EP2888032A1 - Multi plane mixer and separator (mpms) system - Google Patents

Multi plane mixer and separator (mpms) system

Info

Publication number
EP2888032A1
EP2888032A1 EP13762275.9A EP13762275A EP2888032A1 EP 2888032 A1 EP2888032 A1 EP 2888032A1 EP 13762275 A EP13762275 A EP 13762275A EP 2888032 A1 EP2888032 A1 EP 2888032A1
Authority
EP
European Patent Office
Prior art keywords
mpms
container
motor
holding frame
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13762275.9A
Other languages
German (de)
English (en)
French (fr)
Inventor
Swathi SUNDAR RAJ
MAJUMDAR Anish SEN
Nancy Priya
Murali CHERAT
Prajod THIRUVAMBATTIL LOHIDHAKSHAN
Manjunath BYALAPPA SATHYA KUMAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stempeutics Research Pvt Ltd
Original Assignee
Stempeutics Research Pvt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stempeutics Research Pvt Ltd filed Critical Stempeutics Research Pvt Ltd
Publication of EP2888032A1 publication Critical patent/EP2888032A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • B01F31/26Mixing the contents of independent containers, e.g. test tubes the containers being submitted to a wobbling movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • B01F35/531Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components with baffles, plates or bars on the wall or the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7548Discharge mechanisms characterised by the means for discharging the components from the mixer using tilting or pivoting means for emptying the mixing receptacle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting

Definitions

  • Embodiments of the present disclosure relates to an agitator/mixer, more particularly embodiments relate to the multi plane mixer and separator system for mixing as well as for performing additional functions such as phase separation, sedimentation, despension etc.
  • BACKGROUND Mixing involves manipulating a heterogeneous system to obtain a more homogenous system. Agitation is one of the means by which mixing can be accomplished. Mixing may result in change of heat and mass transfer.
  • the equipments used for processes of mixing multiple liquids or solids make use of tanks/containers/flasks. The mixing process exerts certain amount of shear force on the matter being mixed. Equipments used for mixing are referred as mixers.
  • the mixers differ in their construction based on the desired output and the limitations to be adhered to in obtaining the output.
  • a mixer can generally disperse one phase (liquid, solid, gas) into a main continuous phase.
  • a rotor or impellor together with a stationary component known as a stator, is used either in a tank containing the solution to be mixed, or in a pipe through which the solution passes.
  • the use of impellor or rotor creates shear force and thus acts as enabler for homogenization of two dissimilar materials.
  • a high-shear mixer can be used to create emulsions, suspensions, lyosols (gas dispersed in liquid), and granular products. It is used in the adhesives, chemical, pharmaceutical, and plastics industries for emulsification, homogenization, particle size reduction, and dispersion.
  • a mixer can be provided with a stirrer connected to a motor to drive the stirrer for agitating the substances at required speeds.
  • the stirrer could comprise a plurality of blades and is rotated in clock wise or anti clock wise direction using the motor for mixing liquid or solids.
  • the liquids of different densities are mixed by moving the liquids from top to bottom and vice versa thus the pattern of mixing the liquids is limited to only one pattern due to stirrer possessing only one degree of motion.
  • vigorous agitation is induced through high speed stirrers which will cause high turbulence and thus higher velocity of moving particles and shear force on the molecules.
  • Circulation and shear of the liquid in a vessel can be generated by certain combinations of pressure and vacuum. If mixing is to be done in the absence of pressure and vacuum, then satisfactory combination of vertical and lateral movement can be obtained economically using suitable dimension, proportions, and internal construction of liquid mixing vessels. This needs to be chosen to suit the demands of the application, for example, when liquids of different densities are required to be mixed homogeneously.
  • mixers are also used in the biological lab and biotechnology industries, examples include vortex mixer. It consists of an electric motor with the drive shaft oriented vertically and attached to a cupped rubber piece mounted slightly off-center. As the motor runs the rubber piece oscillates rapidly in a circular motion. When a test tube or other appropriate container is pressed into the rubber cup and the motion is transmitted to the liquid inside and a vortex is created.
  • a magnetic stirrer or magnetic mixer is another example of a laboratory device that employs a rotating magnetic field to cause a stir bar immersed in a liquid to spin very quickly, thus stirring it.
  • the rotating field may be created either by a rotating magnet or a set of stationary electromagnets, placed beneath the vessel with the liquid.
  • Magnetic stirrers often include a hot plate or some other means for heating the liquid.
  • Other such examples include homogenizers, orbital shakers etc.
  • Current mixers in the prior art are found to produce high velocity, turbulence, shear stress and frothing. All these factors can be damaging to biochemical/biological components and are therefore undesirable in biotechnology and biomedical industries. For example, several biochemical components such as proteins can get oxidized or denatured by frothing.
  • Turbulence can be especially disadvantageous while mixing living biological samples such as cells and tissues which can be damaged by effect of shear force.
  • shear and turbulence effects can be reduced by using exogenous additives such as a mild surfactant.
  • exogenous additives such as a mild surfactant.
  • biological samples use of such additives can be toxic and undesirable.
  • Present disclosure relates to a multi-purpose system for mixing at least two identical or different phases without any turbulence or frothing and can further also perform the functions of phase separation, sedimentation and dispension as and when required after the mixing process.
  • Embodiments of the present disclosure provides automated systems which can operate in multiple planes and perform multiple functions having additional advantages are provided through the provision of a system as claimed in the present disclosure. Additional features and advantages are realized through the techniques of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein and are considered a part of the claimed disclosure.
  • One embodiment of the present disclosure provides an automated multi plane mixer and separator (MPMS) system which can perform multiple functions.
  • the system comprises a base frame of predetermined shape configured to form a base for the MPMS system.
  • a motor is mounted to the base frame for rotating the MPMS system.
  • a ball joint mechanism is fixed to the motor using a link and other end of the ball joint mechanism is coupled to a fork.
  • the fork is Y- shaped fork and one cross bearing is fixed on top ends of the limb of the fork.
  • a container holding frame is connected to the fork using bars, wherein said container holding frame is capable of tilting up to 120° or to any user defined angle with respect to the base frame.
  • the system is provided with container or MPMS container of predetermined shape, which can be detachably mounted on the container holding frame.
  • container or MPMS container of predetermined shape which can be detachably mounted on the container holding frame.
  • a pair of bars are mounted on the base frame and at least one cross bearing is fixed to top end of each bar using cross links, and the cross bearings on bars and fork forms universal joint.
  • At least one position sensor is provided on the ball joint mechanism to determine the position of the ball joint mechanism and the position sensor is interfaced with a controller.
  • a linear motion bearing with a bush bearing is coupled to the container holding frame using a linkage assembly to tilt the container holding frame up to 120° with respect to the base frame.
  • the linkage assembly comprises a pair of first link and a second link forming a revolute pair, and a motor, which is coupled to the linear motion bearing to selectively lift and lower the MPMS container, wherein the motor is interfaced with the controller.
  • At least one position sensor is provided on the container holding frame to control angle of lift of the agitation container, wherein the position sensor is interfaced with a controller.
  • the motor is interfaced with a controller, and speed and direction of rotation of the motor is controlled by the controller based on the requirement.
  • the MPMS container comprises a curved top surface and flat bottom surface
  • the flat bottom surface of the MPMS container comprises plurality of projections of predetermined shape and dimensions to facilitate uniform mixing of liquids in the MPMS container.
  • the shape of the projections is at least one of triangle, square, rectangle, circular, ellipsoid and baffles.
  • the MPMS container comprises a semi circular shaped inlet and a funnel shaped outlet and atleast one valve interfaced with the controller to control the flow of matter into and out of the MPMS container.
  • the MPMS system is optionally enclosed in a chamber and the MPMS container is optionally made aseptic and preferably made aseptic for biological sample, and at least one temperature sensor, which is provided within the chamber to measure the temperature of the chamber, and the said temperature sensor is interfaced with the controller to maintain the temperature of the chamber within a predetermined limit.
  • calibration method is used with a control circuit to manage desired temperatures.
  • the container holding frame rotates in both clockwise and anti-clock wise direction with the help of ball joint mechanism and control. It is also programmed to rotate along any plane. In an embodiment of the present disclosure, the container holding frame can be programmed to rotate along any desired angle and plane.
  • FIG. la illustrates perspective view of an MPMS system of the present disclosure.
  • FIG. lb illustrates magnified and exploded view of an MPMS system.
  • FIG. 2 illustrates block diagram of MPMS system enclosed in a chamber.
  • FIGS. 3a and 3b illustrates perspective view and bottom view of the MPMS container of the present disclosure.
  • FIGS. 4a to 4d illustrate various planar positions of the MPMS container to mix the liquids of different densities.
  • FIG. 4e illustrates the position of MPMS container when the container holding frame is titled to 90° with respect to base frame.
  • FIG. 5 illustrates Stromal Vascular Fraction (SVF) processing device associated with MPMS system of the present disclosure.
  • SVF Stromal Vascular Fraction
  • the embodiments of the present disclosure discloses an automated multi-plane mixer and separator (MPMS) system having a multiple utilities such as mixing, phase separation, sedimentation, dispension etc as required after the mixing of the matter/content -
  • MPMS multi-plane mixer and separator
  • This system can be used in any industries wherein mixing to two material/matter/component is required. More specifically this can be used where mixing of matter/components needs to be carried out without inducing turbulence and shear force. Few examples of industries where mixing of matter without turbulence and shear force is normally seen in biotechnology, biomedical and biochemical industries where live cells or biological samples are used or processed.
  • MPMS system of present disclosure is in the biotechnology and biomedical industries wherein processing of biological samples is required.
  • the processing of sample can be for various reasons such as sampling, testing, production of biological products, cell based products, isolation, culturing etc, wherein mixing or one of the functions of the MPMS system can be used effectively to get the desired output.
  • Biological sample can include biological tissue, cells and any other biological components. While, examples of biological tissues include but not limited to fat, placenta, synovial tissue, umbilical cord, cord blood, bone marrow, liver, pancreas etc.
  • the mixing of biological samples can be for various purposes which mostly does not required turbulence: Different types of biological mixing that can be performed by the MPMS system includes but not limited to
  • the MPMS system of the present disclosure is designed to mix biological samples without turbulence while this system can be also used in case where turbulence is required.
  • Second functional aspect of the MPMS system is phase separation which includes but is not limited to:
  • Second functional aspect of the device is sedimentation which includes but is not limited to:
  • a suspension that can include biological tissue such as bone marrow/cord blood or cells suspended in culture medium/buffer/other agents known in art.
  • micro particle/affinity matrix complexes for selection/recovery/purification/clarification of specific/desired biological components such as growth factors, cytokines, proteins or cell populations from a liquid mixture or suspension.
  • specific/desired biological components such as growth factors, cytokines, proteins or cell populations from a liquid mixture or suspension.
  • Fourth functional aspect includes dispension wherein uniform dispension of cells/solids/micro particles etc into different containers of defined volumes is required.
  • This disclosure is drawn, inter-alia, to an MPMS system, more particularly relates to the MPMS system used to mix liquids of different densities.
  • FIGS, la and lb are exemplary embodiments of the present disclosure illustrating perspective view and exploded view of the MPMS system (100).
  • the system (100) comprises a base frame (101) of predetermined shape configured to form base of the system (100).
  • the base frame (101) can be made from any material selected from group comprising but not limited to metal and non- metal.
  • a motor (102) is mounted to the base frame (101) of the MPMS system (100) for rotating the MPMS system (100) to bring about mixing.
  • the motor (102) is preferably a DC motor to change the speed by modulating the voltage or current.
  • the Rotation per Minute (RPM) of the motor (102) is defined by desired mixing velocity.
  • the system is provided with a ball joint mechanism (103), one end of which is fixed to the motor (102) through an adjustable link (104), and other end of the ball joint mechanism (103) is fixed to a fork (105).
  • the adjustable link (104) can be varied in the scale range of 0-30 mm as per the required angle of mixing.
  • the ball joint mechanism (103) comprises a ball and socket joint, this ball joint mechanism (103) provides a sliding fit that helps to generate multi -planar motion.
  • the fork (105) is a Y-shaped fork and - one cross bearing cup (108) is coupled to each top end of the fork (105) to obtain specified angular motion of the MPMS system (100).
  • the system (100) comprises a pair of bars/pillars (107) mounted on the base frame (101) and at least one cross bearing cup (108) is fixed to top end of each bar using cross links (109).
  • a cross bearing (106) is encompassed in the cross bearing cups (108) that is coupled to fork (105) and lower bars/pillars (107) to form universal joint to transfer planar motion of ball joint mechanism into multi-planar motion to rotate the MPMS system (100) for mixing.
  • a container holding frame (1 10) is pivoted on a cross link (109) and said cross link (109) is connected to Y-shaped fork (105) using upper bars/pillar (111) for holding the MPMS container (112).
  • the container holding frame (110) is configured to tilt up to 120° further the angle can be modified as per user requirements with respect to the base frame (101). In one of the embodiment wherein the phase separation process is required after mixing, the container holding frame (1 10) can be to tilt to 90°.
  • the system is provided with a container referred to as MPMS container (112).
  • the MPMS container is of predetermined shape detachably mounted on the container holding frame (11 1) for mixing.
  • the motor (102) is interfaced with a controller (218) (see FIG. 2) to control speed and direction of rotation of the motor (102) based on the requirement.
  • the speed and direction of the motor (102) is defined by the mixing velocity.
  • the container holding frame (110) can be rotated in both clock- wise and anti-clock wise direction and is controlled by the Controller (218).
  • the MPMS system (100) comprises a liner motion bearing (1 13) with a bush bearing (114) coupled to the container holding frame (1 10) using a linkage assembly (115) to tilt the container holding frame (1 10) up to 90° with respect to the base frame (101).
  • the linkage assembly (1 15) comprises a pair of first links and a second link forming a revolute pair.
  • the linear motion bearing (1 13) is coupled to the motor (116) to selectively lift and lower the MPMS container (1 12). And at least one position sensor (221) as shown in FIG. 2 is provided on the container holding frame (110) to control angle of lift of the MPMS container (112).
  • the motor (1 16) and the position sensors (221) are interfaced with the controller (218) as shown in FIG. 2.
  • container holding frame (110) is configured to tilt up to 120° with respect to the base frame (101).
  • a longer lead screw, a motor (116) with higher torque and power rating, links (1 15) of different dimensions are configured in the MPMS system (100).
  • the 120° titling of the container holding frame (1 10) is used in the foregoing applications including but not limited to fractional distillation and partial phase separation to tap various liquids from multiple drain ports of the container (112).
  • the MPMS container (112) has a locking means for locking the MPMS container (112) to the container holding frame (110). Locking can be through any suitable locking mechanism, and in one aspect of the present disclosure, the MPMS container (112) contains a side rib and the J- Clamp to lock the MPMS container (1 12) with the container holding frame (110) with a spring force.
  • FIG. 2 is an exemplary embodiment of the present disclosure which illustrates block diagram of MPMS system (200).
  • the MPMS system (200) is enclosed in a chamber (219) in a conditioned environment
  • At least one temperature sensor (220) is provided with in the chamber (219) to measure the temperature in the chamber (219), and said temperature sensor (220) is interfaced with the controller (218) to control the temperature in the in the chamber (219) within a predetermined limit.
  • the chamber (219) is maintained at 37° C by suitable means selected from a group comprising but not limited to warm air circulation, or use of infra-red, heating mechanism or other known in the art.
  • FIGS. 3a and 3b are exemplary embodiments of the present disclosure illustrating perspective view and bottom view of the MPMS container (1 12).
  • the MPMS container (1 12) comprises a curved top surface (112a) and flat bottom surface (1 12b).
  • the flat bottom surface (112b) of the MPMS container comprises plurality of projections (117) in predetermined profile arranged in predetermined pattern to facilitate homogenous mixing without generating turbulence or shear force.
  • the projections (1 17) slow down the velocity of the liquid in the container (112) and lamellar flow motion will be maintained.
  • the dimensions, distance, angle and pattern of arrangement of the projections improves the homogenous mixing of the fluids.
  • the dimensions, distance, angle of the projections (1 17) along with the pattern of arrangement of the projections (117) will vary based on requirement and application to facilitate homogenous mixing.
  • shape of the projections (117) is selected from group comprising but not limited to triangle, square, rectangle, circular, ellipsoid and baffles.
  • the MPMS container (112) further comprises a semi-circular shaped inlet (112c) and a funnel shaped outlet (112d) at either ends of the MPMS container (112).
  • the inlet (1 12c) is configured to receive the input/material into the MPMS container (112) for mixing and the outlet (1 12d) to deliver the output for further processing.
  • the semicircular portion provided at inlet of the MPMS container (112) will facilitate laminar flow.
  • the funnel shaped portion provided at outlet of the MPMS container (112) allow effective phase separation.
  • the outlet can be of other shapes including but not limited to semicircular, ellipsoidal, rectangular etc.
  • Inlet and outlet valves are controlled by pinch valves.
  • the MPMS container (112) can be made from any material selected from a group comprising but not limited to non-metal and metal.
  • MPMS container (1 12) is made from a rigid plastic such as polypropylene or polystreylene.
  • the MPMS container (112) is optionally made aseptic.
  • the MPMS container is preferably made aseptic for biological tissues. The dimension of the MPMS container (112) depends on the application.
  • the below table 1 illustrates various ratios of the dimensions of the MPMS container (1 12).
  • the dimensions provide in the table 1 is for an illustration purpose and should not be construed as limitation of MPMS.
  • the dimension of the container can be varied depending on the requirement.
  • FIGS. 4a to 4d are exemplary embodiments of the present disclosure illustrating various planar positions of the MPMS system (400) during mixing.
  • the MPMS system (100) of Figure 1 will be rotated by the motor (102).
  • the motor (102) will rotate the ball joint mechanism (103) through the link (104).
  • the ball and socket in the ball joint mechanism (103) will make sliding fit which helps to transfer planar motion into multi -planar motion.
  • the fork (105) connected to the ball joint mechanism (103) comprises of cross bearing cups (108) on its top ends to accommodate the cross bearing (106) by making a universal joint with cross bearing cups (108) mounted on lower bars/pillars (107) to transfer the rotation motion from motor to the container holding frame (1 10) through upper pillar/bars 111 , which is joined to the cross bearing cups (108) of the fork (105).
  • the fork (105) makes multi planar motion when the ball joint mechanism (103) makes planar motion.
  • the MPMS container (112) mounted on container holding frame (1 10) will be rotated in various planar positions for various mixing results.
  • Fig. 4a to 4d illustrates the system 400 in different planner motions.
  • FIG. 4e is an exemplary embodiment of the present disclosure which illustrates perspective view of MPMS container (1 15) of FIG.1 during phase separation.
  • the controller (218) shown in FIG. 2 will activate the agitation lift motor (116), the motor (116) will rotate the linear motion bearing (1 13).
  • the bush bearing (1 14) which is connected to an end of the linear motion bearing (113) will push the linkage assembly (115).
  • the linkage assembly (1 15) acting as revolute pair will lift the container holding frame (110) vertically up to 90° with respect to base frame (101) for phase separation..
  • the position sensors (422) (as shown in FIG. 4e) provided on the container holding frame (110) will be interfaced with the controller (218).
  • the position sensors (422) will determine the position of the container holding frame (1 10), once the desired position is reached the controller (218) will stop the agitation lift motor (1 16).
  • the exemplary illustration of phase separation is shown in the FIG. 4e.
  • the MPMS system (100) works on the principle of - CAM and rotary joint mechanism.
  • the MPMS system (100) works on a single pivot agitation mechanism with motor driven by CAM mechanism.
  • the MPMS container (112) is held on collar and bush assembly along the X-axis to perform semi-rotary motion through a motor (102), and the MPMS container (1 12) is mounted on inclined plane for swivel and rotary motion.
  • MPMS system The working of MPMS system is explained with the help of example. However, this example should not be construed as limitation of the MPMS system.
  • the MPMS system is used to process - biological samples.
  • the same MPMS system can be used for processing non-biological samples also.
  • the MPMS system can be used in Stromal Vascular Fraction (SVF) processing device (500) for mixing the tissue with different buffer solution and agitating the mixture followed by phase separation of fatty upper layer from aqueous lower layer.
  • SVF Stromal Vascular Fraction
  • FIG. 5A illustrates the Stromal Vascular Fraction (SVF) processing device (500) associated with MPMS system (501) of the present disclosure.
  • the SVF processing device (500) comprises of chamber (517) or cover of suitable design, the chamber (517) can be transparent or opaque.
  • the chamber (517) is provided with an user interface having LCD display (505) and input buttons to feed in required parameter for processing the sample.
  • the interface (505) is very user friendly and programmed for adjusting the setting of the device.
  • the geometry of the chambers/units can vary but not limited to cubical, square, rectangular, cylindrical and other known geometry which can be used for the purpose.
  • the MPMS system (100), also referred as tissue processing unit is attached to a rotating/agitation mechanism/MPMS assembly.
  • the device is also provided with one or two peristaltic pump (512) to feed in the lipoaspirated tissue sample collected from the patient for processing into the MPMS system (100) and to drain the liquids after phase separation.
  • This chamber/unit (517) is made of rigid or semi rigid non-reactive plastic or materials similar in physio-chemical composition like poly vinyl, polycarbonate but not limited.
  • the tissue samples obtained from surgery is transferred into the MPMS system (100)/ tissue processing unit, to provide maximum flexibility to surgeons using various commercially available liposuction instruments, the inlet tubing into tissue processing unit is designed to accept various liposuction containers currently in use for such surgical procedures.
  • This inlet tubing is connected to the device via tubings and adaptors and the sample is then pumped into the MPMS system (100) using the peristaltic pump (504) for washing and digestion.
  • the sterile, disposable containers (506) are used for housing wash buffers and buffers containing digestive enzymes. These containers (506) are provided with pre-designed outlets and are connected to the pinch valve (511) using appropriate tubing during normal operation.
  • the each container (506) are configured to hold predetermined quantity liquid, ranging from about 0.5 liters to about 10 liters .
  • the next operation in this sequence is to pump in a predetermined volume of buffer, from one of the buffer containers (506) using the peristaltic pump (512) but by activating a second valve in the-pinch value controller.
  • Predetermined volume is an amount equal to the amount of fat tissue that is being processed. The volume is calculated based on the tube diameter and time, and is fed into the user-interface (511) electronic circuitry using the data input keyboard. Once the desired volume is achieved, then the pumping is stopped.
  • the MPMS container (1 12) is then agitated for a period of 2 -15 min by energizing the motor arm of the MPMS system (100).
  • the motorized arm, connected to the motor is designed to deliver a uniform pitch and amplitude to enable thorough mixing of the samples.
  • the MPMS container (112) is tilted to a vertical position and allowed to rest for a period of 2-15 min and the two phases begin to separate (the fat-enriched upper phase and the lower aqueous phase are clearly discernable).
  • a predetermined volume of the lower aqueous phase usually 95% of the initial input volume of buffer, is drained by activating the outlet port and valve, and the wash solution is collected in the waste reservoir. Draining through a filter (or mesh of 100-200 micron) ensures that the fat enriched layer is not drained out at this step. This wash step is repeated for 3- 4 times for complete removal of blood cells from the tissue.
  • the digestion phase of the process commences with the addition of an equal volume of buffer containing collagenase, or a combination of collagenase, pepsin, trypin, papain or similar proteolytic enzyme pre-warmed to certain limit.
  • the enzyme/buffer solution from one of two containers is pumped through the third valve in the pinch valve using the peristaltic pump.
  • the clamp fixtures that hold the MPMS container (112) in place is equipped with a thermal pad, that, when energized warms up the contents of the MPMS container (112).
  • the thermal control mechanism has been calibrated to thoroughly and evenly heat the interior of the liquid to 37°c.
  • a sensor coupled to a (temperature controller) maintains the constant temperature throughout the digestion process.
  • the motorized arm is activated to deliver a gentle but thorough mixing of the enzyme with the fat tissue throughout this process. Based on the tissue volume and the enzyme concentration used, a minimum of 30 - 60 min of digestion with continuous mixing is carried out.
  • a pre-calculated volume of - serum is pumped using the same liquid-handling circuitry used for delivering the enzyme/buffer mix to inactivate the enzyme.
  • an enzyme inhibitor not limited to EGTA or similar chemically-defined inhibitor is added to inactivate the enzyme.
  • the enzyme is not inactivated as the extensive washing of the digested cells is sufficient to completely remove the enzyme.
  • the wash solutions are drained into the waste container (514) using a prefabricated outlet - controlled by a valve with a unidirectional flow (inside to outside) is used to drain. And the cell slurry from the MPMS system (100) is fed into the cell concentration unit/assembly (503) through the outlet - for further processing.
  • the cell concentration unit/assembly (503) is selected from group comprising but not limited to simple filtration, pressure assisted filtration, and vacuum assisted filtration or combination thereof.
  • the cell concentration unit/assembly (507) is optionally housed with a drive mechanism that enables controlled rotation of the chamber.
  • the drive mechanism is either magnetic, mechanical, electromechanical or a combination thereof.
  • the design and construction of the chamber also incorporates a vibratory mechanism to dislodge cells and debris that clog the filters. Either by itself, or in combination, these mechanisms improve flow rate and prevent clogging of filter materials and enable cell concentration.
  • the example provided above is just for illustration purpose; however the MPMS system can be used for mixing the non-biological samples including but not limited to any liquids, liquids and solids etc. Equivalents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
EP13762275.9A 2012-08-27 2013-07-19 Multi plane mixer and separator (mpms) system Withdrawn EP2888032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN3514CH2012 2012-08-27
PCT/IB2013/055938 WO2014033564A1 (en) 2012-08-27 2013-07-19 Multi plane mixer and separator (mpms) system

Publications (1)

Publication Number Publication Date
EP2888032A1 true EP2888032A1 (en) 2015-07-01

Family

ID=49165807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13762275.9A Withdrawn EP2888032A1 (en) 2012-08-27 2013-07-19 Multi plane mixer and separator (mpms) system

Country Status (8)

Country Link
EP (1) EP2888032A1 (ja)
JP (1) JP5875739B2 (ja)
KR (1) KR101629877B1 (ja)
CN (1) CN104519986A (ja)
AU (1) AU2013308131B2 (ja)
BR (1) BR112015001905A2 (ja)
HK (1) HK1206671A1 (ja)
WO (1) WO2014033564A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992865B1 (fr) * 2012-07-04 2014-08-29 Maco Pharma Sa Appareil pour extraire un composant sanguin contenu dans un systeme a poches
CN106919137B (zh) * 2017-04-25 2023-08-15 李满发 细胞工厂自动控制系统
JP7178012B2 (ja) * 2018-10-29 2022-11-25 学校法人 中央大学 液体混合装置及び液体混合方法
CN113092210B (zh) * 2021-04-08 2022-06-24 昆明理工大学 具有可调节角度位置节理预制片的圆柱形试件浇筑模具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626741B2 (ja) * 1992-02-19 1997-07-02 株式会社堀場製作所 遠心撹拌装置
CN2134223Y (zh) * 1992-09-25 1993-05-26 朱新青 一种摆动式混合机
WO1995004591A1 (en) * 1993-08-05 1995-02-16 Max-Medical Pty. Ltd. Device for mixing liquids
JP3353189B2 (ja) * 1995-03-15 2002-12-03 株式会社サイニクス 波動形に旋回揺動する振盪機
US6491422B1 (en) * 2000-05-16 2002-12-10 Rütten Engineering Mixer
JP2007524396A (ja) * 2003-06-25 2007-08-30 サイトリ セラピューティクス インコーポレイテッド 組織から再生細胞を分離して濃縮するためのシステム及び方法
JP4740749B2 (ja) * 2006-01-17 2011-08-03 株式会社ジャパンユニックス ミキサー
CN101063078B (zh) * 2007-04-20 2010-06-09 博奥生物有限公司 一种生物芯片杂交清洗装置
CN201140052Y (zh) * 2007-12-12 2008-10-29 程若闻 液体混合器
KR100866148B1 (ko) * 2008-07-22 2008-10-30 (주)세명 혼합기
FR2952312B1 (fr) * 2009-11-10 2011-12-02 Jean Boquet Appareil pour la vibration de tubes contenant des echantillons
KR101105239B1 (ko) * 2011-12-14 2012-01-13 이미경 교반장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014033564A1 *

Also Published As

Publication number Publication date
JP5875739B2 (ja) 2016-03-02
AU2013308131A1 (en) 2015-02-19
BR112015001905A2 (pt) 2017-07-04
KR20150038441A (ko) 2015-04-08
KR101629877B1 (ko) 2016-06-13
CN104519986A (zh) 2015-04-15
JP2015533631A (ja) 2015-11-26
WO2014033564A1 (en) 2014-03-06
HK1206671A1 (en) 2016-01-15
AU2013308131B2 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
US9314753B2 (en) Multi plane mixer and separator (MPMS) system
US9873860B2 (en) Capture and elution of bio-analytes via beads that are used to disrupt specimens
AU2013308131B2 (en) Multi plane mixer and separator (MPMS) system
US10428301B2 (en) System, apparatus and method for material preparation and/or handling
CN104707495B (zh) 高调节比叶轮
JP5422661B2 (ja) 組織を処理し細胞を解放するための装置および方法
US20020118594A1 (en) Apparatus and method for mixing small volumes of liquid
US20100112695A1 (en) Apparatus And Methods For Processing Tissue to Release Cells
GB2434205A (en) Module for preparing a biological sample, biochip-assembly and use of the module
JP2004521739A (ja) 渦作用を使用して液体サンプルを混合する方法および装置
EP1896164B1 (en) Device for mixing a liquid medium
CN101203757A (zh) 用于移动磁性粒子的设备
US20060019376A1 (en) Fermentation chamber and mixing apparatus
EP2944373B1 (en) Device for suspending cells
Werner et al. Mixing Systems for Single‐Use
JPWO2020162431A1 (ja) 検体処理装置
CN212855712U (zh) 一种用于制备磁珠母液的制备装置
US20220054993A1 (en) Mixing device
WO2021060550A1 (ja) 攪拌体とこれを備える攪拌装置
JP3680080B2 (ja) 反応装置およびその使用方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160317

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170204