein. Beispiele für geeignete Polyepoxide schließen die bekannten Polyglycidylether ein, die durch Reaktion von Epichlorhydrin mit einem Polyphenol in Gegenwart von Alkali hergestellt werden. Hierfür geeignete Polyphenole sind beispielsweise Re- sorcinol, Brenzkatechin, Hydrochinon, Bisphenol A (Bis-(4-Hydroxy-phenyl)-2,2- propan), Bisphenol F (Bis(4-hydroxyphenyl)methan) oder 1 ,5-Hydroxynaphthalin. Es ist auch möglich entsprechende Amin-substituierten Verbindungen zu Epoxidharzen umzusetzen. Ebenso können auch aliphatische Polyole, beispielsweise Diole, zu Epoxidverbindungen umgesetzt werden. Beispiele dafür sind Ethandiol- digycidylether, Butandiol-diglycidylether oder Digylcidylether von Polyethern mit einem Molekulargewicht von bis zu 500 g/mol. Insbesondere werden bei Raumtemperatur fließfähige Epoxidharze eingesetzt, die in der Regel ein Epoxid- Äquivalentgewicht von 70 bis etwa 500 g/mol Epoxid aufweisen.
In einer besonders bevorzugten Ausführungsform handelt es sich bei der Komponente A mindestens teilweise um Epoxidbausteine, die eine aliphatische oder substituierte aliphatische Kette aufweisen. Es kann sich um Mischungen handeln von aromatischen Epoxidharzen mit solchen auf Basis der oben erwähnten Polyacryla- te, -urethane, -ester oder -olefine oder insbesondere mit aliphatischen Polyepoxi- den.
Die erfindungsgemäß geeigneten Polyepoxide der Komponente A sollen im Durchschnitt 2 bis 10 Epoxidgruppen aufweisen, insbesondere 2; 3; oder 4 pro Molekül. Die Polyepoxide können einzeln oder als Gemisch mit unterschiedlichen Strukturen vorliegen.
Um geeignete Applikationseigenschaften zu erhalten muss das Molekulargewicht der Epoxidbausteine (zahlenmittleres Molekulargewicht, MN, über GPC gegen einen Polystyrolstandard bestimmt) 150 bis 5000 g/mol betragen, insbesondere 200 bis 2500 g/mol. Dabei sind für lösemittelfreie Klebstoffe eher niedrige Molekulargewichte bevorzugt, für lösemittelhaltige Systeme können auch höhere Molekulargewichte ausgewählt werden.
Die mit der Komponente A vernetzende zweite Komponente B enthält Umsetzungsprodukte, die aromatische Kerne enthalten, weiterhin primäre Aminogruppen sowie aliphatische Bestandteile. Diese werden als Umsetzungsprodukt aus ara- liphatischen Polyaminen und gegebenenfalls weiteren Aminen, ungesättigten Carbonsäuren und/oder ihren Derivaten und aliphatischen oder aromatischen Polye- poxiden hergestellt.
Als Polyamine sind beispielsweise Verbindungen der Formel
(I) R1- Aryl-(-(CH2)n-NH2)a mit
R1 = H, Ci bis Cö-Alkyl, insbesondere H
a = 2 oder 3
n = 1 bis 4
geeignet. Insbesondere sind Aminoalkyl-substituierte Phenylverbindungen oder Aminoalkyl-substituierte Naphthylverbindungen geeignet, insbesondere di- substitutierte Verbindungen. Beispielsweise sind Di(aminomethyl)naphthalin, Xyly- lendiamin (XDA), als Aminkomponente zur weiteren Umsetzung geeignet, insbesondere mXDA. Als ungesättigte Carbonsäuren sind α-ß-ungesättigte Carbonsäuren bevorzugt. Insbesondere sind Acrylsäure, Methacrylsäure oder Crotonsäure geeignet. Als Derivate ungesättigter Carbonsäuren werden die entsprechenden ungesättigten Carbonsäureester bevorzugt eingesetzt. Darunter sind beispielsweise Ester der Acrylsäure, Methacrylsäure oder der Crotonsäure geeignet. Die Estergruppe kann aus aliphatischen Alkoholen bestehen, beispielsweise C1 - bis C8-Alkohole. Die ungesättigte Carbonsäure und/oder ihre Derivate werden mit araliphatischen Poly- aminen umgesetzt. Die entsprechenden Umsetzungsprodukte müssen noch Amin- Endgruppen aufweisen.
In einer weiteren Ausführungsform der Erfindung kann bei dieser Reaktion oder in einem weiteren Reaktionsschritt gegebenenfalls zusätzlich mindestens ein weiteres Amin enthalten sein. Auch in diesem Fall müssen die entsprechenden Umsetzungsprodukte Amin-Endgruppen aufweisen. Bei dem weiteren Amin handelt es sich bevorzugt um ein aliphatisches Amin, insbesondere um ein primäres aliphatisches Amin. In einer bevorzugten Ausführungsform kann mindestens ein primärer Aminoalkohol umgesetzt werden. Bei den primären Aminoalkoholen handelt sich dabei um Verbindungen, die eine primäre Aminogruppe und eine oder mehrere OH-Gruppen aufweisen. Es ist zweckmäßig, wenn der primäre Aminoalkohol ein aliphatischer Aminoalkohol ist. Beispiele dafür sind Ethanolamin und Butanolamin. Die Menge der polaren Gruppen, insbesondere der H-Brücken-bildenden Gruppen im vernetzten Produkt kann so erhöht werden. Die Menge an Aminoalkohol wird vorzugsweise so ausgewählt, dass bis zu 50 Mol-% des araliphatischen Polyamins durch den Aminoalkohol ersetzt werden. Der Aminoalkohol wird also vorzugsweise in einer Menge von bis zu 50 Mol-% bezogen auf die Summe aus araliphatischem Polyamin und Aminoalkohol eingesetzt. Ethanolamin wird dabei bevorzugt verwendet. Als primäre aliphatische Amine können auch Amin-substituierte Polyether vewendet werden. Amin-substituierte Polyether werden vorzugsweise in einer Menge von bis zu 90 Mol-% bezogen auf die Summe aus araliphatischem Polyamin und den weiteren Aminen eingesetzt. Ein weiterer notwendiger Bestandteil des Umsetzungsprodukts sind Poly- epoxidverbindungen. Diese Epoxidverbindungen bewirken eine Verlängerung der Kette. Es kann sich um aromatische und/ oder aliphatische Epoxide handeln. Die Menge der Epoxide wird so gewählt, dass nach der Reaktion weiterhin Amin- terminierte Polymere/Oligomere erhalten werden. Insbesondere kann das molare Verhältnis von Amin zu Polyepoxid von 1 : 0,05 bis 1 : 0,5 betragen, insbesondere 1 : 0,1 bis 1 : 0,4. Bevorzugt sind Diepoxide geeignet.
Die Reaktionen von ungesättigten Carbonsäuren und/oder ihren Derivaten, insbesondere Carbonsäureestern, mit Polyaminen und von Polyepoxiden mit Polyami- nen sind dem Fachmann bekannt. Dabei werden die ausgewählten ungesättigten Carbonsäuren und/oder ihre Derivate, insbesondere Carbonsäureester, zusammen mit der entsprechenden Menge des Polyamins gemischt und ggf. unter Erwärmen umgesetzt. Gegebenfalls können flüchtige Reaktionsprodukte entfernt werden. Ebenso können diese aminhaltigen Reaktionsprodukte dann mit den Polyepoxiden umgesetzt werden. Der Fachmann kann geeignete Reaktionsbedingungen festlegen. Es ist ebenfalls möglich, dass zur besseren Umsetzung die Ausgangsbestandteile in nicht-reaktiven Lösemitteln gelöst werden. Diese kann man nach der Reaktion bei Bedarf durch Destillation entfernen, oder es wird eine lösemittelhaltige Komponente B erhalten. Durch die stufenweise Reaktionsführung werden die Anteile an monomeren Polyaminen vermindert.
Die erfindungsgemäß als Komponente B geeigneten Verbindungen weisen primäre Aminogruppen auf. Das Molekulargewicht dieser Verbindungen kann zwischen ca. 500 bis 5000 g/mol betragen, insbesondere bis ca. 3000 g/mol (zahlenmittleres Molekulargewicht, MN, über GPC gegen einen Polystyrolstandard bestimmt). In einer Ausführungsform sind beide Komponenten fließfähig. Dabei kann die Viskosität unter 20000 mPas (25 °C, ISO 2555, Brookfield LVT) liegen. In einer anderen Ausführungsform sind in mindestens einer Komponente organische Lösemittel enthalten, es handelt sich dabei also auch um flüssige Komponenten. Erfindungsgemäß ist es bevorzugt, dass in Komponente B und gegebenenfalls in Komponente A Epoxidbausteine mit aliphatischen Ketten eingesetzt werden. Dabei soll die Menge der aliphatischen Epoxide bezogen auf die Menge aller Epoxidbausteine bevorzugt von 10 Gew.-% bis 50 Gew.-% betragen, insbesondere von 15 bis 40 Gew.-%. Wird der Anteil zu gering gewählt, ist die vernetzte Zusammensetzung unflexibel und spröde. Wird die Menge zu hoch gewählt, sind die Barriereeigenschaften verschlechtert. Dabei kann der aliphatische Epoxidbaustein in der Komponente A und/oder in der Komponente B enthalten sein.
Aus den geeigneten Epoxidpolymeren als Komponente A und den Polyaminover- bindungen der Komponente B sind erfindungsgemäße 2K-Zusammensetzungen herzustellen. Dabei werden die beiden Komponenten im flüssigen Zustand gemischt, wobei das Verhältnis von primären Aminogruppen in Komponente B und Epoxidgruppen in Komponente A ungefähr äquimolar sein soll. Insbesondere beträgt das molare Verhältnis ca. 0,75 : 1 bis 1 ,25 : 1 , insbesondere 0,95 : 1 bis 1 ,05 : 1 , um einen Überschuss an nicht umgesetzten Aminogruppen zu vermeiden. Die beiden Komponenten werden getrennt gelagert und vor der Verarbeitung gemischt. Danach vernetzen die Bestandteile.
Aus den oben beschriebenen Zusammensetzungen können 2K-Klebstoffe hergestellt werden. In diesen Klebstoffen ist es zweckmäßig, wenn zusätzliche Bestandteile enthalten sind, wie beispielsweise Lösemittel, Weichmacher, Katalysatoren, Stabilisatoren, Haftvermittler, Pigmente und/oder Füllstoffe.
In einer Ausführungsform enthält die erfindungsgemäß geeignete Zusammensetzung mindestens ein klebrigmachendes Harz. Es können grundsätzlich alle Harze eingesetzt werden, die verträglich sind und ein homogenes Gemisch bilden. Es können beispielsweise aromatische, aliphatische oder cycloaliphatische Kohlenwasserstoff-Harze sein, sowie modifizierte oder hydrierte Versionen davon. Das Harz kann in einer Menge von 0 bis 50 Gew.-% eingesetzt werden, bevorzugt bis zu 20 Gew.-% bezogen auf die Zusammensetzung. Es können auch in der Zusammensetzung weitere lösliche Polymere enthalten sein, wie Polymere, die Gas- oder Aroma-Barriereeigenschaften aufweisen. Beispiele dafür sind Polysaccharide wie Celluloseether oder -ester.
Weiterhin können auch Weichmacher enthalten sein, wie beispielsweise Weißöle, naphtenische Mineralöle, paraffinische Kohlenwasserstofföle, Adipate, Benzoa- tester, pflanzliche oder tierische Öle und deren Derivate. Insbesondere sind solche Weichmacher geeignet, die lebensmittelrechtlich unbedenklich sind, beispielsweise Citronensäureester oder kurzkettige Triglyceride.
Als gegebenenfalls einsetzbare Stabilisatoren oder Antioxidantien sind Phenole, sterisch gehinderte Phenole hohen Molekulargewichts, polyfunktionelle Phenole, Schwefel- und phosphorhaltige Phenole oder Amine geeignet.
Es ist möglich, der Zusammensetzung zusätzlich Silanverbindungen als Haftvermittler zuzusetzen. Als Haftvermittler können die bekannten organofunktionellen Silane zugesetzt werden, wie (meth)acryloxyfunktionelle, epoxidfunktionelle, aminfunktionelle oder nicht-reaktiv substituierte Silane eingesetzt werden. In einer bevorzugten Ausführungsform werden dem Klebstoff 0,1 bis 5 Gew.-% dieser Silane zugesetzt. Es ist dabei je nach Auswahl des Silans zweckmäßig, dieses nur in einer Komponente zu mischen. Damit kann eine vorzeitige Reaktion und eine Verminderung der Lagerstabilität verhindert werden.
Als gegebenenfalls zusätzlich vorhandenes Additiv kann eine Zusammensetzung auch Katalysatoren enthalten. Als Katalysatoren können alle bekannten Verbindungen eingesetzt werden, die die Reaktion von Aminogruppe und Epoxidgruppe katalysieren können. Beispiele hierfür sind Metallverbindungen, wie Titanate, Wismutverbindungen, Zinncarboxylate oder Zirconchelate; oder Aminverbindun- gen oder ihre Salze mit Carbonsäuren, wie nicht-flüchtige Alkylamine, Amino- Alkanole, Morpholin und seine Derivate, Polyamine, wie Triethylentetramin, Gua- nidin, oder 1 ,8-Diazabicyclo-[5,4,0]-undecen-7 (DBU). Der Katalysator kann in ei- ner Menge von 0 bis etwa 5 Gew.-% bezogen auf das Gesamtgewicht des Klebstoffs eingesetzt, bevorzugt von 0,1 bis 1 Gew.-% Katalysator.
Eine besondere Ausführungsform der Erfindung kann in den Zusammensetzungen auch Pigmente oder Füllstoffe enthalten. Es handelt sich dabei um feinteilige Pigmente, beispielsweise mit einer Teilchengröße < 5 μιτι. Eine Ausführungsform der Erfindung arbeitet mit plättchenförmigen Pigmenten, die in einer Komponente des Bindemittels dispergiert werden können. Eine andere Arbeitsweise setzt Nanopar- tikel ein. Diese haben üblicherweise eine Teilchengröße < 500 nm, insbesondere kleiner 100 nm. Dem Fachmann sind solche Pigmente oder Füllstoffe bekannt. Er kann sie nach üblichen Gesichtspunkten auswählen und mittels bekannter Verfahren in einer oder beiden Bindemittelkomponenten einarbeiten.
In einer Ausführungsform kann die Zusammensetzung auch Lösemittel enthalten. Es handelt sich dabei um die üblichen Lösemittel, die bei Temperaturen bis zu 120 °C verdampfen können. Die Lösemittel können ausgewählt aus der Gruppe der aliphatischen Kohlenwasserstoffe, der araliphatischen Kohlenwasserstoffe, Keto- ne, insbesondere Ci-C4-Alkohole oder auch Wasser. In einer anderen bevorzugten Ausführungsform ist die 2K-Zusammensetzung lösemittelfrei.
Eine bevorzugt Ausführungsform besteht aus einer Komponente A enthaltend Polymere mit zwei oder mehr Epoxidgruppen, die bezogen auf die Komponente A allein oder anteilsweise aliphatische Epoxidharze enthält. Die Komponente B enthält ein Umsetzungsprodukt aus einem aromatischen Diamin mit ungesättigten Carbonsäureestern in Mengen, dass ein Amin-terminiertes Zwischenprodukt erhalten wird. Diese wird danach mit einem Gemisch aus aliphatischen und / oder aromatischen Diepoxiden im Unterschuss zu einem Amin-terminierten Polymer umgesetzt. Dabei soll die Zusammensetzung insgesamt 10 bis 50 Gew.-% aliphatische Epoxidbausteine (bezogen auf den Epoxidanteil) enthalten.
Aus der 2K-Zusammensetzung können zusammen mit den Additiven 2K- Klebstoffe oder 2K-Beschichtuntgsmittel hergestellt werden. Da die Klebstoffe insbesondere zum Beschichten von großen Flächen geeignet sind, sollen sie bei Auftragstemperatur von ca. 20 bis 90°C eine niedrige Viskosität aufweisen. Die Viskosität der erfindungsgemäßen Klebstoffe, gemessen nach dem Mischen der Bestandteile, soll zwischen 200 bis 5000 mPas bei Auftragstemperatur betragen, bevorzugt 300 bis 3000 mPas, insbesondere bei 20 bis 60°C (Brook- field-Viskosimeter LVT, gemäß EN ISO 2555).
In den 2K-Klebstoffen können die bekannten Hilfsmittel und Additive zu der Komponente A oder zu der Komponente B gegeben werden, so lange diese nicht mit den Additiven reagieren. Es können Lösemittel enthalten sein, eine besondere Ausführungsform der Erfindung arbeitet jedoch lösemittelfrei. Dabei kann insbesondere durch die Auswahl der Komponente A und der Komponente B sichergestellt werden, dass bei Raumtemperatur wie 25 °C eine fließfähige Mischung der Komponente A und B erhalten wird.
Ein erfindungsgemäßer Klebstoff kann insbesondere als Kaschierklebstoff eingesetzt werden. Dabei werden die Klebstoffe in dünner Schicht auf eine Folie aufgetragen. Unmittelbar danach sollen gegebenenfalls enthaltene Lösemittel verdampfen. Danach wird eine zweite Folie auf die Klebstoffschicht aufgebracht und mit Druck verpresst. Bei einer erfindungsgemäßen Auswahl der Komponenten mit niedriger Viskosität können Lösemittel vermieden werden.
Als Folienmaterialien zum Herstellen von Mehrschichtfolien können die bekannten flexiblen Folien eingesetzt werden. Es handelt sich dabei um Substrate aus thermoplastischen Kunststoffen in Folienform, beispielsweise Polyolefine, wie Polyethylen (PE) oder Polypropylen (PP, CPP, OPP), Polyvinylchlorid (PVC), Polystyrol (PS), Polyestern, wie PET, Polyamid, organische Polymere, wie Cellophan, es sind auch metallbedampfte Folien, mit S1O2 oder AI2O3 beschichtete Folien, Metallfolien oder Papier als Substrate möglich. Dabei können die Folienmaterialen auch modifiziert sein, z.B. durch Modifizieren der Polymere mit funktionellen Gruppen, oder es können zusätzliche Komponenten, beispielsweise Pigmente, Farbstoffe, oder geschäumte Schichten in der Folie enthalten sein. Es kann sich um gefärbte, bedruckte, farblose oder transparente Folien handeln.
Eine besondere Ausführungsform der Erfindung besteht in der Bereitstellung eines wasserlöslichen 2K-Klebstoffs. Dabei ist es vorteilhaft, wenn die Komponenten eine erhöhte Anzahl von polaren Gruppen aufweisen um eine verbesserte Wasserlöslichkeit oder Wassermischbarkeit aufzuweisen. In diesem Falle ist es zusätzlich vorteilhaft, als weitere Bestandteile Emulgatoren oder Dispergierhilfsmittel einzusetzen. Diese unterstützen auch in geringen Mengen die Dispergierbarkeit der Komponenten in Wasser. Dabei sollen die Emulgatoren in Mengen von 0,1 bis 5 Gew.-% bezogen auf die Zusammensetzung zugemischt werden. Ionische Gruppen, die eine dauerhafte Wasserlöslichkeit ergeben, sind nicht enthalten. Nach der Vernetzung der beiden Komponenten bildet sich ein Netzwerk. Dieses ist nicht mehr wasserlöslich, weist aber eine gute Klebkraft und gute Barriereeigenschaften auf.
Eine weitere Ausführungsform der Erfindung setzt die 2K-Zusammensetzungen für 2K-Überzugsmittel ein. Diese Überzugsmittel können im Prinzip die gleichen Bestandteile enthalten, die für die Kaschierklebstoffe beschrieben sind. Es ist bei der Auswahl jedoch darauf zu achten, dass die Überzugsmittel nach der Vernetzung eine glatte, nicht klebrige Oberfläche aufweisen. Eine gute Haftung soll nur zu dem Substrat bestehen, auf dem das Beschichtungsmittel in flüssiger Form aufgebracht wird. Dem Fachmann sind solche Bestandteile bekannt, die bei der Herstellung von nicht klebrigen Oberflächen nur im geringen Masse eingesetzt werden sollen oder zu vermeiden sind.
Ebenfalls Gegenstand der Erfindung ist eine Mehrschichtfolie, die mit einem erfindungsgemäß geeigneten Kaschierklebstoff verklebt ist, dabei können als Substrate die bekannten Kunststofffolien eingesetzt werden. Auf diese Folie wird mit einem erfindungsgemäßen Klebstoff eine kontinuierliche Schicht erzeugt, die unmittelbar nach dem Auftragen mit einer zweiten gleichen oder unterschiedlichen Folie verklebt wird. Zusätzlich zu den Zweischichtfolien ist es ebenso möglich, mit weite- ren Arbeitsschritten eine Mehrschichtfolie zu erzeugen. Eine erfindungsgemäße Ausführungsform arbeitet mit durchsichtigen Folien, dafür ist es zweckmäßig wenn der erfindungsgemäße Klebstoff ebenfalls durchsichtig und nicht verfärbt wird. Es können in Mehrschichtfolien prinzipiell auch andere nicht-Kunststofffolien enthalten sein, beispielsweise Papier oder Metallfolien.
Der erfindungsgemäße Klebstoff zeigt eine gute Haftung zwischen den unterschiedlichen Schichten. Er zeigt keine Blasen oder Fehlstellen in der Klebstoffschicht. Die entstehenden Verbundsubstrate sind flexibel. Auch bei den möglichen weiteren Herstellungsschritten als Verpackung werden Risse und Delaminierun- gen vermindert.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzung zum Herstellen von Überzügen auf flexiblen Verbundsubstraten. Dabei können die oben angegebenen Additive und Hilfsstoffe im Be- schichtungsmittel enthalten sein. Die Beschichtungsmittel sind flüssig oder können durch Erwärmen auf bis zu 90°C fließfähig aufgebracht werden. Diese Überzüge sind nach der Vernetzung flexibel und können deswegen besonders für flexible Mehrschichtfolien eingesetzt werden. Eine bevorzugte Ausführungsform trägt die erfindungsgemäßen Beschichtungsmittel bei einer Applikationstemperatur zwischen 20 bis 60°C auf.
Nach dem Vernetzen werden an der Oberfläche nicht klebrige Schichten erhalten. Solche Folien können dann auf bekannte Weise weiterverarbeitet werden, entweder werden zusätzliche Kaschierschichten aufgebracht oder sie werden konfektioniert.
Die erfindungsgemäß hergestellten Verbundfolien weisen eine hohe Flexibilität auf. Sie können transparent ausgeführt sein, d.h. sie enthalten nur Nanopartikel als Füllstoffe, keine Füllstoffe oder nur geringe Mengen an üblichen Füllstoffen, sodass die Klebstoffschicht im Verbund nicht wesentlich getrübt erscheint. Es kann sich aber auch um gefärbte oder pigmentierte Schichten handeln. Eine be- sonders vorteilhafte Eigenschaft der erfindungsgemäßen Schichten ist eine erhöhte Barrierewirkung der Schicht. Es hat sich gezeigt, dass Aromastoffe solche Mehrschichtfolien als Klebstoffschicht oder als Beschichtung schlechter durchdringen können als konventionell verklebte Folien. Auch ist eine verbesserte Stabilität gegen Diffusion von Gasen, beispielsweise Sauerstoff, oder Wasserdampf festzustellen. Weiterhin hat sich gezeigt, dass durch die erfindungsgemäß aufgebaute Komponente B die Mengen von aromatischen nicht gebundenen Diaminen in der Klebstoffschicht vermindert werden.
Die erfindungsgemäßen Zusammensetzungen können auf einfache Art und Weise zu 2K-Beschichtungsmittel oder 2K-Klebstoffen weiterverarbeitet werden. Bei Verwendung dieser Klebstoffe oder Beschichtungsmittel auf Foliensubstraten, werden Verbundfolien erhalten, die hohe Barriereeigenschaften aufweisen. Die Barriereeigenschaften können auf verschiedene Bestandteile bezogen werden, beispielsweise kann die Diffusion von Sauerstoff vermindert werden. Eine andere Ausführungsform vermindert die Diffusion von Wasser. Weiterhin ist es möglich, die Diffusion von Aromastoffen beispielsweise aus einer Verpackung oder in eine Verpackung zu vermindern.
Die Haftung zu den verschiedenen Substratmaterialien ist gut. Auch bei mechanischer Belastung der Verbundmaterialien, beispielsweise der verklebten Folien, ist keine Trennung zwischen verklebten Flächen zu beobachten. Aus den erfindungsgemäßen Verbundmaterialien können beispielsweise Verpackungen hergestellt werden. Durch die Barrierewirkung sind solche Verpackungen für empfindliche Gegenstände geeignet, beispielsweise für Lebensmittel oder pharmazeutische Güter. Ein weiteres Anwendungsgebiet sind technische Kaschierungsverklebun- gen, beispielsweise Verklebungen von flexiblen Schaltungen oder ähnlichen Gegenständen. Beispiele: Beispiel 1 :
354 g (2,6 mol) meta-Xylylendiamin (mXDA) wurden in einen Kolben gegeben und gerührt. Ethylacrylat (137,6 g; 1 ,375 mol) wurde bei T= 50-70 °C langsam in einem Zeitraum von ~1 h zugegeben. (Verhältnis (mol): mXDA / Et-Acr. = 1 : 0,53). Die Temperatur wurde für 15 min bei 70°C gehalten. Die Mischung wurde bei 140°C gehalten und das entstehende Ethanol abdestilliert. Danach wurde T auf 170° - 190°C für 3:15 h angehoben und danach abgekühlt auf Raumtemperatur. Es wurden 375 g Ethanol als Lösemittel zugegeben. Es wurden Bisphenol-A- diglycidylether (84,8 g; 0,25 mol) und 1 ,4-Butandiol-diglycidylether (46,4 g; 0,23 mol) über einen Zeitraum von 10 Minuten zugegeben. Die Temperatur wurde bei 70°C für eine Stunde gehalten und danach abgekühlt. Die Reaktionsmischung wurde mit Ethanol entsprechend Tabelle 1 verdünnt. Das zahlenmittlere Molekulargewicht MN beträgt 604 (GPC).
Beispiel 2:
0,38 mol mXDA und 0,19 Mol Ethanolamin wurden in einem Kolben unter Rühren gemischt und auf eine Temperatur von 60°C erwärmt. Es wurden 0,35 mol Ethylacrylat in 80 min. zugegeben. Die Reaktionstemperatur wurde auf 135°C erhöht und dort für eine Stunde gehalten. Entstehendes Ethanol wurde über einen Zeitraum von 5 - 6 h abdestilliert, wobei die Temperatur auf 170°C angehoben wurde, bis ca. 90 % der theoretischen Menge gemessen wurde. Danach wurde auf RT abgekühlt. Es wurden über einen Zeitraum von ca. 30 min. Bisphenol-A-diglycidyl ether (0,08 mol) zugegeben. Die Temperatur wurde auf 70°C gebracht und eine Stunde gehalten. Das Produkt wurde abgekühlt auf RT. Dabei kann ggf. etwas Ethanol zugesetzt werden, um die Viskosität einzustellen.
Beispiel 3:
Analog Beispiel 2, nur wird anstatt des Bisphenol-A-diglycidylethers eine Mischung aus je 0,08 mol Bisphenol-A-diglycidylether und Butylenglycol-1 ,4-diglycidylether eingesetzt. Beispiel 4:
Das Verfahren nach Beispiel 2 wurde mit den folgenden Mengen wiederholt:
Ethanolamin: 0,17 mol; mXDA: 0,35 mol; Ethylacrylat: 0,39 mol; Bisphenol-A- diglycidylether: 0,09 mol.
Beispiel 5:
0,5 mol Ethylacrylat u. 1 ,0 mol mXDA wurden analog Beispiel 1 umgesetzt. Nach Abdestillieren des Ethanols u. Abkühlen auf RT wurden 145 g Ethanol (als Lösungsmittel) zugegeben. Über einen Zeitraum von 10 min wurden 4,5 mol Buty- lenglycol-1 ,4-diglycidylether zugegeben. Die Temperatur von 70 °C wurde über einen Zeitraum von 30 min gehalten. 5,0 mol Jeffamine T-403 wurden innerhalb von 3 min zugeben und für 2 h gerührt. Die Mischung wurde dann für 1 h bei 50°C gehalten.
Das zahlenmittlere Molekulargewicht MN beträgt 600 (GPC). Vergleichsbeispiel:
Die Herstellung wie unter Beispiel 1 , allerdings ohne Verwendung von Polyepoxi- den mit den folgenden Mengen:
3,13 kg (22,97 mol) meta-Xylylendiamin (mXDA); 1 ,22 kg (12,15 mol) Ethylacrylat. Das zahlenmittlere Molekulargewicht MN beträgt 600 (GPC).
Verklebungen:
Als Komponente A wurde Butandiol-diglycidylether (Härter 1 ) oder Tetraglycidyl- mXDA (Härter 2) eingesetzt. Das Lösungsmittel wurde nach dem Auftragen in einem Trockentunnel bei erhöhter Temperatur (40-70 °C) und unter Luftbewegung entfernt, bevor die Substrate verklebt wurden.
schichtung
Es zeigt sich, dass die Diffusionswerte (oxygen transmission rate - OTR) mit einer erfindungsgemäßen Beschichtung besser sind als die Folie allein. Es zeigt sich weiter, dass auch in den verklebten Substraten der Diffusionswert niedriger ist. Weiterhin wird eine gute Verklebung erzielt. Mechanische Eigenschaften:
Die Aminoverbindung des Vergleichsbeispiels wird in Ethanol gelöst (60 Gew.-% Feststoffanteil) und mit Härter 2 gemischt (1 :0,313). Diese Mischung wird in eine Form aus PTFE (Fläche: 100 mm x 100 mm) gefüllt, sodass ein man einen Film von 1 mm Dicke nach Trocknung und Aushärtung erhält. Weitere Filme wurden auf Grundlage der folgenden Beispiele aus der obigen Tabelle hergestellt:
. Beispiel 1 + Härter 1
. Beispiel 1 + Härter 2
. Beispiel 2 + Härter 2
. Beispiel 5 + Härter 2
Die Filme wurden nach einem Tag aus der Form gelöst und einen weiteren Tag getrocknet. Die Filme wurden dann gebogen (180°). Der auf dem Vergleichsbeispiel und Härter 2 basierende Film bricht dabei, die erfindungsgemäßen Filme dagegen nicht. Die erfindungsgemäßen Beispiele zeigen also eine verbesserte Flexibilität.
Topfzeit/Exothermie:
Klebstoff und Härter werden bei Raumtemperatur (24 °C) in einen Weithalskolben gegeben und die Wärmeentwicklung über den zeitlichen Temperaturverlauf verfolgt. Folgende Zusammensetzungen wurden hergestellt und untersucht.
a) Die Aminkomponente des Vergleichsbeispiels wird in Ethanol gelöst (50 Gew.-% Feststoffanteil) und mit Härter 1 gemischt (1 :0,31 ).
b) Die Aminkomponente des Beispiel 1 wird in Ethanol gelöst (50 Gew.-% Feststoffanteil) und mit Härter 1 gemischt (1 :0,27).
Im Fall a) zeigt sich eine weitaus stärkere Temperaturerhöhung von bis zu 40 °C als im Fall b) von maximal nur 33 °C. Die höhere Reaktivität im Fall a) kann zu einer vorzeitigen Aushärtung der Mischung im Vorratsbehälter der Laminier- /Kaschiermaschine führen. Tatsächlich zeigt die erfindungsgemäße Zusammensetzung gemäß Fall b) eine Topfzeit (also die maximale Zeitspanne, in der eine Verarbeitung der Zusammensetzung nach Mischung der Komponenten noch möglich ist), von über 4 Stunden, wohingegen die Zusammensetzung gemäß Fall a) bereits zu einem früheren Zeitpunkt einen Viskositätsanstieg zeigt, der eine gute Verarbeitung nicht mehr zulässt.
Messmethoden:
Molekulargewicht:
Die Bestimmung des zahlenmittleren Molekulargewichts MN erfolgt mittels Gel- Permeations-Chromatographie (GPC):
Standard: Polystyrolstandard der Firma PSS
Säulen: PLgel 50 A, 100 A und Ultrastyragel 500 ÄEIuent, je 7,8 x 300 mm und 5 μΐη (Polymer Laboratories and Waters)
Säulenofentemperatur: 85 °C
Eluent: N-Dimethylacetamide mit 1 g / L Lithiumchlorid
Fließgeschwindigkeit: 1 .0 mL / min
Detektor: Brechungsindexdetektor; Empfindlichkeit 16, 35 °C
Injektionsvolumen: 100 μί
200 ± 10 mg der Probe (6-fach-Messung) werden in einem 25 mL Messzylinder abgewogen, unter Zugabe des Eluents gelöst und der Messzylinder anschließend bis zur Markierung mit Eluent aufgefüllt. Die hergestellte Probe wird durch einen 0,45 μιτι Spritzenfilter in ein Probengefäß gefiltert. Die Bestimmung des Molekulargewichts basiert auf einer externen Kalibrierung (Polynom der 3. Ordnung) unter Zuhilfenahme des o.g. eng verteilten Polystyrolstandards der Firma PSS.
Verbundhaftung:
Mittels Streifenscheider werden 15 mm breite Streifen des Verbundes geschnitten. Der Verbund wird per Hand oder an einer heißen Siegelbackenkante angetrennt. Gegebenenfalls kann das Einlegen eines Endes des Verbundstreifens in Ethylace- tat hilfreich sein. Die Messung erfolgt mit einer Universal-Zugprüfmaschine, Kraftbereich 0-20 N (z.B. der Firmen Instron oder Zwick). Der vorher angetrennte Verbundstreifen wird eingespannt und die Zugprüfmaschine mit einer Abzugsgeschwindigkeit von 100 mm/min angefahren. Der Abzugswinkel beträgt 90° (manuell einzuhalten) und die Abzugslänge 5 - 10 cm (je nach Schwankungsbereich). Die Messung wird drei Mal wiederholt. Die Verbundhaftung ergibt sich als Mittelwert dieser Dreifachmessung.
Sauerstoffdurchlässigkeit (oxygen transmission rate - OTR):
Zur Bestimmung der Sauerstoffdurchlässigkeit werden OX-TRAN 2/21 H Messgeräte der Firma MOCON verwendet. Die Testzelle der Messgeräte besteht aus zwei Hälften. Die Folie wird zwischen den beiden Halbzellen angebracht. Durch die äußere Halbzelle wird Sauerstoff als Testgas geleitet. Die innere Halbzelle wird von Trägergas, einem Gemisch aus 95% Stickstoff und 5% Wasserstoff (im wesentlichen Formiergas) durchströmt. Der Sauerstoff, der die Folie durchdringt, wird vom Trägergas aufgenommen und zum Detektor transportiert. Der Sauerstoffsensor erzeugt bei Anwesenheit von Sauerstoff einen elektrischen Strom, der proportional zur ankommenden Menge an Sauerstoff ist.
Viskosität:
Die Viskosität wird bei angegebener Temperatur nach der Norm ISO 2555 mit Hilfe eines Viskosimeters des Typs Brookfield LVT bestimmt. Die Auswahl der Spindel u. Scherrate hängt von der Temperatur und dem Viskositätsbereich ab (z. B. bei RT bis ~ 30° und Viskositäten von ca. 1000 - 5000 mPas eignen sich Spindel 27 und eine Scherrate von 5 UpM)

Claims

Patentansprüche
1 . Zwei-Komponenten-Zusannnnensetzung bestehend aus einer Komponente A enthaltend Epoxide mit einem zahlenmittleren Molekulargewicht (MN) von 150 bis 5000 g/mol mit mindestens 2 Epoxidgruppen pro Molekül, einer Komponente B enthaltend ein Umsetzungsprodukt, hergestellt aus araliphatischen Poly- aminen und gegebenenfalls weiteren Aminen, ungesättigten Carbonsäuren und/oder ihren Derivaten und aliphatischen und/oder aromatischen Polyepoxi- den in einem molaren Verhältnis von Amin zur Summe aus ungesättigter Carbonsäure und/oder ihren Derivaten und Polyepoxid von 1 : 0,4 bis 1 : 0,95 zu einem primäre Aminogruppen aufweisenden Produkt mit einem zahlenmittleren Molekulargewicht (MN) unter 5000 g/mol.
2. 2-K-Zusammensetzung nach Anspruch 1 , dadurch gekennzeichnet, dass als Komponente A aliphatische und/oder aromatische Polymere mit Epoxidgruppen eingesetzt werden.
3. 2-K-Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Komponente B Gemische aus aliphatischen und aromatischen Polye- poxiden als Baustein eingesetzt werden, insbesondere Diepoxide.
4. 2-K-Zusammensetzung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Summe der Epoxidbestandteile in A und B zwischen 10 bis 50 Gew.-% a- liphatische Epoxidbausteine enthalten.
5. 2-K-Zusammensetzung nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass als weiteres Amin Ethanolamin eingesetzt wird, in einer Menge von bis zu 50 Mol-% bezogen auf die Summe aus araliphatischem Polyamin und Ethanolamin.
6. 2-K-Zusammensetzung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass Komponente B und A im molaren Verhältnis von primären Aminogruppen in Komponente B zu Epoxidgruppen in Komponente A von 0,75 : 1 bis 1 ,25 : 1 gemischt werden.
7. 2-K-Zusammensetzung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass Komponente A Epoxide enthält, ausgewählt aus Epoxidgruppen tragenden Po- ly(meth)acrylaten, Polyolefinen, Polybutadienen, Polyestern, Polyamiden, Polyurethanen, aliphatischen und/oder aromatischen Polyepoxidharzen.
8. 2-K-Zusammensetzung nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Zusammensetzung weitere homogen mischbare, nicht-reaktive Polymere enthält, insbesondere Derivate von Oligo- oder Polysacchariden.
9. 2-K-Zusammensetzung nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Zusammensetzung C1 bis C4-Alkohole oder Wasser als Lösemittel enthält oder im Wesentlichen frei von anderen organischen Lösemitteln ist.
10.2 K-Kaschierklebstoff enthaltend eine Zusammensetzung nach Anspruch 1 bis 9 zum Verkleben von Folien und Papier.
1 1 . 2K-Beschichtungsmittel enthaltend eine Zusammensetzung nach Anspruch 1 bis 9 zum Beschichten von Folien und Papier.
12. Verwendung von Zusammensetzungen nach einem der Ansprüche 10 und 1 1 als Klebstoff oder Beschichtung für Foliensubstrate für Lebensmittelverpackungen oder Verpackungen von Medikamenten oder Medizinprodukten.
13. Verwendung von Zusammensetzungen nach einem der Ansprüche 10 und 1 1 als Klebstoff für technische Kaschierungen.
EP13745662.0A 2012-08-23 2013-08-05 2-k-kaschierklebstoff Active EP2897999B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13745662T PL2897999T3 (pl) 2012-08-23 2013-08-05 Dwuskładnikowy klej do laminowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012215027 2012-08-23
PCT/EP2013/066412 WO2014029606A2 (de) 2012-08-23 2013-08-05 2-k-kaschierklebstoff

Publications (2)

Publication Number Publication Date
EP2897999A2 true EP2897999A2 (de) 2015-07-29
EP2897999B1 EP2897999B1 (de) 2016-12-21

Family

ID=48918414

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13745662.0A Active EP2897999B1 (de) 2012-08-23 2013-08-05 2-k-kaschierklebstoff

Country Status (12)

Country Link
US (1) US20150166861A1 (de)
EP (1) EP2897999B1 (de)
JP (1) JP2015533862A (de)
KR (1) KR20150048166A (de)
CN (1) CN104704019A (de)
BR (1) BR112015003546A2 (de)
CL (1) CL2015000419A1 (de)
ES (1) ES2613744T3 (de)
HK (1) HK1210622A1 (de)
PL (1) PL2897999T3 (de)
PT (1) PT2897999T (de)
WO (1) WO2014029606A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187681A1 (en) 2019-03-15 2020-09-24 Henkel Ag & Co. Kgaa Sulfone-resin containing gas-barrier adhesive

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595275B1 (ko) * 2015-06-01 2016-02-18 벽산페인트 주식회사 친환경 단열재용 바인더 조성물 및 그의 제조방법
CN106147408A (zh) * 2016-08-14 2016-11-23 安庆市沁之源电器有限公司 一种电饭煲耐高温涂料及其制备方法
CN109517559B (zh) * 2018-10-30 2022-04-08 成都飞机工业(集团)有限责任公司 一种快速固化吸波封边胶
CN109517558B (zh) * 2018-10-30 2022-04-08 成都飞机工业(集团)有限责任公司 一种快速固化吸波封边胶的制备方法
CN116601236A (zh) * 2020-09-14 2023-08-15 株式会社Adeka 环氧树脂用固化剂组合物、环氧树脂组合物以及涂料
KR102479010B1 (ko) * 2022-06-03 2022-12-20 서우산업 주식회사 분산성과 접착성을 개선한 항균패널 및 그 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324992B2 (de) * 1973-01-24 1978-07-24
JPS5676465A (en) * 1979-11-26 1981-06-24 Asahi Chem Ind Co Ltd Low-temperature curable paint composition and preparation of same
US7267877B2 (en) * 2000-12-26 2007-09-11 Mitsubishi Gas Chemical Company, Inc. Composition for coating having a gas barrier property, coating and coated film having a gas barrier property used the same
JP4051544B2 (ja) * 2001-06-27 2008-02-27 三菱瓦斯化学株式会社 脱酸素性多層フィルム
WO2003022952A1 (fr) * 2001-09-05 2003-03-20 Mitsubishi Gas Chemical Company, Inc. Adhesif pour stratifies barrieres contre les gaz et films stratifies
EP1352933B1 (de) * 2002-04-08 2011-06-08 Mitsubishi Gas Chemical Company, Inc. Flexibler Gassperrfilm
CN1303171C (zh) * 2002-04-29 2007-03-07 三菱瓦斯化学株式会社 用于具有气体屏蔽性能涂料的组合物,使用该组合物的具有气体屏蔽性能的涂料和涂敷膜
DE602005025156D1 (de) * 2004-12-10 2011-01-13 Mitsubishi Gas Chemical Co Laminatfolie
JP4776323B2 (ja) * 2005-09-30 2011-09-21 株式会社Adeka 乳化剤組成物
KR101382510B1 (ko) * 2006-01-17 2014-04-07 아크조노벨코팅스인터내셔널비.브이. 에폭시-관능성 화합물용 경화제
JP5195122B2 (ja) * 2008-07-29 2013-05-08 三菱瓦斯化学株式会社 ガスバリア性容器
DE102009027329A1 (de) * 2009-06-30 2011-01-05 Henkel Ag & Co. Kgaa 2-Komponenten Kaschierklebstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014029606A3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187681A1 (en) 2019-03-15 2020-09-24 Henkel Ag & Co. Kgaa Sulfone-resin containing gas-barrier adhesive

Also Published As

Publication number Publication date
PL2897999T3 (pl) 2017-08-31
ES2613744T3 (es) 2017-05-25
WO2014029606A2 (de) 2014-02-27
EP2897999B1 (de) 2016-12-21
PT2897999T (pt) 2017-03-24
CN104704019A (zh) 2015-06-10
BR112015003546A2 (pt) 2017-07-04
CL2015000419A1 (es) 2015-08-28
JP2015533862A (ja) 2015-11-26
WO2014029606A3 (de) 2014-07-31
KR20150048166A (ko) 2015-05-06
US20150166861A1 (en) 2015-06-18
HK1210622A1 (en) 2016-04-29

Similar Documents

Publication Publication Date Title
EP2897999B1 (de) 2-k-kaschierklebstoff
EP2448989B1 (de) 2-komponenten kaschierklebstoff
EP2997069B1 (de) Epoxidharz-zusammensetzung für faser-matrix-halbzeuge
EP3713984B1 (de) Klebebänder auf basis von epoxidharz-reaktivklebstoffen
WO2011157671A1 (de) Verwendung von cyclischen carbonaten in epoxidharzzusammensetzungen
DE3901279A1 (de) Verwendung von polyamidoaminen als haerter fuer epoxidharze und diese enthaltende haertbare mischungen
EP2486073A2 (de) Verfahren zum verkleben von folienförmigen substraten
WO2017009220A1 (de) Verwendung von oligo-n,n-bis-(3-aminopropyl)methylamin als härter für epoxidharze
DE2810428A1 (de) Haertbare epoxyharzzusammensetzung
WO1995024450A1 (de) Polyamid-schmelzklebstoff
DE4322491C2 (de) Trennüberzugsmasse und Trennfolie
EP2639252A1 (de) Neue Reaktivpolymerkatalysatoren für 2K-Epoxidharzsysteme
EP1978048A1 (de) Härter für Epoxidharze, Verfahren zur Aushärtung eines Epoxidharzes sowie Verwendung des Härters
EP3390562A1 (de) Selbsttragender klebekörper für strukturelle verklebungen
CN102977836A (zh) 一种用于药品包装复合膜的环保胶粘剂及其制备方法
EP0047364B1 (de) Verwendung von härtbaren Kunstharzmischungen für Druckfarben
JP7280448B2 (ja) 改良された酸素バリア特性を有する硬化性ポリマー組成物
EP2758470A1 (de) Härtung von epoxidharz-zusammensetzungen, welche cyclische carbonate enthalten, mit gemischen von aminohärtern
EP2764033A1 (de) Epoxidharz-zusammensetzungen, enthaltend ein 2-oxo-[1,3]dioxolanderivat
EP3320014B1 (de) Härtbare zusammensetzungen
WO2015158684A1 (de) Mischung aus cyanoalkyliertem polyamin und beschleuniger als latenter härter für epoxidharze
DE2429992B2 (de) Verfahren zum herstellen von vergiessungen und abdichtungen
WO2002009863A2 (de) Mikrokapsel, verfahren zu deren herstellung und deren verwendung in klebstoffen
WO2012062853A1 (de) Kondensationsprodukte aus aminofunktionellen polymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITSUBISHI GAS CHEMICAL COMPANY, INC.

Owner name: HENKEL AG & CO. KGAA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 855438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005837

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2897999

Country of ref document: PT

Date of ref document: 20170324

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170315

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KASCHE AND PARTNER AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2613744

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170321

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005837

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170823

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170830

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170805

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130805

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 855438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210823

Year of fee payment: 9

Ref country code: IT

Payment date: 20210831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210917

Year of fee payment: 9

Ref country code: TR

Payment date: 20210730

Year of fee payment: 9

Ref country code: GB

Payment date: 20210824

Year of fee payment: 9

Ref country code: CH

Payment date: 20210824

Year of fee payment: 9

Ref country code: PL

Payment date: 20210728

Year of fee payment: 9

Ref country code: DE

Payment date: 20210902

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210728

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005837

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230206

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220805

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220805

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220805