EP2855096B1 - Percussion unit and method. - Google Patents

Percussion unit and method. Download PDF

Info

Publication number
EP2855096B1
EP2855096B1 EP13720842.7A EP13720842A EP2855096B1 EP 2855096 B1 EP2855096 B1 EP 2855096B1 EP 13720842 A EP13720842 A EP 13720842A EP 2855096 B1 EP2855096 B1 EP 2855096B1
Authority
EP
European Patent Office
Prior art keywords
percussion
unit
control unit
operating
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13720842.7A
Other languages
German (de)
French (fr)
Other versions
EP2855096A1 (en
Inventor
Rainer Nitsche
Matthias Tauber
Gerd Schlesak
Antoine Vandamme
Thomas Winkler
Christian Bertsch
Achim Duesselberg
Ulli Hoffmann
Thilo Henke
Juergen Lennartz
Helge SPRENGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2855096A1 publication Critical patent/EP2855096A1/en
Application granted granted Critical
Publication of EP2855096B1 publication Critical patent/EP2855096B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/006Mode changers; Mechanisms connected thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/005Arrangements for adjusting the stroke of the impulse member or for stopping the impact action when the tool is lifted from the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/003Crossed drill and motor spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/068Crank-actuated impulse-driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/035Bleeding holes, e.g. in piston guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/131Idling mode of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/141Magnetic parts used in percussive tools
    • B25D2250/145Electro-magnetic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/195Regulation means
    • B25D2250/201Regulation means for speed, e.g. drilling or percussion speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/221Sensors

Definitions

  • Percussion units in particular for a hammer drill and / or percussion hammer, with a control unit which is intended to control a pneumatic percussion unit and at least one operating condition sensor unit are already known.
  • a percussion unit is from the DE 10 2008 000 973 A1 known.
  • the invention is based on a striking mechanism unit, in particular for a hammer drill and / or percussion hammer, with a control unit which is intended to control and / or regulate a pneumatic striking mechanism and at least one operating condition sensor unit.
  • the control unit is provided to determine at least one impact mechanism parameter as a function of measured values of the operating condition sensor unit.
  • “Provided” is to be understood in particular to be specially designed and / or specially equipped.
  • a “striking mechanism unit” is to be understood in particular to mean a unit which is provided for operating a striking mechanism.
  • the striking mechanism unit has a control unit.
  • the striking mechanism unit can have a motor and / or a gear unit which is and / or which is provided for driving the striking mechanism unit.
  • a “control unit” is to be understood in particular to mean a device of the percussion mechanism unit which is provided for controlling and / or regulating, in particular, the motor and / or the percussion mechanism unit.
  • the control unit can preferably be designed as an electrical, in particular as an electronic control unit.
  • a “hammer drill and / or percussion hammer” is to be understood in particular to mean a machine tool which is provided for machining a workpiece with a rotating or non-rotating tool, the tool being able to apply impact pulses to the tool.
  • the machine tool is preferably designed as a hand-held machine tool guided by a user.
  • a “percussion mechanism” is to be understood in particular to mean a device which has at least one component which is provided for generating and / or transmitting an impact pulse, in particular an axial impact pulse, to a tool arranged in a tool holder.
  • Such a component can be, in particular, a racket, a firing pin, a guide element, such as, in particular, a hammer tube and / or a piston, such as, in particular, a pot piston, and / or a further component that appears useful to the person skilled in the art.
  • the club can transmit the impact pulse directly to the tool or preferably indirectly.
  • the racket can preferably transmit the impact pulse to a firing pin, which transfers the impact pulse to the tool.
  • an “operating condition sensor unit” is to be understood in particular to mean a measuring device which is provided to detect operating conditions of the striking mechanism.
  • the operating condition sensor unit can comprise one or more sensors.
  • a sensor can be arranged on a circuit board of the control unit.
  • a sensor arrangement can be particularly inexpensive.
  • a sensor can be arranged on an inside or an outside of a handheld power tool housing.
  • the sensor can record measured values particularly precisely inside the handheld machine tool or outside the handheld machine tool.
  • a sensor can be arranged on a main handle or an additional handle.
  • a sensor can be arranged on a motor or a guide tube.
  • the sensor can detect measurement values which are influenced by the motor and / or affect guide properties of the guide tube particularly precisely.
  • the operating condition sensor unit can advantageously comprise one or more external sensors.
  • the operating condition sensor unit can be connected to sensors of external devices, such as a smartphone, and / or to sensors and / or operating condition data accessible via the Internet.
  • the operating condition sensor unit can preferably include temperature and / or ambient air pressure data obtain from external sensors. Sensors can be saved.
  • Operating conditions are to be understood in particular as physical quantities which influence the operation of the striking mechanism.
  • Operating conditions can in particular be environmental conditions of an environment of the striking mechanism.
  • an “influence” is to be understood in particular to mean that an operating behavior of the striking mechanism can change as a result of the operating conditions, such as, in particular, an efficiency and / or a starting behavior.
  • a “striking mechanism parameter” is to be understood in particular to mean a value of an operating parameter influencing the operation of the striking mechanism.
  • the hammer mechanism parameter can be a pressure and / or a hammer mechanism speed and / or a hammer frequency.
  • the impact mechanism parameter is a limit value of the operating parameter.
  • the control unit can take the determined percussion mechanism parameters into account when operating the percussion mechanism.
  • the operation of the striking mechanism can be particularly reliable.
  • the striking mechanism can be operated with high effectiveness under different operating conditions.
  • the operating condition sensor unit be provided to detect at least one temperature.
  • the operating condition sensor unit can be provided to detect a temperature of an impact mechanism environment.
  • the operating condition sensor unit can be provided to detect a temperature of the striking mechanism.
  • a “temperature of the striking mechanism” is to be understood in particular to mean a temperature of a component of the striking mechanism, in particular the guide tube and / or the striker and / or a striking mechanism and / or transmission housing.
  • the temperature can in particular have an effect on lubrication of the striking mechanism, for example due to a changed viscosity of a lubricant.
  • the temperature can cause components to expand and change tolerances between components.
  • the operating behavior of the striking mechanism can change.
  • the control unit can set operating parameters that are particularly suitable for the temperature.
  • the operating condition sensor unit is provided to detect at least one ambient air pressure.
  • the ambient air pressure can, in particular, influence a start-up behavior of the striking mechanism and / or a return movement against the direction of the striker's striking.
  • a return movement of the racket at low ambient air pressure can be unreliable.
  • starting the hammer mechanism at low ambient air pressure can be unreliable.
  • “unreliable” is to be understood in particular to mean that the striking operation fails repeatedly and / or arbitrarily, in particular at least every 5 minutes, preferably at least every minute, and / or that the striking mechanism starts up on more than every tenth attempt to start the striking mechanism , especially if more than every fifth attempt fails.
  • the control unit can set suitable operating parameters for the ambient air pressure, which ensure reliable operation.
  • control unit be provided to determine at least one cut-off frequency of an amplitude-frequency response of the striking mechanism.
  • an “amplitude-frequency response” of the striking mechanism is to be understood in particular as a striking force of the striker depending on a striking mechanism frequency and / or a striking mechanism speed.
  • a “percussion mechanism speed” is to be understood in particular as a speed of an eccentric gear which moves a piston of the percussion mechanism.
  • the piston can in particular be provided to generate a pressure cushion for pressurizing the racket.
  • the racket can be moved at the stroke frequency in particular by the pressure cushion generated by the piston.
  • the beat frequency and the hammer mechanism speed are preferably directly related.
  • the amount of the impact frequency 1 / s can be the amount of the impact mechanism speed U / s. This is the case if the racket strikes once per revolution of the eccentric gear.
  • the terms "frequency” and “speed” are therefore used equivalently.
  • a “limit frequency” is to be understood in particular as a frequency in which a behavior of the amplitude-frequency response changes fundamentally.
  • the cut-off frequency can represent a transition between a continuous and a discontinuous range of the amplitude-frequency response.
  • the cut-off frequency can represent the beginning of a frequency range by the amplitude-frequency response has a hysteresis and / or by assigning several possible amplitudes to a frequency.
  • Operation of the striking mechanism can be unreliable and / or inadmissible at certain frequencies.
  • the cut-off frequency can define a start or an end of such a range. It can be avoided that the striking mechanism is operated with unreliable and / or impermissible operating parameters.
  • the reliability of the striking mechanism can be increased.
  • the performance of the striking mechanism can be increased.
  • control unit be provided to define at least one operating parameter of the striking mechanism.
  • the control unit is preferably provided to determine the operating parameter as a function of a determined percussion mechanism parameter.
  • the control unit can be provided to set a start value for the operating parameter.
  • the control unit can be provided to determine a work value and / or a minimum and / or maximum work value for the operating parameter.
  • the control unit can be provided to set an idle value for the operating parameter.
  • a “work value” is to be understood as a value of the operating parameter set by the control unit during the striking operation of the striking mechanism.
  • an “idle value” is to be understood as a value of the operating parameter set by the control unit when the striking mechanism is idling.
  • a “start value” is to be understood as a value of the operating parameter set by the control unit when the striking mechanism changes from idle operation to striking operation.
  • an “idle mode” is to be understood in particular to mean an operating state of the striking mechanism which is characterized by the absence of regular impact pulses.
  • the striking mechanism can preferably have an idle mode in which it is provided for idle operation.
  • “striking operation” is to be understood in particular to mean an operating state of the striking mechanism in which the striking mechanism preferably exerts regular striking impulses.
  • the striking mechanism can preferably have a striking mode in which it is provided for the striking operation.
  • “regular” is to be understood to mean, in particular, recurring, in particular with an intended frequency.
  • an "operating state” should a mode and / or a setting of the control unit should be understood in this context.
  • the operating state can depend in particular on user settings, environmental conditions and other parameters of the striking mechanism.
  • a "change" from idle mode to striking mode is understood to mean starting the striking mechanism from idling mode.
  • the change to field operation can take place in particular if the striking mechanism is switched from idle mode to field mode.
  • the control unit can advantageously determine the operating parameters.
  • the control unit can determine the operating parameters depending on the operating conditions, in particular on a temperature and / or an ambient air pressure.
  • the striking mechanism can be operated under various operating conditions with advantageous operating parameters.
  • operating parameters can be set in which starting the hammer mechanism at a low ambient air pressure is particularly reliable.
  • operating parameters can be set for which the striking mechanism is particularly powerful.
  • a robustness reserve of the operating parameters can be low.
  • a “robustness reserve” is to be understood in particular to mean an adjustment of an operating parameter which is intended to ensure reliable operation in the case of different operating conditions and which results in reduced performance under given operating conditions.
  • the operating parameters are preferably determined such that the striking mechanism starts up reliably at a stroke frequency of 20-70 Hz at least at an ambient air pressure of 950-1050 mbar and an ambient temperature of 10-30 ° C.
  • a stroke frequency of 20-70 Hz as the starting value can be used.
  • safe operating parameters for the operation of the striking mechanism can be defined. Sensors for monitoring the operation of the striking mechanism can be omitted. Failure of a field operation can be unlikely.
  • the operating parameter be a throttle characteristic of a ventilation unit.
  • a “throttle characteristic” is to be understood in particular to mean a setting of the ventilation unit that changes a flow resistance of the ventilation unit, in particular a flow cross section.
  • a ventilation unit in this Connection in particular a ventilation unit of the striking mechanism can be understood.
  • the ventilation unit can be provided in particular for pressure and / or volume compensation of at least one space in the striking mechanism.
  • the ventilation unit can be provided for ventilating and / or venting a space in a guide tube guiding the racket in the direction of impact in front of and / or behind the racket.
  • the operating parameter can preferably be a throttle position of the ventilation unit of the space arranged in front of the racket in the direction of impact. If the flow cross-section in this venting unit is increased, the venting of the space in front of the racket can be improved. A counter pressure against the direction of the club can be reduced. The impact strength can be increased. If the flow cross section of this ventilation unit is reduced, the ventilation in front of the racket can be reduced. A counter pressure against the direction of the club can be increased. The impact strength can be reduced. In particular, the return movement of the racket against the direction of impact can be supported by the counter pressure. The start of the striking mechanism can be supported. The operating parameter can ensure a reliable start of the striking mechanism.
  • the operating parameter with a reduced flow cross section can be a stable operating parameter. It can be suitable as a starting value.
  • the operating parameter with an enlarged flow cross section can be a critical operating parameter with increased performance of the striking mechanism. It can be suitable as a work value.
  • the operating parameter is the stroke frequency and / or a stroke mechanism speed.
  • the control unit speed can be set particularly easily by the control unit.
  • a hammer mechanism speed can be particularly suitable for a machining case.
  • the striking mechanism can be particularly powerful at a high striking mechanism speed.
  • the motor of the striking mechanism can be operated at a higher speed at a higher striking mechanism speed.
  • a ventilation unit driven by the motor can also be operated at a higher speed. Cooling of the striking mechanism and / or the motor by the ventilation unit can be improved.
  • a function of a striking amplitude of the striking mechanism can be dependent on the striking mechanism speed. At a speed above a limit speed, the function can have a hysteresis have and be ambiguous.
  • Starting the field operation when switching from the idle mode to the field mode and / or restarting the field operation when the field operation is interrupted can be unreliable and / or impossible.
  • a hammer mechanism speed below the limit speed can be used as a starting value and / or work value for stable hammer operation.
  • a hammer mechanism speed above the limit speed can be used as a work value for a critical hammer operation. Above a maximum speed, impact operation may be impossible and / or unreliable.
  • “unreliable” is to be understood in particular to mean that the striking operation fails repeatedly and / or arbitrarily, in particular at least every 5 minutes, preferably at least every minute.
  • the control unit can be provided to determine a target percussion speed and / or frequency and / or a work value for percussion operation.
  • the striking mechanism can be particularly efficient with this operating parameter.
  • the control unit can also be provided to determine a limit speed, a starting speed and / or a maximum speed.
  • control unit be provided to determine the at least one operating parameter with the aid of a computing unit.
  • a “computing unit” is to be understood in particular to mean a unit for calculating at least one mathematical formula.
  • a “formula” is to be understood in particular as a calculation rule which is intended to determine the operating parameter by calculation as a function of input variables.
  • the formula can be provided to calculate a limit frequency as a function of an ambient air pressure and / or a temperature.
  • a suitable formula can be determined by the person skilled in the art on the basis of calculations and / or on the basis of tests.
  • a formula can represent an approximation to a real behavior of the striking mechanism.
  • a formula can be suitable if a calculated value deviates by less than 50%, preferably by less than 25%, particularly preferably by less than 10% from a value determined in experiments with the striking mechanism.
  • the control unit can calculate a limit parameter for an operating value above which a hammer mechanism start is unreliable.
  • the control unit can now start one Set the operating parameter reduced by a safety margin from the limit parameter as the starting value for this operating value.
  • the control unit can determine the operating parameters particularly easily.
  • control unit be provided to determine the at least one operating parameter with the aid of a storage unit for storing a characteristic curve and / or a characteristic diagram.
  • a “characteristic curve” is to be understood as a number of value pairs which link a value with a further value of the value pair.
  • a “characteristic map” is to be understood as a number of characteristic curves which each link a plurality of defined values to a further, variable value, the individual characteristic curves differing in the amounts of at least one of the defined values.
  • the characteristic curves and / or the characteristic maps can be determined in experiments and / or by calculations.
  • the control unit can determine an operating parameter by taking the values that match the measured operating conditions from the characteristic curve and / or the characteristic diagram.
  • the control unit can advantageously be provided to suitably interpolate values between the values recorded in the characteristic curve and / or the characteristic diagram.
  • a multitude of methods is known to the person skilled in the art how an interpolation of values is possible.
  • the control unit can determine the operating parameters with particularly little computing effort.
  • the values can be determined by experiments. There is no need to link the values using a functional equation.
  • control unit be provided to take position information and / or an operating mode and / or an application into account when determining the at least one percussion mechanism parameter and / or the at least one operating parameter.
  • position information is to be understood in particular to mean a direction of a weight with respect to the striking mechanism.
  • a position sensor can be provided to record the position information.
  • Operating parameters of the striking mechanism can be influenced by the location.
  • a return movement of the racket can be made more difficult by a weight force acting in the direction of impact.
  • the control unit can determine operating parameters depending on the position. In particular, the starting value of the impact frequency for starting the impact mechanism can be increased when the working position is essentially down is directed.
  • a starting value of the stroke frequency for the start of the striking mechanism can be lowered if the working situation is essentially directed upwards.
  • a “work situation” is to be understood in particular as an orientation of the striking mechanism with respect to gravity.
  • “upward” should in particular be understood to mean a direction that is opposite to gravity, and “downward” at least essentially the direction of gravity.
  • a “use case” is to be understood in particular to mean a specific application in which special operating parameters are advantageous.
  • An application can require a particularly low-vibration operation, a particularly high impact effect and / or a certain frequency or a particularly quick and / or frequent impact mechanism start.
  • the control unit can determine operating parameters depending on the application.
  • An “operating mode” can in particular be a chisel operation, a drilling operation with deactivated striking mechanism or a percussion drilling operation with activated striking mechanism and a rotating drilling movement.
  • the control unit can determine operating parameters depending on the operating mode.
  • At least one further sensor can be provided to detect a speed of the racket before and after the shot.
  • a recoil number and / or the impact strength can be determined from a speed difference.
  • the control unit can be provided to set or regulate at least one operating parameter depending on the impact strength determined.
  • a target impact strength can be adhered to particularly precisely.
  • control unit be provided to take into account at least one wear parameter when determining the at least one impact mechanism parameter and / or the at least one operating parameter.
  • a wear parameter can in particular be a wear measure of carbon brushes of the motor and / or a changing friction.
  • the control unit can be provided to estimate the wear parameter on the basis of an operating hours counter.
  • the control unit can contain maps and / or functions of operating parameters depending on a state of wear and / or on a number of operating hours.
  • the control unit can have sensors which are provided to measure a wear parameter, in particular a wear measure of carbon brushes.
  • the control unit can determine operating parameters as a function of the wear parameters.
  • the control unit be provided to temporarily lower the impact frequency and / or the impact mechanism speed to a start frequency and / or a start speed in at least one operating state for a change from idle mode to impact mode.
  • a “starting frequency and / or a starting speed” is to be understood in particular to mean a speed below the limit speed, which is suitable for a reliable change from idle mode to impact mode.
  • the impact speed can in particular be reduced to the starting speed if the impact mechanism is switched from idle mode to impact mode.
  • the impact speed can in particular also be reduced to the starting speed if the impact mode is interrupted in the impact mode.
  • An idling speed in idling mode can preferably be identical to a working speed in impact operation.
  • the lowering to a starting speed can preferably be omitted if the working speed is a stable operating parameter of the striking mechanism.
  • control unit be provided to set the operating parameter directly to the work value in at least one operating state for a change from idle mode to impact mode.
  • control unit can be provided to set the operating parameter directly to the work value when a user requests a work value that is a stable operating parameter under given conditions.
  • a change from idle mode to field mode can be reliable with this labor value.
  • the setting of the start value can be avoided. An irritation of the user by a brief change of the operating parameter at the start of the striking mechanism can be avoided. There is no need for the control unit to intervene in the operating parameters.
  • An operating change sensor is also proposed, which is provided to signal a change in the operating mode.
  • the change of operation sensor of the control unit can signal a change from idle mode to beat mode.
  • the change of operation sensor can be provided to detect a contact pressure of the tool on a workpiece. It can advantageously be recognized when the user starts a processing operation.
  • the change of operation sensor can particularly advantageously detect a changeover of the striking mechanism, in particular an opening and / or closing of idle openings and further openings of the striking mechanism, which are provided for a change of operating mode.
  • the change of operation sensor can detect a shift of a control sleeve which is provided for the change of operating mode of the striking mechanism.
  • the control unit can advantageously recognize when the operating mode change of the striking mechanism takes place.
  • the control unit can advantageously change the operating parameter in order to support and / or enable the change of operating mode.
  • the field operation can be started reliably.
  • control unit have at least one delay parameter which is intended to influence a time period for a change between two values of the operating parameter.
  • the change from an idle value and / or work value to a start value and / or from the start value to the work value can be done by a setpoint jump.
  • the change can preferably be linear and / or have a continuous course.
  • Current consumption of the motor can be limited. Accelerations, driving forces and / or vibrations can be reduced.
  • the delay parameter can be provided to determine an increase in the function defining the change between the operating parameters.
  • the time period for starting the striking mechanism can be specified.
  • starting is to be understood in particular to mean starting the impact mode from a standstill of the engine.
  • the hammer mechanism can be started directly from a standstill to a critical working value, in particular a critical working speed. If the speed increases slowly, the hammer mechanism can start before the limit speed is reached.
  • the control unit can allow the hammer mechanism to start at a critical operating frequency from a standstill if the speed increases slowly. There is no need to set the start value. If the speed increases rapidly, the hammer mechanism may fail to start before the limit speed is reached. The speed must be temporarily set to the start speed when the hammer mechanism starts. Optimal operation of the striking mechanism can be ensured.
  • a hand-held power tool with a striking mechanism unit with the properties mentioned is also proposed.
  • the handheld power tool can have the advantages mentioned.
  • FIG. 1 and Figure 2 show a hammer drill and striking hammer 12a with a striking mechanism unit 10a and with a control unit 14a, which is intended to control and regulate a pneumatic striking mechanism 16a.
  • the striking mechanism unit 10a contains a motor 36a with a gear unit 38a, which rotates a hammer tube 42a via a first gear 40a and drives an eccentric gear 46a via a second gear 44a.
  • the hammer tube 42a is non-rotatably connected to a tool holder 48a in which a tool 50a can be clamped.
  • the tool holder 48a and the tool 50a can be driven for a drilling operation via the hammer tube 42a with a rotating working movement 52a.
  • a striker 54a If a striker 54a is accelerated in a striking operation in a striking direction 56a in the direction of the tool holder 48a, it strikes a striking pin 58a arranged between the striker 54a and the tool 50a, which is passed on from the striking pin 58a to the tool 50a .
  • the tool 50a exerts a striking working movement 60a through the impact pulse.
  • a piston 62a is also movable in the hammer tube 42a in the striking direction 56a facing away from the racket 54a. The piston 62a can be moved periodically in the hammer tube 42a in the impact direction 56a and back again by means of a connecting rod 64a by the eccentric gear 46a driven by a hammer mechanism speed.
  • the piston 62a compresses an air cushion 66a enclosed between the piston 62a and the striker 54a in the hammer tube 42a.
  • the striker 54a is accelerated in the striking direction 56a.
  • a rebound on the firing pin 58a and / or by a negative pressure resulting from a return movement of the piston 62a against the direction of impact 56a between the piston 62a and the striker 54a and / or by a counterpressure in a striking space 100a between the striker 54a and the firing pin 58a the racket 54a is moved back against the direction of impact 56a and then accelerated again in the direction of impact 56a for a next impact pulse.
  • vent openings 68a are arranged in the hammer tube 42a, so that the air trapped in the striking space 100a between the striker 54a and the firing pin 58a can escape.
  • idle openings 70a are arranged in the hammer tube 42a.
  • the tool holder 48a is mounted displaceably in the impact direction 56a and is supported on a control sleeve 72a.
  • a spring element 74a exerts a force in the impact direction 56a on the control sleeve 72a.
  • an impact mode 76a in which the tool 50a is pressed against a workpiece by a user, the tool holder 48a moves the control sleeve 72a against the force of the spring element 74a so that it covers the idle openings 70a. If the tool 50a is removed from the workpiece, the tool holder 48a and the control sleeve 72a are moved in an idling mode 80a by the spring element 74a in the striking direction 56a in such a way that the control sleeve 72a releases the idling openings 70a. A pressure in the air cushion 66a between the piston 62a and the striker 54a can escape through the idle openings 70a.
  • racket 54a In idle mode 80a, racket 54a is not accelerated or is accelerated only slightly by air cushion 66a ( Figure 1 ). In idle mode, the striker 54a exerts little or no impact impacts on the firing pin 58a.
  • the hammer drill 12a has a handheld power tool housing 82a with a handle 84a and an additional handle 86a, on which it is guided by the user.
  • the use of a striking operation when the striking mechanism unit 10a is switched from the idle mode 80a to the striking mode 76a by closing the idle openings 70a depends on striking mechanism parameters, in particular on the striking mechanism speed and an ambient air pressure.
  • the piston 62a is periodically excited by the air cushion 66a enclosed between the piston 62a and the striker 54a with an impact frequency which corresponds to the impact mechanism speed of the eccentric gear 46a.
  • the striking mechanism 16a represents a non-linear oscillatory system.
  • Figure 3 shows for understanding a schematic representation of a simulated amplitude-frequency response of a general, non-linear oscillatory system as a function of a frequency f.
  • the amplitude A corresponds to the amplitude of a vibrating body of the system, which is not shown here in greater detail and corresponds to the striker 54a, in the case of external excitation, such as is effected by the piston 62a in the striking mechanism 16a.
  • the amplitude frequency response is non-linear, at high frequencies the amplitude frequency response has several solutions. The amplitude that arises in this area depends, among other things, on the direction in which the frequency f is changed.
  • the amplitude frequency response has a gap 132a instead of a maximum frequency 128a. This case occurs, for example, when the maximum frequency 128a is higher than a possible excitation frequency with which the oscillatable system can be excited.
  • the excitation frequency can be limited, for example, by a maximum speed of the eccentric gear 46a.
  • FIG Figure 5 shows a simulated impact energy E of the impact mechanism 16a when the impact mechanism starts with a falling impact frequency 92a and with an increasing impact frequency 94a. If the racket 54a is excited with an increasing impact mechanism speed or impact frequency 94a, the impact energy E increases with an increasing impact frequency 94a. If the impactor 66a is excited from a high impact mechanism speed starting from an idling mode with a falling impact mechanism speed or impact frequency 92a, the impact operation only starts at one certain percussion speed. This impact mechanism speed represents a limit frequency 20a.
  • the racket 54a does not begin to move or only moves at a low amplitude and / or speed, even if a switchover from idle mode 80a ( Figure 1 ) to beat mode 76a ( Figure 2 ) the idle openings 70a are closed. There are no or very little impact impulses exerted by the striker 54a on the firing pin 58a. The impact energy E drops sharply above a maximum value 90a. In this case, the striker 54a does not perform any movement in the striking direction 56a or movements with a small amplitude in the striking direction 56a, so that no or only small striking pulses with a low impact energy E are delivered to the striking pin 58a.
  • the limit frequency 20a is in a range from 20-70 Hz.
  • the maximum value 90a is greater than the limit frequency 20a and is in a range of 40-400 Hz depending on ambient conditions and the design of the striking mechanism 16a
  • the impact energy E reaches 1 - 200 joules depending on the ambient conditions and the design of the striking mechanism 16a at the limit frequency 20a, 2 - 400 joules at the maximum value 90a.
  • Figure 6 shows a schematic representation of a possible definition of operating parameters, in particular a starting value 28a, the cut-off frequency 20a, a working value 30a and the maximum value 90a.
  • the cut-off frequency 20a is preferably selected at a hammer mechanism speed n at which the amplitude frequency response has a clear solution and a reliable hammer mechanism start is possible.
  • the starting value 28a is less than or equal to the limit frequency 20a.
  • a reliable percussion mechanism start can be guaranteed, regardless of the direction from which the start value 28a is approached.
  • the limit frequency 20a represents the transition to an ambiguous amplitude frequency response and the maximum start value 28a.
  • the start value 28a is preferably selected at a distance from the limit frequency 20a, for example with a hammer mechanism speed reduced by 10%. If the striking operation is ensured, the striking mechanism 16a can be operated with a higher output with a supercritical working value 30a. A safe hammer mechanism start is not guaranteed with the supercritical working value 30a.
  • the impact energy E drops sharply above the maximum value 90a.
  • the working value 30a is therefore chosen to be lower than the maximum value 90a.
  • the working value 30a can be set by the control unit 14a or set by the user, for example using a selector switch (not shown here).
  • the work values 30a are determined, inter alia, as a function of a machining case and / or a type of material and / or a tool type.
  • Work values 30a are assigned to various adjustable work steps.
  • a work value 30a above the limit frequency 20a is a supercritical work value 30a
  • a work value 30a below the limit frequency 20a and / or below the start value 28a is a stable work value 30a.
  • an idle value 140a can optionally be defined.
  • the idle value 140a is set in particular in the idle mode 80a.
  • the idle value 140a is advantageously set higher than the start value 28a.
  • a ventilation unit, not shown here, driven by the motor 36a can then be operated at a higher speed than when operating with the starting value 28a.
  • the cooling of the striking mechanism 16a in idle mode 80a improves.
  • An operating noise of the hammer drill and percussion hammer 12a is perceived by the user as more powerful than at the starting value 28a.
  • the idle value 140a is advantageously set lower than the working value 30a. Noise emissions and / or vibrations can be reduced compared to an operation with the work value 30a. When changing from idle mode 80a to blow mode 76a, the starting value 28a can be reached faster than from the working value 30a.
  • Figure 7 shows the simulated impact energies E of the impact mechanism 16a when the impact mechanism starts with a falling and with an increasing impact frequency under different environmental conditions.
  • curve 134a shows the Impact energy E at a first ambient air pressure
  • curve 136a the impact energy E at a second ambient air pressure reduced compared to the first ambient air pressure.
  • a cut-off frequency 138a at the second ambient air pressure occurs at a lower impact frequency than the cut-off frequency 20a at the first ambient air pressure. If the second ambient air pressure is 10% lower than the first ambient air pressure, the limit frequency 138a is 1 - 25% lower than in the first ambient air pressure, depending on other influencing factors.
  • a temperature of the striking mechanism 16a in particular the hammer tube 42a, also has an influence on the cut-off frequency 20a. If the ambient temperature is lower, friction of the striker 54a in the hammer tube 42a increases, in particular due to an increasing viscosity of lubricants. If the temperature of the hammer tube 42a drops by 10K, the limit frequency 20a is reduced by 1 - 30% depending on other influencing factors. The limit frequency 20a can also change by +/- 20% due to influences of the tool. The tool can influence the rebound of the striker 54a from the firing pin 58a and thus influence the limit frequency 20a of the striking frequency.
  • the control unit 14a is provided to determine the impact mechanism parameters as a function of measured values from an operating condition sensor unit 18a.
  • the control unit 14a is provided to determine the limit frequency 20a of the amplitude frequency response for a reliable percussion mechanism start.
  • the operating condition sensor unit 18a is provided to detect a temperature and the ambient air pressure.
  • the operating condition sensor unit 18a is integrated as a module on a circuit board of the control unit 14a.
  • the operating condition sensor unit 18a detects an ambient temperature. The temperature has an influence on a viscosity of lubricants and on a friction of the striker 54a with the hammer tube 42a.
  • the ambient air pressure in particular has an influence on the return movement of the striker 54a and on the cut-off frequency 20a of the amplitude frequency response for a reliable hammer mechanism start.
  • the operating condition sensor unit 18a has a radio interface, not shown here, by means of which it can obtain temperature and ambient air pressure data from an external device, also not shown here, such as a smartphone and / or from the Internet.
  • the control unit 14a is also provided for operating parameters of the striking mechanism 16a.
  • the operating parameter can be determined with the aid of a computing unit 24a for calculating a formula.
  • f 0 has the value of 10 Hz and C lin, p a value of 0.05 Hz / mbar. At an ambient air pressure of 1000 mbar, f set is max. 60 Hz.
  • pressure-dependent values for the starting value 28a, the working value 30a and the limit frequency 20a can be defined. If the working value 30a and / or the maximum value 90a of the desired percussion mechanism speed is set below the limit frequency 20a, the starting value 28a can be omitted and the percussion mechanism 16a can be started with the working value 30a.
  • the other operating parameters are determined analogously.
  • f 0 has the value of 5 Hz, C lin, p a value of 0.05 Hz / mbar and C lin, T a value of 0.25 Hz / ° C, where the temperature is to be used in ° C.
  • f target is max. 60 Hz.
  • the person skilled in the art will adapt these parameters appropriately.
  • other terms can be introduced, such as a term that depends on the number of operating hours and takes into account a change in the striking mechanism due to wear.
  • a position sensor, not shown here, of the operating condition sensor unit 18a detects a position of the rotary and percussion hammer 12a; The position information can be taken into account in a further term when determining the operating parameters.
  • the term for the working position is chosen such that f target, max is reduced for an upward working position and for a downward working position is increased. Suitable factors for this term can be determined by the expert in experiments.
  • the user can thus lower the hammer mechanism speed as desired, starting from the optimum working value 30a for the respective operating conditions.
  • Figure 8 shows a block diagram of an algorithm of the striking mechanism unit 10a.
  • the maximum value 90a of the desired number of strokes is determined in a first step 142a.
  • the speed factor 88a is multiplied in a second step 144a by the maximum value 90a in order to determine the working value 30a of the desired number of strokes.
  • a control unit 96a controls the motor 36a with the aid of power electronics 146a.
  • a translation of the gear unit 38a is taken into account in the determination of a speed of the motor 36a required for a target number of strokes by the hammer mechanism unit 10a.
  • An actual speed value 148a is fed back from the control unit 96a to the control unit 96a for controlling the motor 36a.
  • the control unit 14a is provided to temporarily set the target number of strokes to the starting value 28a in order to change from the idle mode to the field operation. After a specified period of time in which a striking mechanism start has occurred during operation of the striking mechanism 16a with the starting value 28a, the desired number of strokes is increased to the working value 30a.
  • the time period during which the striking mechanism unit 10a sets the starting value 28a when the striking mechanism starts is determined by a delay parameter.
  • the delay parameter is defined by a person skilled in the art or can advantageously be set by the user.
  • An operating change sensor 32a is provided to signal the impact mechanism unit 10a of a change in the operating mode.
  • the change of operation sensor 32a is arranged so that it detects and signals a control sleeve position when the control sleeve 72a is shifted from idle mode 80a to impact mode 76a.
  • the striking mechanism unit 10a now temporarily sets the desired number of strokes to the starting value 28a if a supercritical working value 30a has been selected.
  • Figure 9 and Figure 10 show a characteristic and a map of a striking mechanism in a further embodiment.
  • the percussion mechanism unit of the second exemplary embodiment differs from the previous one in that an operating parameter is determined with the aid of a memory unit for storing a characteristic curve and a characteristic map.
  • the characteristic ( Figure 9 ) and the map ( Figure 10 ) serve, as described, to determine a maximum value 90b of a target number of strokes f target , max .
  • the characteristic curve defines the maximum value 90b as a function of an ambient air pressure P; the map serves to determine the maximum value 90b depending on the ambient air pressure P and a temperature T. Intermediate values of the map are suitably interpolated by the striking mechanism unit.
  • FIG 11 and Figure 12 show a striking mechanism unit 10c in a further embodiment.
  • the hammer mechanism unit 10c differs from the previous hammer mechanism unit in that an operating parameter defined by a control unit 14c is a throttle characteristic of a ventilation unit 22c.
  • a striking space in a hammer tube 42c is delimited by a firing pin and a striker.
  • the venting unit 22c has vent openings in the hammer tube 42c for venting the impact chamber.
  • the ventilation unit 22c serves to equalize the pressure of the impact chamber with an environment a striking mechanism 16c.
  • the venting unit 22c has an adjustment unit 102c.
  • the setting unit 102c is provided for influencing a venting of the striking chamber arranged in front of the racket in a striking direction 56c during a striking process.
  • the hammer tube 42c of the hammer mechanism 16c is mounted in a gear housing 104c of a hammer drill and hammer 12c.
  • the gear housing 104c has ribs 106c arranged in a star shape and facing an outside of the hammer tube 42c.
  • a bearing bush 108c which supports the hammer tube 42c on the gear housing 104c, is pressed between the hammer tube 42c and the gear housing 104c in an end region 110c facing an eccentric gear.
  • the bearing bush 108c forms, with the ribs 106c of the transmission housing 104c, air channels 112c, which are connected to the ventilation openings in the hammer tube 42c.
  • the air channels 112c form part of the ventilation unit 22c.
  • the striking chamber is connected via the air channels 112c to a gear chamber 114c which is arranged behind the hammer tube 42c against the striking direction 56c.
  • the air channels 112c form throttling points 116c, which influence a flow cross section of the connection of the impact chamber with the transmission chamber 114c.
  • the setting unit 102c is provided to set the flow cross section of the throttle points 116c.
  • the air channels 112c forming the throttle points 116c form a transition between the impact chamber and the gear chamber 114c.
  • An adjusting ring 149c has star-shaped, inwardly directed valve extensions 120c. Depending on a rotational position of the setting ring 149c, the valve extensions 120c can completely or partially cover the air channels 112c.
  • the flow cross section can be adjusted by adjusting the setting ring 149c.
  • the control unit 14c adjusts the setting ring 149c of the setting unit 102c by rotating the setting ring 149c with the aid of a servo drive 122c. If the ventilation unit 22c is partially closed, the pressure which arises when the racket moves in the striking direction 56c can only escape slowly in the striking chamber. A back pressure directed against the movement of the racket in the direction of impact 56c is formed.
  • This counter pressure supports a return movement of the racket against the direction of impact 56c and thus a start of the striking mechanism. If a supercritical working value has been selected for the percussion mechanism speed, in which a reliable percussion mechanism start is not possible when the ventilation unit 22c is open, the control unit 14c partially closes the ventilation unit 22c in order to switch from an idling mode to a percussion mode. Due to the counter pressure The start of the field operation is supported in the field room. After the hammer mechanism has started, the control unit 14c opens the ventilation unit 22c again. The control unit 14c can also use the operating parameter of the throttle characteristic of the ventilation unit 22c for power regulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

Stand der TechnikState of the art

Es sind bereits Schlagwerkeinheiten, insbesondere für einen Bohr- und/oder Schlaghammer, gemäß dem Oberbegriff des Anspruchs 1, mit einer Steuereinheit, die dazu vorgesehen ist, ein pneumatisches Schlagwerk zu steuern, und zumindest einer Betriebsbedingungssensoreinheit, bekannt. Eine solche Schlagwerkeinheit ist aus der DE 10 2008 000 973 A1 bekannt.Percussion units, in particular for a hammer drill and / or percussion hammer, with a control unit which is intended to control a pneumatic percussion unit and at least one operating condition sensor unit are already known. Such a percussion unit is from the DE 10 2008 000 973 A1 known.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung geht aus von einer Schlagwerkeinheit, insbesondere für einen Bohr- und/oder Schlaghammer, mit einer Steuereinheit, die dazu vorgesehen ist, ein pneumatisches Schlagwerk zu steuern und/oder zu regeln, und zumindest einer Betriebsbedingungssensoreinheit.The invention is based on a striking mechanism unit, in particular for a hammer drill and / or percussion hammer, with a control unit which is intended to control and / or regulate a pneumatic striking mechanism and at least one operating condition sensor unit.

Erfindungsgemäß ist die Steuereinheit dazu vorgesehen, zumindest einen Schlagwerkparameter abhängig von Messwerten der Betriebsbedingungssensoreinheit zu ermitteln. Unter "vorgesehen" soll insbesondere speziell ausgelegt und/oder speziell ausgestattet verstanden werden. Unter einer "Schlagwerkeinheit" soll in diesem Zusammenhang insbesondere eine Einheit verstanden werden, die zum Betreiben eines Schlagwerks vorgesehen ist. Die Schlagwerkeinheit weist eine Steuereinheit auf. Die Schlagwerkeinheit kann einen Motor und/oder eine Getriebeeinheit aufweisen, der und/oder die zu einem Antrieb der Schlagwerkeinheit vorgesehen ist. Unter einer "Steuereinheit" soll in diesem Zusammenhang insbesondere eine Vorrichtung der Schlagwerkeinheit verstanden werden, die zu einer Steuerung und/oder Regelung insbesondere des Motors und/oder der Schlagwerkeinheit vorgesehen ist. Die Steuereinheit kann bevorzugt als elektrische, insbesondere als elektronische Steuereinheit ausgebildet sein. Unter einem "Bohr- und/oder Schlaghammer" soll in diesen Zusammenhang insbesondere eine Werkzeugmaschine verstanden werden, die zu einer Bearbeitung eines Werkstücks mit einem drehenden oder nicht drehenden Werkzeug vorgesehen ist, wobei das Werkzeug durch die Werkzeugmaschine mit Schlagimpulsen beaufschlagt werden kann. Bevorzugt ist die Werkzeugmaschine als von einem Benutzer von Hand geführte Handwerkzeugmaschine ausgebildet. Unter einem "Schlagwerk" soll in diesem Zusammenhang insbesondere eine Vorrichtung verstanden werden, die zumindest ein Bauteil aufweist, das zu einer Erzeugung und/oder Übertragung eines Schlagimpulses, insbesondere eines axialen Schlagimpulses, auf ein in einem Werkzeughalter angeordnetes Werkzeug vorgesehen ist. Ein solches Bauteil kann insbesondere ein Schläger, ein Schlagbolzen, ein Führungselement, wie insbesondere ein Hammerrohr und/oder ein Kolben, wie insbesondere ein Topfkolben, und/oder ein weiteres, dem Fachmann als sinnvoll erscheinendes Bauteil sein. Der Schläger kann den Schlagimpuls direkt auf das Werkzeug übertragen oder bevorzugt indirekt. Bevorzugt kann der Schläger den Schlagimpuls auf einen Schlagbolzen übertragen, der den Schlagimpuls auf das Werkzeug überträgt. Unter einer "Betriebsbedingungssensoreinheit" soll in diesem Zusammenhang insbesondere eine Messeinrichtung verstanden werden, die dazu vorgesehen ist, Betriebsbedingungen des Schlagwerks zu erfassen. Die Betriebsbedingungssensoreinheit kann einen oder mehrere Sensoren umfassen. Ein Sensor kann auf einer Platine der Steuereinheit angeordnet sein. Eine Sensoranordnung kann besonders kostengünstig sein. Ein Sensor kann an einem Handwerkzeugmaschinengehäuse auf einer Innen- oder einer Außenseite angeordnet sein. Der Sensor kann Messwerte innerhalb der Handwerkzeugmaschine oder außerhalb der Handwerkzeugmaschine besonders genau erfassen. Ein Sensor kann an einem Haupthandgriff oder einem Zusatzhandgriff angeordnet sein. Ein Sensor kann an einem Motor oder einem Führungsrohr angeordnet sein. Der Sensor kann insbesondere durch den Motor beeinflusste und/oder sich auf Führungseigenschaften des Führungsrohrs auswirkende Messwerte besonders genau erfassen. Die Betriebsbedingungssensoreinheit kann vorteilhaft einen oder mehrere externe Sensoren umfassen. Insbesondere kann die Betriebsbedingungssensoreinheit mit Sensoren externer Geräte, wie eines Smartphones, und/oder mit über das Internet zugänglichen Sensoren und/oder Betriebsbedingungsdaten in Verbindung stehen. Bevorzugt kann die Betriebsbedingungssensoreinheit Temperatur- und/oder Umgebungsluftdruckdaten von externen Sensoren beziehen. Sensoren können eingespart werden. Unter "Betriebsbedingungen" sollen insbesondere physikalische Größen, die einen Einfluss auf den Betrieb des Schlagwerks ausüben, verstanden werden. Betriebsbedingungen können insbesondere Umweltbedingungen einer Umgebung des Schlagwerks sein. Unter einem "Einfluss" soll in diesem Zusammenhang insbesondere verstanden werden, dass sich ein Betriebsverhalten des Schlagwerks durch die Betriebsbedingungen ändern kann, wie insbesondere ein Wirkungsgrad und/oder ein Anlaufverhalten. Unter einem "Schlagwerkparameter" soll in diesem Zusammenhang insbesondere ein Wert eines den Betrieb des Schlagwerks beeinflussenden Betriebsparameters verstanden werden. Insbesondere kann der Schlagwerkparameter ein Druck und/oder eine Schlagwerkdrehzahl und/oder eine Schlagfrequenz sein. Erfindungsgemäß ist der Schlagwerkparameter ein Grenzwert des Betriebsparameters. Die Steuereinheit kann den ermittelten Schlagwerkparameter bei einem Betrieb des Schlagwerks berücksichtigen. Der Betrieb des Schlagwerks kann besonders zuverlässig sein. Das Schlagwerk kann bei unterschiedlichen Betriebsbedingungen mit einer hohen Effektivität betrieben werden.According to the invention, the control unit is provided to determine at least one impact mechanism parameter as a function of measured values of the operating condition sensor unit. “Provided” is to be understood in particular to be specially designed and / or specially equipped. In this context, a “striking mechanism unit” is to be understood in particular to mean a unit which is provided for operating a striking mechanism. The striking mechanism unit has a control unit. The striking mechanism unit can have a motor and / or a gear unit which is and / or which is provided for driving the striking mechanism unit. In this context, a “control unit” is to be understood in particular to mean a device of the percussion mechanism unit which is provided for controlling and / or regulating, in particular, the motor and / or the percussion mechanism unit. The control unit can preferably be designed as an electrical, in particular as an electronic control unit. In this context, a “hammer drill and / or percussion hammer” is to be understood in particular to mean a machine tool which is provided for machining a workpiece with a rotating or non-rotating tool, the tool being able to apply impact pulses to the tool. The machine tool is preferably designed as a hand-held machine tool guided by a user. In this context, a “percussion mechanism” is to be understood in particular to mean a device which has at least one component which is provided for generating and / or transmitting an impact pulse, in particular an axial impact pulse, to a tool arranged in a tool holder. Such a component can be, in particular, a racket, a firing pin, a guide element, such as, in particular, a hammer tube and / or a piston, such as, in particular, a pot piston, and / or a further component that appears useful to the person skilled in the art. The club can transmit the impact pulse directly to the tool or preferably indirectly. The racket can preferably transmit the impact pulse to a firing pin, which transfers the impact pulse to the tool. In this context, an “operating condition sensor unit” is to be understood in particular to mean a measuring device which is provided to detect operating conditions of the striking mechanism. The operating condition sensor unit can comprise one or more sensors. A sensor can be arranged on a circuit board of the control unit. A sensor arrangement can be particularly inexpensive. A sensor can be arranged on an inside or an outside of a handheld power tool housing. The sensor can record measured values particularly precisely inside the handheld machine tool or outside the handheld machine tool. A sensor can be arranged on a main handle or an additional handle. A sensor can be arranged on a motor or a guide tube. In particular, the sensor can detect measurement values which are influenced by the motor and / or affect guide properties of the guide tube particularly precisely. The operating condition sensor unit can advantageously comprise one or more external sensors. In particular, the operating condition sensor unit can be connected to sensors of external devices, such as a smartphone, and / or to sensors and / or operating condition data accessible via the Internet. The operating condition sensor unit can preferably include temperature and / or ambient air pressure data obtain from external sensors. Sensors can be saved. "Operating conditions" are to be understood in particular as physical quantities which influence the operation of the striking mechanism. Operating conditions can in particular be environmental conditions of an environment of the striking mechanism. In this context, an “influence” is to be understood in particular to mean that an operating behavior of the striking mechanism can change as a result of the operating conditions, such as, in particular, an efficiency and / or a starting behavior. In this context, a “striking mechanism parameter” is to be understood in particular to mean a value of an operating parameter influencing the operation of the striking mechanism. In particular, the hammer mechanism parameter can be a pressure and / or a hammer mechanism speed and / or a hammer frequency. According to the impact mechanism parameter is a limit value of the operating parameter. The control unit can take the determined percussion mechanism parameters into account when operating the percussion mechanism. The operation of the striking mechanism can be particularly reliable. The striking mechanism can be operated with high effectiveness under different operating conditions.

Es wird vorgeschlagen, dass die Betriebsbedingungssensoreinheit dazu vorgesehen ist, zumindest eine Temperatur zu erfassen. Insbesondere kann die Betriebsbedingungssensoreinheit dazu vorgesehen sein, eine Temperatur einer Schlagwerksumgebung zu erfassen. Insbesondere kann die Betriebsbedingungssensoreinheit dazu vorgesehen sein, eine Temperatur des Schlagwerks zu erfassen. Unter einer "Temperatur des Schlagwerks" soll in diesem Zusammenhang insbesondere eine Temperatur eines Bauteils des Schlagwerks verstanden werden, insbesondere des Führungsrohrs und/oder des Schlägers und/oder eines Schlagwerk- und/oder Getriebegehäuses. Die Temperatur kann insbesondere Auswirkungen auf eine Schmierung des Schlagwerks haben, zum Beispiel durch eine veränderte Viskosität eines Schmiermittels. Die Temperatur kann eine Ausdehnung von Bauteilen bewirken und Toleranzen zwischen Bauteilen verändern. Das Betriebsverhalten des Schlagwerks kann sich verändern. Die Steuereinheit kann für die Temperatur besonders geeignete Betriebsparameter einstellen.It is proposed that the operating condition sensor unit be provided to detect at least one temperature. In particular, the operating condition sensor unit can be provided to detect a temperature of an impact mechanism environment. In particular, the operating condition sensor unit can be provided to detect a temperature of the striking mechanism. In this context, a “temperature of the striking mechanism” is to be understood in particular to mean a temperature of a component of the striking mechanism, in particular the guide tube and / or the striker and / or a striking mechanism and / or transmission housing. The temperature can in particular have an effect on lubrication of the striking mechanism, for example due to a changed viscosity of a lubricant. The temperature can cause components to expand and change tolerances between components. The operating behavior of the striking mechanism can change. The control unit can set operating parameters that are particularly suitable for the temperature.

Erfindungsgemäß ist die Betriebsbedingungssensoreinheit dazu vorgesehen ist, zumindest einen Umgebungsluftdruck zu erfassen. Der Umgebungsluftdruck kann insbesondere ein Anlaufverhalten des Schlagwerks und/oder eine Rückholbewegung entgegen der Schlagrichtung des Schlägers beeinflussen. Insbesondere kann eine Rückholbewegung des Schlägers bei geringem Umgebungsluftdruck unzuverlässig sein. Insbesondere kann ein Anlaufen des Schlagwerks bei geringem Umgebungsluftdruck unzuverlässig sein. Unter "unzuverlässig" soll in diesem Zusammenhang insbesondere verstanden werden, dass der Schlagbetrieb wiederholt und/oder willkürlich ausfällt, insbesondere mindestens alle 5 Minuten, bevorzugt mindestens jede Minute und/oder dass ein Anlauf des Schlagwerks bei mehr als jedem zehnten Versuch das Schlagwerk zu starten, insbesondere bei mehr als jedem fünften Versuch, ausbleibt. Die Steuereinheit kann für den Umgebungsluftdruck geeignete Betriebsparameter einstellen, die einen zuverlässigen Betrieb sicherstellen.According to the operating condition sensor unit is provided to detect at least one ambient air pressure. The ambient air pressure can, in particular, influence a start-up behavior of the striking mechanism and / or a return movement against the direction of the striker's striking. In particular, a return movement of the racket at low ambient air pressure can be unreliable. In particular, starting the hammer mechanism at low ambient air pressure can be unreliable. In this context, “unreliable” is to be understood in particular to mean that the striking operation fails repeatedly and / or arbitrarily, in particular at least every 5 minutes, preferably at least every minute, and / or that the striking mechanism starts up on more than every tenth attempt to start the striking mechanism , especially if more than every fifth attempt fails. The control unit can set suitable operating parameters for the ambient air pressure, which ensure reliable operation.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, zumindest eine Grenzfrequenz eines Amplituden-Frequenzgangs des Schlagwerks zu ermitteln. Unter einem "Amplituden-Frequenzgang" des Schlagwerks soll in diesem Zusammenhang insbesondere eine Schlagstärke des Schlägers abhängig von einer Schlagwerksfrequenz und/oder einer Schlagwerkdrehzahl verstanden werden. Unter einer "Schlagwerkdrehzahl" soll in diesem Zusammenhang insbesondere eine Drehzahl eines Exzentergetriebes verstanden werden, das einen Kolben des Schlagwerks bewegt. Der Kolben kann insbesondere dazu vorgesehen sein, ein Druckpolster zu einer Druckbeaufschlagung des Schlägers zu erzeugen. Der Schläger kann insbesondere durch das durch den Kolben erzeugte Druckpolster mit der Schlagfrequenz bewegt werden. Die Schlagfrequenz und die Schlagwerkdrehzahl stehen bevorzugt in einem direkten Zusammenhang. Insbesondere kann der Betrag der Schlagfrequenz 1/s der Betrag der Schlagwerkdrehzahl U/s sein. Dies ist der Fall, wenn der Schläger einen Schlag je Umdrehung des Exzentergetriebes durchführt. In der Folge werden die Begriffe "Frequenz" und "Drehzahl" daher äquivalent verwendet. Der Fachmann wird bei von diesem Zusammenhang abweichenden Ausbildungen eines Schlagwerks die folgenden Ausführungen entsprechend anpassen. Unter einer "Grenzfrequenz" soll in diesem Zusammenhang insbesondere eine Frequenz verstanden werden, in der sich ein Verhalten des Amplituden-Frequenzgangs grundlegend verändert. Die Grenzfrequenz kann einen Übergang zwischen einem stetigen und einem unstetigen Bereich des Amplituden-Frequenzgangs darstellen. Insbesondere kann die Grenzfrequenz den Beginn eines Frequenzbereichs darstellen, indem der Amplituden-Frequenzgang eine Hysterese aufweist und/oder indem einer Frequenz mehrere mögliche Amplituden zugeordnet sind. Ein Betrieb des Schlagwerks kann bei bestimmten Frequenzen unzuverlässig und/oder unzulässig sein. Die Grenzfrequenz kann einen Beginn oder ein Ende eines solchen Bereichs festlegen. Es kann vermieden werden, dass das Schlagwerk mit unzuverlässigen und/oder unzulässigen Betriebsparametern betrieben wird. Eine Zuverlässigkeit des Schlagwerks kann erhöht sein. Eine Leistungsfähigkeit des Schlagwerks kann erhöht sein.It is further proposed that the control unit be provided to determine at least one cut-off frequency of an amplitude-frequency response of the striking mechanism. In this context, an “amplitude-frequency response” of the striking mechanism is to be understood in particular as a striking force of the striker depending on a striking mechanism frequency and / or a striking mechanism speed. In this context, a “percussion mechanism speed” is to be understood in particular as a speed of an eccentric gear which moves a piston of the percussion mechanism. The piston can in particular be provided to generate a pressure cushion for pressurizing the racket. The racket can be moved at the stroke frequency in particular by the pressure cushion generated by the piston. The beat frequency and the hammer mechanism speed are preferably directly related. In particular, the amount of the impact frequency 1 / s can be the amount of the impact mechanism speed U / s. This is the case if the racket strikes once per revolution of the eccentric gear. In the following, the terms "frequency" and "speed" are therefore used equivalently. The person skilled in the art will adapt the following statements accordingly in the case of designs of a striking mechanism that deviate from this connection. In this context, a “limit frequency” is to be understood in particular as a frequency in which a behavior of the amplitude-frequency response changes fundamentally. The cut-off frequency can represent a transition between a continuous and a discontinuous range of the amplitude-frequency response. In particular, the cut-off frequency can represent the beginning of a frequency range by the amplitude-frequency response has a hysteresis and / or by assigning several possible amplitudes to a frequency. Operation of the striking mechanism can be unreliable and / or inadmissible at certain frequencies. The cut-off frequency can define a start or an end of such a range. It can be avoided that the striking mechanism is operated with unreliable and / or impermissible operating parameters. The reliability of the striking mechanism can be increased. The performance of the striking mechanism can be increased.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, zumindest einen Betriebsparameter des Schlagwerks festzulegen. Bevorzugt ist die Steuereinheit dazu vorgesehen, den Betriebsparameter abhängig von einem ermittelten Schlagwerkparameter festzulegen. Insbesondere kann die Steuereinheit dazu vorgesehen sein, für den Betriebsparameter einen Startwert festzulegen. Weiter kann die Steuereinheit dazu vorgesehen sein, für den Betriebsparameter einen Arbeitswert und/oder einen minimalen und/oder maximalen Arbeitswert festzulegen. Weiter kann die Steuereinheit dazu vorgesehen sein, für den Betriebsparameter einen Leerlaufwert festzulegen. Unter einem "Arbeitswert" soll in diesem Zusammenhang ein von der Steuereinheit eingestellter Wert des Betriebsparameters bei dem Schlagbetrieb des Schlagwerks verstanden werden. Unter einem "Leerlaufwert" soll in diesem Zusammenhang ein von der Steuereinheit eingestellter Wert des Betriebsparameters bei dem Leerlaufbetrieb des Schlagwerks verstanden werden. Unter einem "Startwert" soll in diesem Zusammenhang ein von der Steuereinheit eingestellter Wert des Betriebsparameters bei einem Wechsel des Schlagwerks von dem Leerlaufbetrieb in den Schlagbetrieb verstanden werden. Unter einem "Leerlaufbetrieb" soll in diesem Zusammenhang insbesondere ein Betriebszustand des Schlagwerks verstanden werden, der durch Ausbleiben von regelmäßigen Schlagimpulsen gekennzeichnet ist. Bevorzugt kann das Schlagwerk einen Leerlaufmodus aufweisen, in dem es zu dem Leerlaufbetrieb vorgesehen ist. Unter einem "Schlagbetrieb" soll in diesem Zusammenhang insbesondere ein Betriebszustand des Schlagwerks verstanden werden, in dem vom Schlagwerk bevorzugt regelmäßige Schlagimpulse ausgeübt werden. Bevorzugt kann das Schlagwerk einen Schlagmodus aufweisen, in dem es zu dem Schlagbetrieb vorgesehen ist. Unter "regelmäßig" soll in diesem Zusammenhang insbesondere wiederkehrend verstanden werden, insbesondere mit einer vorgesehenen Frequenz. Unter einem "Betriebszustand" soll in diesem Zusammenhang insbesondere ein Modus und/oder eine Einstellung der Steuereinheit verstanden werden. Der Betriebszustand kann insbesondere von Benutzereinstellungen, Umgebungsbedingungen und weiteren Parametern des Schlagwerks abhängig sein. Unter einem "Wechsel" von dem Leerlaufbetrieb in den Schlagbetrieb soll in diesem Zusammenhang ein Starten des Schlagwerks aus dem Leerlaufbetrieb verstanden werden. Der Wechsel in den Schlagbetrieb kann insbesondere erfolgen, wenn das Schlagwerk vom Leerlaufmodus in den Schlagmodus umgeschaltet wird. Die Steuereinheit kann die Betriebsparameter vorteilhaft festlegen. Insbesondere kann die Steuereinheit die Betriebsparameter abhängig von den Betriebsbedingungen festlegen, insbesondere von einer Temperatur und/oder einem Umgebungsluftdruck. Das Schlagwerk kann bei unterschiedlichen Betriebsbedingungen mit vorteilhaften Betriebsparametern betrieben werden. Insbesondere können bei einem niedrigen Umgebungsluftdruck Betriebsparameter eingestellt werden, bei denen ein Schlagwerkstart bei niedrigem Umgebungsluftdruck besonders zuverlässig ist. Bei einem hohen Umgebungsluftdruck können Betriebsparameter eingestellt werden, bei denen das Schlagwerk besonders leistungsfähig ist. Eine Robustheitsreserve der Betriebsparameter kann gering ausfallen. Unter einer "Robustheitsreserve" soll in diesem Zusammenhang insbesondere eine Einstellung eines Betriebsparameters verstanden werden, die dazu vorgesehen ist, einen zuverlässigen Betrieb bei abweichenden Betriebsbedingungen zu gewährleisten und bei gegebenen Betriebsbedingungen eine verminderte Leistungsfähigkeit zur Folge hat. Bevorzugt werden die Betriebsparameter so festgelegt, dass das Schlagwerk bei einer Schlagfrequenz von 20 - 70 Hz zumindest bei einem Umgebungsluftdruck von 950 - 1050 mbar und einer Umgebungstemperatur von 10 - 30°C sicher anläuft und/oder eine Schlagfrequenz von 20 - 70 Hz als Startwert genutzt werden kann. Es können bei bekannten Betriebsbedingungen sichere Betriebsparameter für den Betrieb des Schlagwerks festgelegt werden. Sensoren zur Überwachung des Betriebs des Schlagwerks können entfallen. Ein Ausfall eines Schlagbetriebs kann unwahrscheinlich sein.It is further proposed that the control unit be provided to define at least one operating parameter of the striking mechanism. The control unit is preferably provided to determine the operating parameter as a function of a determined percussion mechanism parameter. In particular, the control unit can be provided to set a start value for the operating parameter. Furthermore, the control unit can be provided to determine a work value and / or a minimum and / or maximum work value for the operating parameter. Furthermore, the control unit can be provided to set an idle value for the operating parameter. In this context, a “work value” is to be understood as a value of the operating parameter set by the control unit during the striking operation of the striking mechanism. In this context, an “idle value” is to be understood as a value of the operating parameter set by the control unit when the striking mechanism is idling. In this context, a “start value” is to be understood as a value of the operating parameter set by the control unit when the striking mechanism changes from idle operation to striking operation. In this context, an “idle mode” is to be understood in particular to mean an operating state of the striking mechanism which is characterized by the absence of regular impact pulses. The striking mechanism can preferably have an idle mode in which it is provided for idle operation. In this context, “striking operation” is to be understood in particular to mean an operating state of the striking mechanism in which the striking mechanism preferably exerts regular striking impulses. The striking mechanism can preferably have a striking mode in which it is provided for the striking operation. In this context, “regular” is to be understood to mean, in particular, recurring, in particular with an intended frequency. Under an "operating state" should a mode and / or a setting of the control unit should be understood in this context. The operating state can depend in particular on user settings, environmental conditions and other parameters of the striking mechanism. In this context, a "change" from idle mode to striking mode is understood to mean starting the striking mechanism from idling mode. The change to field operation can take place in particular if the striking mechanism is switched from idle mode to field mode. The control unit can advantageously determine the operating parameters. In particular, the control unit can determine the operating parameters depending on the operating conditions, in particular on a temperature and / or an ambient air pressure. The striking mechanism can be operated under various operating conditions with advantageous operating parameters. In particular, at a low ambient air pressure, operating parameters can be set in which starting the hammer mechanism at a low ambient air pressure is particularly reliable. With a high ambient air pressure, operating parameters can be set for which the striking mechanism is particularly powerful. A robustness reserve of the operating parameters can be low. In this context, a “robustness reserve” is to be understood in particular to mean an adjustment of an operating parameter which is intended to ensure reliable operation in the case of different operating conditions and which results in reduced performance under given operating conditions. The operating parameters are preferably determined such that the striking mechanism starts up reliably at a stroke frequency of 20-70 Hz at least at an ambient air pressure of 950-1050 mbar and an ambient temperature of 10-30 ° C. and / or a stroke frequency of 20-70 Hz as the starting value can be used. With known operating conditions, safe operating parameters for the operation of the striking mechanism can be defined. Sensors for monitoring the operation of the striking mechanism can be omitted. Failure of a field operation can be unlikely.

Es wird vorgeschlagen, dass der Betriebsparameter eine Drosselkenngröße einer Entlüftungseinheit ist. Unter einer "Drosselkenngröße" soll in diesem Zusammenhang insbesondere eine Einstellung der Entlüftungseinheit verstanden werden, die einen Strömungswiderstand der Entlüftungseinheit verändert, insbesondere einen Strömungsquerschnitt. Unter einer "Entlüftungseinheit" soll in diesem Zusammenhang insbesondere eine Be- und/oder Entlüftungseinheit des Schlagwerks verstanden werden. Die Entlüftungseinheit kann insbesondere zu einem Druck- und/oder Volumenausgleich zumindest eines Raums in dem Schlagwerk vorgesehen sein. Insbesondere kann die Entlüftungseinheit zu einer Be- und/oder Entlüftung eines Raums in einem den Schläger führenden Führungsrohr in Schlagrichtung vor und/oder hinter dem Schläger vorgesehen sein. Bevorzugt kann der Betriebsparameter eine Drosselstellung der Entlüftungseinheit des in Schlagrichtung vor dem Schläger angeordneten Raums sein. Wird der Strömungsquerschnitt bei dieser Entlüftungseinheit vergrößert, kann die Entlüftung des Raums vor dem Schläger verbessert werden. Ein Gegendruck entgegen der Schlagrichtung des Schlägers kann vermindert sein. Die Schlagstärke kann erhöht werden. Wird der Strömungsquerschnitt bei dieser Entlüftungseinheit reduziert, kann die Entlüftung des Raums vor dem Schläger vermindert werden. Ein Gegendruck entgegen der Schlagrichtung des Schlägers kann erhöht sein. Die Schlagstärke kann reduziert werden. Insbesondere kann die Rückholbewegung des Schlägers entgegen der Schlagrichtung durch den Gegendruck unterstützt werden. Das Anlaufen des Schlagwerks kann unterstützt werden. Der Betriebsparameter kann ein zuverlässiges Anlaufen des Schlagwerks sicherstellen. Der Betriebsparameter mit reduziertem Strömungsquerschnitt kann ein stabiler Betriebsparameter sein. Er kann als Startwert geeignet sein. Der Betriebsparameter mit vergrößertem Strömungsquerschnitt kann ein kritischer Betriebsparameter bei erhöhter Leistungsfähigkeit des Schlagwerks sein. Er kann als Arbeitswert geeignet sein.It is proposed that the operating parameter be a throttle characteristic of a ventilation unit. In this context, a “throttle characteristic” is to be understood in particular to mean a setting of the ventilation unit that changes a flow resistance of the ventilation unit, in particular a flow cross section. Under a "ventilation unit" in this Connection in particular a ventilation unit of the striking mechanism can be understood. The ventilation unit can be provided in particular for pressure and / or volume compensation of at least one space in the striking mechanism. In particular, the ventilation unit can be provided for ventilating and / or venting a space in a guide tube guiding the racket in the direction of impact in front of and / or behind the racket. The operating parameter can preferably be a throttle position of the ventilation unit of the space arranged in front of the racket in the direction of impact. If the flow cross-section in this venting unit is increased, the venting of the space in front of the racket can be improved. A counter pressure against the direction of the club can be reduced. The impact strength can be increased. If the flow cross section of this ventilation unit is reduced, the ventilation in front of the racket can be reduced. A counter pressure against the direction of the club can be increased. The impact strength can be reduced. In particular, the return movement of the racket against the direction of impact can be supported by the counter pressure. The start of the striking mechanism can be supported. The operating parameter can ensure a reliable start of the striking mechanism. The operating parameter with a reduced flow cross section can be a stable operating parameter. It can be suitable as a starting value. The operating parameter with an enlarged flow cross section can be a critical operating parameter with increased performance of the striking mechanism. It can be suitable as a work value.

In einer vorteilhaften Ausgestaltung der Erfindung wird vorgeschlagen, dass der Betriebsparameter die Schlagfrequenz und/oder eine Schlagwerkdrehzahl ist. Die Schlagwerkdrehzahl kann von der Steuereinheit besonders einfach eingestellt werden. Eine Schlagwerkdrehzahl kann für einen Bearbeitungsfall besonders geeignet sein. Das Schlagwerk kann bei einer hohen Schlagwerkdrehzahl besonders leistungsfähig sein. Der Motor des Schlagwerks kann bei einer höheren Schlagwerkdrehzahl mit einer höheren Drehzahl betrieben werden. Eine von dem Motor angetriebene Lüftungseinheit kann ebenfalls mit einer höheren Drehzahl betrieben werden. Eine Kühlung des Schlagwerks und/oder des Motors durch die Lüftungseinheit kann verbessert sein. Eine Funktion einer Schlagamplitude des Schlagwerks kann abhängig von der Schlagwerkdrehzahl sein. Bei einer Drehzahl oberhalb einer Grenzdrehzahl kann die Funktion eine Hysterese aufweisen und mehrdeutig sein. Ein Start des Schlagbetriebs beim Umschalten von dem Leerlaufmodus in den Schlagmodus und/oder ein Neustart des Schlagbetriebs bei einem Unterbruch des Schlagbetriebs kann unzuverlässig und/oder unmöglich sein. Eine Schlagwerkdrehzahl unterhalb der Grenzdrehzahl kann als Startwert und/oder Arbeitswert für einen stabilen Schlagbetrieb genutzt werden. Eine Schlagwerkdrehzahl oberhalb der Grenzdrehzahl kann als Arbeitswert für einen kritischen Schlagbetrieb genutzt werden. Oberhalb einer Maximaldrehzahl kann ein Schlagbetrieb unmöglich und/oder unzuverlässig sein. Unter "unzuverlässig" soll in diesem Zusammenhang insbesondere verstanden werden, dass der Schlagbetrieb wiederholt und/oder willkürlich ausfällt, insbesondere mindestens alle 5 Minuten, bevorzugt mindestens jede Minute. Die Steuereinheit kann dazu vorgesehen sein, eine Soll-Schlagwerkdrehzahl und/oder -Frequenz und/oder einen Arbeitswert für einen Schlagwerksbetrieb zu ermitteln. Das Schlagwerk kann mit diesem Betriebsparameter besonders effizient sein. Die Steuereinheit kann auch dazu vorgesehen sein eine Grenzdrehzahl, eine Startdrehzahl und/oder eine Maximaldrehzahl zu ermitteln.In an advantageous embodiment of the invention, it is proposed that the operating parameter is the stroke frequency and / or a stroke mechanism speed. The control unit speed can be set particularly easily by the control unit. A hammer mechanism speed can be particularly suitable for a machining case. The striking mechanism can be particularly powerful at a high striking mechanism speed. The motor of the striking mechanism can be operated at a higher speed at a higher striking mechanism speed. A ventilation unit driven by the motor can also be operated at a higher speed. Cooling of the striking mechanism and / or the motor by the ventilation unit can be improved. A function of a striking amplitude of the striking mechanism can be dependent on the striking mechanism speed. At a speed above a limit speed, the function can have a hysteresis have and be ambiguous. Starting the field operation when switching from the idle mode to the field mode and / or restarting the field operation when the field operation is interrupted can be unreliable and / or impossible. A hammer mechanism speed below the limit speed can be used as a starting value and / or work value for stable hammer operation. A hammer mechanism speed above the limit speed can be used as a work value for a critical hammer operation. Above a maximum speed, impact operation may be impossible and / or unreliable. In this context, “unreliable” is to be understood in particular to mean that the striking operation fails repeatedly and / or arbitrarily, in particular at least every 5 minutes, preferably at least every minute. The control unit can be provided to determine a target percussion speed and / or frequency and / or a work value for percussion operation. The striking mechanism can be particularly efficient with this operating parameter. The control unit can also be provided to determine a limit speed, a starting speed and / or a maximum speed.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, den zumindest einen Betriebsparameter mit Hilfe einer Recheneinheit zu ermitteln. Unter einer "Recheneinheit" soll in diesem Zusammenhang insbesondere eine Einheit zur Berechnung zumindest einer mathematischen Formel verstanden werden. Unter einer "Formel" soll in diesem Zusammenhang insbesondere eine Rechenregel verstanden werden, die dazu vorgesehen ist, den Betriebsparameter abhängig von Eingangsgrößen durch Berechnung zu ermitteln. Insbesondere kann die Formel dazu vorgesehen sein, eine Grenzfrequenz in Abhängigkeit von einem Umgebungsluftdruck und/oder einer Temperatur zu berechnen. Eine geeignete Formel kann vom Fachmann anhand von Berechnungen und/oder anhand von Versuchen festgelegt werden. Eine Formel kann eine Annäherung an ein reales Verhalten des Schlagwerks darstellen. Der Fachmann wird festlegen, welche Abweichungen eine geeignete Formel von dem realen, zum Beispiel in Versuchen ermittelten, Verhalten aufweisen darf. Insbesondere kann eine Formel geeignet sein, wenn ein berechneter Wert um weniger als 50%, bevorzugt um weniger als 25%, besonders bevorzugt um weniger als 10% von einem in Versuchen mit dem Schlagwerk ermittelten Wert abweicht. Die Steuereinheit kann einen Grenzparameter für einen Betriebswert berechnen, oberhalb dessen ein Schlagwerkstart unzuverlässig ist. Die Steuereinheit kann nun einen ausgehend vom Grenzparameter um eine Sicherheitsmarge verringerten Betriebsparameter als Startwert für diesen Betriebswert festlegen. Die Steuereinheit kann die Betriebsparameter besonders einfach ermitteln.It is further proposed that the control unit be provided to determine the at least one operating parameter with the aid of a computing unit. In this context, a “computing unit” is to be understood in particular to mean a unit for calculating at least one mathematical formula. In this context, a “formula” is to be understood in particular as a calculation rule which is intended to determine the operating parameter by calculation as a function of input variables. In particular, the formula can be provided to calculate a limit frequency as a function of an ambient air pressure and / or a temperature. A suitable formula can be determined by the person skilled in the art on the basis of calculations and / or on the basis of tests. A formula can represent an approximation to a real behavior of the striking mechanism. The person skilled in the art will determine which deviations a suitable formula may have from the real behavior, for example determined in experiments. In particular, a formula can be suitable if a calculated value deviates by less than 50%, preferably by less than 25%, particularly preferably by less than 10% from a value determined in experiments with the striking mechanism. The control unit can calculate a limit parameter for an operating value above which a hammer mechanism start is unreliable. The control unit can now start one Set the operating parameter reduced by a safety margin from the limit parameter as the starting value for this operating value. The control unit can determine the operating parameters particularly easily.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, den zumindest einen Betriebsparameter mit Hilfe einer Speichereinheit zur Abspeicherung einer Kennlinie und/oder eines Kennfelds zu ermitteln. Unter einer "Kennlinie" soll in diesem Zusammenhang eine Anzahl Wertepaare verstanden werden, die einen Wert mit einem weiteren Wert des Wertepaars verknüpfen. Unter einem "Kennfeld" soll in diesem Zusammenhang eine Anzahl von Kennlinien verstanden werden, die jeweils mehrere festgelegte Werte mit einem weiteren, variablen Wert verknüpfen, wobei sich die einzelnen Kennlinien in den Beträgen zumindest einer der festgelegten Werte unterscheiden. Die Kennlinien und/oder die Kennfelder können in Versuchen und/oder durch Berechnungen ermittelt werden. Die Steuereinheit kann einen Betriebsparameter ermitteln, indem sie der Kennlinie und/oder dem Kennfeld die zu den gemessenen Betriebsbedingungen passenden Werte entnimmt. Die Steuereinheit kann vorteilhaft dazu vorgesehen sein, Werte zwischen den in der Kennlinie und/oder dem Kennfeld erfassten Werten geeignet zu interpolieren. Dem Fachmann ist eine Vielzahl von Methoden bekannt, wie eine Interpolation von Werten möglich ist. Die Steuereinheit kann die Betriebsparameter mit besonders geringem Rechenaufwand ermitteln. Die Werte können durch Versuche ermittelt werden. Ein Verknüpfen der Werte durch eine Funktionsgleichung kann entfallen.It is further proposed that the control unit be provided to determine the at least one operating parameter with the aid of a storage unit for storing a characteristic curve and / or a characteristic diagram. In this context, a “characteristic curve” is to be understood as a number of value pairs which link a value with a further value of the value pair. In this context, a “characteristic map” is to be understood as a number of characteristic curves which each link a plurality of defined values to a further, variable value, the individual characteristic curves differing in the amounts of at least one of the defined values. The characteristic curves and / or the characteristic maps can be determined in experiments and / or by calculations. The control unit can determine an operating parameter by taking the values that match the measured operating conditions from the characteristic curve and / or the characteristic diagram. The control unit can advantageously be provided to suitably interpolate values between the values recorded in the characteristic curve and / or the characteristic diagram. A multitude of methods is known to the person skilled in the art how an interpolation of values is possible. The control unit can determine the operating parameters with particularly little computing effort. The values can be determined by experiments. There is no need to link the values using a functional equation.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, Lageinformationen und/oder einen Betriebsmodus und/oder einen Anwendungsfall bei der Ermittlung des zumindest einen Schlagwerkparameters und/oder des zumindest einen Betriebsparameters zu berücksichtigen. Unter einer "Lageinformation" soll in diesem Zusammenhang insbesondere eine Richtung einer Gewichtskraft in Bezug auf das Schlagwerk verstanden werden. Ein Lagesensor kann dazu vorgesehen sein, die Lageinformationen zu erfassen. Betriebsparameter des Schlagwerks können durch die Lage beeinflusst sein. Eine Rückholbewegung des Schlägers kann durch eine in Schlagrichtung wirkende Gewichtskraft erschwert werden. Die Steuereinheit kann Betriebsparameter in Abhängigkeit von der Lage festlegen. Insbesondere kann der Startwert der Schlagfrequenz für den Schlagwerkstart erhöht sein, wenn die Arbeitslage im Wesentlichen nach unten gerichtet ist. Ein Startwert der Schlagfrequenz für den Schlagwerkstart kann erniedrigt sein, wenn die Arbeitslage im Wesentlichen nach oben gerichtet ist. Unter einer "Arbeitslage" soll in diesem Zusammenhang insbesondere eine Ausrichtung des Schlagwerks bezüglich der Schwerkraft verstanden werden. Unter "nach oben" soll in diesem Zusammenhang insbesondere eine Richtung, die der Schwerkraft entgegengesetzt ist, verstanden werden, unter "nach unten" zumindest im Wesentlichen die Richtung der Schwerkraft. Unter einem "Anwendungsfall" soll in diesem Zusammenhang insbesondere eine spezifische Anwendung verstanden werden, bei der besondere Betriebsparameter vorteilhaft sind. Ein Anwendungsfall kann einen besonders vibrationsarmen Betrieb, eine besonders hohe Schlagwirkung und/oder eine bestimmte Frequenz oder einen besonders schnellen und/oder häufigen Schlagwerkstart erfordern. Die Steuereinheit kann Betriebsparameter in Abhängigkeit von dem Anwendungsfall festlegen. Ein "Betriebsmodus" kann insbesondere ein Meißelbetrieb, ein Bohrbetrieb mit deaktiviertem Schlagwerk oder ein Schlagbohrbetrieb mit aktiviertem Schlagwerk und einer drehenden Bohrbewegung sein. Die Steuereinheit kann Betriebsparameter in Abhängigkeit von dem Betriebsmodus festlegen. Zumindest ein weiterer Sensor kann dazu vorgesehen sein, eine Geschwindigkeit des Schlägers vor und nach dem Schlag zu erfassen. Aus einer Geschwindigkeitsdifferenz kann eine Rückstoßziffer und/oder die Schlagstärke ermittelt werden. Die Steuereinheit kann dazu vorgesehen sein, zumindest einen Betriebsparameter abhängig von der ermittelten Schlagstärke einzustellen oder zu regeln. Eine Soll-Schlagstärke kann besonders genau eingehalten werden.It is further proposed that the control unit be provided to take position information and / or an operating mode and / or an application into account when determining the at least one percussion mechanism parameter and / or the at least one operating parameter. In this context, “position information” is to be understood in particular to mean a direction of a weight with respect to the striking mechanism. A position sensor can be provided to record the position information. Operating parameters of the striking mechanism can be influenced by the location. A return movement of the racket can be made more difficult by a weight force acting in the direction of impact. The control unit can determine operating parameters depending on the position. In particular, the starting value of the impact frequency for starting the impact mechanism can be increased when the working position is essentially down is directed. A starting value of the stroke frequency for the start of the striking mechanism can be lowered if the working situation is essentially directed upwards. In this context, a “work situation” is to be understood in particular as an orientation of the striking mechanism with respect to gravity. In this context, “upward” should in particular be understood to mean a direction that is opposite to gravity, and “downward” at least essentially the direction of gravity. In this context, a “use case” is to be understood in particular to mean a specific application in which special operating parameters are advantageous. An application can require a particularly low-vibration operation, a particularly high impact effect and / or a certain frequency or a particularly quick and / or frequent impact mechanism start. The control unit can determine operating parameters depending on the application. An “operating mode” can in particular be a chisel operation, a drilling operation with deactivated striking mechanism or a percussion drilling operation with activated striking mechanism and a rotating drilling movement. The control unit can determine operating parameters depending on the operating mode. At least one further sensor can be provided to detect a speed of the racket before and after the shot. A recoil number and / or the impact strength can be determined from a speed difference. The control unit can be provided to set or regulate at least one operating parameter depending on the impact strength determined. A target impact strength can be adhered to particularly precisely.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, zumindest einen Verschleißparameter bei der Ermittlung des zumindest einen Schlagwerkparameters und/oder des zumindest einen Betriebsparameters zu berücksichtigen. Ein Verschleißparameter kann insbesondere ein Verschleißmaß von Kohlebürsten des Motors sein und/oder eine sich verändernde Reibung. Die Steuereinheit kann dazu vorgesehen sein, den Verschleißparameter anhand eines Betriebsstundenzählers abzuschätzen. Die Steuereinheit kann Kennfelder und/oder Funktionen von Betriebsparametern abhängig von einem Verschleißzustand und/oder von einer Anzahl der Betriebsstunden enthalten. Die Steuereinheit kann über Sensoren verfügen, die dazu vorgesehen sind, einen Verschleißparameter zu messen, insbesondere einen Verschleißmaß von Kohlebürsten.It is further proposed that the control unit be provided to take into account at least one wear parameter when determining the at least one impact mechanism parameter and / or the at least one operating parameter. A wear parameter can in particular be a wear measure of carbon brushes of the motor and / or a changing friction. The control unit can be provided to estimate the wear parameter on the basis of an operating hours counter. The control unit can contain maps and / or functions of operating parameters depending on a state of wear and / or on a number of operating hours. The control unit can have sensors which are provided to measure a wear parameter, in particular a wear measure of carbon brushes.

Die Steuereinheit kann Betriebsparameter in Abhängigkeit von den Verschleißparametern festlegen.The control unit can determine operating parameters as a function of the wear parameters.

Es wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, in zumindest einem Betriebszustand zu einem Wechsel von dem Leerlaufbetrieb in den Schlagbetrieb die Schlagfrequenz und/oder die Schlagwerkdrehzahl vorübergehend auf eine Startfrequenz und/oder eine Startdrehzahl abzusenken. Unter einer "Startfrequenz und/oder einer Startdrehzahl" soll in diesem Zusammenhang insbesondere eine Drehzahl unterhalb der Grenzdrehzahl verstanden werden, die zu einem zuverlässigen Wechsel von dem Leerlaufbetrieb in den Schlagbetrieb geeignet ist. Die Schlagdrehzahl kann insbesondere auf die Startdrehzahl abgesenkt werden, wenn das Schlagwerk vom Leerlaufmodus in den Schlagmodus umgeschaltet wird. Die Schlagdrehzahl kann insbesondere ebenfalls auf die Startdrehzahl abgesenkt werden, wenn im Schlagmodus der Schlagbetrieb aussetzt. Bevorzugt kann eine Leerlaufdrehzahl im Leerlaufmodus mit einer Arbeitsdrehzahl beim Schlagbetrieb identisch sein. Bevorzugt kann das Absenken auf eine Startdrehzahl entfallen, falls die Arbeitsdrehzahl ein stabiler Betriebsparameter des Schlagwerks ist.It is proposed that the control unit be provided to temporarily lower the impact frequency and / or the impact mechanism speed to a start frequency and / or a start speed in at least one operating state for a change from idle mode to impact mode. In this context, a “starting frequency and / or a starting speed” is to be understood in particular to mean a speed below the limit speed, which is suitable for a reliable change from idle mode to impact mode. The impact speed can in particular be reduced to the starting speed if the impact mechanism is switched from idle mode to impact mode. The impact speed can in particular also be reduced to the starting speed if the impact mode is interrupted in the impact mode. An idling speed in idling mode can preferably be identical to a working speed in impact operation. The lowering to a starting speed can preferably be omitted if the working speed is a stable operating parameter of the striking mechanism.

Weiter wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, in zumindest einem Betriebszustand zu einem Wechsel von dem Leerlaufbetrieb in den Schlagbetrieb den Betriebsparameter direkt auf den Arbeitswert zu einzustellen. Die Steuereinheit kann insbesondere dazu vorgesehen sein, den Betriebsparameter direkt auf den Arbeitswert einzustellen, wenn ein Benutzer einen Arbeitswert anfordert, der unter gegebenen Bedingungen ein stabiler Betriebsparameter ist. Ein Wechsel von dem Leerlaufbetrieb in den Schlagbetrieb kann mit diesem Arbeitswert zuverlässig sein. Das Einstellen des Startwerts kann vermieden werden. Eine Irritation des Benutzers durch einen kurzzeitigen Wechsel des Betriebsparameters zum Start des Schlagwerks kann vermieden werden. Ein Eingriff der Steuereinheit in den Betriebsparameter kann entfallen.It is further proposed that the control unit be provided to set the operating parameter directly to the work value in at least one operating state for a change from idle mode to impact mode. In particular, the control unit can be provided to set the operating parameter directly to the work value when a user requests a work value that is a stable operating parameter under given conditions. A change from idle mode to field mode can be reliable with this labor value. The setting of the start value can be avoided. An irritation of the user by a brief change of the operating parameter at the start of the striking mechanism can be avoided. There is no need for the control unit to intervene in the operating parameters.

Weiter wird ein Betriebswechselsensor vorgeschlagen, der dazu vorgesehen ist, einen Wechsel des Betriebsmodus zu signalisieren. Insbesondere kann der Betriebswechselsensor der Steuereinheit einen Wechsel vom Leerlaufmodus in den Schlagmodus signalisieren. Der Betriebswechselsensor kann dazu vorgesehen sein, einen Anpressdruck des Werkzeugs auf ein Werkstück detektieren. Es kann vorteilhaft erkannt werden, wenn der Benutzer einen Bearbeitungsvorgang beginnt. Besonders vorteilhaft kann der Betriebswechselsensor ein Umschalten des Schlagwerks detektieren, insbesondere ein Öffnen und/oder Verschließen von Leerlauföffnungen und weiteren Öffnungen des Schlagwerks, die für einen Betriebsmoduswechsel vorgesehen sind. Der Betriebswechselsensor kann eine Verlagerung einer Steuerhülse detektieren, die zu dem Betriebsmoduswechsel des Schlagwerks vorgesehen ist. Die Steuereinheit kann vorteilhaft erkennen, wenn der Betriebsmoduswechsel des Schlagwerks stattfindet. Die Steuereinheit kann den Betriebsparameter vorteilhaft verändern, um den Betriebsmoduswechsel zu unterstützen und/oder zu ermöglichen. Der Schlagbetrieb kann zuverlässig gestartet werden.An operating change sensor is also proposed, which is provided to signal a change in the operating mode. In particular, the change of operation sensor of the control unit can signal a change from idle mode to beat mode. The change of operation sensor can be provided to detect a contact pressure of the tool on a workpiece. It can can advantageously be recognized when the user starts a processing operation. The change of operation sensor can particularly advantageously detect a changeover of the striking mechanism, in particular an opening and / or closing of idle openings and further openings of the striking mechanism, which are provided for a change of operating mode. The change of operation sensor can detect a shift of a control sleeve which is provided for the change of operating mode of the striking mechanism. The control unit can advantageously recognize when the operating mode change of the striking mechanism takes place. The control unit can advantageously change the operating parameter in order to support and / or enable the change of operating mode. The field operation can be started reliably.

Weiter wird vorgeschlagen, dass die Steuereinheit zumindest einen Verzögerungsparameter aufweist, der dazu vorgesehen ist, eine Zeitdauer für einen Wechsel zwischen zwei Werten des Betriebsparameters zu beeinflussen. Der Wechsel von einem Leerlaufwert und/oder Arbeitswert auf einen Startwert und/oder vom Startwert zum Arbeitswert kann durch einen Sollwertsprung erfolgen. Bevorzugt kann der Wechsel linear erfolgen und/oder einen stetigen Verlauf aufweisen. Eine Stromaufnahme des Motors kann begrenzt werden. Beschleunigungen, Antriebskräfte und/oder Vibrationen können reduziert werden. Der Verzögerungsparameter kann dazu vorgesehen sein, eine Steigung der den Wechsel zwischen den Betriebsparametern definierenden Funktion festzulegen. Insbesondere kann die Zeitdauer für das Anlaufen des Schlagwerks festgelegt werden. Unter einem "Anlaufen" soll in diesem Zusammenhang insbesondere ein Start des Schlagmodus aus einem Stillstand des Motors verstanden werden. Das Anlaufen des Schlagwerks kann vom Stillstand direkt zu einem kritischen Arbeitswert, insbesondere einer kritischen Arbeitsdrehzahl, erfolgen. Steigt die Drehzahl langsam an, kann das Schlagwerk vor Erreichen der Grenzdrehzahl starten. Die Steuereinheit kann bei einem langsamen Drehzahlanstieg einen Schlagwerkstart mit kritischer Arbeitsfrequenz aus dem Stillstand zulassen. Auf ein Einstellen des Startwerts kann verzichtet werden. Steigt die Drehzahl schnell an, kann ein Schlagwerkstart vor dem Erreichen der Grenzdrehzahl ausbleiben. Die Drehzahl muss zu einem Schlagwerkstart vorübergehend auf die Startdrehzahl eingestellt werden. Ein optimaler Betrieb des Schlagwerks kann sichergestellt werden.It is further proposed that the control unit have at least one delay parameter which is intended to influence a time period for a change between two values of the operating parameter. The change from an idle value and / or work value to a start value and / or from the start value to the work value can be done by a setpoint jump. The change can preferably be linear and / or have a continuous course. Current consumption of the motor can be limited. Accelerations, driving forces and / or vibrations can be reduced. The delay parameter can be provided to determine an increase in the function defining the change between the operating parameters. In particular, the time period for starting the striking mechanism can be specified. In this context, “starting” is to be understood in particular to mean starting the impact mode from a standstill of the engine. The hammer mechanism can be started directly from a standstill to a critical working value, in particular a critical working speed. If the speed increases slowly, the hammer mechanism can start before the limit speed is reached. The control unit can allow the hammer mechanism to start at a critical operating frequency from a standstill if the speed increases slowly. There is no need to set the start value. If the speed increases rapidly, the hammer mechanism may fail to start before the limit speed is reached. The speed must be temporarily set to the start speed when the hammer mechanism starts. Optimal operation of the striking mechanism can be ensured.

Weiter wird eine Handwerkzeugmaschine mit einer Schlagwerkeinheit mit den genannten Eigenschaften vorgeschlagen. Die Handwerkzeugmaschine kann die genannten Vorteile aufweisen.A hand-held power tool with a striking mechanism unit with the properties mentioned is also proposed. The handheld power tool can have the advantages mentioned.

Zeichnungdrawing

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind drei Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen im Rahmen der Ansprüche zusammenfassen.Further advantages result from the following description of the drawing. Three exemplary embodiments of the invention are shown in the drawings. The drawings, description, and claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations within the scope of the claims.

Es zeigen:

Fig. 1
eine schematische Darstellung eines Bohr- und Schlaghammers mit einer erfindungsgemäßen Schlagwerkeinheit in einem ersten Ausführungsbeispiel in einem Leerlaufmodus,
Fig. 2
eine schematische Darstellung des Bohr- und Schlaghammers in einem Schlagmodus,
Fig. 3
eine schematische Darstellung eines simulierten Amplituden-Frequenzgangs eines nichtlinearen schwingfähigen Systems,
Fig. 4
eine schematische Darstellung eines weiteren simulierten Amplituden-Frequenzgangs des nichtlinearen schwingfähigen Systems,
Fig. 5
eine schematische Darstellung einer simulierten Schlagenergie der Schlagwerkeinheit bei einem Schlagwerkstart bei fallender und bei steigender Schlagfrequenz,
Fig. 6
eine schematische Darstellung einer möglichen Festlegung eines Startwerts, eines Grenzwerts, eines Arbeitswerts und eines Maximalwerts,
Fig. 7
eine schematische Darstellung der simulierten Schlagenergie der Schlagwerkeinheit bei einem Schlagwerkstart bei unterschiedlichen Umgebungsluftdruckverhältnissen,
Fig. 8
ein Blockschaltbild eines Algorithmus der Schlagwerkeinheit,
Fig. 9
ein lineares Kennfeld eines Schlagwerks mit einer Schlagwerkeinheit in einem zweiten Ausführungsbeispiel,
Fig. 10
ein bilineares Kennfeld,
Fig. 11
eine schematische Darstellung einer Entlüftungseinheit eines Schlagwerks eines Bohr- und Schlaghammers mit einer Schlagwerkeinheit in einem dritten Ausführungsbeispiel und
Fig. 12
eine weitere schematische Darstellung der Entlüftungseinheit.
Show it:
Fig. 1
1 shows a schematic illustration of a hammer drill and percussion hammer with an impact mechanism unit according to the invention in a first exemplary embodiment in an idle mode,
Fig. 2
1 shows a schematic representation of the hammer drill and percussion hammer in a percussion mode,
Fig. 3
1 shows a schematic representation of a simulated amplitude-frequency response of a nonlinear oscillatory system,
Fig. 4
1 shows a schematic representation of a further simulated amplitude-frequency response of the nonlinear oscillatory system,
Fig. 5
1 shows a schematic representation of a simulated impact energy of the impact mechanism unit when the impact mechanism starts and the impact frequency falls and increases,
Fig. 6
1 shows a schematic representation of a possible definition of a start value, a limit value, a work value and a maximum value,
Fig. 7
1 shows a schematic representation of the simulated impact energy of the striking mechanism unit when the striking mechanism starts at different ambient air pressure conditions,
Fig. 8
a block diagram of an algorithm of the percussion unit,
Fig. 9
2 shows a linear characteristic diagram of a striking mechanism with a striking mechanism unit in a second exemplary embodiment,
Fig. 10
a bilinear map,
Fig. 11
a schematic representation of a ventilation unit of a hammer mechanism of a rotary and percussion hammer with a hammer mechanism unit in a third embodiment and
Fig. 12
a further schematic representation of the ventilation unit.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 und Figur 2 zeigen einen Bohr- und Schlaghammer 12a mit einer Schlagwerkeinheit 10a und mit einer Steuereinheit 14a, die dazu vorgesehen ist, ein pneumatisches Schlagwerk 16a zu steuern und zu regeln. Die Schlagwerkeinheit 10a enthält einen Motor 36a mit einer Getriebeeinheit 38a, die über ein erstes Zahnrad 40a ein Hammerrohr 42a drehend antreibt und über ein zweites Zahnrad 44a ein Exzentergetriebe 46a antreibt. Das Hammerrohr 42a ist mit einem Werkzeughalter 48a drehfest verbunden, in dem ein Werkzeug 50a eingespannt werden kann. Der Werkzeughalter 48a und das Werkzeug 50a können für einen Bohrbetrieb über das Hammerrohr 42a mit einer drehenden Arbeitsbewegung 52a angetrieben werden. Wird ein Schläger 54a in einem Schlagbetrieb in einer Schlagrichtung 56a in Richtung des Werkzeughalters 48a beschleunigt, übt er bei einem Aufprall auf einen zwischen dem Schläger 54a und dem Werkzeug 50a angeordneten Schlagbolzen 58a einen Schlagimpuls aus, der vom Schlagbolzen 58a an das Werkzeug 50a weitergegeben wird. Das Werkzeug 50a übt durch den Schlagimpuls eine schlagende Arbeitsbewegung 60a aus. Ein Kolben 62a ist ebenfalls beweglich im Hammerrohr 42a auf der der Schlagrichtung 56a abgewandten Seite des Schlägers 54a gelagert. Der Kolben 62a kann über einen Pleuel 64a vom mit einer Schlagwerkdrehzahl angetriebenen Exzentergetriebe 46a periodisch im Hammerrohr 42a in Schlagrichtung 56a und wieder zurück bewegt werden. Der Kolben 62a verdichtet ein zwischen dem Kolben 62a und dem Schläger 54a im Hammerrohr 42a eingeschlossenes Luftpolster 66a. Bei einer Bewegung des Kolbens 62a in Schlagrichtung 56a wird der Schläger 54a in Schlagrichtung 56a beschleunigt. Durch einen Rückprall am Schlagbolzen 58a und/oder durch einen durch eine Rückbewegung des Kolbens 62a entgegen der Schlagrichtung 56a zwischen dem Kolben 62a und dem Schläger 54a entstehenden Unterdruck und/oder durch einen Gegendruck in einem Schlagraum 100a zwischen dem Schläger 54a und dem Schlagbolzen 58a kann der Schläger 54a wieder entgegen der Schlagrichtung 56a zurückbewegt werden und anschließend für einen nächsten Schlagimpuls erneut in Schlagrichtung 56a beschleunigt werden. In einem Bereich zwischen dem Schläger 54a und dem Schlagbolzen 58a sind im Hammerrohr 42a Entlüftungsöffnungen 68a angeordnet, so dass die m Schlagraum 100a zwischen dem Schläger 54a und dem Schlagbolzen 58a eingeschlossene Luft entweichen kann. In einem Bereich zwischen dem Schläger 54a und dem Kolben 62a sind im Hammerrohr 42a Leerlauföffnungen 70a angeordnet. Der Werkzeughalter 48a ist in Schlagrichtung 56a verschiebbar gelagert und stützt sich an einer Steuerhülse 72a ab. Ein Federelement 74a übt auf die Steuerhülse 72a eine Kraft in Schlagrichtung 56a aus. In einem Schlagmodus 76a, in dem das Werkzeug 50a von einem Benutzer gegen ein Werkstück gedrückt wird, verschiebt der Werkzeughalter 48a gegen die Kraft des Federelements 74a die Steuerhülse 72a so, dass sie die Leerlauföffnungen 70a verdeckt. Wird das Werkzeug 50a vom Werkstück abgesetzt, werden der Werkzeughalter 48a und die Steuerhülse 72a in einem Leerlaufmodus 80a durch das Federelement 74a so in Schlagrichtung 56a verschoben, dass die Steuerhülse 72a die Leerlauföffnungen 70a freigibt. Ein Druck im Luftpolster 66a zwischen Kolben 62a und Schläger 54a kann durch die Leerlauföffnungen 70a entweichen. Der Schläger 54a wird im Leerlaufmodus 80a nicht oder nur wenig durch das Luftpolster 66a beschleunigt (Figur 1). Im Leerlaufbetrieb übt der Schläger 54a keine oder nur geringe Schlagimpulse auf den Schlagbolzen 58a aus. Der Bohr- und Schlaghammer 12a verfügt über ein Handwerkzeugmaschinengehäuse 82a mit einem Handgriff 84a und einem Zusatzhandgriff 86a, an denen er von dem Benutzer geführt wird. Figure 1 and Figure 2 show a hammer drill and striking hammer 12a with a striking mechanism unit 10a and with a control unit 14a, which is intended to control and regulate a pneumatic striking mechanism 16a. The striking mechanism unit 10a contains a motor 36a with a gear unit 38a, which rotates a hammer tube 42a via a first gear 40a and drives an eccentric gear 46a via a second gear 44a. The hammer tube 42a is non-rotatably connected to a tool holder 48a in which a tool 50a can be clamped. The tool holder 48a and the tool 50a can be driven for a drilling operation via the hammer tube 42a with a rotating working movement 52a. If a striker 54a is accelerated in a striking operation in a striking direction 56a in the direction of the tool holder 48a, it strikes a striking pin 58a arranged between the striker 54a and the tool 50a, which is passed on from the striking pin 58a to the tool 50a . The tool 50a exerts a striking working movement 60a through the impact pulse. A piston 62a is also movable in the hammer tube 42a in the striking direction 56a facing away from the racket 54a. The piston 62a can be moved periodically in the hammer tube 42a in the impact direction 56a and back again by means of a connecting rod 64a by the eccentric gear 46a driven by a hammer mechanism speed. The piston 62a compresses an air cushion 66a enclosed between the piston 62a and the striker 54a in the hammer tube 42a. When the piston 62a moves in the striking direction 56a, the striker 54a is accelerated in the striking direction 56a. By a rebound on the firing pin 58a and / or by a negative pressure resulting from a return movement of the piston 62a against the direction of impact 56a between the piston 62a and the striker 54a and / or by a counterpressure in a striking space 100a between the striker 54a and the firing pin 58a the racket 54a is moved back against the direction of impact 56a and then accelerated again in the direction of impact 56a for a next impact pulse. In a region between the striker 54a and the firing pin 58a, vent openings 68a are arranged in the hammer tube 42a, so that the air trapped in the striking space 100a between the striker 54a and the firing pin 58a can escape. In an area between the striker 54a and the piston 62a, idle openings 70a are arranged in the hammer tube 42a. The tool holder 48a is mounted displaceably in the impact direction 56a and is supported on a control sleeve 72a. A spring element 74a exerts a force in the impact direction 56a on the control sleeve 72a. In an impact mode 76a, in which the tool 50a is pressed against a workpiece by a user, the tool holder 48a moves the control sleeve 72a against the force of the spring element 74a so that it covers the idle openings 70a. If the tool 50a is removed from the workpiece, the tool holder 48a and the control sleeve 72a are moved in an idling mode 80a by the spring element 74a in the striking direction 56a in such a way that the control sleeve 72a releases the idling openings 70a. A pressure in the air cushion 66a between the piston 62a and the striker 54a can escape through the idle openings 70a. In idle mode 80a, racket 54a is not accelerated or is accelerated only slightly by air cushion 66a ( Figure 1 ). In idle mode, the striker 54a exerts little or no impact impacts on the firing pin 58a. The hammer drill 12a has a handheld power tool housing 82a with a handle 84a and an additional handle 86a, on which it is guided by the user.

Ein Einsetzen eines Schlagbetriebs bei einem Umschalten der Schlagwerkeinheit 10a vom Leerlaufmodus 80a in den Schlagmodus 76a durch Verschließen der Leerlauföffnungen 70a hängt von Schlagwerkparametern, insbesondere von der Schlagwerkdrehzahl und einem Umgebungsluftdruck, ab. Der Kolben 62a erfährt durch das zwischen dem Kolben 62a und dem Schläger 54a eingeschlossene Luftpolster 66a eine periodische Anregung mit einer Schlagfrequenz, die der Schlagwerkdrehzahl des Exzentergetriebes 46a entspricht.The use of a striking operation when the striking mechanism unit 10a is switched from the idle mode 80a to the striking mode 76a by closing the idle openings 70a depends on striking mechanism parameters, in particular on the striking mechanism speed and an ambient air pressure. The piston 62a is periodically excited by the air cushion 66a enclosed between the piston 62a and the striker 54a with an impact frequency which corresponds to the impact mechanism speed of the eccentric gear 46a.

Das Schlagwerk 16a stellt ein nichtlineares schwingfähiges System dar. Figur 3 zeigt zum Verständnis eine schematische Darstellung eines simulierten Amplituden-Frequenzgangs eines allgemeinen, nichtlinearen schwingfähigen Systems in Abhängigkeit von einer Frequenz f. Die Amplitude A entspricht dabei der Amplitude eines hier nicht näher dargestellten, dem Schläger 54a entsprechenden schwingenden Körpers des Systems bei einer externen Anregung, wie sie beim Schlagwerk 16a durch den Kolben 62a erfolgt. Der Amplitudenfrequenzgang ist nichtlinear, bei hohen Frequenzen weist der Amplitudenfrequenzgang mehrere Lösungen auf. Welche Amplitude sich in diesem Bereich einstellt, hängt unter anderem davon ab, in welcher Richtung die Frequenz f verändert wird. Wird ausgehend von einer höheren Frequenz f eine Minimalfrequenz 124a des Bereichs des Amplitudenfrequenzgangs mit mehreren Lösungen unterschritten, springt die Amplitude A von einem Scheitelpunkt 126a mit unendlicher Steigung auf eine zulässige Lösung des Amplitudenfrequenzgangs mit einem höheren Niveau. Wird von einer tieferen Frequenz f her eine Maximalfrequenz 128a des Bereichs des Amplitudenfrequenzgangs mit mehreren Lösungen überschritten, springt die Amplitude A von einem Scheitelpunkt 130a mit unendlicher Steigung auf eine zulässige Lösung des Amplitudenfrequenzgangs mit einem tieferen Niveau. In der Figur 3 ist dieses Verhalten durch Pfeile angedeutet. In Figur 4 ist ein weiterer simulierter Amplituden-Frequenzgang des nichtlinearen schwingfähigen Systems bei abweichenden Bedingungen dargestellt. Der Amplitudenfrequenzgang weist anstelle einer Maximalfrequenz 128a eine Lücke 132a auf. Dieser Fall tritt zum Beispiel auf, wenn die Maximalfrequenz 128a höher ist als eine mögliche Anregungsfrequenz, mit der das schwingfähige System angeregt werden kann. Im Fall des Schlagwerks 16a kann die Anregungsfrequenz zum Beispiel durch eine Maximaldrehzahl des Exzentergetriebes 46a begrenzt sein.The striking mechanism 16a represents a non-linear oscillatory system. Figure 3 shows for understanding a schematic representation of a simulated amplitude-frequency response of a general, non-linear oscillatory system as a function of a frequency f. The amplitude A corresponds to the amplitude of a vibrating body of the system, which is not shown here in greater detail and corresponds to the striker 54a, in the case of external excitation, such as is effected by the piston 62a in the striking mechanism 16a. The amplitude frequency response is non-linear, at high frequencies the amplitude frequency response has several solutions. The amplitude that arises in this area depends, among other things, on the direction in which the frequency f is changed. If, starting from a higher frequency f, a minimum frequency 124a of the range of the amplitude frequency response with several solutions is undershot, the amplitude A jumps from an apex 126a with an infinite slope to a permissible solution of the amplitude frequency response with a higher level. If a maximum frequency 128a of the range of the amplitude frequency response with several solutions is exceeded from a lower frequency f, the amplitude A jumps from an apex 130a with an infinite slope to a permissible solution of the amplitude frequency response with a lower level. In the Figure 3 this behavior is indicated by arrows. In Figure 4 Another simulated amplitude-frequency response of the nonlinear oscillatory system is shown under different conditions. The amplitude frequency response has a gap 132a instead of a maximum frequency 128a. This case occurs, for example, when the maximum frequency 128a is higher than a possible excitation frequency with which the oscillatable system can be excited. In the case of the striking mechanism 16a, the excitation frequency can be limited, for example, by a maximum speed of the eccentric gear 46a.

Die Auswirkung des nichtlinearen Amplitudenfrequenzgangs auf den Schlagbetrieb des Schlagwerks 16a ist in Figur 5 dargestellt. Figur 5 zeigt eine simulierte Schlagenergie E des Schlagwerks 16a bei einem Schlagwerkstart bei fallender Schlagfrequenz 92a und bei steigender Schlagfrequenz 94a. Wird der Schläger 54a mit einer steigenden Schlagwerkdrehzahl beziehungsweise Schlagfrequenz 94a angeregt, steigt mit steigender Schlagfrequenz 94a die Schlagenergie E. Wird der Schläger 66a ausgehend von einem Leerlaufbetrieb von einer hohen Schlagwerkdrehzahl aus mit einer fallenden Schlagwerkdrehzahl beziehungsweise Schlagfrequenz 92a angeregt, setzt der Schlagbetrieb erst bei einer bestimmten Schlagwerkdrehzahl ein. Diese Schlagwerkdrehzahl stellt eine Grenzfrequenz 20a dar. Oberhalb dieser Schlagfrequenz beginnt sich der Schläger 54a bei fallender Schlagfrequenz 92a nicht oder nur mit einer geringen Amplitude und/oder Geschwindigkeit zu bewegen, auch wenn bei einer Umschaltung von dem Leerlaufmodus 80a (Figur 1) in den Schlagmodus 76a (Figur 2) die Leerlauföffnungen 70a verschlossen werden. Es werden vom Schläger 54a auf den Schlagbolzen 58a keine oder nur sehr geringe Schlagimpulse ausgeübt. Oberhalb eines Maximalwerts 90a fällt die Schlagenergie E steil ab. Der Schläger 54a führt in diesem Fall keine Bewegung in Schlagrichtung 56a oder Bewegungen mit einer geringen Amplitude in Schlagrichtung 56a aus, so dass keine oder nur geringe Schlagimpulse mit einer geringen Schlagenergie E an den Schlagbolzen 58a abgegeben werden. Abhängig von Umgebungsbedingungen und der Auslegung des Schlagwerks 16a liegt die Grenzfrequenz 20a in einem Bereich von 20 - 70 Hz. Der Maximalwert 90a ist größer als die Grenzfrequenz 20a und liegt abhängig von Umgebungsbedingungen und der Auslegung des Schlagwerks 16a in einem Bereich von 40 - 400 Hz. Die Schlagenergie E erreicht abhängig von Umgebungsbedingungen und der Auslegung des Schlagwerks 16a bei der Grenzfrequenz 20a 1 - 200 Joule, beim Maximalwert 90a 2 - 400 Joule.The effect of the non-linear amplitude frequency response on the striking operation of the striking mechanism 16a is shown in FIG Figure 5 shown. Figure 5 shows a simulated impact energy E of the impact mechanism 16a when the impact mechanism starts with a falling impact frequency 92a and with an increasing impact frequency 94a. If the racket 54a is excited with an increasing impact mechanism speed or impact frequency 94a, the impact energy E increases with an increasing impact frequency 94a.If the impactor 66a is excited from a high impact mechanism speed starting from an idling mode with a falling impact mechanism speed or impact frequency 92a, the impact operation only starts at one certain percussion speed. This impact mechanism speed represents a limit frequency 20a. Above this impact frequency, when the impact frequency 92a falls, the racket 54a does not begin to move or only moves at a low amplitude and / or speed, even if a switchover from idle mode 80a ( Figure 1 ) to beat mode 76a ( Figure 2 ) the idle openings 70a are closed. There are no or very little impact impulses exerted by the striker 54a on the firing pin 58a. The impact energy E drops sharply above a maximum value 90a. In this case, the striker 54a does not perform any movement in the striking direction 56a or movements with a small amplitude in the striking direction 56a, so that no or only small striking pulses with a low impact energy E are delivered to the striking pin 58a. Depending on the ambient conditions and the design of the striking mechanism 16a, the limit frequency 20a is in a range from 20-70 Hz. The maximum value 90a is greater than the limit frequency 20a and is in a range of 40-400 Hz depending on ambient conditions and the design of the striking mechanism 16a The impact energy E reaches 1 - 200 joules depending on the ambient conditions and the design of the striking mechanism 16a at the limit frequency 20a, 2 - 400 joules at the maximum value 90a.

Figur 6 zeigt eine schematische Darstellung einer möglichen Festlegung von Betriebsparametern, insbesondere eines Startwerts 28a, der Grenzfrequenz 20a, eines Arbeitswerts 30a und des Maximalwerts 90a. Die Grenzfrequenz 20a wird bevorzugt bei einer Schlagwerkdrehzahl n gewählt, bei der der Amplitudenfrequenzgang eine eindeutige Lösung aufweist und ein zuverlässiger Schlagwerkstart möglich ist. Der Startwert 28a ist kleiner oder gleich der Grenzfrequenz 20a. Figure 6 shows a schematic representation of a possible definition of operating parameters, in particular a starting value 28a, the cut-off frequency 20a, a working value 30a and the maximum value 90a. The cut-off frequency 20a is preferably selected at a hammer mechanism speed n at which the amplitude frequency response has a clear solution and a reliable hammer mechanism start is possible. The starting value 28a is less than or equal to the limit frequency 20a.

Ein sicherer Schlagwerkstart kann gewährleistet werden, unabhängig davon, aus welcher Richtung der Startwert 28a angefahren wird. Die Grenzfrequenz 20a stellt den Übergang zu einem mehrdeutigen Amplitudenfrequenzgang und den maximalen Startwert 28a dar. Der Startwert 28a wird bevorzugt in einem Abstand zur Grenzfrequenz 20a gewählt, zum Beispiel mit einer um 10% reduzierten Schlagwerkdrehzahl. Ist der Schlagbetrieb sichergestellt, kann das Schlagwerk 16a mit einer höheren Leistung bei einem überkritischen Arbeitswert 30a betrieben werden. Ein sicherer Schlagwerkstart ist bei dem überkritischen Arbeitswert 30a nicht gewährleistet. Oberhalb des Maximalwerts 90a fällt die Schlagenergie E stark ab. Der Arbeitswert 30a wird daher niedriger als der Maximalwert 90a gewählt. Der Arbeitswert 30a kann von der Steuereinheit 14a festgelegt oder vom Benutzer eingestellt werden, zum Beispiel über einen hier nicht näher dargestellten Wahlschalter. Die Arbeitswerte 30a werden unter anderem abhängig von einem Bearbeitungsfall und/oder einer Werkstoffart und/oder einem Werkzeugtyp festgelegt. Verschiedenen einstellbaren Arbeitsgängen sind Arbeitswerte 30a zugeordnet. Ein Arbeitswert 30a oberhalb der Grenzfrequenz 20a ist ein überkritischer Arbeitswert 30a, ein Arbeitswert 30a unterhalb der Grenzfrequenz 20a und/oder unterhalb des Startwerts 28a ist ein stabiler Arbeitswert 30a. Neben dem Startwert 28a und der Grenzfrequenz 20a kann optional ein Leerlaufwert 140a festgelegt werden. Der Leerlaufwert 140a wird insbesondere im Leerlaufmodus 80a eingestellt. Der Leerlaufwert 140a wird vorteilhaft höher als der Startwert 28a eingestellt. Eine hier nicht dargestellte, vom Motor 36a angetriebene Lüftungseinheit kann dann mit einer höheren Drehzahl betrieben werden als bei einem Betrieb mit dem Startwert 28a. Die Kühlung des Schlagwerks 16a im Leerlaufmodus 80a verbessert sich. Ein Betriebsgeräusch des Bohr- und Schlaghammers 12a wird vom Benutzer als kraftvoller empfunden als beim Startwert 28a. Weiter wird der Leerlaufwert 140a vorteilhaft niedriger als der Arbeitswert 30a eingestellt. Lärmemissionen und/oder Vibrationen können gegenüber einem Betrieb mit dem Arbeitswert 30a reduziert werden. Beim Wechsel vom Leerlaufmodus 80a in den Schlagmodus 76a kann der Startwert 28a schneller als vom Arbeitswert 30a aus erreicht werden.A reliable percussion mechanism start can be guaranteed, regardless of the direction from which the start value 28a is approached. The limit frequency 20a represents the transition to an ambiguous amplitude frequency response and the maximum start value 28a. The start value 28a is preferably selected at a distance from the limit frequency 20a, for example with a hammer mechanism speed reduced by 10%. If the striking operation is ensured, the striking mechanism 16a can be operated with a higher output with a supercritical working value 30a. A safe hammer mechanism start is not guaranteed with the supercritical working value 30a. The impact energy E drops sharply above the maximum value 90a. The working value 30a is therefore chosen to be lower than the maximum value 90a. The working value 30a can be set by the control unit 14a or set by the user, for example using a selector switch (not shown here). The work values 30a are determined, inter alia, as a function of a machining case and / or a type of material and / or a tool type. Work values 30a are assigned to various adjustable work steps. A work value 30a above the limit frequency 20a is a supercritical work value 30a, a work value 30a below the limit frequency 20a and / or below the start value 28a is a stable work value 30a. In addition to the start value 28a and the limit frequency 20a, an idle value 140a can optionally be defined. The idle value 140a is set in particular in the idle mode 80a. The idle value 140a is advantageously set higher than the start value 28a. A ventilation unit, not shown here, driven by the motor 36a can then be operated at a higher speed than when operating with the starting value 28a. The cooling of the striking mechanism 16a in idle mode 80a improves. An operating noise of the hammer drill and percussion hammer 12a is perceived by the user as more powerful than at the starting value 28a. Furthermore, the idle value 140a is advantageously set lower than the working value 30a. Noise emissions and / or vibrations can be reduced compared to an operation with the work value 30a. When changing from idle mode 80a to blow mode 76a, the starting value 28a can be reached faster than from the working value 30a.

Figur 7 zeigt die simulierten Schlagenergien E des Schlagwerks 16a bei einem Schlagwerkstart bei fallender und bei steigender Schlagfrequenz bei unterschiedlichen Umgebungsbedingungen. In diesem Beispiel zeigt die Kurve 134a die Schlagenergie E bei einem ersten Umgebungsluftdruck und die Kurve 136a die Schlagenergie E bei einem zweiten, gegenüber dem ersten Umgebungsluftdruck reduzierten Umgebungsluftdruck. Eine Grenzfrequenz 138a beim zweiten Umgebungsluftdruck tritt bei einer geringeren Schlagfrequenz auf als die Grenzfrequenz 20a beim ersten Umgebungsluftdruck. Ist der zweite Umgebungsluftdruck um 10% tiefer als der erste Umgebungsluftdruck, ist die Grenzfrequenz 138a abhängig von weiteren Einflussfaktoren um 1 - 25% niedriger als beim ersten Umgebungsluftdruck. Eine Temperatur des Schlagwerks 16a, insbesondere des Hammerrohrs 42a, hat ebenfalls einen Einfluss auf die Grenzfrequenz 20a. Bei niedrigerer Umgebungstemperatur erhöht sich eine Reibung des Schlägers 54a im Hammerrohr 42a, insbesondere durch eine steigende Viskosität von Schmiermitteln. Sinkt die Temperatur des Hammerrohrs 42a um 10K, reduziert sich die Grenzfrequenz 20a abhängig von weiteren Einflussfaktoren um 1 - 30%. Die Grenzfrequenz 20a kann sich auch durch Einflüsse des Werkzeugs um +/- 20% ändern. Das Werkzeug kann einen Einfluss auf einen Rückprall des Schlägers 54a vom Schlagbolzen 58a haben und so die Grenzfrequenz 20a der Schlagfrequenz beeinflussen. Figure 7 shows the simulated impact energies E of the impact mechanism 16a when the impact mechanism starts with a falling and with an increasing impact frequency under different environmental conditions. In this example, curve 134a shows the Impact energy E at a first ambient air pressure and curve 136a the impact energy E at a second ambient air pressure reduced compared to the first ambient air pressure. A cut-off frequency 138a at the second ambient air pressure occurs at a lower impact frequency than the cut-off frequency 20a at the first ambient air pressure. If the second ambient air pressure is 10% lower than the first ambient air pressure, the limit frequency 138a is 1 - 25% lower than in the first ambient air pressure, depending on other influencing factors. A temperature of the striking mechanism 16a, in particular the hammer tube 42a, also has an influence on the cut-off frequency 20a. If the ambient temperature is lower, friction of the striker 54a in the hammer tube 42a increases, in particular due to an increasing viscosity of lubricants. If the temperature of the hammer tube 42a drops by 10K, the limit frequency 20a is reduced by 1 - 30% depending on other influencing factors. The limit frequency 20a can also change by +/- 20% due to influences of the tool. The tool can influence the rebound of the striker 54a from the firing pin 58a and thus influence the limit frequency 20a of the striking frequency.

Die Steuereinheit 14a ist dazu vorgesehen, die Schlagwerkparameter abhängig von Messwerten einer Betriebsbedingungssensoreinheit 18a zu ermitteln. Insbesondere ist die Steuereinheit 14a dazu vorgesehen, die Grenzfrequenz 20a des Amplitudenfrequenzgangs für einen zuverlässigen Schlagwerkstart zu ermitteln. Die Betriebsbedingungssensoreinheit 18a ist dazu vorgesehen, eine Temperatur und den Umgebungsluftdruck zu erfassen. Die Betriebsbedingungssensoreinheit 18a ist als Modul auf einer Platine der Steuereinheit 14a integriert. Die Betriebsbedingungssensoreinheit 18a erfasst eine Umgebungstemperatur. Die Temperatur hat einen Einfluss auf eine Viskosität von Schmierstoffen und auf eine Reibung des Schlägers 54a mit dem Hammerrohr 42a. Der Umgebungsluftdruck hat insbesondere einen Einfluss auf die Rückholbewegung des Schlägers 54a und auf die Grenzfrequenz 20a des Amplitudenfrequenzgangs für einen zuverlässigen Schlagwerkstart. Zusätzlich verfügt die Betriebsbedingungssensoreinheit 18a über eine hier nicht näher dargestellte Funkschnittstelle, mittels deren sie Temperatur- und Umgebungsluftdruckdaten von einem hier ebenfalls nicht näher dargestellten externen Gerät, wie einem Smartphone und/oder aus dem Internet, beziehen kann. Die Steuereinheit 14a ist weiter dazu vorgesehen, Betriebsparameter des Schlagwerks 16a festzulegen. Der Betriebsparameter ist mit Hilfe einer Recheneinheit 24a zur Berechnung einer Formel zu ermitteln. Eine mögliche Formel zu einer Festlegung eines druckabhängigen Maximalwerts 90a der Soll-Schlagwerkdrehzahl in Abhängigkeit vom Umgebungsluftdruck ist: f soll , max = f 0 + C lin , p P

Figure imgb0001
f0 stellt dabei eine Basisfrequenz und/oder Basisdrehzahl dar, Clin,p eine applikationsabhängige Konstante des Druckterms und P den Umgebungsluftdruck. Im vorliegenden Beispiel hat f0 den Wert von 10 Hz und Clin,p einen Wert von 0.05 Hz/mbar. Bei einem Umgebungsluftdruck von 1000mbar beträgt fsoll,max 60 Hz. Der Fachmann wird diese Parameter geeignet anpassen. Entsprechend können bei abweichenden Basisdrehzahlen und/oder abweichenden druck- und applikationsabhängigen Konstanten Clin,p druckabhängige Werte für den Startwert 28a, den Arbeitswert 30a und die Grenzfrequenz 20a festgelegt werden. Wird der Arbeitswert 30a und/oder der Maximalwert 90a der Soll-Schlagwerkdrehzahl unterhalb der Grenzfrequenz 20a festgelegt, kann der Startwert 28a entfallen und das Schlagwerk 16a kann mit dem Arbeitswert 30a gestartet werden.The control unit 14a is provided to determine the impact mechanism parameters as a function of measured values from an operating condition sensor unit 18a. In particular, the control unit 14a is provided to determine the limit frequency 20a of the amplitude frequency response for a reliable percussion mechanism start. The operating condition sensor unit 18a is provided to detect a temperature and the ambient air pressure. The operating condition sensor unit 18a is integrated as a module on a circuit board of the control unit 14a. The operating condition sensor unit 18a detects an ambient temperature. The temperature has an influence on a viscosity of lubricants and on a friction of the striker 54a with the hammer tube 42a. The ambient air pressure in particular has an influence on the return movement of the striker 54a and on the cut-off frequency 20a of the amplitude frequency response for a reliable hammer mechanism start. In addition, the operating condition sensor unit 18a has a radio interface, not shown here, by means of which it can obtain temperature and ambient air pressure data from an external device, also not shown here, such as a smartphone and / or from the Internet. The control unit 14a is also provided for operating parameters of the striking mechanism 16a. The operating parameter can be determined with the aid of a computing unit 24a for calculating a formula. A possible formula for determining a pressure-dependent maximum value 90a of the target hammer mechanism speed as a function of the ambient air pressure is: f should , Max = f 0 + C. lin , p P
Figure imgb0001
f 0 represents a base frequency and / or base speed, C lin, p an application-dependent constant of the pressure term and P the ambient air pressure. In the present example, f 0 has the value of 10 Hz and C lin, p a value of 0.05 Hz / mbar. At an ambient air pressure of 1000 mbar, f set is max. 60 Hz. The person skilled in the art will adapt these parameters appropriately. Correspondingly, in the case of deviating basic speeds and / or deviating pressure and application-dependent constants C lin, p, pressure-dependent values for the starting value 28a, the working value 30a and the limit frequency 20a can be defined. If the working value 30a and / or the maximum value 90a of the desired percussion mechanism speed is set below the limit frequency 20a, the starting value 28a can be omitted and the percussion mechanism 16a can be started with the working value 30a.

Die Steuereinheit 14a kann in einem Betriebsmodus neben dem Umgebungsluftdruck die Temperatur berücksichtigen, die Funktionsgleichung erweitert sich in diesem Fall wie folgt: f soll , max = f 0 + C lin , p P + C lin , T T

Figure imgb0002
Clin,T stellt eine applikationsabhängige Konstante des Temperaturterms dar. Die weiteren Betriebsparameter werden analog festgelegt. Im vorliegenden Beispiel hat f0 den Wert von 5 Hz, Clin,p einen Wert von 0.05 Hz/mbar und Clin,T einen Wert von 0.25 Hz/°C wobei die Temperatur in °C einzusetzen ist. Bei einem Umgebungsluftdruck von 1000mbar und einer Temperatur von 20°C beträgt fsoll,max 60 Hz. Der Fachmann wird diese Parameter geeignet anpassen.
Neben Umgebungsluftdruck und Temperatur können weitere Terme eingeführt werden, wie ein von einer Betriebsstundenzahl abhängiger Term, der eine Veränderung des Schlagwerks aufgrund von Verschleiß berücksichtigt. Ein hier nicht dargestellter Lagesensor der Betriebsbedingungssensoreinheit 18a erfasst eine Lage des Bohr- und Schlaghammers 12a; die Lageinformation kann in einem weiteren Term bei der Festlegung der Betriebsparameter berücksichtigt werden. Der Term für die Arbeitslage wird so gewählt, dass fsoll,max bei einer nach oben gerichteten Arbeitslage reduziert und bei einer nach unten gerichteten Arbeitslage erhöht wird. Geeignete Faktoren für diesen Term können vom Fachmann in Versuchen festgelegt werden.
In einem weiteren Betriebsmodus kann der Benutzer über ein hier nicht näher dargestelltes Drehrad einen Drehzahlfaktor (XDreh) 88a einstellen, der dann mit einer druck- und/oder temperaturabhängigen Soll-Schlagzahl für den Schlagbetrieb fsoll,max multipliziert wird: f soll = X Dreh f soll , max
Figure imgb0003
Die Drehzahl fsoll wird von der Steuereinheit 14a im Schlagbetrieb eingestellt. Der Benutzer kann so ausgehend von dem für jeweilige Betriebsbedingungen optimalen Arbeitswert 30a die Schlagwerkdrehzahl nach Wunsch absenken.In an operating mode, the control unit 14a can take the temperature into account in addition to the ambient air pressure, in this case the functional equation expands as follows: f should , Max = f 0 + C. lin , p P + C. lin , T T
Figure imgb0002
C lin, T represents an application-dependent constant of the temperature term. The other operating parameters are determined analogously. In the present example, f 0 has the value of 5 Hz, C lin, p a value of 0.05 Hz / mbar and C lin, T a value of 0.25 Hz / ° C, where the temperature is to be used in ° C. At an ambient air pressure of 1000 mbar and a temperature of 20 ° C, f target is max. 60 Hz. The person skilled in the art will adapt these parameters appropriately.
In addition to ambient air pressure and temperature, other terms can be introduced, such as a term that depends on the number of operating hours and takes into account a change in the striking mechanism due to wear. A position sensor, not shown here, of the operating condition sensor unit 18a detects a position of the rotary and percussion hammer 12a; The position information can be taken into account in a further term when determining the operating parameters. The term for the working position is chosen such that f target, max is reduced for an upward working position and for a downward working position is increased. Suitable factors for this term can be determined by the expert in experiments.
In a further operating mode, the user can set a speed factor (X rotation ) 88a via a rotary wheel (not shown here), which is then multiplied by a pressure-dependent and / or temperature-dependent target number of strokes for the field operation f , max : f should = X Shoot f should , Max
Figure imgb0003
F to the speed is set by the control unit 14a in the percussion mode. The user can thus lower the hammer mechanism speed as desired, starting from the optimum working value 30a for the respective operating conditions.

Figur 8 zeigt ein Blockschaltbild eines Algorithmus der Schlagwerkeinheit 10a. Abhängig von Umgebungsluftdruck P und Temperatur T wird in einem ersten Schritt 142a der Maximalwert 90a der Soll-Schlagzahl ermittelt. Der Drehzahlfaktor 88a wird in einem zweiten Schritt 144a mit dem Maximalwert 90a multipliziert, um den Arbeitswert 30a der Soll-Schlagzahl zu ermitteln. Eine Regeleinheit 96a steuert mit Hilfe einer Leistungselektronik 146a den Motor 36a an. Eine Übersetzung der Getriebeeinheit 38a wird bei der Ermittlung einer für eine Soll-Schlagzahl benötigten Drehzahl des Motors 36a durch die Schlagwerkeinheit 10a berücksichtigt. Vom Motor 36a wird der Regeleinheit 96a ein Drehzahl-Istwert 148a zur Regelung des Motors 36a rückgeführt. Figure 8 shows a block diagram of an algorithm of the striking mechanism unit 10a. Depending on the ambient air pressure P and temperature T, the maximum value 90a of the desired number of strokes is determined in a first step 142a. The speed factor 88a is multiplied in a second step 144a by the maximum value 90a in order to determine the working value 30a of the desired number of strokes. A control unit 96a controls the motor 36a with the aid of power electronics 146a. A translation of the gear unit 38a is taken into account in the determination of a speed of the motor 36a required for a target number of strokes by the hammer mechanism unit 10a. An actual speed value 148a is fed back from the control unit 96a to the control unit 96a for controlling the motor 36a.

Wird ein überkritischer Arbeitswert 30a als Soll-Schlagzahl gewählt, ist die Steuereinheit 14a dazu vorgesehen, zu einem Wechsel von dem Leerlaufbetrieb in den Schlagbetrieb die Soll-Schlagzahl vorübergehend auf den Startwert 28a einzustellen. Nach einer festgelegten Zeitspanne, in der ein Schlagwerkstart bei einem Betrieb des Schlagwerks 16a mit dem Startwert 28a stattgefunden hat, wird die Soll-Schlagzahl auf den Arbeitswert 30a erhöht. Die Zeitspanne, während deren die Schlagwerkeinheit 10a bei einem Schlagwerkstart den Startwert 28a einstellt, wird von einem Verzögerungsparameter festgelegt. Der Verzögerungsparameter ist von einem Fachmann festgelegt oder vorteilhaft durch den Benutzer einstellbar.If a supercritical working value 30a is selected as the target number of strokes, the control unit 14a is provided to temporarily set the target number of strokes to the starting value 28a in order to change from the idle mode to the field operation. After a specified period of time in which a striking mechanism start has occurred during operation of the striking mechanism 16a with the starting value 28a, the desired number of strokes is increased to the working value 30a. The time period during which the striking mechanism unit 10a sets the starting value 28a when the striking mechanism starts is determined by a delay parameter. The delay parameter is defined by a person skilled in the art or can advantageously be set by the user.

Ein Betriebswechselsensor 32a ist dazu vorgesehen, der Schlagwerkeinheit 10a einen Wechsel des Betriebsmodus zu signalisieren. Der Betriebswechselsensor 32a ist so angeordnet, dass er eine Steuerhülsenposition erfasst und signalisiert, wenn die Steuerhülse 72a vom Leerlaufmodus 80a in den Schlagmodus 76a verschoben wird. Die Schlagwerkeinheit 10a stellt nun die Soll-Schlagzahl vorübergehend auf den Startwert 28a ein, falls ein überkritischer Arbeitswert 30a gewählt worden ist.An operating change sensor 32a is provided to signal the impact mechanism unit 10a of a change in the operating mode. The change of operation sensor 32a is arranged so that it detects and signals a control sleeve position when the control sleeve 72a is shifted from idle mode 80a to impact mode 76a. The striking mechanism unit 10a now temporarily sets the desired number of strokes to the starting value 28a if a supercritical working value 30a has been selected.

Die nachfolgende Beschreibung und die Zeichnungen weiterer Ausführungsbeispiel beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung der anderen Ausführungsbeispiele verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele sind anstelle des Buchstabens a des ersten Ausführungsbeispiels die Buchstaben b und c den Bezugszeichen der weiteren Ausführungsbeispiele nachgestellt.The following description and the drawings of further exemplary embodiments are essentially limited to the differences between the exemplary embodiments, with reference being able to be made to the drawings and / or the description of the other exemplary embodiments with regard to components with the same designation, in particular with respect to components with the same reference symbols . To distinguish the exemplary embodiments, the letters b and c are replaced by the reference numerals of the further exemplary embodiments instead of the letter a of the first exemplary embodiment.

Figur 9 und Figur 10 zeigen eine Kennlinie und ein Kennfeld einer Schlagwerkeinheit in einem weiteren Ausführungsbeispiel. Die Schlagwerkeinheit des zweiten Ausführungsbeispiels unterscheidet sich von der vorangegangenen dahingehend, dass ein Betriebsparameter mit Hilfe einer Speichereinheit zur Abspeicherung einer Kennlinie und eines Kennfelds ermittelt wird. Die Kennlinie (Figur 9) und das Kennfeld (Figur 10) dienen wie beschrieben zur Festlegung eines Maximalwerts 90b einer Soll-Schlagzahl fsoll,max. Die Kennlinie legt den Maximalwert 90b abhängig von einem Umgebungsluftdruck P fest; das Kennfeld dient zur Festlegung des Maximalwerts 90b abhängig von dem Umgebungsluftdruck P und einer Temperatur T. Zwischenwerte des Kennfelds werden von der Schlagwerkeinheit geeignet interpoliert. Figure 9 and Figure 10 show a characteristic and a map of a striking mechanism in a further embodiment. The percussion mechanism unit of the second exemplary embodiment differs from the previous one in that an operating parameter is determined with the aid of a memory unit for storing a characteristic curve and a characteristic map. The characteristic ( Figure 9 ) and the map ( Figure 10 ) serve, as described, to determine a maximum value 90b of a target number of strokes f target , max . The characteristic curve defines the maximum value 90b as a function of an ambient air pressure P; the map serves to determine the maximum value 90b depending on the ambient air pressure P and a temperature T. Intermediate values of the map are suitably interpolated by the striking mechanism unit.

Figur 11 und Figur 12 zeigen eine Schlagwerkeinheit 10c in einem weiteren Ausführungsbeispiel. Die Schlagwerkeinheit 10c unterscheidet sich von der vorhergehenden Schlagwerkeinheit dahingehend, dass ein von einer Steuereinheit 14c festgelegter Betriebsparameter eine Drosselkenngröße einer Entlüftungseinheit 22c ist. Ein Schlagraum in einem Hammerrohr 42c wird von einem Schlagbolzen und einem Schläger begrenzt. Die Entlüftungseinheit 22c weist im Hammerrohr 42c Entlüftungsöffnungen zur Entlüftung des Schlagraums auf. Die Entlüftungseinheit 22c dient zu einem Druckausgleich des Schlagraums mit einer Umgebung eines Schlagwerks 16c. Die Entlüftungseinheit 22c weist eine Einstelleinheit 102c auf. Die Einstelleinheit 102c ist dazu vorgesehen, eine Entlüftung des in einer Schlagrichtung 56c vor dem Schläger angeordneten Schlagraums während eines Schlagvorgangs zu beeinflussen. Das Hammerrohr 42c des Schlagwerks 16c ist in einem Getriebegehäuse 104c eines Bohr- und Schlaghammers 12c gelagert. Das Getriebegehäuse 104c weist sternförmig angeordnete, einer Außenseite des Hammerrohrs 42c zugewandte Rippen 106c auf. Zwischen Hammerrohr 42c und Getriebegehäuse 104c ist in einem einem Exzentergetriebe zugewandten Endbereich 110c eine Lagerbuchse 108c eingepresst, die das Hammerrohr 42c am Getriebegehäuse 104c lagert. Die Lagerbuchse 108c bildet mit den Rippen 106c des Getriebegehäuses 104c Luftkanäle 112c, die mit den Entlüftungsöffnungen im Hammerrohr 42c in Verbindung stehen. Die Luftkanäle 112c bilden einen Teil der Entlüftungseinheit 22c. Der Schlagraum ist über die Luftkanäle 112c mit einem gegen die Schlagrichtung 56c hinter dem Hammerrohr 42c angeordneten Getrieberaum 114c verbunden. Die Luftkanäle 112c bilden Drosselstellen 116c, die einen Strömungsquerschnitt der Verbindung des Schlagraums mit dem Getrieberaum 114c beeinflussen. Die Einstelleinheit 102c ist dazu vorgesehen, den Strömungsquerschnitt der Drosselstellen 116c einzustellen. Die die Drosselstellen 116c bildenden Luftkanäle 112c bilden einen Übergang zwischen dem Schlagraum und dem Getrieberaum 114c. Ein Einstellring 149c weist sternförmig angeordnete, nach innen gerichtete Ventilfortsätze 120c auf. Abhängig von einer Drehstellung des Einstellrings 149c können die Ventilfortsätze 120c die Luftkanäle 112c ganz oder teilweise überdecken. Durch Verstellen des Einstellrings 149c kann der Strömungsquerschnitt eingestellt werden. Die Steuereinheit 14c verstellt den Einstellring 149c der Einstelleinheit 102c durch Drehen des Einstellrings 149c mit Hilfe eines Servoantriebs 122c. Wird die Entlüftungseinheit 22c teilweise geschlossen, kann der bei einer Bewegung des Schlägers in Schlagrichtung 56c entstehende Druck im Schlagraum nur langsam entweichen. Es bildet sich ein gegen die Bewegung des Schlägers in Schlagrichtung 56c gerichteter Gegendruck. Dieser Gegendruck unterstützt eine Rückholbewegung des Schlägers entgegen der Schlagrichtung 56c und damit einen Schlagwerkstart. Ist für die Schlagwerkdrehzahl ein überkritischer Arbeitswert gewählt, bei dem bei geöffneter Entlüftungseinheit 22c kein zuverlässiger Schlagwerkstart möglich ist, schließt die Steuereinheit 14c zu einem Wechsel von einem Leerlaufbetrieb in einen Schlagbetrieb die Entlüftungseinheit 22c teilweise. Durch den Gegendruck im Schlagraum wird der Start des Schlagbetriebs unterstützt. Nach erfolgtem Schlagwerkstart öffnet die Steuereinheit 14c die Entlüftungseinheit 22c wieder. Die Steuereinheit 14c kann den Betriebsparameter der Drosselkenngröße der Entlüftungseinheit 22c auch zu einer Leistungsregulierung nutzen. Figure 11 and Figure 12 show a striking mechanism unit 10c in a further embodiment. The hammer mechanism unit 10c differs from the previous hammer mechanism unit in that an operating parameter defined by a control unit 14c is a throttle characteristic of a ventilation unit 22c. A striking space in a hammer tube 42c is delimited by a firing pin and a striker. The venting unit 22c has vent openings in the hammer tube 42c for venting the impact chamber. The ventilation unit 22c serves to equalize the pressure of the impact chamber with an environment a striking mechanism 16c. The venting unit 22c has an adjustment unit 102c. The setting unit 102c is provided for influencing a venting of the striking chamber arranged in front of the racket in a striking direction 56c during a striking process. The hammer tube 42c of the hammer mechanism 16c is mounted in a gear housing 104c of a hammer drill and hammer 12c. The gear housing 104c has ribs 106c arranged in a star shape and facing an outside of the hammer tube 42c. A bearing bush 108c, which supports the hammer tube 42c on the gear housing 104c, is pressed between the hammer tube 42c and the gear housing 104c in an end region 110c facing an eccentric gear. The bearing bush 108c forms, with the ribs 106c of the transmission housing 104c, air channels 112c, which are connected to the ventilation openings in the hammer tube 42c. The air channels 112c form part of the ventilation unit 22c. The striking chamber is connected via the air channels 112c to a gear chamber 114c which is arranged behind the hammer tube 42c against the striking direction 56c. The air channels 112c form throttling points 116c, which influence a flow cross section of the connection of the impact chamber with the transmission chamber 114c. The setting unit 102c is provided to set the flow cross section of the throttle points 116c. The air channels 112c forming the throttle points 116c form a transition between the impact chamber and the gear chamber 114c. An adjusting ring 149c has star-shaped, inwardly directed valve extensions 120c. Depending on a rotational position of the setting ring 149c, the valve extensions 120c can completely or partially cover the air channels 112c. The flow cross section can be adjusted by adjusting the setting ring 149c. The control unit 14c adjusts the setting ring 149c of the setting unit 102c by rotating the setting ring 149c with the aid of a servo drive 122c. If the ventilation unit 22c is partially closed, the pressure which arises when the racket moves in the striking direction 56c can only escape slowly in the striking chamber. A back pressure directed against the movement of the racket in the direction of impact 56c is formed. This counter pressure supports a return movement of the racket against the direction of impact 56c and thus a start of the striking mechanism. If a supercritical working value has been selected for the percussion mechanism speed, in which a reliable percussion mechanism start is not possible when the ventilation unit 22c is open, the control unit 14c partially closes the ventilation unit 22c in order to switch from an idling mode to a percussion mode. Due to the counter pressure The start of the field operation is supported in the field room. After the hammer mechanism has started, the control unit 14c opens the ventilation unit 22c again. The control unit 14c can also use the operating parameter of the throttle characteristic of the ventilation unit 22c for power regulation.

Claims (15)

  1. Percussion unit, in particular for a hammer drill and/or percussion hammer (12a; 12c), with a control unit (14a; 14c) which is provided for performing open-loop and/or closed-loop control of a pneumatic percussion mechanism (16a; 16c), and at least one operating condition sensor unit (18a) which is provided for sensing ambient air pressure, wherein the control unit (14a; 14c) is provided for determining at least one percussion mechanism parameter in accordance with measured values of the operating condition sensor unit (18a), characterized in that the percussion mechanism parameter is a limiting value of an operating parameter, wherein the operating parameter is an impact frequency and/or a percussion unit rotational speed and/or a throttle characteristic variable of a venting unit (22c).
  2. Percussion unit according to Claim 1, characterized in that the operating condition sensor unit (18a) is provided for sensing at least one temperature.
  3. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) is provided for determining at least one limiting frequency (20a) of an amplitude frequency response of the percussion mechanism (16a; 16c).
  4. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) is provided for defining at least one operating parameter of the percussion mechanism (16a; 16c).
  5. Percussion unit at least according to Claim 4, characterized in that the control unit (14a,c) is provided for determining the at least one operating parameter using a computing unit (24a).
  6. Percussion unit at least according to Claim 4, characterized in that the control unit (14a; 14c) is provided for determining the at least one operating parameter using a memory unit for storing a characteristic curve and/or a characteristic diagram.
  7. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) is provided for taking into account position information and/or an operating mode and/or an application case during the determination of the at least one percussion mechanism parameter and/or at least one operating parameter.
  8. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) is provided for taking into account at least one wear parameter during the determination of the at least one percussion mechanism parameter and/or at least one operating parameter.
  9. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) is provided for setting at least one operating parameter temporarily to a starting value (28a) in at least one operating state at a changeover from an idling mode into a percussion mode.
  10. Percussion unit at least according to Claim 4, characterized in that the control unit (14a; 14c) is provided for setting the operating parameter to a super-critical working value (30a) in at least one operating state in the percussion mode.
  11. Percussion unit at least according to Claim 4, characterized in that the control unit (14a; 14c) is provided for setting the operating parameter directly to the working value (30a) in at least one operating state at a changeover from the idling mode into the percussion mode.
  12. Percussion unit according to one of the preceding claims, characterized by an operation changeover sensor (32a) which is provided for signalling a changeover of the operating mode.
  13. Percussion unit according to one of the preceding claims, characterized in that the control unit (14a; 14c) has at least one delay parameter which is provided for influencing a duration for a changeover between two values of the operating parameter.
  14. Hand-held machine, in particular hammer drill and/or percussion hammer (12a; 12c), with a percussion unit (10a; 10c) according to one of the preceding claims.
  15. Method for determining a percussion mechanism parameter of a percussion unit (10a; 10c) according to one of the preceding claims.
EP13720842.7A 2012-05-25 2013-04-24 Percussion unit and method. Active EP2855096B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012208913A DE102012208913A1 (en) 2012-05-25 2012-05-25 Percussion unit
PCT/EP2013/058480 WO2013174600A1 (en) 2012-05-25 2013-04-24 Percussion unit

Publications (2)

Publication Number Publication Date
EP2855096A1 EP2855096A1 (en) 2015-04-08
EP2855096B1 true EP2855096B1 (en) 2020-06-24

Family

ID=48325621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13720842.7A Active EP2855096B1 (en) 2012-05-25 2013-04-24 Percussion unit and method.

Country Status (7)

Country Link
US (1) US9969071B2 (en)
EP (1) EP2855096B1 (en)
JP (1) JP5864818B2 (en)
CN (1) CN104334319A (en)
DE (1) DE102012208913A1 (en)
RU (1) RU2014152476A (en)
WO (1) WO2013174600A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208913A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
DE102012208870A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
DE102013212635B4 (en) * 2013-06-28 2024-05-08 Robert Bosch Gmbh Hand tool machine
DE102014204380A1 (en) * 2013-10-04 2015-04-09 Robert Bosch Gmbh Isolation system for tool, tool, and method for mounting the insulation system to the tool
DE102013221126A1 (en) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Hand tool
EP3000560A1 (en) * 2014-09-25 2016-03-30 HILTI Aktiengesellschaft Driving device with gas spring
EP3009236A1 (en) * 2014-10-16 2016-04-20 HILTI Aktiengesellschaft Chiselling hand-held machine tool
US10569405B2 (en) * 2014-10-29 2020-02-25 Koki Holdings Co., Ltd. Impact tool
EP3023200A1 (en) * 2014-11-20 2016-05-25 HILTI Aktiengesellschaft Control method for a hammer drill
WO2016196979A1 (en) 2015-06-05 2016-12-08 Ingersoll-Rand Company Impact tools with ring gear alignment features
US10615670B2 (en) 2015-06-05 2020-04-07 Ingersoll-Rand Industrial U.S., Inc. Power tool user interfaces
US11260517B2 (en) 2015-06-05 2022-03-01 Ingersoll-Rand Industrial U.S., Inc. Power tool housings
WO2016196984A1 (en) * 2015-06-05 2016-12-08 Ingersoll-Rand Company Power tools with user-selectable operational modes
DE102015215363A1 (en) * 2015-08-12 2017-02-16 Robert Bosch Gmbh Method for setting at least one parameter of a handheld power tool
DE102015226091A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Hand tool with a striking mechanism
EP3260239A1 (en) 2016-06-24 2017-12-27 HILTI Aktiengesellschaft Handheld machine tool
CN106076462A (en) * 2016-08-15 2016-11-09 温州市朴红农业科技有限公司 A kind of jump bit
EP3335837A1 (en) * 2016-12-14 2018-06-20 HILTI Aktiengesellschaft Control method for an impacting handheld machine tool
US20180193993A1 (en) * 2017-01-09 2018-07-12 Tricord Solutions, Inc. Compact Impacting Apparatus
US10898995B2 (en) * 2017-02-22 2021-01-26 Illinois Tool Works Inc. Powered fastener driving tool having fuel/gas mixture compressed ignition
DE102017205308A1 (en) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Method for detecting at least one characteristic of at least one tool
DE102017205313A1 (en) * 2017-03-29 2018-10-04 Robert Bosch Gmbh electronic module
EP3424296B1 (en) 2017-07-04 2023-11-29 Andreas Stihl AG & Co. KG Method for determining an item of information for adjusting an adjustable component of a combustion motor drive system of a gardening and/or forestry device, gardening and/or forestry device system and garden and/or forestry device
EP3424301A1 (en) 2017-07-04 2019-01-09 Andreas Stihl AG & Co. KG Method for determining a contamination state of at least one component of a gardening and/or forestry device and gardening and/or forestry system
CN107942802A (en) * 2017-12-01 2018-04-20 陈文理 A kind of impact type electric driven tool monitoring apparatus
CN109176411B (en) * 2018-11-13 2024-03-29 久维科技(苏州)有限公司 Quick fastening device
DE102019200527A1 (en) * 2019-01-17 2020-07-23 Robert Bosch Gmbh Hand tool
CN109732541B (en) * 2019-01-23 2020-10-27 浙江大学 Electric hammer with air pressure sensor and microcontroller
US11229963B2 (en) * 2019-06-24 2022-01-25 Black & Decker Inc. Force and moment canceling reciprocating mechanism and power tool having same
US11453093B2 (en) 2019-06-24 2022-09-27 Black & Decker Inc. Reciprocating tool having planetary gear assembly and counterweighting assembly
US11958121B2 (en) 2022-03-04 2024-04-16 Black & Decker Inc. Reciprocating tool having orbit function
US11839964B2 (en) 2022-03-09 2023-12-12 Black & Decker Inc. Counterbalancing mechanism and power tool having same
GB2616917A (en) * 2022-03-26 2023-09-27 Webster Tech Limited Power tool
CN217372244U (en) * 2022-06-09 2022-09-06 博世电动工具(中国)有限公司 Electric tool

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354233A (en) * 1972-05-03 1982-10-12 Zhukovsky Alexei A Rotary drill automatic control system
US4190781A (en) 1977-08-24 1980-02-26 Black & Decker Inc. Brush system for a portable electric tool
US4232752A (en) * 1978-03-20 1980-11-11 Service Equipment Design Co., Inc. Method and apparatus for driving pipe
US4254354A (en) * 1979-07-02 1981-03-03 General Motors Corporation Interactive piezoelectric knock sensor
DE3538166A1 (en) 1985-10-26 1987-04-30 Hilti Ag DRILL HAMMER WITH TURN LOCK
JPH0632309Y2 (en) * 1988-02-12 1994-08-24 株式会社テイサク Strike number conversion device in hydraulic breaker
US5154242A (en) * 1990-08-28 1992-10-13 Matsushita Electric Works, Ltd. Power tools with multi-stage tightening torque control
FR2676953B1 (en) * 1991-05-30 1993-08-20 Montabert Ets HYDRAULIC PERCUSSION APPARATUS.
JP3188507B2 (en) * 1992-01-23 2001-07-16 株式会社マキタ Tightening tool
US6424799B1 (en) * 1993-07-06 2002-07-23 Black & Decker Inc. Electrical power tool having a motor control circuit for providing control over the torque output of the power tool
FI104959B (en) 1994-06-23 2000-05-15 Sandvik Tamrock Oy Hydraulic impact hammer
DE19534850A1 (en) * 1995-09-20 1997-03-27 Hilti Ag Impact-supported hand drill
DE19626731A1 (en) * 1996-07-03 1998-01-08 Wagner Gmbh J Handwork tool, especially electric screwdriver
DE19646622B4 (en) * 1996-11-12 2004-07-01 Wacker Construction Equipment Ag Tool that can be carried in one movement
US6158929A (en) * 1998-07-01 2000-12-12 Bae Systems Plc Electronically triggered surface sensor unit
US6581696B2 (en) * 1998-12-03 2003-06-24 Chicago Pneumatic Tool Company Processes of determining torque output and controlling power impact tools using a torque transducer
DE19857061C2 (en) * 1998-12-10 2000-11-02 Hilti Ag Method and device for avoiding accidents in hand-held machine tools due to tool blocking
AU2072101A (en) * 1999-12-16 2001-06-25 David W. Cripe Impact tool control method and apparatus and impact tool using the same
EP1165294B1 (en) * 2000-01-24 2003-06-04 Koninklijke Philips Electronics N.V. Hand-held electrical appliance for personal care or for use as a tool
EP1982798A3 (en) * 2000-03-16 2008-11-12 Makita Corporation Power tool
DE10014314B4 (en) 2000-03-23 2004-04-15 Hilti Ag Process and device for hand-held machine tools for optimized processing of various substrates by energy adaptation
DE10033362A1 (en) * 2000-07-08 2002-01-17 Hilti Ag Electric hand tool with empty stroke shutdown
DE10034359A1 (en) * 2000-07-14 2002-01-24 Hilti Ag Hitting electric hand tool device
DE10034768A1 (en) * 2000-07-18 2002-02-07 Bosch Gmbh Robert Combination electric hand tool operating as hammer drill or electric chisel, has pivoted jaw catch mechanism with blocking component in handle
JP2002079439A (en) * 2000-09-07 2002-03-19 Mori Seiki Co Ltd Maintenance control device for machine tool
EP1867438A3 (en) * 2000-11-17 2009-01-14 Makita Corporation Impact power tools
US6488102B2 (en) * 2001-01-05 2002-12-03 Steven James Lindsay Hand-held pneumatic impact power tool
DE10111717C1 (en) 2001-03-12 2002-10-24 Wacker Werke Kg Air spring hammer mechanism with motion frequency controlled idle state
DE10112364A1 (en) * 2001-03-15 2002-09-19 Hilti Ag Hand tool with electronic depth stop
DE10117121A1 (en) * 2001-04-06 2002-10-17 Bosch Gmbh Robert Hand tool
DE20112117U1 (en) 2001-07-26 2001-10-31 Zierpka Guenter Lathe, for example in the form of a hand drill, an impact drill, a hammer drill or a cordless screwdriver
JP3886818B2 (en) * 2002-02-07 2007-02-28 株式会社マキタ Tightening tool
FI112525B (en) * 2002-02-22 2003-12-15 Sandvik Tamrock Oy Arrangement for control of striking rock drilling
DE10212064B4 (en) 2002-03-19 2008-08-21 Robert Bosch Gmbh Operation control for a hand tool
DE10219950C1 (en) 2002-05-03 2003-10-30 Hilti Ag Pneumatic hammer mechanism with magnetic field sensitive sensor
DE10240361A1 (en) * 2002-09-02 2004-03-11 Hilti Ag Rotating and striking electric hand machine tool
EP1439035A1 (en) * 2002-12-16 2004-07-21 Fast Technology AG Signal processing and control device for a power torque tool
DE10260702B4 (en) * 2002-12-23 2014-01-30 Hilti Aktiengesellschaft Internal combustion setting device
DE10303006B4 (en) * 2003-01-27 2019-01-03 Hilti Aktiengesellschaft Hand-held implement
DE10309012B3 (en) * 2003-03-01 2004-08-12 Hilti Ag Control method for hand-held electric hammer drill using microcontroller for repetitive opening and closing of clutch between electric motor and tool chuck
EP1464449B1 (en) * 2003-04-01 2010-03-24 Makita Corporation Power tool
DE10316844A1 (en) * 2003-04-11 2004-11-04 Hilti Ag Control of an electric hand machine tool
US7046584B2 (en) * 2003-07-09 2006-05-16 Precision Drilling Technology Services Group Inc. Compensated ensemble crystal oscillator for use in a well borehole system
DE602004015206D1 (en) * 2003-07-31 2008-09-04 Makita Corp power tool
JP4093145B2 (en) * 2003-08-26 2008-06-04 松下電工株式会社 Tightening tool
DE602005006462D1 (en) * 2004-04-02 2008-06-19 Black & Decker Inc Fixing tool with mode selector switch
DE102004017939A1 (en) * 2004-04-14 2005-11-03 Robert Bosch Gmbh Guided machine tool and method for operating a guided machine tool
EP1607186A1 (en) * 2004-06-18 2005-12-21 HILTI Aktiengesellschaft Electro-pneumatic hammer drill / chisel hammer with modifiable impact energy
FI116968B (en) * 2004-07-02 2006-04-28 Sandvik Tamrock Oy Procedure for control of impactor, program product and impactor
GB0503558D0 (en) * 2005-02-22 2005-03-30 Black & Decker Inc Actuation apparatus for power tool
US7712547B2 (en) * 2005-04-11 2010-05-11 Makita Corporation Electric hammer
US8261851B2 (en) * 2005-04-11 2012-09-11 Makita Corporation Electric hammer
US7383895B2 (en) * 2005-08-19 2008-06-10 Makita Corporation Impact power tool
WO2007141578A2 (en) * 2006-06-07 2007-12-13 Anglia Polytechnic University Higher Education Corporation Power tool control systems
DE102007000281A1 (en) * 2007-05-21 2008-11-27 Hilti Aktiengesellschaft Method for controlling a screwdriver
DE102007000488A1 (en) * 2007-09-12 2009-03-19 Hilti Aktiengesellschaft Hand tool with air spring impact mechanism, linear motor and control method
GB0801868D0 (en) * 2008-02-01 2008-03-12 Black & Decker Inc Power tool having motor speed monitor
DE102008000908A1 (en) * 2008-04-01 2009-10-08 Robert Bosch Gmbh Against vibrator
DE102008000973A1 (en) * 2008-04-03 2009-10-08 Hilti Aktiengesellschaft Hand-held implement
JP5403328B2 (en) 2009-02-02 2014-01-29 日立工機株式会社 Electric drilling tool
JP5405157B2 (en) * 2009-03-10 2014-02-05 株式会社マキタ Rotating hammer tool
DE102009041824A1 (en) * 2009-09-18 2011-03-24 Hilti Aktiengesellschaft Device for transmitting energy to a fastener
DE102009041828A1 (en) * 2009-09-18 2011-03-24 Hilti Aktiengesellschaft Device for transferring energy to e.g. pin, has closing unit for temporarily closing supply channel, and control unit connected with closing unit for opening and closing of closing unit according to predetermined conditions
JP5464434B2 (en) * 2010-03-31 2014-04-09 日立工機株式会社 Electric tool
SE535585C2 (en) * 2010-09-20 2012-10-02 Spc Technology Ab Method and apparatus for impact-acting submersible drilling
US8674640B2 (en) * 2011-01-05 2014-03-18 Makita Corporation Electric power tool
DE102012208870A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
DE102012208902A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
DE102012208913A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
CN104334318A (en) * 2012-05-25 2015-02-04 罗伯特·博世有限公司 Percussion unit
JP5824419B2 (en) * 2012-06-05 2015-11-25 株式会社マキタ Electric tool
US10040183B2 (en) * 2013-10-11 2018-08-07 Illinois Tool Works Inc. Powered nailer with positive piston return
DE102013224759A1 (en) * 2013-12-03 2015-06-03 Robert Bosch Gmbh Machine tool device
US9539715B2 (en) * 2014-01-16 2017-01-10 Ingersoll-Rand Company Controlled pivot impact tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP5864818B2 (en) 2016-02-17
RU2014152476A (en) 2016-07-20
US20150136433A1 (en) 2015-05-21
JP2015517412A (en) 2015-06-22
CN104334319A (en) 2015-02-04
DE102012208913A1 (en) 2013-11-28
EP2855096A1 (en) 2015-04-08
US9969071B2 (en) 2018-05-15
WO2013174600A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
EP2855096B1 (en) Percussion unit and method.
DE102012208870A1 (en) Percussion unit
DE102012208902A1 (en) Percussion unit
EP2855098B1 (en) Percussion unit
DE112006001421B4 (en) working machine
EP0486898B1 (en) Method and device for adjustment of working caracteristics of an impact mechanism to the hardness of the material to be destroyed
EP1893388B1 (en) Drilling and/or percussive hammer with no-load operation control
EP3077160A1 (en) Machine tool device
DE102014001885A1 (en) Method for optimizing an operating function of a ground milling machine and ground milling machine
EP1487078B1 (en) Initialising method for a power assisted adjustement device and device for performing it
EP2855093A1 (en) Pneumatic percussion mechanism apparatus
DE202014009989U1 (en) Oszillationswerkzeugmaschine
DE2423902A1 (en) DEVICE FOR DAMPING THE KICKBACK IN A HAMMERING MACHINE
DE102013212691B4 (en) Hand tool
EP1693553B1 (en) Method for controlling an oil pump of an engine
DE102012208916A1 (en) Impact mechanism, particularly for drilling- or percussion hammer, and for use in hand tool machine, has control unit, where pressure sensor unit measures pressure curve for detection of percussion state
EP3313654B1 (en) Method for calculating a usage figure for a pressing tool in a joining press
EP4192655A1 (en) Method for training a classifier to ascertain a handheld machine tool device state
DE102014226369A1 (en) Percussion device
DE102013211242A1 (en) Impact control and / or regulating device
DE102015219153B4 (en) High-pressure fuel pump and method for reducing nonuniformities in the driving force of a high-pressure fuel pump
EP3398725A1 (en) Oscillating driveable handheld tool and method for operating same
DE102013112263B4 (en) Method for operating an internal combustion engine with an adjustable compression ratio and control device for carrying out the method
DE102020113416A1 (en) Handling device and method for setting the stop behavior of an actuator of the handling device
DD281038A1 (en) METHOD FOR CONTROLLING AND REGULATING PROCESSING PERFORMANCE IN ULTRASONIC APPLICATIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170317

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190918

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014841

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1283418

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 11

Ref country code: DE

Payment date: 20230627

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013014841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624