JP7178012B2 - 液体混合装置及び液体混合方法 - Google Patents

液体混合装置及び液体混合方法 Download PDF

Info

Publication number
JP7178012B2
JP7178012B2 JP2018203242A JP2018203242A JP7178012B2 JP 7178012 B2 JP7178012 B2 JP 7178012B2 JP 2018203242 A JP2018203242 A JP 2018203242A JP 2018203242 A JP2018203242 A JP 2018203242A JP 7178012 B2 JP7178012 B2 JP 7178012B2
Authority
JP
Japan
Prior art keywords
liquid
pillars
plate
liquid mixing
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018203242A
Other languages
English (en)
Other versions
JP2020069411A (ja
Inventor
健 早川
駿幸 松井
宏明 鈴木
完治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2018203242A priority Critical patent/JP7178012B2/ja
Publication of JP2020069411A publication Critical patent/JP2020069411A/ja
Application granted granted Critical
Publication of JP7178012B2 publication Critical patent/JP7178012B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、液体混合装置及び液体混合方法に関する。
近年、微細加工技術の発達に伴い、マイクロ流体デバイスを用いた実験・研究が注目されている。ここで、マイクロ流体デバイスとは、マイクロ流路、センサ、アクチュエータ等をチップ上に統合したものをいい、Lab on a Chip(LOC)、MicroTAS(Total Analysis System)とも呼ばれている。マイクロ流体デバイスを用いた実験・研究によれば、例えば、サンプル注入、前処理、攪拌、混合、反応生成物の単離・精製・検出等を、1つのチップ上で行うことができる。このように、様々な操作をミクロ化すれば、実験を高速・高効率・低コストに行うことが可能となる。このため、こうしたマイクロ流体デバイスをバイオ研究・化学工学等に応用した技術の発展が期待されている。特に、化学反応を起こす必要がある実験に際し、試薬を混合する操作は基本的かつ不可欠な操作である。
しかしながら、マイクロ流体デバイスの内部は、低レイノルズ数の環境であることから、当該液体の流れが層流となる。このため、マイクロ流体デバイスの内部では、液体の混合が難しい。
これに対し、従来の技術としては、マイクロ流体デバイス内に分岐流路を形成することにより、液体の流れを多数の層流に引き延ばして混合する方法が知られている(例えば、非特許文献1参照。)。また、従来の他の技術としては、電気浸透流を用いて混合する方法が知られている(例えば、非特許文献2参照。)。
Adeosun,John T, et al, Sensor Actuat. B-Chem, 110.1(2005); 101-111 Sasaki Naoki, et al, Lab on Chip 6.4(2006); 550-554
しかしながら、こうした従来の方法では、液体の流れは、シリンジポンプ等の圧送手段によって生じさせている。このため、従来の方法では、デッドボリューム(混合液として利用されない液体の容量)が大きく、例えば、希少な試薬(例えば、蛍光試薬・抗体試薬)、細胞分泌物等の混合に使用することは、コスト等の点において難しかった。
本発明の目的は、デッドボリュームを抑制しつつ、複数種類の液体を混合可能な、液体混合装置及び液体混合方法を提供することである。
本発明に係る液体混合装置は、周壁によって区画された領域内に複数のピラーが配置されたプレートと、前記プレート上に供給される複数種類の液体が前記ピラーの周りを周回運動するように、前記プレートを駆動させるプレート駆動部と、を備える。
本発明に係る液体混合装置では、前記ピラーの間隔は、前記ピラーの平面視における外接円の直径以下であることが好ましい。
本発明に係る液体混合装置において、前記プレート駆動部は、前記プレートが旋回運動するように、当該プレートを駆動させる駆動部であり、前記ピラーの間隔は、以下の関係式(1)
Figure 0007178012000001
により求められるδと同程度の値に設定されていることが好ましい。ここで、δは境界層の厚み(μm)、すなわち振動により流れが生じる領域を表しており、νは動粘性係数(Pa・s)、ωは前記プレートが旋回運動するときの角振動数(rad/s)である。
本発明に係る液体混合装置において、前記液体の供給部は、前記ピラーが配置された領域の直上にあることが好ましい。
本発明に係る液体混合方法は、周壁によって区画された領域内に複数のピラーが配置されたプレート上に、複数種類の液体を供給する液体供給工程と、前記液体供給工程の後、平面視において、前記プレートを駆動させて、前記プレート上に供給された前記複数種類の液体を前記ピラーの周りに周回運動させる、周回運動工程と、を含む。
本発明に係る液体混合方法では、前記ピラーの間隔は、前記ピラーの平面視における外接円の直径以下であることが好ましい。
本発明に係る液体混合方法では、前記周回運動工程において、前記プレートが旋回運動するように、当該プレートを駆動させると共に、
前記ピラーの間隔は、境界層の厚みδ(μm)に設定され、当該境界層の厚みδは、以下の関係式(1)
Figure 0007178012000002
ν:動粘性係数(Pa・s)
ω:プレートが旋回運動するときの角振動数(rad/s)
によって設定されていることが好ましい。
本発明に係る液体混合方法において、前記液体供給工程において、前記液体を、前記ピラーが配置された領域の直上から供給することが好ましい。
本発明によれば、デッドボリュームを抑制しつつ、複数種類の液体を混合可能な、液体混合装置及び液体混合方法を提供することができる。
本発明の一実施形態に係る液体混合装置を概略的に示す斜視図である。 図1の液体混合装置におけるマイクロミキサーチップを示す概略的な図であって、当該マイクロミキサーチップを示す平面図である。 図2のA-A断面図である。 図2のマイクロミキサーチップにおけるピラーの配置構造を一部拡大して示す平面図である。 図2のマイクロミキサーチップにおけるピラーの配置構造を参照して、2つの液体が混合される基本的な原理を説明する図であって、当該2種類の液体が混合される前の状態を示す図である。 図5Aに引き続いて、2つの液体が混合される過程を示す図である。 本発明の一実施形態に係る液体混合方法の液体供給工程の一例を説明するための、図2のA-A断面図に相当する図である。 本発明の一実施形態に係る液体混合方法の周回運動工程の一例を説明するための、図2のA-A断面図に相当する図である。 本発明の一実施形態に係る液体混合方法の混合液回収工程の一例を説明するための、図2のA-A断面図に相当する図である。 図2のマイクロミキサーチップに適用可能な、ピラーの配置構造の他の例を一部拡大して示す平面図である。 図2のマイクロミキサーチップに適用可能な、ピラーの配置構造の更に他の例を一部拡大して示す平面図である。 図2のマイクロミキサーチップに適用可能な、他のピラーの配置構造の更に他の例を一部拡大して示す平面図である。 本発明の一実施形態に係る液体混合装置のマイクロミキサーチップを製造するための方法の一例であって、当該方法の第1工程を説明するための概略図である。 図10Aに引き続いて行われる、マイクロミキサーチップを製造するための方法の第2工程を説明するための概略図である。 図10Bに引き続いて行われる、マイクロミキサーチップを製造するための方法の第3工程を説明するための概略図である。 図10Cに引き続いて行われる、マイクロミキサーチップを製造するための方法の第4工程を説明するための概略図である。 図10Dに引き続いて行われる、マイクロミキサーチップを製造するための方法の第5工程を説明するための概略図である。 図10Eに引き続いて行われる、マイクロミキサーチップを製造するための方法の第6工程を説明するための概略図である。 マイクロミキサーチップ1において、液体A及び液体Bをそれぞれ、離れた位置から供給し、振動誘起を生じさせる前のプレートを示す画像である。 図11Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。 マイクロミキサーチップ1において、振動誘起を生じさせてから20秒後のプレートを示す画像である。 図12Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。 マイクロミキサーチップ2において、液体A及び液体Bをそれぞれ、離れた位置から供給し、振動誘起を生じさせる前のプレートを示す画像である。 図13Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。 マイクロミキサーチップ2において、振動誘起を生じさせてから20秒後のプレートを示す画像である。 図14Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。
以下、図面を参照して、本発明の一実施形態に係る液体混合装置及び液体混合方法について説明をする。
<液体混合装置>
図1中、符号100は、本発明の一実施形態に係る液体混合装置である。液体混合装置100は、マイクロ流体デバイスとしてのマイクロミキサーチップ10と、マイクロミキサーチップ10を駆動させるプレート駆動部(駆動部)20と、を備えている。マイクロミキサーチップ10は、は、プレート駆動部20上に配置(例えば、固定)されている。
液体混合装置100は、周壁12によって区画された領域内に複数のピラーが配置されたプレート11を備えている。本実施形態では、マイクロミキサーチップ10は、プレート11と、周壁12と、カバー14とによって区画された液体混合用ケースである。図2は、マイクロミキサーチップ10を示す平面図である。図2に示すように、マイクロミキサーチップ10は、プレート11と、周壁12と、複数のピラー13とを備えている。複数のピラー13は、周壁12によって区画されたプレート11の領域内に配置されている。なお、図2は、図面表記の煩雑さを回避するため、複数のピラー13のうち、二点鎖線で囲まれた領域の中央側のピラー13は省略して記載されている。ただし、実際には、当該領域の全体には、複数のピラー13が、図示された複数のピラー13と同様に、規則的な配列で配置されている。また、本実施形態では、複数のピラー13は、図3に示すように、周壁12と共にプレート11の上面11aから、カバー14の下面の位置までにわたって起立している。周壁12の下端内周側に形成された下端開口は、プレート11によって液密な状態に閉じられている。
また、本実施形態では、マイクロミキサーチップ10は、周壁12を閉じるカバー14を備えている。図3に示すように、カバー14は、周壁12の上端内周側に形成された上端開口を閉じている。これによって、図3に示すように、マイクロミキサーチップ10の内部には、プレート11、周壁12及びカバー14によって区画された空間Sが形成され、当該空間Sには、複数のピラー13がプレート11の上面11aから起立している。空間Sは、液体を充填するための空間として機能する。
また、本実施形態では、カバー14には、空間Sを外界に通じさせる複数の供給部10aと、同じく空間Sを外界に通じさせる回収部10bと、が形成されている。本実施形態では、供給部10a及び回収部10bは、カバー14に形成された開口部である。図1に示すように、本実施形態では、カバー14には、2つの供給部10a1及び10a2が形成されている。2つの供給部10a1及び10a2は、それぞれ、カバー14の左右方向(長手方向:図1及び図2のx方向)の両側の位置に間隔を置いて配置されている。また、本実施形態では、回収部10bは、2つの供給部10a1及び10a2の間の、カバー14の中央の位置に配置されている。
プレート駆動部20は、プレート11上に供給される複数種類の液体が、ピラー13(本実施形態では、より具体的に、複数のピラー13のそれぞれ)の周りを周回運動するように、プレート11を駆動させる。本実施形態では、プレート駆動部20は、図2に示すように、平面視において、マイクロミキサーチップ10を旋回運動させることにより、当該マイクロミキサーチップ10内に充填された液体をピラー13の周りに周回運動させる。こうしたプレート駆動部20としては、例えば、2軸ピエゾステージが挙げられる。
ここで、この明細書において、「旋回運動」とは、上記マイクロミキサーチップ等の、運動する物体について、平面視において、当該物体が並進運動(物体上の全ての点が同一の速度で移動する運動)をしつつ、当該物体全体が所定の中心軸の周りを回転する運動をいい、当該物体上の全ての点が当該物体上にある所定の中心軸の周りを回転する運動(以下、「自転運動」という。)ではない。即ち、図2の白抜き矢印は、マイクロミキサーチップ10が当該白抜き矢印の方向に自転運動をしていることを示すものではなく、当該マイクロミキサーチップ10全体が当該白抜き矢印の方向に時間的に推移していることを示すものである。但し、本実施形態における旋回運動についての上記「旋回運動」は、複数種類の液体Lをピラー13の周りに周回させる運動である限り、円運動に限定されない。例えば、仮想の矩形の各辺に沿って回転する運動であってもよい。また、「旋回運動」は、自転を伴うものであってもよい。
図4は、マイクロミキサーチップ10における、ピラー13の配置構造を一部拡大して示す平面図である。ここで、ピラー13の配置構造とは、図4に示すように、平面視において、複数のピラー13がプレート11上に所定の配列により配置されている構造をいう。また、以下の説明において、x方向及びy方向は、互いに直交する方向をいう。本実施形態では、x方向は、プレート11の長手方向に沿った方向である。また、y方向は、本実施形態では、y方向は、プレート11の短手方向に沿った方向である。
ピラー13の配置構造は、図4に示すように、平面視において、各ピラー13が互いに任意の間隔Cを置いて配列されることにより設定することができる。本実施形態に係る液体混合装置100では、ピラー13の間隔C(ピラーの間隔)は、同一の間隔である。ここで、「ピラー13の間隔C」は、図4に示すように、平面視において、ピラー13のピッチ間隔P上の、当該ピラー13の外周面の間の間隔である。即ち、ピラー13の間隔Cは、2つのピラー13の間隔のうち、最小の間隔である。また、「ピラー13のピッチ間隔P」は、2つのピラー13の中心間距離である。図4に示すように、本実施形態では、ピラー13の形状は、平面視において、直径D13の真円形状である。即ち、本実施形態では、ピラー13のピッチ間隔Pは、2つのピラー13の中心Oの間の距離である。
次に、図5A及び図5Bを参照して、複数種類の液体を、液体混合装置100のマイクロミキサーチップ10を用いて混合し、混合液を生成するための基本的な原理を説明する。
図5A及び図5Bでは、液体L1と液体L2との2液を混合して、混合液L3を生成する場合を例にする。図5Aに示すように、プレート11上には、液体L1と液体L2との2液が供給されている。図5Aでは、液体L1と液体L2とは、分離した状態にある。ここで、図5Bの白抜き矢印に示すように、平面視において、プレート11を旋回運動させると、図5Bの矢印に示すように、プレート11上に供給されている液体L1及び液体L2が各ピラー13の周りを周回運動する(本実施形態では、円運動する)。即ち、プレート11を旋回運動させると、例えば、図5Bの矢印に示す向きに、各ピラー13の周りにそれぞれ、液体Lの流れ(以下、「振動誘起流れ」ともいう。)Fが生じる。振動誘起流れFは、ピラー13の周りを周回し、当該周回の周期(振動誘起流れFの周期)は、プレート11の駆動周期Tに依存する。振動誘起流れFは、図5Bに示すように、液体L1と液体L2とを攪拌し、液体L1及び液体L2を混合させる。
ここで、図5A及び5Bにおいて、プレート11にピラー13が配置された領域を領域R1、R2及びR3と区画し、更に詳細に説明をする。液体L1が供給されたプレート11の領域R1では、当該領域R1に生じた振動誘起流れFによって液体L1が攪拌される。また、液体L2が供給されたプレート11の領域R2では、当該領域R2に生じた振動誘起流れFによって液体L2が攪拌される。これらの攪拌された液体L1及び液体L2は、領域R1及び領域R2の間の中央に位置するプレート11の領域R3に向かって順次、伝播されることで、液体L1及び液体L2の混合が生起される。これにより、別々の液体L1と液体L2とを混合して混合液L3を生成することができる。
ところで、上述のとおり、ピラー13の間隔Cは、適宜設定することができるが、当該ピラー13の間隔Cは、ピラー13の平面視における外接円の直径以下とすることが好ましい。上述のとおり、本実施形態に係る液体混合装置100では、ピラー13の形状は、図4に示すように、平面視において、直径D13の真円形状である。本実施形態では、ピラー13の外接円の直径は、ピラー13の直径D13である。即ち、本実施形態では、ピラー13の間隔Cは、当該ピラー13の直径D13以下とすることが好ましい。本実施形態では、ピラー13の直径D13は、10μmである。この場合、ピラー13の間隔Cは、10μmである。
また、ピラー13の間隔Cは、プレート11上の液体Lの境界層を考慮して設定することが好ましい。ここで、「境界層」とは、プレート11上の液体Lの流れにおいて、当該液体の粘性による影響を強く受ける層をいう。振動誘起流れFは、ピラー13の外周面から径方向に、例えば、数10μmの局所的な領域に生じる。この場合、前記境界層は、平面視において、ピラーの外周面から径方向から、数10μmの局所的な領域(厚み)となる。
上述のとおり、本実施形態に係る液体混合装置100では、ピラー13の間隔Cは、それぞれ、ピラー13の周りに生起される振動誘起流れFを、互いに隣り合うピラー13の間で適度に干渉させるように、設定することが好ましい。本実施形態では、ピラー13の間隔Cは、境界層の厚みδ(μm)に設定することができる。ここで、境界層厚みδ(μm)は、以下の関係式(1)によって設定することができる。
Figure 0007178012000003
ν:動粘性係数(Pa・s)
ω:プレートが旋回運動するときの角振動数(rad/s)
また、式(1)の動粘性係数ν及び角振動数ωは、それぞれ、次の式(2)、式(3)で表すことができる。
ν=μ/ρ・・・(2)
μ:粘度(Pa・s)
ρ:密度(kg/m3)
ω=2πf・・・(3)
f:プレート駆動部の駆動振動数(ピアゾステージの共振周波数)
なお、ピラー13の配置構造は、例えば、図4に示すように、平面視において、各ピラー13をひし形格子状に配列した配置構造とすることができる。こうしたピラー13の配置構造は、例えば、各ピラー13を互い違いに配列することで形成することができる。図4のピラー13の配置構造は、y方向に沿って、各ピラー13を互いに違いに配列した配置構造である。本実施形態では、図4に示すように、ピラー13の配置構造は、複数のx方向配列Axを含んでいる。本実施形態では、ピラー13のピッチ間隔Pのうち、x方向のピッチ間隔Pをx方向ピッチ間隔Pxとすると、1つのx方向配列Axは、図4に示すように、平面視において、複数のピラー13が、x方向に互いに等しいピッチ間隔P(x方向ピッチ間隔Px)を置いて、当該x方向に沿って一直線に配置された配列である。また、本実施形態では、本実施形態では、ピラー13のピッチ間隔Pのうち、y方向のピッチ間隔Pをy方向ピッチ間隔Pyとすると、図4に示すように、平面視において、各x方向配列Axは、y方向に互いに等しいピッチ間隔P(y方向ピッチ間隔Py)を置いて、当該y方向に沿って配列されている。本実施形態では、y方向に隣り合うx方向配列Axがy方向において互い違いになるように配列されている。これにより、図4のピラー13の配置構造は、ひし形格子状に配列された配置構造となっている。なお、ひし形格子状に配列されたピラー13の配置構造は、y方向に代えて、x方向に沿って、各ピラー13を互い違いに配列することで形成することができる。また、x方向ピッチ間隔Px及びy方向ピッチ間隔Pyはそれぞれ、ピラー13の中心間距離である。なお、本実施形態では、個々のピラー13のx方向ピッチ間隔Px及びy方向ピッチ間隔Pyを等しくしているが、個々のピラー13のx方向ピッチ間隔Px及びy方向ピッチ間隔Pyを異ならせることもできる。
ところで、図4のピラー13の配置構造では、ピラー13のピッチ間隔Pのうち、互いに隣接するピラー13の隣接ピッチ間隔Paは等しい。詳細には、図4のピラー13の配置構造では、1つのピラー13が等しい隣接ピッチ間隔Paで他の6つのピラー13に取り囲まれるように配列されている。図4の例では、ピラー13のx方向ピッチ間隔Pxは、ピラー13の隣接ピッチ間隔Paと等しく、ピラー13のy方向ピッチ間隔Pyは、ピラー13の隣接ピッチ間隔Paと異なる。なお、ピラー13の隣接ピッチ間隔Paは、x方向ピッチ間隔Px及びy方向ピッチ間隔Pyと同様、ピラー13の中心間距離である。
なお、本実施形態において、ピラー13の直径D13は、D13=50μmである。また、ピラー13の隣接ピッチ間隔Paは、Pa=100μmである。但し、ピラー13の直径D13、ピラー13の隣接ピッチ間隔Paは、適宜、設定することができる。
また、ピラー13の直径D13、ピラー13のx方向ピッチ間隔Px、y方向ピッチ間隔Py及び隣接ピッチ間隔Pa等のピラー13のピッチ間隔Pは、それぞれ、マイクロミキサーチップ10の大きさ、混合するべき液体の物性等、様々な条件に応じて変更することができる。例えば、ピラー13のx方向ピッチ間隔Pxは、x方向におけるピラー13同士の間で、互いに異ならせることができる。このことは、ピラー13のy方向ピッチ間隔Pyとピラー13の隣接ピッチ間隔Paについても同様である。
[液体混合方法]
次に、本発明の一実施形態に係る液体混合方法について説明をする。本実施形態に係る液体混合方法では、図1の液体混合装置100を使用することにより、複数種類の液体Lを混合する。
(液体供給工程)
本実施形態に係る液体混合方法では、第1の工程として、先ず液体供給工程を行う。前記液体供給工程は、周壁12によって区画された領域内に複数のピラー13が配置されたプレート11上に、複数種類の液体Lを供給する。本実施形態では、液体L1と液体L2との2種類の液体を供給する。まず図1に示すように、マイクロミキサーチップ10をプレート駆動部20上に配置し、当該マイクロミキサーチップ10内に液体L1と液体L2とを供給する。本実施形態では、図6Aに示すように、プレート駆動部20上に配置されたマイクロミキサーチップ10の供給部10a1及び供給部10a2にそれぞれ、液体L1及び液体L2を供給する。具体例としては、図6Aに示すように、ピペット等の定量給排装置30を用いることにより、液体L1及び液体L2を、マイクロミキサーチップ10の供給部10a1及び供給部10a2を通してプレート11上に供給する。
前記液体供給工程では、液体L1及び液体L2を、ピラー13が配置された領域の直上から供給することが好ましい。本実施形態では、マイクロミキサーチップ10の供給部10a及び回収部10bは、図6Aに示すように、ピラー13が配置された領域の直上に形成されている。詳細には、図2に示すとおりである。この場合、液体L1及び液体L2の周回運動が早期に行われるため、効率的な混合が実現される。
(周回運動工程)
次いで、本実施形態に係る液体混合方法では、第2の工程として、周回運動工程を行う。前記周回運動工程は、前記液体供給工程の後、平面視において、プレート11を駆動(本実施形態では、旋回運動)させて、当該プレート11上に供給された複数種類の液体Lをピラー13の周りに周回運動させる。本実施形態では、プレート駆動部20として、2軸ピエゾステージを用いている。これにより、図6Bに示すように、平面視において、マイクロミキサーチップ10を旋回運動させることができる。前記2軸ピエゾステージは、図5Bに示すように、平面視で、x方向及びy方向の2軸方向に対して制御可能である。2軸ピエゾステージは、x方向に配置されたピエゾ素子と、y方向に配置されたピエゾ素子とを、互いに独立して振動制御することができる。これにより、2軸ピエゾステージは、マイクロミキサーチップ10を時計回り及び反時計回りの少なくともいずれか一方に旋回運動させることができる。但し、マイクロミキサーチップ10の旋回運動は、液体L1及び液体L2をピラー13の周りに周回運動させる運動であれば、円運動に限定されない。本実施形態では、プレート駆動部20は、図5Bに示すように、平面視で、マイクロミキサーチップ10を時計回りに駆動周期T(=1/f)で旋回運動させる。これにより、ピラー13の周りに生じる振動誘起流れFも、図5Bに示すように、平面視で、ピラー13の周りを周回する流れとなる。なお、プレート駆動部20は、マイクロミキサーチップ10を反時計回りに旋回運動させることも可能である。また、プレート駆動部20は、駆動周期Tで、時計回りの旋回運動と、反時計回りの旋回運動とを交互に切り替えることもできる。
(混合液回収工程)
液体L1及び液体L2は、ピラー13の周りの振動誘起流れFによってプレート11上で攪拌される。これにより、プレート11上では、液体L1及び液体L2を流通させることなく、液体L1及び液体L2を含む混合液L3が生成される。プレート11上に生成された混合液L3は、図6Cに示すように、マイクロミキサーチップ10の回収部10bから回収することができる。具体例としては、図6Cに示すように、定量給排装置30を用いることにより、混合液L3を、マイクロミキサーチップ10の回収部10bを通してプレート11上から回収する。
次に、上述の実施形態に係る液体混合装置100及び液体混合方法の作用効果について説明をする。
上述のように、本実施形態に係る液体混合装置100は、周壁12によって区画された領域内に複数のピラー13が配置されたプレート11と、プレート11上に供給される液体L1及び液体L2がピラー13の周りを周回運動するように、プレート11を駆動させるプレート駆動部20と、を備える。本実施形態では、液体L1及び液体L2の複数種類の液体Lをマイクロミキサーチップ10のプレート11上に供給し、液体L1及び液体L2がプレート11に配置された複数のピラー13の周りを周回運動するように、プレート駆動部20を駆動させる。これにより、本実施形態に係る液体混合装置100によれば、液体L1及び液体L2を含む混合液L3を生成することができる。また、従来の液体混合装置は、複数種類の液体Lを、各流路を通して層流とした後、互いに合流させることによって混合させている。このため、従来の液体混合装置には、例えば、液体Lが前記流路に残留することで損失を生じる、いわゆる、デッドボリューム(混合液として利用されない液体の容量)の問題があった。これに対し、本実施形態に係る液体混合装置100によれば、従来の液体混合装置で用いられているような、前記流路が不要となるため、例えば、当該流路内に、液体L1及び液体L2が残留することによって生じ得る、デッドボリュームを抑制することができる。従って、本実施形態に係る液体混合装置100によれば、デッドボリュームを抑制しつつ、複数種類の液体Lを混合可能となる。
また、従来の液体混合装置は、混合すべき液体Lを障害物に衝突させることにより、当該液体Lを混合させていた。このため、従来の液体混合装置では、シリンジポンプ等の圧送手段を用いる必要があった。これに対し、本実施形態に係る液体混合装置100は、液体Lを障害物に衝突させる必要がないため、前記圧送手段が不要となる。また、本実施形態に係る液体混合装置100によれば、液体Lを圧送する必要がないため、マイクロミキサーチップ10は、必ずしも、カバー14で閉じることで密封する必要もない。このため、本実施形態に係る液体混合装置100では、カバー14に形成した供給部10aを通すことによって、又は、カバー14を省略することによって、混合すべき、液体L1及び液体L2をプレート11上から直接滴下することができ、また、回収すべき混合液L3も、カバー14に形成した回収部10bを通すことによって、又は、カバー14を省略することによって、プレート11上から直接回収することができる。この場合、混合すべき、液体L1及びL2の供給と、混合液L3の回収が容易となる。
また、本実施形態に係る液体混合装置100では、ピラー13の間隔Cは、ピラー13の平面視における外接円の直径以下であることが好ましい。この場合、ピラー13の間隔Cを近似的に算出することで、当該ピラー13の間隔Cの設定を容易に行うことができる。具体例としては、上述のとおり、加工し易さ等を考慮すれば、ピラー13の間隔Cは、10μm以上とする。なお、本実施形態では、上述のとおり、ピラー13の間隔Cは、ピラー13の直径D13=10μmである。
また、本実施形態に係る液体混合装置100では、上述のとおり、ピラー13の間隔Cは、境界層の厚みδ(μm)に設定され、当該境界層の厚みδは、以下の関係式(1)
Figure 0007178012000004
ν:動粘性係数(Pa・s)
ω:プレートが旋回運動するときの角振動数(rad/s)
によって設定されていることが好ましい。
ピラー13の間隔Cの上限値は、上述のとおり、式(1)で算出される、境界層厚みδで設定することが好ましい。即ち、ピラー13の間隔Cは、上記境界層の厚みδ以下とすることが好ましい。上述のとおり、ピラー13の間隔Cは、それぞれ、ピラー13の周りに生起される振動誘起流れFを、互いに隣り合うピラー13の間で適度に干渉させるように、設定することが好ましいためである。なお、ピラー13の間隔Cの下限値は、加工技術に依存する。例えば、加工し易さ等を考慮すれば、ピラー13の間隔Cの下限値は、10μm以上とすることが好ましい。具体的には、ピラー13の間隔Cの好適な範囲は、近似的に、
Figure 0007178012000005
とすることができる。
特に、ピラー13の間隔Cを上記式(1)により設定する場合、当該ピラー13の間隔Cは、液体Lの粘度μと、プレート駆動部20の駆動振動数fとの関係で設定されていることが好ましい。本実施形態では、上述の式(1)に基いて、液体L1の粘度μ1及び液体L2の粘度μ2と、プレート駆動部20の駆動振動数fとから、液体L1及び液体L2の特性に合わせたピラー13の間隔Pを容易に得ることができる。
ν=μ/ρ・・・(2)
μ:粘度(Pa・s)
ρ:密度(kg)
ω=2πf・・・(3)
f:プレート駆動部の駆動振動数(ピアゾステージの共振周波数)
また、液体L1の供給部10a1及び液体L2の供給部10a2は、図2等に示すように、ピラー13が配置された領域の直上にあることが好ましい。この場合、液体L1及び液体L2の攪拌が迅速に行われることで、液体L1及び液体L2を効率的に混合可能となる。
また、図6A~図6Cのように、本実施形態に係る液体混合方法によれば、前記液体供給工程において、複数のピラー13が配置されたプレート11上に、液体L1及び液体L2を供給し、前記液体供給工程の後、前記周回運動工程において、プレート11を駆動させて、当該プレート11上に供給された液体L1及び液体L2をピラー13の周りに周回運動させる。これにより、本実施形態に係る液体混合方法によれば、液体L1及び液体L2を含む混合液L3を生成することができる。また、本実施形態に係る液体混合方法によれば、従来の液体混合方法のように、複数種類の液体Lを、各流路を通して層流とした後、互いに合流させることによって混合させる工程が不要となる。従って、本実施形態に係る液体混合方法によれば、デッドボリュームを抑制しつつ、複数種類の液体Lを混合可能な液体混合方法となる。
また、本実施形態に係る液体混合方法は、液体L1及び液体L2をピラー13等の障害物に衝突させることで混合させる必要がない。このため、従来の液体混合方法で用いられていたポンプ手段が不要となり、マイクロミキサーチップ10をカバー14で密封する必要もない。このため、混合すべき、液体L1及び液体L2をプレート11上から直接滴下することができ、また、回収すべき混合液L3も、プレート11上から直接回収することができる。この場合、混合すべき、液体L1及び液体L2の供給と、混合液L3の回収が容易な液体混合方法を得ることができる。
特に、本実施形態に係る液体混合方法では、上述のとおり、ピラー13の間隔Cは、ピラー13の平面視における外接円の直径以下であることが好ましい。本実施形態では、上述のとおり、ピラー13の間隔Cは、ピラー13の直径D13と等しい。
特に、本実施形態に係る液体混合方法では、ピラー13の間隔Cは、上述のとおり、液体の粘度μと、プレート駆動部20の駆動振動数fとの関係で設定されていることが好ましい。
特に、本実施形態に係る液体混合方法は、前記液体供給工程において、液体L1及び液体L2を、ピラー13が配置された領域の直上から供給している。この場合、液体L1及び液体L2の攪拌が迅速に行われることで、液体L1及び液体L2を効率的に混合可能な液体混合方法を得ることができる。
ところで、上述の実施形態では、ピラー13の形状は、平面視において、真円形状としたが、楕円形状、多角形状等の様々な形状とすることができる。
図7は、液体混合装置100、より詳細には、図2のマイクロミキサーチップ10に適用可能な、ピラー13の配置構造の他の例を一部拡大して示す平面図である。図7では、ピラー13の形状は、図7に示すように、平面視において、ひし形形状である。この例では、各ピラー13はそれぞれ、x方向に扁平なひし形形状である。
また、図8は、マイクロミキサーチップ10に適用可能な、他のピラー13の配置構造の更に他の例を一部拡大して示す平面図である。図8では、ピラー13の形状は、図8に示すように、平面視において、V形形状である。この例では、各ピラー13は、当該ピラー13のV字の先端が同一の方向に指向するように形作られている。詳細には、各ピラー13は、当該ピラー13のV字の先端がx方向に沿う同一の向きに指向するように形作られている。なお、図8では、各ピラー13は、当該ピラー13のV字の先端が図面左側に指向するように形作られているが、図面右側に指向するように形作ることもできる。
更に、図9は、マイクロミキサーチップ10に適用可能な、更に他のピラー13の配置構造の更に他の例を一部拡大して示す平面図である。図9では、ピラー13の形状は、図8と同様、平面視において、V形形状である。この例では、各ピラー13は、当該ピラー13V字の先端が異なる方向に指向するように形作られている。詳細には、1つのx方向配列Axにおいて、各ピラー13は、当該ピラー13のV字の先端がx方向に沿う同一の向きに指向するように形作られている。これに対し、y方向に隣り合うx方向配列Axでは、各ピラー13は、当該ピラー13のV字の先端が、y方向に隣り合うx方向配列Axのピラー13に対してx方向に沿う逆向きに指向するように形作られている。
図7~図9では、ピラー13の形状は、平面視において、x方向を基準に形作られているが、y方向を基準に形作ることもできる。図7では、各ピラー13はそれぞれ、y方向に扁平なひし形形状とすることもできる。また、図8及び図9では、各ピラー13は、当該ピラー13のV字の先端がy方向に沿う向きに指向するように形作ることもできる。
また、ピラー13の配置構造も、様々な配置構造とすることができる。図4、図7~図9のピラー13の配置構造は、それぞれ、各図面に示すように、平面視において、各ピラー13をひし形格子状に配列した配置構造であるが、各ピラー13を方形格子状に配列した配置構造とすることも可能である。こうしたピラー13の配置構造は、例えば、図4、図7~図9の各図面に示すような平面視において、x方向及びy方向に沿って、各ピラー13を一直線に配列することで形成することができる。また、他のピラー13の配置構造としては、例えば、図4、図7~図9の各図面に示すような平面視において、各ピラー13をプレート11の中心位置から放射状に配列した配置構造、各ピラー13をプレート11の中心位置から同心円状に配列した配置構造、等が挙げられる。
ここで、図10A~図10Fを参照して、マイクロミキサーチップ10の製造方法の一例について説明をする。この例では、図10Aに示すように、シリコンウエハー101を準備する。次に、図10Bに示すように、シリコンウエハー101上に、エポキシ樹脂をベースとしたフォトレジスト樹脂(SU-8)を用いて、マイクロピラー成形部102を成形する。その後、図10Cに示すように、マイクロピラー成形部102に、PDMS(ポリジメチルシロキサン)を流し込む。これにより、シリコンウエハー101及びマイクロピラー成形部102を取り除けば、図10Dに示すように、ピラー構造部15が成形される。この例では、ピラー構造部15は、マイクロミキサーチップ10の周壁12、ピラー13及びカバー14を備えている。更に、図10Eに示すように、ピラー構造部15には、カバー14の所定位置に貫通穴を開けることにより、2つの供給部10a、回収部10bが形成される。次いで、図10Fに示すように、ガラス板103に対してピラー構造部15を、例えば、プラズマ接合により接合する。これにより、ガラス板103をプレート11とするマイクロミキサーチップ10がカバー14と共に完成する。なお、この例では、液体Lの供給部10a及び回収部10bは、ピラー13が配置された領域の直上に配置されるものではないが、この場合も、マイクロミキサーチップ10として使用することができる。
図1の液体混合装置100を使用して、液体L1と液体L2とを混合する実験を行った。以下、その実験結果を示す。
[実験システム]
この実験に用いたシステムは、倒立顕微鏡(オリンパス株式会社製 IX-73)上に構築した。マイクロミキサーチップに駆動振動を印加するためのプレート駆動部には、ピエゾステージ(株式会社ナノコントロール製 PK2H100-030U-N)を用いた。マイクロミキサーチップ10は、接着剤を用いて金属板に固定し、ねじを用いて、ピエゾステージに取り付けた。ピエゾステージへの入力信号は、ファンクションジェネレータ(Teledyne LeCroy社製 Wave Station2012)により生成し、高圧アンプ(株式会社メステック製 M26110-3)により増幅して、ピエゾステージに入力した。観察した現象は、C-MOSカメラ(株式会社アドヴァンビジョン製 Advan Cam E3R)を用いて撮影した。
[実験条件]
マイクロミキサーチップには、ピラーが真円円柱形状のマイクロミキサーチップ1と、ピラーがひし形柱形状のマイクロミキサーチップ2と、を使用した。液体L1には、純水とグリセリン(富士フィルム和光純薬製 072-00626)を混合した液体を用いた。液体L2には、液体L1に、蛍光試薬としてフルオレセイン(富士フィルム和光純薬製 065-00252)を混合した液体を用いた。液体L1及び液体L2のグリセリン濃度は、60重量%に調整した。これは、粘度μ=10.8cp(ここで、粘度の単位として「ポアズ」を使用。)に相当する。ピエゾステージには、周波数500Hz、振幅75Vの円振動を印加した。マイクロミキサーチップに導入した液体L1及び液体L2を蛍光顕微鏡で観察し、画像の輝度から混合度合いの評価を行った。
[マイクロミキサーチップ1]
図11Aは、液体L1及び液体L2をそれぞれ、離れた位置から供給し、振動誘起を生じさせる前のプレート11の画像を示す。図11Bは、図11Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。図11Aにおいて、液体L1の領域は、輝度が低く(暗く)なっている領域であり、また、液体L2の領域は、輝度が高く(明るく)なっている領域である。図11A及び図11Bからは、液体L1と液体L2とが分離した状態にあることがわかる。
次に、図12Aは、振動誘起を生じさせてから20秒後のプレート11の画像を示す。図12Bは、図12Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。図12Aにおいて、プレート11全体の輝度が均一になりつつある。即ち、図12A及び図12Bからは、液体L1と液体L2とがほぼ均等に混合されつつあることがわかる。
[マイクロミキサーチップ2]
図13Aは、液体L1及び液体L2をそれぞれ、離れた位置から供給し、振動誘起を生じさせる前のプレート11の画像を示す。図13Bは、図13Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。図13Aにおいて、液体l1の領域は、輝度が低く(暗く)なっている領域であり、また、液体L2の領域は、輝度が高く(明るく)なっている領域である。図13A及び図13Bからは、液体L1と液体L2とが分離した状態にあることがわかる。
次に、図14Aは、振動誘起を生じさせてから20秒後のプレート11の画像を示す。図14Bは、図14Aの画像におけるx方向位置と、当該x方向位置における輝度との関係を表すグラフである。図14Aにおいて、プレート11全体の輝度はほぼ均一になっている。図14A及び図14Bからは、液体L1と液体L2とがほぼ均等に混合された状態であることがわかる。
マイクロミキサーチップ1を用いた実験では、混合効率σは、55.9%であった。マイクロミキサーチップ2を用いた実験では、混合効率σは、73.5%であった。なお、混合効率σは、以下の式(2)によって算出した。
Figure 0007178012000006
N :ピラーの全数
i :振動誘起後のプレート11上のピラー近傍の各点の輝度
max:振動誘起後のプレート11上の最大輝度
0i :振動誘起前のプレート11上の最小輝度
上述したところは、本発明の一実施形態及び一実施例である。本実施形態に係る液体混合装置及び液体混合方法において、この明細書に記載された事項は、特許請求の範囲に記載された事項の範囲内において、種々の追加・削除・変更等を行うことができる。例えば、マイクロミキサーチップ10の供給部10aは、本実施形態に係る回収部10bと同様、マイクロミキサーチップ10(プレート11)の中心位置に形成することができる。或いは、マイクロミキサーチップ10の供給部10aは、マイクロミキサーチップ10(プレート11)の中心位置に形成された、本実施形態に係る回収部10bと共通化させることができる。また、液体L1及び液体L2としては、同一の粘度の液体、異なる粘度の液体、粒子を含む2種類の液体、いずれか一方のみに粒子を含む2種類の液体、又は、これらの組み合わせに係る2種類の液体が挙げられる。更に、本発明によれば、混合すべき、複数種類の液体は、少なくとも2種類以上の液体とすることができる。
本発明は、例えば、細胞・細胞分泌物を含む溶液に蛍光試薬又は抗体試薬を混合する技術等に利用することができる。
100:液体混合装置, 10:マイクロミキサーチップ, 10a:供給部, 10a1:供給部, 10a2:供給部, 10b:回収部, 11:プレート, 11a:プレートの上面, 12:周壁, 13:ピラー, 14:カバー, 20;プレート駆動部, L1;液体, L2;液体, L3;混合液

Claims (6)

  1. 周壁によって区画された領域内に複数のマイクロピラーが配置されたプレートを備えるマイクロ流体デバイスと、
    前記プレート上に供給される複数種類の粘性を有する液体が、前記マイクロピラーの周りに振動誘起流れを生じさせるように、前記プレートを駆動させるプレート駆動部と、を備えており、
    前記プレート駆動部は、前記プレートが旋回運動するように、当該プレートを駆動させる駆動部であり、
    前記マイクロピラーの間隔は、境界層の厚みδ(μm)に設定され、当該境界層の厚みδは、以下の関係式(1)
    Figure 0007178012000007
    ν:動粘性係数(m /s)
    ω:プレートが旋回運動するときの角振動数(rad/s)
    によって設定されている、液体混合装置。
  2. 前記マイクロピラーの間隔は、前記マイクロピラーの平面視における外接円の直径以下である、請求項1に記載の液体混合装置。
  3. 前記粘性を有する液体の供給部は、前記マイクロピラーが配置された領域の直上にある、請求項1又は2に記載の液体混合装置。
  4. 周壁によって区画された領域内に複数のマイクロピラーが配置された、マイクロ流体デバイスのプレート上に、複数種類の粘性を有する液体を供給する液体供給工程と、
    前記液体供給工程の後、平面視において、前記プレートを駆動させて、前記プレート上に供給された前記複数種類の粘性を有する液体前記マイクロピラーの周りに振動誘起流れを生じさせる、周回運動工程と、
    を含んでおり、
    前記周回運動工程において、前記プレートが旋回運動するように、当該プレートを駆動させると共に、
    前記マイクロピラーの間隔は、境界層の厚みδ(μm)に設定され、当該境界層の厚みδは、以下の関係式(1)
    Figure 0007178012000008
    ν:動粘性係数(m /s)
    ω:プレートが旋回運動するときの角振動数(rad/s)
    によって設定されている、液体混合方法。
  5. 前記マイクロピラーの間隔は、前記マイクロピラーの平面視における外接円の直径以下である、請求項に記載の液体混合方法。
  6. 前記液体供給工程において、前記粘性を有する液体を、前記マイクロピラーが配置された領域の直上から供給する、請求項4又は5に記載の液体混合方法。
JP2018203242A 2018-10-29 2018-10-29 液体混合装置及び液体混合方法 Active JP7178012B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203242A JP7178012B2 (ja) 2018-10-29 2018-10-29 液体混合装置及び液体混合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203242A JP7178012B2 (ja) 2018-10-29 2018-10-29 液体混合装置及び液体混合方法

Publications (2)

Publication Number Publication Date
JP2020069411A JP2020069411A (ja) 2020-05-07
JP7178012B2 true JP7178012B2 (ja) 2022-11-25

Family

ID=70548824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203242A Active JP7178012B2 (ja) 2018-10-29 2018-10-29 液体混合装置及び液体混合方法

Country Status (1)

Country Link
JP (1) JP7178012B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521191A (ja) 1998-07-29 2002-07-16 ファーマコピーア・インコーポレイテッド 撹拌装置
JP2005169218A (ja) 2003-12-09 2005-06-30 Tama Tlo Kk マイクロミキサ
US20070177457A1 (en) 2006-02-01 2007-08-02 Berthold Technologies Gmbh & Co Kg Shaker
JP2010117250A (ja) 2008-11-13 2010-05-27 Toray Ind Inc 検体溶液の攪拌方法および検体の分析方法
US20140193312A1 (en) 2009-03-18 2014-07-10 Quantifoil Instruments Gmbh Positioning device for a sample carrier
JP2014213299A (ja) 2013-04-30 2014-11-17 独立行政法人産業技術総合研究所 マイクロチャンバー及び液体の混合方法
JP2015533631A (ja) 2012-08-27 2015-11-26 ステムピューティックス リサーチ プライベート リミテッドStempeutics Research Private Limited マルチプレーンミキサ・セパレータ(mpms)システム
JP2019208418A (ja) 2018-06-01 2019-12-12 学校法人 中央大学 粒子分離用装置及び粒子分離方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127670A (en) * 1976-04-19 1977-10-26 Kenichi Yamashita Bottom plate with projection of oscillating vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521191A (ja) 1998-07-29 2002-07-16 ファーマコピーア・インコーポレイテッド 撹拌装置
JP2005169218A (ja) 2003-12-09 2005-06-30 Tama Tlo Kk マイクロミキサ
US20070177457A1 (en) 2006-02-01 2007-08-02 Berthold Technologies Gmbh & Co Kg Shaker
JP2010117250A (ja) 2008-11-13 2010-05-27 Toray Ind Inc 検体溶液の攪拌方法および検体の分析方法
US20140193312A1 (en) 2009-03-18 2014-07-10 Quantifoil Instruments Gmbh Positioning device for a sample carrier
JP2015533631A (ja) 2012-08-27 2015-11-26 ステムピューティックス リサーチ プライベート リミテッドStempeutics Research Private Limited マルチプレーンミキサ・セパレータ(mpms)システム
JP2014213299A (ja) 2013-04-30 2014-11-17 独立行政法人産業技術総合研究所 マイクロチャンバー及び液体の混合方法
JP2019208418A (ja) 2018-06-01 2019-12-12 学校法人 中央大学 粒子分離用装置及び粒子分離方法

Also Published As

Publication number Publication date
JP2020069411A (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
Li et al. Splitting a droplet for femtoliter liquid patterns and single cell isolation
Liu et al. Hybridization enhancement using cavitation microstreaming
Sivashankar et al. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications
Schneider et al. The potential impact of droplet microfluidics in biology
US6482306B1 (en) Meso- and microfluidic continuous flow and stopped flow electroösmotic mixer
KR101020720B1 (ko) 전기습윤 기반의 기술에 의한 액적(液滴) 조작 방법 및장치
Durrer et al. A robot-assisted acoustofluidic end effector
TWI510296B (zh) 介質上電潤濕微電極陣列結構上的液滴處理方法
JP2005514187A (ja) 流体をマイクロ流体システムと相互接続するための仮想壁流体相互接続ポートを含むマイクロ流体システム
Sharan et al. Microfluidics for microswimmers: engineering novel swimmers and constructing swimming lanes on the microscale, a tutorial review
WO2017089963A1 (en) Methods of making microfluidic devices
WO2007092253A2 (en) Induced-charge electro-osmotic microfluidic devices
Venancio-Marques et al. Digital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesis
US20080237046A1 (en) Microfluidic device and analyzing device using the same
Liao et al. Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop
JP2017531183A (ja) 非混和性液体を分離して少なくとも1つの液体を効果的に単離する方法及び装置
Zhang et al. Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples
Peng et al. Ultrafast microdroplet generation and high-density microparticle arraying based on biomimetic Nepenthes peristome surfaces
Deng et al. Wetting-induced coalescence of nanoliter drops as microreactors in microfluidics
Kabi et al. Moses effect: Splitting a sessile droplet using a vapor-mediated marangoni effect leading to designer surface patterns
JP7178012B2 (ja) 液体混合装置及び液体混合方法
JP2016144780A (ja) 微小液滴を形成する反応デバイス及びこれを用いた電界撹拌方法
Fouillet et al. Ewod digital microfluidics for lab on a chip
Zhang et al. Microdroplet operations in polymeric microtubes
JP2009103575A (ja) マイクロ流体デバイス及びマイクロ流体デバイス装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7178012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150