EP2865982A1 - Echangeur de chaleur et dispositif à cycle réfrigérant équipé de l'échangeur de chaleur - Google Patents
Echangeur de chaleur et dispositif à cycle réfrigérant équipé de l'échangeur de chaleur Download PDFInfo
- Publication number
- EP2865982A1 EP2865982A1 EP13780638.6A EP13780638A EP2865982A1 EP 2865982 A1 EP2865982 A1 EP 2865982A1 EP 13780638 A EP13780638 A EP 13780638A EP 2865982 A1 EP2865982 A1 EP 2865982A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- heat exchanger
- heat
- heat exchange
- header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 178
- 238000005192 partition Methods 0.000 claims description 15
- 238000005057 refrigeration Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/005—Compression machines, plants or systems with non-reversible cycle of the single unit type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/028—Evaporators having distributing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/02—Details of evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
Definitions
- the present invention relates to a heat exchanger included in a refrigeration cycle apparatus, such as an air-conditioning apparatus, and a refrigeration cycle apparatus including the heat exchanger.
- This kind of heat exchanger includes a plurality of passages.
- a refrigerant is evenly distributed (or divided into streams) to the passages in order to improve the performance of heat transfer of the heat exchanger.
- a technique has recently been developed to arrange a plurality of heat exchange units, each including a plurality of fins and a plurality of flat tubes, in a row direction which serves as an air passing direction, in which air passes through the heat exchange units, in order to further increase the efficiency of heat exchange (see, Patent Literature 1, for example).
- first ends of the flat tubes of a first heat exchange unit are in communication with first ends of the flat tubes of a second heat exchange unit through a row straddling header.
- An inlet header evenly divides the refrigerant into streams, which flow through the flat tubes of the first heat exchange unit.
- the streams temporarily merge into a stream of the refrigerant in the row straddling header, the refrigerant turns to the second heat exchange unit, the refrigerant is again divided into streams which flow through the flat tubes of the second heat exchange unit, the streams merge into a stream of the refrigerant in an outlet header, and the refrigerant flows out of the outlet header.
- Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2003-75024 (Abstract, Fig. 1 )
- the refrigerant is evenly divided into streams which flow through the flat tubes of the first heat exchanger and the streams temporarily merge into a stream of the refrigerant in the row straddling header. Accordingly, an initial evenly divided state is not maintained. Disadvantageously, uneven distribution of the refrigerant to the flat tubes of the second heat exchange unit results in a reduction in heat exchange efficiency of the heat exchanger.
- An object of the present invention is to provide a heat exchanger including a plurality of heat exchange units arranged in an air passing direction in which air passes through the heat exchange units, the heat exchanger being capable of reducing uneven division of a refrigerant flowing from inlets of refrigerant passages to outlets thereof and thus exhibiting improved heat exchange performance, and to provide a refrigeration cycle apparatus including the heat exchanger.
- the present invention provides a heat exchanger including a plurality of heat exchange units each including a plurality of heat transfer tubes through which a refrigerant flows and a plurality of fins arranged such that air passes between adjacent fins in an air passing direction, the heat transfer tubes being arranged at multiple levels in a level direction perpendicular to the air passing direction, the heat exchange units being arranged in multiple rows in a row direction, serving as the air passing direction.
- the heat exchanger further includes a row straddling header. The heat exchangers at opposite ends in the row direction of the heat exchange units arranged in the multiple rows serve as an inlet heat exchange unit into which the refrigerant flows and an outlet heat exchange unit out of which the refrigerant flows.
- First ends of the heat transfer tubes being arranged at the multiple levels of adjacent heat exchange units in the row direction of the heat exchange units arranged in the multiple rows are in communication with the row straddling header to provide refrigerant passages through which the refrigerant flows such that the refrigerant flowing from inlets of the heat transfer tubes being arranged at the multiple levels of the inlet heat exchange unit turns in the row straddling header to outlets of the heat transfer tubes being arranged at the multiple levels of the outlet heat exchange unit.
- the row straddling header has an interior separated into a plurality of chambers arranged in the level direction and the refrigerant passage is isolated for its corresponding chamber.
- the heat exchanger is capable of reducing uneven division of the refrigerant throughout the passages because an evenly divided state at an inlet of the heat exchanger is maintained to an outlet thereof, thus exhibiting improved heat exchange performance.
- Fig. 1 is a perspective view of a heat exchanger according to Embodiment of the present invention.
- Fig. 2 is a perspective view of a row straddling header in Fig. 1 .
- Components in Figs. 1 and 2 and other figures, which will be described later, designated by the same reference numerals are the same or equivalent components, which are common throughout the specification. Furthermore, components depicted herein are illustrative and representative and are not meant to be limiting.
- a heat exchanger 1 includes a first heat exchange unit 10 and a second heat exchange unit 20 arranged in a row direction, serving as an air passing direction in which air passes through the heat exchanger 1, an inlet header 30 that serves as a refrigerant divider, a row straddling header 40, and an outlet header 50.
- the first heat exchange unit (outlet heat exchange unit) 10 includes a plurality of fins 11 arranged at regular intervals such that air passes between adjacent fins 11, and a plurality of flat tubes (heat transfer tubes) 12, through which a refrigerant flows, extending through the fins 11 in a direction of arrangement of the fins 11.
- the flat tubes 12 are arranged at multiple levels in a level direction perpendicular to the air passing direction.
- Each flat tube 12 has a plurality of through-holes 12a, serving as a refrigerant passage, as illustrated in Fig. 3 .
- the second heat exchange unit (inlet heat exchange unit) 20 has the same configuration as that of the first heat exchange unit 10 and includes a plurality of fins 21 and a plurality of flat tubes (heat transfer tubes) 22.
- the fin 11 illustrated herein is plate-shaped, the fin does not necessarily have to be a plate-shaped fin.
- wavy fins may be arranged such that the flat tubes 12 and the fins are alternately arranged in the level direction. It is only required that the fins be arranged to allow air to pass between the fins in the air passing direction.
- the inlet header 30 is disposed adjacent to one end of the second heat exchange unit 20 so as to extend in the level direction.
- the inlet header 30 is in communication with all of the flat tubes 22 of the second heat exchange unit 20.
- the inlet header 30 evenly divides the refrigerant flowing from a refrigerant inlet pipe 31 into streams and allows the streams to flow through the flat tubes 12.
- the outlet header 50 is disposed adjacent to one end of the first heat exchange unit 10 so as to extend in the level direction.
- the outlet header 50 is in communication with all of the flat tubes 12 of the first heat exchange unit 10.
- the outlet header 50 combines the refrigerant streams having passed through the flat tubes 12 into a single stream of the refrigerant and allows the refrigerant to flow through a refrigerant outlet pipe 51.
- the row straddling header 40 is disposed adjacent to the other end of each of the first and second heat exchange units 10 and 20 so as to extend in the level direction and straddle across the first and second heat exchange units 10 and 20.
- the row straddling header 40 is hollow and has an interior separated by partitions 41 into a plurality of chambers 42 arranged in the level direction.
- the number of chambers 42 is equal to the number of levels at which the flat tubes 12 and 22 are arranged.
- Each chamber 42 is provided with two through-holes 43 to which the ends of the flat tubes 12 and 22 at the same level are connected.
- the chamber 42 with such a configuration functions as a return passage into which the refrigerant having passed through the flat tube 22 flows and in which this refrigerant turns to the flat tube 12 as indicated by each arrow in Fig. 1 .
- the flat tubes 12 and 22, the fins 11 and 21, the inlet header 30, the row straddling header 40, and the outlet header 50 are made of, for example, aluminum or aluminum alloy.
- the flat tubes 12 and 22, the fins 11 and 21, the inlet header 30, the row straddling header 40, and the outlet header 50 are assembled and joined together by furnace soldering.
- Fig. 4 is a diagram illustrating a refrigerant circuit of a refrigeration cycle apparatus including the heat exchanger in Fig. 1 .
- a refrigeration cycle apparatus 60 includes a compressor 61, a condenser 62, an expansion valve 63, which serves as a pressure reducing device, and an evaporator 64.
- the heat exchanger 1 is used as at least one of the condenser 62 and the evaporator 64.
- the refrigerant discharged from the compressor 61 flows into the condenser 62, where the refrigerant exchanges heat with air passing through the condenser 62 and thus turns into a high-pressure liquid refrigerant.
- the refrigerant flows out of the condenser 62.
- the high-pressure liquid refrigerant leaving the condenser 62 is pressure-reduced by the expansion valve 63, so that the refrigerant turns into a low-pressure two-phase refrigerant.
- the refrigerant flows into the evaporator 64.
- the low-pressure two-phase refrigerant which has flowed into the evaporator 64, exchanges heat with air passing through the evaporator 64 and thus turns into a low-pressure gas refrigerant.
- the refrigerant is again sucked into the compressor 61.
- Fig. 5(a) is a diagram illustrating flow of the refrigerant in a case where the heat exchanger in Fig. 1 is used as a condenser and illustrates the refrigerant flow when the heat exchanger in Fig. 1 is viewed in plan.
- a thick arrow indicates a refrigerant flow direction and thin arrows A indicate air flow.
- the refrigerant is allowed to flow from a downstream side to an upstream side in the air flow direction A in a return manner (hereinafter, this flow will be referred to as "counter flow”).
- this flow will be referred to as "counter flow”
- a way of allowing the refrigerant to flow from the upstream side to the downstream side in the air flow direction A in a return manner is called "parallel flow”. The parallel flow will be described later.
- the refrigerant flows through the refrigerant inlet pipe 31 into the inlet header 30, where the refrigerant is evenly divided into streams and the refrigerant streams flow into the inlets of the flat tubes 22 of the second heat exchange unit 20.
- the refrigerant streams pass through the flat tubes 22 and flow into the chambers 42 of the row straddling header 40. Each refrigerant stream turns to and flows into the flat tube 12 in the chamber 42.
- the refrigerant flows through the refrigerant outlet pipe 51 to the outside.
- the heat exchanger 1 is used as the condenser 62, the refrigerant can be easily divided evenly because the refrigerant in a gas state flows into the heat exchanger 1. Accordingly, the inlet header 30, serving as a refrigerant divider, may be omitted.
- a component whose interior communicates with the flat tubes 22 of the second heat exchange unit 20 may be used.
- Fig. 6 includes graphs each illustrating the refrigerant temperature distribution in the refrigerant passage from an inlet to an outlet of a condenser.
- the axis of abscissas denotes the refrigerant passage and the axis of ordinates denotes the temperature.
- (a) indicates a case where the refrigerant is a single refrigerant, such as R32 or HFO1234YF, or an azeotropic refrigerant mixture, such as R410A
- (b) indicates a case where the refrigerant is a non-azeotropic refrigerant, such as a mixture of HFO01234YF and R32.
- the gas refrigerant at a high temperature Ta flows into the condenser 62 and exchanges heat with air passing through the condenser 62, so that the temperature of the refrigerant falls to a condensing temperature Tc.
- the refrigerant exhibits a two-phase gas-liquid state such that the temperature of the refrigerant is constant at the condensing temperature Tc, and then turns into a liquid state.
- the temperature of the refrigerant in the liquid state further falls to a low temperature Tb which is lower than the condensing temperature Tc, thus providing subcooling.
- the low-temperature refrigerant flows out of the condenser 62.
- the gas refrigerant at a high temperature Ta' flows into the condenser 62 and exchanges heat with air passing through the condenser 62, so that the temperature of the refrigerant falls to a condensing temperature Tc'.
- the temperature of the non-azeotropic refrigerant in a two-phase gas-liquid state continues to fall because a gas saturation temperature thereof differs from a liquid saturation temperature thereof, so that the refrigerant turns into a liquid state.
- the temperature of the liquid refrigerant further falls to a low temperature Tb' which is lower than the condensing temperature Tc', thus providing subcooling.
- the low-temperature refrigerant flows out of the condenser 62.
- the condenser 62 is required to provide subcooling of, for example, about 10 degrees C. It is therefore necessary to ensure a sufficient amount of heat exchanged with air in a latter half of each refrigerant passage from the inlet to the outlet of the condenser 62.
- the advantages of the counter flow in the condenser 62 are obtained in the use of a single refrigerant or an azeotropic refrigerant, the advantages are particularly enhanced in the use of a non-azeotropic refrigerant.
- the non-azeotropic refrigerant in a two-phase gas-liquid state has a temperature glide because the gas saturation temperature differs from the liquid saturation temperature, as described above. Consequently, the temperature difference between the non-azeotropic refrigerant and air is larger than that between the azeotropic refrigerant and air.
- the advantages are enhanced.
- the heat exchanger 1 is used as the condenser 62.
- the heat exchanger 1 is used as the evaporator 64.
- the counter flow is preferable.
- the refrigerant is a non-azeotropic refrigerant
- the refrigerant in a two-phase gas-liquid state has a temperature glide as described above and the temperature difference is accordingly increased, thus improving the heat exchange performance. Consequently, advantages of the counter flow are greater than those of the parallel flow.
- the evaporator 64 provides superheat to increase the heat exchange performance. Typically, superheat which is about 1 or 2 degrees C is less than subcooling which is 10 degrees C. Accordingly, advantages of the counter flow in the condenser 62 are greater than those in the evaporator 64.
- the configuration of Fig. 1 with the refrigerant counter flow may be used.
- the refrigeration cycle apparatus 60 in Fig. 4 further includes a four-way valve to switch between refrigerant flow directions and the heat exchanger 1 is used as the evaporator 64 or the condenser 62 while alternating between functioning as the evaporator 64 and functioning as the condenser 62, the heat exchanger 1 may be configured as illustrated in Fig. 7 .
- Fig. 7 is a diagram illustrating a heat exchanger that is used as an evaporator or a condenser selectively.
- dashed-line arrows indicate refrigerant flow in the evaporator 64 and solid-line arrows indicate refrigerant flow in the condenser 62.
- Fig. 7 differs from that of Fig. 1 in that an outlet header 50a functioning as a refrigerant divider to evenly divide the refrigerant into streams is disposed instead of the outlet header 50.
- the parallel flow is provided, specifically, the refrigerant flows through the outlet header 50a, the first heat exchange unit 10, the row straddling header 40, the second heat exchange unit 20, and the inlet header 30 in that order.
- the refrigerant flows into the outlet header 50a when the heat exchanger 1 is used as the evaporator 64.
- the outlet header 50a is allowed to function as a refrigerant divider so that the refrigerant in a two-phase gas-liquid state which has flowed into the outlet header 50a is evenly divided into streams and the refrigerant streams flow into the respective flat tubes 12.
- the counter flow is provided, specifically, the refrigerant flows through the inlet header 30, the second heat exchange unit 20, the row straddling header 40, the first heat exchange unit 10, and the outlet header 50a in that order.
- the refrigerant stream passing through the flat tubes 12 and 22 at each level flows through the isolated refrigerant passage from the inlet to the outlet thereof in the first and second heat exchange units 10 and 20 without mixing with the other refrigerant streams at the other levels. Accordingly, the evenly divided state at the inlet is successfully maintained to the outlet, thus reducing uneven flow division. Consequently, the heat exchange efficiency of the heat exchanger 1 can be enhanced, thus achieving a highly efficient operation of the refrigeration cycle apparatus 60 including the heat exchanger 1.
- the heat exchanger 1 When the heat exchanger 1 is used as the condenser 62, the refrigerant is allowed to flow in a counter flow manner, thus increasing the heat exchange efficiency.
- the advantages of the counter flow are significantly enhanced in the case where the refrigerant enclosed in the refrigeration cycle apparatus 60 is a non-azeotropic refrigerant.
- the configuration of the heat exchanger according to the present invention is not limited to that illustrated in Fig. 1 . Modifications and variations of Embodiment can be made without departing from the spirit and scope of the present invention as follows ((1) to (9), for example).
- the partition 41 is provided for each level in the row straddling header 40 in Embodiment, the partition 41 does not necessarily have to be provided for each level. It is only required that the interior of the row straddling header 40 be separated into a plurality of chambers arranged in the level direction in order to maintain the evenly divided state.
- whether the evenly divided state can be maintained depends on a head difference in each chamber 42.
- An interval between the partitions 41 may be determined in consideration of the head difference. Providing a minimum number of partitions 41 results in a reduction in cost.
- the positions of the partitions 41 may be determined depending on an air velocity distribution in the heat exchanger 1.
- the velocity of air from an air-sending fan to supply air to the heat exchanger 1 is not uniform on the entire surface of the heat exchanger 1. There exists an air velocity distribution.
- an air-sending fan is disposed upstream of the heat exchanger 1.
- the air velocity in upper part of the heat exchanger is accordingly higher than that in lower part thereof.
- gasification in part with high air velocity is promoted more than that in part with low air velocity.
- the refrigerant is easily divided evenly in the part with high air velocity.
- the height (or length in the level direction) of each chamber 42 may be increased (or extended) by increasing the distance between the partitions 41.
- the heat exchanger 1 is generally I-shaped in Embodiment, the heat exchanger 1 may be generally L-shaped, as illustrated in Fig. 8 , such that the heat exchanger 1 is partly bent.
- a generally L-shaped heat exchanger can be formed by bending the generally I-shaped heat exchanger 1 in a direction indicated by an arrow in Fig. 9 into an L-shape.
- the first heat exchange unit 10 should be shorter than the second heat exchange unit 20 in a state before bending as illustrated in Fig. 9 so that ends of the first and second heat exchange units 10 and 20 on each side are aligned in an L-bent state. Aligning the ends of the first and second heat exchange units on each side facilitates arrangement of external pipes connected to the refrigerant inlet pipe 31 and the refrigerant outlet pipe 51.
- Whether to form the heat exchanger 1 into an I-shape or an L-shape may be determined depending on a space for mounting the heat exchanger 1 in a casing that accommodates the heat exchanger 1.
- the shape may be determined so that the heat exchanger 1 can be mounted in an optimized mounting space at high density.
- the shape may be a U-shape or rectangular in addition to the I-shape and the L-shape. In any case, high-density placement in the mounting space allows for high heat exchange efficiency.
- the heat exchanger 1 is configured such that the ends of the first and second heat exchange units 10 and 20 on each side are aligned.
- the inlet header 30 may include an uneven flow division reducing member (for example, orifices to narrow the flow of the refrigerant) to reduce uneven flow division.
- an uneven flow division reducing member for example, orifices to narrow the flow of the refrigerant
- a distributor to substantially evenly divide the refrigerant into streams may be disposed instead of the inlet header 30.
- a refrigerant divider 70 illustrated in Fig. 10 may be used instead of the inlet header 30.
- the refrigerant divider 70 includes a header 71 that communicates with an end of each flat tube 12 and a distributor 74.
- the header 71 has an interior separated by one or more partitions 72 into a plurality of chambers 73 arranged in a longitudinal direction of the header 71.
- Each chamber 73 is connected to the distributor 74 with a capillary tube 75.
- the distributor 74 substantially evenly divides the refrigerant into streams and the refrigerant streams flow through the capillary tubes 75 into the chambers 73.
- Each chamber 73 has a longitudinal length less than that of the header 71 measured when the header 71 has a continuous interior without being separated by the partitions 72. This reduces the influence of a head difference due to gravity, so that the refrigerant can be evenly divided into streams and the refrigerant streams can be supplied to the flat tubes 22 communicating with the respective chambers 73.
- the partition 72 is preferably disposed not for each level, but every multiple levels, as illustrated in Fig. 10 , in consideration of cost reduction and arrangement of the capillary tubes 75. The partition 72, however, may be disposed for each level.
- the heat exchange units arranged in two rows are illustrated in Embodiment, the heat exchange units may be arranged in three or more rows. In such a case, the heat exchanger may be configured in a manner similar to the two-row arrangement. Specifically, the heat exchange units at opposite ends in the row direction of the heat exchange units arranged in multiple rows serve as an inlet heat exchange unit into which the refrigerant flows and an outlet heat exchange unit out of which the refrigerant flows.
- First ends of heat transfer tubes arranged at multiple levels of adjacent heat exchange units in the row direction of the heat exchange units arranged in the multiple rows are in communication with the row straddling header, thus providing refrigerant passages through which the refrigerant flows such that the refrigerant flowing from inlets of the heat transfer tubes being arranged at the multiple levels of the inlet heat exchange unit turns in the row straddling header to outlets of the heat transfer tubes being arranged at the multiple levels of the outlet heat exchange unit.
- the row straddling header has an interior separated into a plurality of chambers arranged in the level direction and the refrigerant passage is isolated for its corresponding chamber.
- each heat transfer tube is a flat tube in Embodiment, the heat transfer tube does not necessary have to be a flat tube.
- the heat transfer tube may be a cylindrical tube.
- first heat exchange unit 11 fin 12 heat transfer tube (flat tube) 12a through-hole 20 second heat exchange unit 21 fin 22 heat transfer tube (flat tube) 30 inlet header 31 refrigerant inlet pipe 40 row straddling header 41 partition 42 chamber 43 through-hole 50 outlet header 50a outlet header 51 refrigerant outlet pipe 60 refrigeration cycle apparatus 61 compressor 62 condenser 63 expansion valve 64 evaporator 70 refrigerant divider 71 header 72 partition 73 chamber 74 distributor 75 capillary tube
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/002872 WO2013160954A1 (fr) | 2012-04-26 | 2012-04-26 | Échangeur de chaleur et dispositif à cycle réfrigérant équipé de l'échangeur de chaleur |
PCT/JP2013/061878 WO2013161799A1 (fr) | 2012-04-26 | 2013-04-23 | Echangeur de chaleur et dispositif à cycle réfrigérant équipé de l'échangeur de chaleur |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2865982A1 true EP2865982A1 (fr) | 2015-04-29 |
EP2865982A4 EP2865982A4 (fr) | 2016-03-30 |
EP2865982B1 EP2865982B1 (fr) | 2022-08-31 |
Family
ID=49482331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13780638.6A Active EP2865982B1 (fr) | 2012-04-26 | 2013-04-23 | Echangeur de chaleur et dispositif à cycle réfrigérant équipé de l'échangeur de chaleur |
Country Status (5)
Country | Link |
---|---|
US (1) | US9689619B2 (fr) |
EP (1) | EP2865982B1 (fr) |
CN (3) | CN108489153A (fr) |
ES (1) | ES2927566T3 (fr) |
WO (2) | WO2013160954A1 (fr) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6688555B2 (ja) * | 2013-11-25 | 2020-04-28 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 空気調和機 |
EP3112791B1 (fr) * | 2014-01-27 | 2018-12-19 | Mitsubishi Electric Corporation | Collecteur stratifié, échangeur thermique et dispositif de climatisation |
WO2016056064A1 (fr) * | 2014-10-07 | 2016-04-14 | 三菱電機株式会社 | Échangeur thermique et dispositif de climatisation |
JP6336100B2 (ja) | 2014-10-07 | 2018-06-06 | 三菱電機株式会社 | 熱交換器、及び、空気調和装置 |
JP5987889B2 (ja) * | 2014-11-14 | 2016-09-07 | ダイキン工業株式会社 | 熱交換器 |
CN104567505A (zh) * | 2015-01-17 | 2015-04-29 | 武汉英康汇通电气有限公司 | 热交换管及其制作方法、热交换模块、热交换器 |
CN105091624B (zh) * | 2015-08-31 | 2018-01-26 | 湖南华强电气有限公司 | 一种车载空调扁管换热器 |
JP6529604B2 (ja) * | 2015-12-01 | 2019-06-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
WO2017168669A1 (fr) * | 2016-03-31 | 2017-10-05 | 三菱電機株式会社 | Échangeur de chaleur et appareil à cycle de réfrigération |
US10914499B2 (en) | 2016-05-19 | 2021-02-09 | Mitsubishi Electric Corporation | Outdoor unit and refrigeration cycle apparatus including the same |
CN106152622A (zh) * | 2016-08-23 | 2016-11-23 | 广州市设计院 | 一体式多蒸发温度的直接膨胀式蒸发器 |
JP6785872B2 (ja) * | 2016-10-26 | 2020-11-18 | 三菱電機株式会社 | 分配器および熱交換器 |
CN107270591B (zh) * | 2017-07-24 | 2022-11-18 | 江苏必领能源科技有限公司 | 降膜蒸发器用两相分配器 |
IT201700087168A1 (it) * | 2017-07-28 | 2019-01-28 | Eurochiller S R L | Condensatore ad aria |
JP6631608B2 (ja) | 2017-09-25 | 2020-01-15 | ダイキン工業株式会社 | 空気調和装置 |
CN108088288A (zh) * | 2017-10-31 | 2018-05-29 | 武汉科技大学 | 一种自激振荡腔体换热器 |
WO2019116413A1 (fr) * | 2017-12-11 | 2019-06-20 | 三菱電機株式会社 | Échangeur de chaleur sans ailettes et dispositif à cycle frigorifique |
JP6521116B1 (ja) | 2018-01-31 | 2019-05-29 | ダイキン工業株式会社 | 熱交換器又は熱交換器を有する冷凍装置 |
JP6985603B2 (ja) * | 2018-01-31 | 2021-12-22 | ダイキン工業株式会社 | 熱交換器又は熱交換器を有する冷凍装置 |
JP6887075B2 (ja) * | 2018-03-19 | 2021-06-16 | パナソニックIpマネジメント株式会社 | 熱交換器及びそれを用いた冷凍システム |
EP3940329B1 (fr) | 2018-04-05 | 2023-11-01 | Mitsubishi Electric Corporation | Distributeur et échangeur de chaleur |
CN111366029A (zh) * | 2018-12-26 | 2020-07-03 | 浙江盾安热工科技有限公司 | 换热器连接装置及换热器 |
CN111623560B (zh) * | 2019-02-27 | 2022-07-29 | 三花控股集团有限公司 | 换热器 |
JP6641542B1 (ja) * | 2019-03-05 | 2020-02-05 | 三菱電機株式会社 | 熱交換器及び冷凍サイクル装置 |
JP7263072B2 (ja) * | 2019-03-20 | 2023-04-24 | サンデン株式会社 | 熱交換器 |
JP7099392B2 (ja) * | 2019-04-03 | 2022-07-12 | トヨタ自動車株式会社 | 車載温調装置 |
CN112146475B (zh) * | 2019-06-28 | 2024-01-02 | 杭州三花研究院有限公司 | 集流管及换热器 |
JP7210744B2 (ja) * | 2019-07-31 | 2023-01-23 | 東芝キヤリア株式会社 | 熱交換器及び冷凍サイクル装置 |
CN110542330B (zh) * | 2019-09-02 | 2021-02-09 | 枣庄学院 | 一种可多连接的水冷式空气冷却器 |
WO2021070314A1 (fr) * | 2019-10-10 | 2021-04-15 | 三菱電機株式会社 | Dispositif à cycle frigorifique |
JP6881624B1 (ja) * | 2020-01-22 | 2021-06-02 | 株式会社富士通ゼネラル | 熱交換器 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038364U (ja) | 1983-08-18 | 1985-03-16 | シャープ株式会社 | 熱交換器 |
JP3043050B2 (ja) * | 1990-11-22 | 2000-05-22 | 昭和アルミニウム株式会社 | 熱交換器 |
US5314013A (en) | 1991-03-15 | 1994-05-24 | Sanden Corporation | Heat exchanger |
GB9221927D0 (en) * | 1992-10-17 | 1992-12-02 | Howard Ind Pipework Services L | Panel adapted for coolant through-flow and an article incorporating such panels |
JPH06300477A (ja) * | 1993-04-12 | 1994-10-28 | Matsushita Refrig Co Ltd | 熱交換器 |
JP3305460B2 (ja) | 1993-11-24 | 2002-07-22 | 昭和電工株式会社 | 熱交換器 |
JPH0933189A (ja) * | 1995-07-20 | 1997-02-07 | Showa Alum Corp | 室外機用熱交換器 |
JPH09145187A (ja) * | 1995-11-24 | 1997-06-06 | Hitachi Ltd | 空気調和装置 |
DE19719256B4 (de) | 1997-05-07 | 2005-08-18 | Valeo Klimatechnik Gmbh & Co. Kg | Mehr als zweiflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstelungsverfahren |
JP4106726B2 (ja) | 1998-02-24 | 2008-06-25 | 株式会社デンソー | 冷媒蒸発器 |
JP3774634B2 (ja) * | 2001-03-07 | 2006-05-17 | 株式会社日立製作所 | 室内機 |
JP4554144B2 (ja) | 2001-06-18 | 2010-09-29 | 昭和電工株式会社 | 蒸発器 |
US6745827B2 (en) * | 2001-09-29 | 2004-06-08 | Halla Climate Control Corporation | Heat exchanger |
JP2003214795A (ja) * | 2002-01-28 | 2003-07-30 | Mitsubishi Heavy Ind Ltd | 熱交換器 |
FR2864215B1 (fr) | 2003-12-19 | 2011-07-15 | Valeo Climatisation | Element de circuit pour echangeur de chaleur |
JP4178472B2 (ja) * | 2004-03-18 | 2008-11-12 | 三菱電機株式会社 | 熱交換器及び空気調和機 |
JP4193741B2 (ja) * | 2004-03-30 | 2008-12-10 | 株式会社デンソー | 冷媒蒸発器 |
JP2005321137A (ja) * | 2004-05-07 | 2005-11-17 | Denso Corp | 熱交換器 |
CN101133372B (zh) | 2005-02-02 | 2012-03-21 | 开利公司 | 用于热泵应用的平行流热交换器 |
JP4713211B2 (ja) * | 2005-04-26 | 2011-06-29 | 株式会社日本クライメイトシステムズ | 熱交換器 |
US8353330B2 (en) * | 2007-11-02 | 2013-01-15 | Halla Climate Control Corp. | Heat exchanger |
DE112008003011B4 (de) * | 2007-11-09 | 2023-03-23 | Hanon Systems | Wärmetauscher |
US8234881B2 (en) * | 2008-08-28 | 2012-08-07 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
CN201429284Y (zh) * | 2009-01-06 | 2010-03-24 | 比亚迪股份有限公司 | 一种平行流空调蒸发器 |
CN102278908B (zh) * | 2011-09-16 | 2013-06-26 | 四川长虹空调有限公司 | 微通道换热器 |
-
2012
- 2012-04-26 WO PCT/JP2012/002872 patent/WO2013160954A1/fr active Application Filing
-
2013
- 2013-04-23 ES ES13780638T patent/ES2927566T3/es active Active
- 2013-04-23 WO PCT/JP2013/061878 patent/WO2013161799A1/fr active Application Filing
- 2013-04-23 CN CN201810249304.XA patent/CN108489153A/zh active Pending
- 2013-04-23 CN CN201380025208.2A patent/CN104334997A/zh active Pending
- 2013-04-23 EP EP13780638.6A patent/EP2865982B1/fr active Active
- 2013-04-23 US US14/394,864 patent/US9689619B2/en active Active
- 2013-04-26 CN CN201320219798XU patent/CN203274362U/zh not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2927566T3 (es) | 2022-11-08 |
CN104334997A (zh) | 2015-02-04 |
EP2865982B1 (fr) | 2022-08-31 |
US20150059401A1 (en) | 2015-03-05 |
EP2865982A4 (fr) | 2016-03-30 |
CN203274362U (zh) | 2013-11-06 |
WO2013161799A1 (fr) | 2013-10-31 |
WO2013160954A1 (fr) | 2013-10-31 |
CN108489153A (zh) | 2018-09-04 |
US9689619B2 (en) | 2017-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9689619B2 (en) | Heat exchanger, refrigeration cycle apparatus including heat exchanger and air-conditioning apparatus | |
US9494368B2 (en) | Heat exchanger and air conditioner | |
US10571205B2 (en) | Stacking-type header, heat exchanger, and air-conditioning apparatus | |
US9651317B2 (en) | Heat exchanger and air conditioner | |
JP6061994B2 (ja) | 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機 | |
US10670344B2 (en) | Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger | |
US20150101363A1 (en) | Refrigerant distributing device and heat exchanger including the same | |
US10309701B2 (en) | Heat exchanger and air conditioner | |
EP3290851B1 (fr) | Collecteur stratifié, échangeur de chaleur et climatiseur | |
EP2998678A1 (fr) | Colonne stratifiée, échangeur de chaleur et climatiseur | |
US20150027672A1 (en) | Heat exchanger | |
EP3051245A1 (fr) | Collecteur de type stratifié, échangeur thermique, et appareil de climatisation | |
EP3779346A1 (fr) | Distributeur et échangeur de chaleur | |
US9829227B2 (en) | Heat exchanger and refrigeration cycle apparatus including the same | |
EP2993438A1 (fr) | Échangeur de chaleur à tube distributeur de longueur réduite | |
US11614260B2 (en) | Heat exchanger for heat pump applications | |
EP4060251A1 (fr) | Échangeur de chaleur | |
EP3904786B1 (fr) | Dispositif à cycle frigorifique | |
JP5840291B2 (ja) | 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機 | |
EP3971507A1 (fr) | Échangeur de chaleur, et dispositif de cycle frigorifique | |
WO2016092655A1 (fr) | Dispositif à cycle de réfrigération |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20141124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160301 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 9/02 20060101AFI20160224BHEP Ipc: F28D 1/053 20060101ALI20160224BHEP Ipc: F25B 39/00 20060101ALI20160224BHEP Ipc: F28F 1/02 20060101ALI20160224BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210510 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220414 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1515585 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013082432 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2927566 Country of ref document: ES Kind code of ref document: T3 Effective date: 20221108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1515585 Country of ref document: AT Kind code of ref document: T Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221231 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013082432 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240229 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240327 Year of fee payment: 12 Ref country code: FR Payment date: 20240308 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240227 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240507 Year of fee payment: 12 |