EP2867339B1 - Verfahren zum herstellen von olefinen durch thermisches dampfspalten - Google Patents

Verfahren zum herstellen von olefinen durch thermisches dampfspalten Download PDF

Info

Publication number
EP2867339B1
EP2867339B1 EP13747796.4A EP13747796A EP2867339B1 EP 2867339 B1 EP2867339 B1 EP 2867339B1 EP 13747796 A EP13747796 A EP 13747796A EP 2867339 B1 EP2867339 B1 EP 2867339B1
Authority
EP
European Patent Office
Prior art keywords
cracking
cracking furnace
conditions
furnace
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP13747796.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2867339A1 (de
Inventor
Gunther Schmidt
Helmut Fritz
Stefanie Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46762800&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2867339(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP13747796.4A priority Critical patent/EP2867339B1/de
Publication of EP2867339A1 publication Critical patent/EP2867339A1/de
Application granted granted Critical
Publication of EP2867339B1 publication Critical patent/EP2867339B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a process for the conversion of hydrocarbon feedstocks by thermal vapor cracking to at least one olefin-containing product stream which contains at least ethylene and propylene, wherein a hydrocarbon feed is at least partially reacted in at least one cracking furnace.
  • Thermal steam cracking also known as steam cracking or steam cracking
  • steam cracking is a long-established petrochemical process.
  • the classical target compound in thermal vapor cracking is ethylene (also: ethene), which is an important starting material for a number of chemical syntheses.
  • both gases such as ethane, propane or butane and corresponding mixtures as well as liquid hydrocarbons, such as naphtha, and hydrocarbon mixtures can be used.
  • cracking severity determines the cracking conditions.
  • the cracking conditions are particularly influenced by the temperature and the residence time and the partial pressures of hydrocarbons and water vapor.
  • the composition of the hydrocarbon mixtures used as a feed and the type of cracking furnaces used also influence the cracking conditions. Due to the mutual influences of these factors, the fission condition is usually determined by the ratio of propylene (also referred to as propene) to ethylene in the fission gas.
  • the US Pat. No. 6,743,961 B2 discloses a process for producing olefins in which crude oil is partially vaporized in a combined evaporation and splitting unit. The formed vapor and the remaining liquid are split at different cleavage conditions.
  • the object of the present invention is to improve the possibilities for obtaining olefin-containing product mixtures from hydrocarbons by thermal steam cracking.
  • the invention proposes a process for the conversion of hydrocarbon feedstocks by thermal vapor cracking to at least one olefin-containing product stream which comprises at least ethylene and propylene, wherein a hydrocarbon feedstock is at least partially reacted in at least one cracking furnace, having the features of the independent patent claims.
  • Preferred embodiments are the subject of the subclaims and the following description.
  • a process is proposed in which the hydrocarbon feed in the cracking furnace is reacted under mild cracking conditions, mild cracking conditions meaning that propylene to ethylene is present at the cracking furnace exit in a ratio of 0.85 to 1.6 kg / kg, and the hydrocarbon feed predominantly Hydrocarbons having a maximum carbon number of 5 contains.
  • cracking furnace is understood to mean a splitting unit in which the cracking conditions are defined. It is possible that there is a subdivision into two or more cracking furnaces in a total furnace. One then often speaks of furnace cells. Several furnace cells belonging to a total furnace generally have independent radiation zones and a common convection zone as well as a common smoke outlet. In these cases, each furnace cell can be operated with its own gap conditions. Each furnace cell is thus one Column unit and is therefore referred to here as cracking furnace. The total furnace then has a plurality of column units or, in other words, it has a plurality of cracking furnaces. If there is only one furnace cell, this is the splitting unit and thus the cracking furnace. Cracking furnaces can be combined into groups, which are supplied, for example, with the same use. The fission conditions within a furnace group will usually be set the same or similar.
  • the inventive method thus makes it possible to operate a plant for steam cracking in such a way that more propylene is produced in relation to the fresh feed than in a conventional plant in which the process according to the invention is not used.
  • these are the desired hydrocarbons of at least 60 weight percent, preferably at least 80 weight percent, and more preferably at least 90 weight percent and more preferably at least 95 weight percent, and most preferably at least 98 weight percent.
  • one or more fractions which are obtained from the product stream and which predominantly contains hydrocarbons having a maximum carbon number of 5, are fed as a hydrocarbon feed to the cracking furnace which converts under mild cracking conditions.
  • the amount of suitable feed to the second cracking furnace increases, or such fraction constitutes a suitable hydrocarbon feed to the cracking furnace which converts under mild cracking conditions.
  • a fraction having hydrocarbons having a carbon number of 4 and a fraction having a carbon number of 5 obtained in the work-up of the product stream in steam crackers, which can be recycled after the separation of the desired products directly or after further treatment steps.
  • the recycled fractions are largely free of diolefins when they are fed to the cracking furnace which converts under mild cracking conditions as a hydrocarbon feed.
  • Diolefins have an adverse effect in the cracking furnace.
  • the diolefins are predominantly removed from the fractions which are recycled to the second cracking furnace by preceding conversion processes or separation steps. The removal can take place either before or after the separation of the fractions which are recycled.
  • saturated hydrocarbons are used as the hydrocarbon feed to the cracking furnace which converts under mild cracking conditions.
  • Saturated hydrocarbons are particularly suitable for thermal vapor columns.
  • the hydrocarbon feed in the cracking furnace is reacted under mild cleavage conditions which result in a ratio of propylene to ethylene of up to 1.2 kg / kg at the cracking furnace exit.
  • a hydrocarbon feed is reacted under normal cracking conditions in a further cracking furnace, wherein normal cracking conditions mean that at the cracking furnace exit propylene to ethylene in a ratio of 0.25 to 0.85 kg / kg, preferably from 0.3 to 0 , 75 kg / kg, more preferably from 0.4 to 0.65 kg / kg, wherein the ratio of propylene to ethylene for the cracking furnace operating under mild cracking conditions always has a value greater than the value for the ratio of propylene to ethylene for the cracking furnace which converts under normal conditions.
  • the values for the ratio of propylene to ethylene are at least 0.1 kg / kg, preferably at least 0.15 kg / kg, more preferably at least 0.2 kg / kg apart, so that the advantages of the invention in particular Adjust dimensions.
  • the steam cracker therefore has at least one cracking furnace which converts under normal cracking conditions. These are used as the insert those hydrocarbons out, which are disadvantageous for the cracking furnace which converts under mild cleavage conditions. Owing to the presence of at least one cracking furnace which converts under normal cracking conditions, the operation of the cracking furnace which converts under mild cracking conditions becomes economically advantageous if a mixture of hydrocarbons which does not satisfy the condition stated in claim 1 is present as a fresh feed.
  • a hydrocarbon feedstock is used for the cracking furnace which converts under normal cracking conditions and deviates in its composition from the hydrocarbon feedstock used for the cracking furnace which converts under mild cracking conditions.
  • the cracking furnace which converts under normal cracking conditions is at least one fraction separated and recycled from the product stream, which predominantly contains hydrocarbons a carbon number of at least 6 has supplied. Since certain hydrocarbons accumulate in recirculated fractions through the circulation, hydrocarbons having a carbon number of 6 under normal cracking conditions are recommended for recycled fractions. However, it is also possible to recycle these into the cracking furnace which converts under mildly cleavage conditions.
  • a fresh use is used, which is fractionated into at least a first and a second fresh-use fraction and the first fresh-use fraction at least partially, advantageously completely, in the under normal gap conditions implementing cracking furnace and the second fresh-use fraction at least partially, advantageously completely, is conducted into the cracking furnace which converts under mild cleavage conditions. Fractionation of the fresh feed makes it possible to provide, in particular for the cracking furnace which converts under mild cracking conditions, an insert with which the advantages according to the invention are set in an outstanding manner.
  • the above-mentioned operations recirculated fractions, fresh-use fraction and fresh inserts of hydrocarbons having a carbon number of at most 6, preferably of at most 5, are particularly suitable as an insert for the cracking furnace which converts under mild cleavage conditions.
  • the inserts proposed here can be carried out individually or as a mixture in the cracking furnace which converts under mild cleavage conditions.
  • hydrocarbon feed one or more recirculated fractions or a fresh feed fraction or another feed of hydrocarbons having a carbon number of not more than 6, preferably of not more than 5, can thus be used.
  • recycle fraction (s) and a fresh feed fraction or recycle fraction (s) and another feed may be hydrocarbons having a maximum carbon number of 6 or a fresh feed fraction and another use of hydrocarbons having a maximum carbon number of 6 or a mixture from all possible uses as a hydrocarbon feed to the cracking furnace operating under mild cracking conditions.
  • the cracking furnace exit temperature for the reaction in the cracking furnace operating at mild cracking conditions is advantageously between 680 ° C and 820 ° C, preferably between 700 ° C and 800 ° C and more preferably between 710 ° C and 780 ° C and more preferably between 720 ° C and 760 ° C.
  • the cracking furnace exit temperature for the reaction in the cracking furnace which converts under normal cracking conditions is advantageously between 800 ° C and 1000 ° C, preferably between 820 ° C and 950 ° C and more preferably between 840 ° C and 900 ° C.
  • the cracking furnace exit temperature of the cracking furnace which converts under normal cracking conditions is at least 10 ° C., preferably at least 20 ° C., above that of the cracking furnace which converts under mild cracking conditions.
  • both gases or gas fractions such as ethane, propane or butane and corresponding mixtures and condensates as well as liquid hydrocarbons and hydrocarbon mixtures can be used.
  • the gas mixtures and condensates mentioned include in particular so-called natural gas condensates (English: Natural Gas Liquids, NGL).
  • the liquid hydrocarbons and hydrocarbon mixtures can originate, for example, from the so-called gasoline fraction of crude oil.
  • Such crude naphthas (NT) and kerosene are mixtures of preferably saturated compounds with boiling points between 35 and 210 ° C.
  • middle distillates are so-called light and heavy gas oils, which can be used as starting materials for the production of light heating and diesel oils as well as heavy fuel oil.
  • the compounds contained have boiling points of 180 to 360 ° C. Preferably, these are predominantly saturated compounds which can be reacted during thermal vapor cracking.
  • fractions obtained by known distillative separation processes and corresponding residues, but also the use thereof respectively, for example by hydrogenation (hydrotreating) or hydrocracking, derived fractions can be used.
  • Examples are light, heavy and vacuum gas oil (English: Atmospheric Gas Oil, AGO, or Vacuum Gas Oil, VGO) as well as mixtures and / or residues (hydrotreated vacuum gas oil, HVGO, Hydrocracker Residue, HCR or Unconverted Oil, UCO).
  • natural gas condensates and / or crude oil fractions and / or mixtures derived therefrom are used as fresh feed.
  • the invention thus encompasses the use of hydrocarbon mixtures having a boiling range of up to 600 ° C as a hydrocarbon feed as fresh feed for the hydrocarbon feed to be used under normal cracking conditions.
  • hydrocarbon mixtures having a boiling range of up to 600 ° C as a hydrocarbon feed as fresh feed for the hydrocarbon feed to be used under normal cracking conditions.
  • hydrocarbon mixtures with different boiling ranges for example with boiling ranges of up to 360 ° C. or up to 240 ° C.
  • the reaction conditions in the cracking furnace are matched to the hydrocarbon mixtures used in each case.
  • the invention can be used to advantage with any other fresh inserts, which have comparable properties, such as biogenic and / or synthetic hydrocarbons.
  • FIG. 1 shows a schematic representation of a known procedure for olefin production.
  • FIG. 2 shows a schematic representation of the essential steps of the method according to the invention in a particularly advantageous embodiment and FIG. 3, 4 and 5 show, also schematically, the essential steps of a particularly advantageous embodiment of the invention.
  • corresponding elements carry identical reference numerals.
  • the schematic process diagram 100 of FIG. 1 for the known method includes a cracking furnace 1, in which the fresh use A (for example, naphtha) and the recycled fractions S and P are performed as a hydrocarbon feed.
  • the hydrocarbon feed is heated and converted into convection and radiation zone.
  • water vapor is added, usually 0.5 to 1 kg of process steam per kg of hydrocarbon.
  • a product stream C exits, which is also referred to as a fission product stream directly at the outlet from the cracking furnace.
  • this cracking product stream has a temperature which is normally between 840 ° C and 900 ° C.
  • the ratio of propylene to ethylene is usually 0.35 to 0.6 kg / kg.
  • the product stream is processed in a processing unit 4.
  • the working-up unit From the Working-up unit are obtained as essential product fractions E to N the following fractions: hydrogen E, spent liquor F, methane G, ethylene H, propylene I, gaseous hydrocarbons L having a carbon number of 4, pyrolysis gasoline M and pyrolysis N.
  • the gaseous hydrocarbons L having a hydrocarbon number of 4 are further treated in a C4 workup unit 5, which is used for the processing of hydrocarbons having a carbon number of 4.
  • Such a C4-processing unit 5 further treats the fraction having a carbon number of 4 such that butadiene O can be discharged.
  • the remaining hydrocarbons having a carbon number of 4 represent a fraction P, which is recycled to the cracking furnace 1.
  • the pyrolysis gasoline M which comprises hydrocarbons having a carbon number of 5 or more, is further processed in a pyrolysis gasoline upgrading unit 6, and aromatics Q and hydrocarbons R having a carbon number of, for example, more than 9 are discharged.
  • the remaining hydrocarbons having a carbon number of 5 or more are recycled as fraction S into the cracking furnace 1.
  • the workup unit 4 and the C4 workup unit 5 and the pyrolysis gasoline workup unit 6 comprise conventional units for further processing of the product stream or product fractions, which serve to carry out various process steps, such as compression, condensation and cooling, drying, distillation and fractionation, extraction and hydrogenation ,
  • process steps are customary in olefin plants and known to the person skilled in the art.
  • the schematic process diagram 10 of FIG. 2 now shows the inventive method in its essential steps.
  • a fresh feed BL is fed.
  • the product stream X which has a temperature which is advantageously between 700 ° C and 800 ° C.
  • the ratio of propylene to ethylene is advantageously between 0.7 to 1.5 kg / kg.
  • the product stream X is further processed in the processing unit 4.
  • the processes for further treatment and work-up in the processing unit 4 are known and have just been described.
  • the workup unit 4 also leads, as just described, to the product fractions E to N.
  • the product fractions L and M are further treated, as just described, in the special workup units 5 and 6. Unlike the in FIG.
  • the schematic process diagram 10 of FIG. 3 now shows the inventive method in a particularly advantageous embodiment and its essential process steps.
  • a cracking furnace 2 which converts under mild cracking conditions, and advantageously a fresh fractionation unit 7.
  • Fresh batch B (for example, naphtha) is now fractionated in the fresh-use fractionation unit 7 and the first fresh-use fraction B1 is fed into the cracking furnace 1, while the second fresh-use fraction B2 is fed into the cracking furnace 2.
  • the fresh fraction fractionation processes use the usual methods of separating and treating hydrocarbon streams known from refinery olefin plants. This knows the expert and he knows how to use it.
  • the slit furnace 2 which converts under mild cracking conditions, is supplied with a further feedstock BL comprising hydrocarbons having a maximum carbon number of 6, preferably a maximum of 5, as fresh feed.
  • the cleavage product stream C exits with the above-mentioned properties.
  • the cleavage product stream X exits.
  • the cleavage product stream X has a temperature which is advantageously between 700 ° C and 800 ° C.
  • the ratio of propylene to ethylene is between 0.85-1.6 kg / kg.
  • the product streams C and X are further processed in the workup unit 4 and combined at a suitable point to a common product stream.
  • the processes for further treatment and work-up in the processing unit 4 are known and have just been described.
  • the workup unit 4 also leads, as just described, to the product fractions E to N.
  • the product fractions L and M are further treated, as just described, in the special workup units 5 and 6.
  • the fraction P which contains hydrocarbons having a carbon number of 4, not recycled into the cracking furnace 1 but in the cracking furnace 2.
  • fractions T and U are recovered in addition to the above-mentioned fractions Q and R.
  • the fraction T which contains hydrocarbons having a carbon number of 5, is advantageously returned to the cracking furnace 2, while the fraction U, which contains hydrocarbons having a carbon number of 6 and more, in particular between 6 and 9, advantageously recycled to the cracking furnace 1 becomes.
  • FIG. 3 Various operations are performed for the cracking furnace. These then form the second hydrocarbon feed. It should be noted that the list of different missions is not exhaustive and in particular that the in FIG.
  • Figure 4 has the same schematic process diagram as it does FIG. 3 shows. This is supplemented by a cracking furnace 3 for gaseous use, in which a fraction V is performed as an insert.
  • the fraction V contains saturated gaseous hydrocarbons having a carbon number of 2 or 3, which are also obtained in the workup unit 4.
  • FIG. 5 includes the same schematic process diagram on how FIG. 3 but here the fresh-use fractionation is missing.
  • Fresh use is here as Frischs vom B the first cracking furnace 1 added and the second cracking furnace 2, a fresh use BL of hydrocarbons having a carbon number of at most 6, preferably a maximum of 5 added.
  • the further process steps were already in the description of the figures FIG. 2 and 3 explained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP13747796.4A 2012-08-09 2013-08-06 Verfahren zum herstellen von olefinen durch thermisches dampfspalten Revoked EP2867339B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13747796.4A EP2867339B1 (de) 2012-08-09 2013-08-06 Verfahren zum herstellen von olefinen durch thermisches dampfspalten

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12005783 2012-08-09
PCT/EP2013/002348 WO2014023418A1 (de) 2012-08-09 2013-08-06 Verfahren zum herstellen von olefinen durch thermisches dampfspalten
EP13747796.4A EP2867339B1 (de) 2012-08-09 2013-08-06 Verfahren zum herstellen von olefinen durch thermisches dampfspalten

Publications (2)

Publication Number Publication Date
EP2867339A1 EP2867339A1 (de) 2015-05-06
EP2867339B1 true EP2867339B1 (de) 2015-10-28

Family

ID=46762800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13747796.4A Revoked EP2867339B1 (de) 2012-08-09 2013-08-06 Verfahren zum herstellen von olefinen durch thermisches dampfspalten

Country Status (15)

Country Link
US (1) US9670418B2 (es)
EP (1) EP2867339B1 (es)
JP (1) JP6184496B2 (es)
KR (1) KR102117730B1 (es)
CN (1) CN104540925B (es)
AU (1) AU2013301898B2 (es)
CA (1) CA2877163C (es)
ES (1) ES2558588T3 (es)
HU (1) HUE027415T2 (es)
IN (1) IN2014DN11047A (es)
MY (1) MY173254A (es)
PH (1) PH12015500279B1 (es)
RU (1) RU2627663C2 (es)
WO (1) WO2014023418A1 (es)
ZA (1) ZA201500937B (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603241B (zh) * 2012-08-09 2016-10-12 林德股份公司 通过裂化炉中的热蒸汽裂化制备烯烃的方法
US10344226B2 (en) * 2012-11-08 2019-07-09 Linde Aktiengesellschaft Process for preparing olefin-containing products by thermal steam cracking
CN105974583B (zh) 2015-03-11 2019-06-18 现代摩比斯株式会社 用于车辆的抬头显示器及其控制方法
KR102358409B1 (ko) * 2018-08-23 2022-02-03 주식회사 엘지화학 열분해 생성물의 냉각 방법
US11952333B2 (en) 2019-09-13 2024-04-09 Sabic Global Technologies B.V. Integrated systems and methods for producing 1,3-butadiene via extractive distillation, distillation, and/or selective hydrogenation
US11066606B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins with steam
US11066605B2 (en) 2019-11-12 2021-07-20 Saudi Arabian Oil Company Systems and methods for catalytic upgrading of vacuum residue to distillate fractions and olefins
WO2024013002A1 (en) * 2022-07-09 2024-01-18 Sabic Global Technologies B.V. Systems and processes for the production of olefin products from hydrocarbon feedstocks
US11866397B1 (en) 2023-03-14 2024-01-09 Saudi Arabian Oil Company Process configurations for enhancing light olefin selectivity by steam catalytic cracking of heavy feedstock

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1196927A (fr) 1956-11-16 1959-11-26 Ici Ltd Perfectionnements à la production d'hydrocarbures
GB1011518A (en) 1964-08-10 1965-12-01 Conch Int Methane Ltd Method for the production of ethylene from a liquified natural gas
DE1228244B (de) 1963-06-10 1966-11-10 Goodyear Tire & Rubber Verfahren zur Herstellung von Olefinen
DE1468441A1 (de) 1963-04-03 1968-12-05 Azote Office Nat Ind Verfahren zur Herstellung von an AEthylen und Propylen reichen Gasen
US3714282A (en) 1970-07-09 1973-01-30 Monsanto Co Production of propylene and aromatic compounds from liquid feed streams
US4655904A (en) 1983-06-17 1987-04-07 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking process for selectively producing olefins and aromatic hydrocarbons from hydrocarbons
WO2001032806A1 (en) 1999-11-04 2001-05-10 Concordia University Method and apparatus for selective deep catalytic cracking of hydrocarbons
US20060144759A1 (en) 2003-01-24 2006-07-06 Idemitsu Kosan Co. Process of catalytic cracking of hydrocarbon
US20110112345A1 (en) 2009-11-10 2011-05-12 Leslie Andrew Chewter Process for the preparation of a lower olefin product
EP2557142A1 (de) 2011-08-11 2013-02-13 Linde Aktiengesellschaft Verfahren zur Spaltung von Kohlenwasserstoffen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217869A1 (de) * 1972-04-13 1973-10-25 Vni I Pi Neftepererabatywajusc Verarbeitungsverfahren fuer einen gasfoermigen oder fluessigen kohlenwasserstoff-rohstoff und roehrenofen zur durchfuehrung dieses verfahrens
FR2625509B1 (fr) * 1987-12-30 1990-06-22 Total France Procede et dispositif de conversion d'hydrocarbures en lit fluidise
DE10000889C2 (de) * 2000-01-12 2002-12-19 Mg Technologies Ag Verfahren zum Erzeugen von C¶2¶- und C¶3¶-Olefinen aus Kohlenwasserstoffen
EP1401792A1 (en) * 2001-05-25 2004-03-31 Shell Internationale Researchmaatschappij B.V. Process for the preparation of linear olefins and use thereof to prepare linear alcohols
FR2834515B1 (fr) * 2002-01-10 2006-03-10 Atofina Vapocraquage de naphta modifie
EP1365004A1 (en) 2002-05-23 2003-11-26 ATOFINA Research Production of olefins
US6743961B2 (en) * 2002-08-26 2004-06-01 Equistar Chemicals, Lp Olefin production utilizing whole crude oil
WO2006063201A1 (en) * 2004-12-10 2006-06-15 Bhirud Vasant L Steam cracking with naphtha dearomatization
KR100632571B1 (ko) * 2005-10-07 2006-10-09 에스케이 주식회사 탄화수소 원료 혼합물로부터 접촉분해공정을 통해서 경질올레핀계 탄화수소 화합물을 증산하는 방법
US8608942B2 (en) * 2007-03-15 2013-12-17 Kellogg Brown & Root Llc Systems and methods for residue upgrading
US8324441B2 (en) * 2007-10-16 2012-12-04 Uop Llc Pentane catalytic cracking process
CA2877157A1 (en) * 2012-08-09 2014-02-13 Linde Aktiengesellschaft Process for converting hydrocarbon feeds to olefin-containing product streams by thermal steamcracking
CN104603241B (zh) * 2012-08-09 2016-10-12 林德股份公司 通过裂化炉中的热蒸汽裂化制备烯烃的方法
MY171520A (en) * 2012-08-09 2019-10-16 Linde Ag Process for converting hydrocarbon feeds by thermal steamcracking

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1196927A (fr) 1956-11-16 1959-11-26 Ici Ltd Perfectionnements à la production d'hydrocarbures
DE1468441A1 (de) 1963-04-03 1968-12-05 Azote Office Nat Ind Verfahren zur Herstellung von an AEthylen und Propylen reichen Gasen
DE1228244B (de) 1963-06-10 1966-11-10 Goodyear Tire & Rubber Verfahren zur Herstellung von Olefinen
GB1011518A (en) 1964-08-10 1965-12-01 Conch Int Methane Ltd Method for the production of ethylene from a liquified natural gas
US3714282A (en) 1970-07-09 1973-01-30 Monsanto Co Production of propylene and aromatic compounds from liquid feed streams
US4655904A (en) 1983-06-17 1987-04-07 Mitsubishi Jukogyo Kabushiki Kaisha Thermal cracking process for selectively producing olefins and aromatic hydrocarbons from hydrocarbons
WO2001032806A1 (en) 1999-11-04 2001-05-10 Concordia University Method and apparatus for selective deep catalytic cracking of hydrocarbons
US20060144759A1 (en) 2003-01-24 2006-07-06 Idemitsu Kosan Co. Process of catalytic cracking of hydrocarbon
US20110112345A1 (en) 2009-11-10 2011-05-12 Leslie Andrew Chewter Process for the preparation of a lower olefin product
EP2557142A1 (de) 2011-08-11 2013-02-13 Linde Aktiengesellschaft Verfahren zur Spaltung von Kohlenwasserstoffen

Also Published As

Publication number Publication date
CN104540925A (zh) 2015-04-22
HUE027415T2 (en) 2016-10-28
US20150315484A1 (en) 2015-11-05
CA2877163C (en) 2022-07-19
JP2015524451A (ja) 2015-08-24
AU2013301898A1 (en) 2015-02-05
AU2013301898B2 (en) 2017-07-06
CA2877163A1 (en) 2014-02-13
JP6184496B2 (ja) 2017-08-23
ZA201500937B (en) 2015-12-23
ES2558588T3 (es) 2016-02-05
WO2014023418A1 (de) 2014-02-13
PH12015500279A1 (en) 2015-04-27
RU2015105404A (ru) 2016-09-27
EP2867339A1 (de) 2015-05-06
IN2014DN11047A (es) 2015-09-25
KR102117730B1 (ko) 2020-06-01
KR20150042211A (ko) 2015-04-20
MY173254A (en) 2020-01-09
RU2627663C2 (ru) 2017-08-09
CN104540925B (zh) 2017-04-05
PH12015500279B1 (en) 2015-04-27
US9670418B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
EP2867336B1 (de) Verfahren zur umsetzung von kohlenwasserstoffeinsätzen durch thermisches dampfspalten
EP2867337B1 (de) Verfahren zur herstellung von olefinen durch thermisches dampfspalten in spaltöfen
EP2867339B1 (de) Verfahren zum herstellen von olefinen durch thermisches dampfspalten
EP2867338B1 (de) Verfahren zum umsetzen von kohlenwasserstoffeinsätzen zu olefinhaltigen produktströmen durch thermisches dampfspalten
EP2917305B1 (de) Verfahren zur herstellung olefinhaltiger produkte durch thermisches dampfspalten
DE2601875C2 (de) Gesamtverfahren zur Erzeugung von unter Normalbedingungen gasförmigen Olefinen mittels Dampfcracken eines hydrierten Erdöleinsatzmaterials
DE2215664C3 (es)
DE2953190A1 (de) Verfahren zum herstellen von hochwertigem koks
DE102009012265A1 (de) Verfahren zur Gewinnung von Reinaromaten aus aromatenhaltigen Kohlenwasserstofffraktionen
EP3068849B1 (de) Verfahren zur auftrennung eines kohlenwasserstoffgemischs
EP0009236B1 (de) Verfahren zum Spalten von Kohlenwasserstoffen
EP3041916B1 (de) Verfahren zur erzeugung von kohlenwasserstoffprodukten
EP3652137B1 (de) Prozess und anlage zur herstellung von propylen durch kombination von propandehydrierung und dampfspaltverfahren mit propan-rückführung in das dampfspaltverfahren
DE1914603A1 (de) Verfahren zur Herstellung aromatischer und olefinischer Kohlenwasserstoffe
EP3489330A1 (de) Verfahren und anlage zur gewinnung polymerisierbarer aromatischer verbindungen
EP3137578B1 (de) Verfahren zur gewinnung von rohölprodukten
DE102019135889A1 (de) Verfahren und eine Anlage zur Gewinnung von Kohlenwasserstoffen
DE102014006326A1 (de) Verfahren und Anlage zur Gewinnung von Rohölprodukten
DE102015208943A1 (de) Verfahren und Anlage zur Bearbeitung eines Stoffgemischs
DE102014006327A1 (de) Verfahren und Anlage zur Gewinnung von Rohölprodukten
DE102013014867A1 (de) Verfahren und Anlage zur Erzeugung von Kohlenwasserstoffprodukten
WO2015165920A1 (de) Verfahren und anlage zur gewinnung von rohölprodukten
DE102013014866A1 (de) Verfahren und Anlage zur Erzeugung von Kohlenwasserstoffprodukten
EP3159327A1 (de) Prozess und anlage zur herstellung von olefinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20150128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

INTG Intention to grant announced

Effective date: 20150428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20150813

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 757941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001422

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2558588

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013001422

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: INEOS MANUFACTURING DEUTSCHLAND GMBH

Effective date: 20160721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E027415

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170814

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170801

Year of fee payment: 5

Ref country code: CZ

Payment date: 20170714

Year of fee payment: 5

Ref country code: GB

Payment date: 20170802

Year of fee payment: 5

Ref country code: ES

Payment date: 20170901

Year of fee payment: 5

Ref country code: FR

Payment date: 20170714

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170623

Year of fee payment: 5

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502013001422

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502013001422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

27W Patent revoked

Effective date: 20180325

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 757941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180806