EP2846077B1 - Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens - Google Patents

Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens Download PDF

Info

Publication number
EP2846077B1
EP2846077B1 EP14180018.5A EP14180018A EP2846077B1 EP 2846077 B1 EP2846077 B1 EP 2846077B1 EP 14180018 A EP14180018 A EP 14180018A EP 2846077 B1 EP2846077 B1 EP 2846077B1
Authority
EP
European Patent Office
Prior art keywords
light
led module
exit surface
optic
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14180018.5A
Other languages
German (de)
French (fr)
Other versions
EP2846077A3 (en
EP2846077A2 (en
Inventor
Emil P Stefanov
Christian Buchberger
Markus Kiesel
Martin Licht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2846077A2 publication Critical patent/EP2846077A2/en
Publication of EP2846077A3 publication Critical patent/EP2846077A3/en
Application granted granted Critical
Publication of EP2846077B1 publication Critical patent/EP2846077B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/323Optical layout thereof the reflector having two perpendicular cross sections having regular geometrical curves of a distinct nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/20Illuminance distribution within the emitted light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an LED module of a motor vehicle headlight.
  • the LED module has a light source in the form of an LED matrix, which comprises a plurality of LED chips arranged side by side and / or one above the other, a primary optic which comprises a plurality of primary optical elements arranged side by side and / or one above the other, for bundling the one of the Light source emitted light and the projection optics.
  • the projection optics project an exit surface of the primary optics to generate a predetermined light distribution onto a roadway in front of a vehicle.
  • the present invention also relates to a motor vehicle headlight having such a headlight LED module.
  • Motor vehicle headlights with a light source in the form of an LED matrix which comprises a plurality of LED chips arranged side by side and / or one above the other, are also referred to as matrix headlights.
  • the LED matrix can consist of a single row or column with several LED chips or of several rows or columns arranged one above the other or next to one another, each with several LED chips.
  • Matrix headlights generate a light distribution on the road in front of the motor vehicle, which has a plurality of partial light distributions arranged next to or above one another in the form of pixels or strips. As a rule, each LED chip generates its own partial light distribution.
  • a matrix headlamp without movable parts can be used to generate an adaptive light distribution.
  • a low-beam headlight distribution with a horizontal light-dark boundary a conventional low-beam light distribution with an asymmetrical light-dark boundary, a high beam distribution, a partial high beam distribution in which areas are specifically excluded from the light distribution where other road users have been detected, or a marker light distribution in which the objects detected on the road ahead of the vehicle are generated.
  • Matrix headlights are known in different embodiments from the prior art, cf. e.g. EP 2 306 073 A2 , EP 2 306 074 A2 , EP 2 306 075 A2 or DE 10 2008 013 603 A1 .
  • each primary optic is assigned an individual projection optic (or secondary optic).
  • two light source modules, at least two primary optics modules and at least two secondary optics modules are therefore always combined.
  • At least two light exit surfaces per matrix headlight are therefore visible from the outside.
  • a so-called facet-eye headlight module is created.
  • the strip-shaped partial light distributions projected onto the roadway have a relatively large angular width of at least 2 ° horizontally or even significantly more. The superimposition of such wide stripes improves the homogeneity of the light distribution, but reduces the achievable resolution.
  • the known headlamp requires at least two complete, mutually independent light modules per headlamp, each light module having an LED matrix, a primary optic and a secondary optic. Such a headlamp thus consists of at least two light sources, two primary optics and two secondary optics.
  • the present invention is based on the object To design and develop an LED module of the type mentioned at the outset such that the headlight with a single primary optic and a single projection optic has improved homogeneity of the resulting light distribution, the light distribution being visible from the outside from a single light exit opening or from a single projection optic should emerge from the headlight.
  • the projection optics be designed in such a way that on its image side it generates at least two separate images of the exit surface of the primary optics which are offset from one another in the horizontal direction, so that superimposition of the images produced improves homogeneity of the light distribution .
  • the LED module according to the invention it is possible to generate the desired improved and more homogeneous matrix light distribution from a single visible and tangible outlet opening (so-called one-eye matrix headlights).
  • the proposed projection optics compensate for color effects and homogeneity or intensity fluctuations up to half a pixel width without the use of Special glasses or plastics are required and without reducing the image sharpness, in particular the pixel edge sharpness. Thanks to the proposed projection optics, color compensation and homogeneity improvement can thus be achieved in a matrix headlamp without additional loss of sharpness, in particular in relation to the periodically appearing color, homogeneity and imaging errors.
  • the LED module it is conceivable to vary one or more active optically active surfaces of the projection optics.
  • this can be a light entry surface, a light exit surface and / or any other surface in between (for example in the case of an achromatic lens).
  • the active optically active surface of the projection optics is preferably divided and / or shifted in such a way that the at least two separate images of the light exit surface of the primary optics which are shifted in the horizontal direction are produced.
  • Each of the images generated contributes part of the common luminous flux or part of the intensity and illuminance.
  • the proportion that each image contributes depends on the number of separate images generated.
  • the proportion is preferably 50% for two images and accordingly 33% for three images of the common value of the resulting light distribution.
  • the projection optics are advantageously designed such that the separate images of the exit surface of the primary optics are each offset by a value b / n, where b is a width, in particular an angular width, of a pixel formed by the imaging of an individual light exit surface of an individual primary optic element and n is a number of separate images of the exit surface of the primary optics generated by the projection optics.
  • b is a width, in particular an angular width, of a pixel formed by the imaging of an individual light exit surface of an individual primary optic element
  • n is a number of separate images of the exit surface of the primary optics generated by the projection optics.
  • the projection optics have at least two separate optical axes.
  • the separate optical axes of the projection optics preferably run in the same horizontal plane.
  • the horizontal plane preferably comprises a module axis of an LED module which is provided with the projection lens.
  • the module axis preferably runs from the center of the light exit surface of the primary optics in the direction of travel. The distance between the optical axes is relatively small. It is chosen so that separate images of the light exit surface of the primary optics are generated, which are offset from one another in the horizontal direction by a fraction of a pixel.
  • the different optical axes of the projection optics mean that different images of the light exit surface of the primary optics are generated.
  • the number of separate images generated by the projection lens corresponds to the number of separate optical axes.
  • the images of the light exit surface of the primary optics are offset from one another in accordance with the course of the optical axes.
  • the fact that the optical axes run in the same horizontal plane means that the separate images are only offset from one another in the horizontal direction. If the optical axes were arranged in different horizontal planes, this would result there is also a vertical offset of the images to each other.
  • the separate optical axes of the projection optics run parallel and at a distance from one another.
  • the separate optical axes of the projection optics run at an angle to one another.
  • the optical axes of the projection optics preferably intersect in a plane of the light exit surface of the primary optics.
  • the plane of the light exit surface is preferably perpendicular to the horizontal plane in which the optical axes are arranged. It is particularly preferred if the oblique optical intersect at an intersection of the module axis with the light exit surface of the primary optics.
  • At least one active optical surface of the projection optics be provided with alternating optical regions arranged next to and / or one above the other for generating essentially identical images of the exit surface of the primary optics, a first group of the optical ones Areas produces a first image of the exit surface of the primary optics and at least one further group of the optical regions generates an at least one further image of the exit surface of the primary optics, the generated images being arranged offset from one another in the horizontal direction in the resulting light distribution.
  • at least one active optical surface of the projection optics can be provided with the alternating regions in the manner of a strip or checkerboard. Each group of areas is assigned its own optical axis, which is separate from the optical axes of the other groups of areas.
  • the alternating optical regions are preferably formed on a light exit surface of the projection optics. It is further preferred that the alternating optical regions are designed in the form of strips, the strips extending in the vertical direction. If the projection optics produce two separate images of the light exit surface of the primary optics, the strip-shaped areas are preferably assigned alternately to one of two groups. Accordingly, every third strip-shaped area is preferably assigned to one of three groups if the projection optics generate three separate images of the light exit surface of the primary optics.
  • the active optical surface of the projection optics be provided with a plurality of prisms arranged alongside one another, which extend over the entire surface and whose longitudinal axes run parallel to one another, with a prism surface of the prisms being the first image of the exit surface of the Primary optics and the other prism surface of the prisms creates the second image of the exit surface of the primary optics.
  • the prism surfaces can be flat or curved.
  • a tip of the prisms be flattened over their entire longitudinal extent, so that there is a roof surface of the prisms, which produces a further image of the light exit surface of the primary optics, which corresponds to the other two images in FIG is offset in the horizontal direction.
  • the projection optics can be three separate ones in horizontal Create images of the light exit surface of the primary optics that are offset in relation to one another.
  • the images are preferably offset from one another by b / 3, where b is the width, in particular an angular width, of a pixel of the resulting light distribution, that is to say a partial image of a partial light exit surface of a primary optic element.
  • the prism surfaces of the prisms are each divided into two partial surfaces over their entire longitudinal extent, a line of contact of the partial surfaces of a prism surface of a prism running parallel to the longitudinal axis of the prism, the partial surfaces each being a separate one and generate a staggered image of the light exit surface of the primary optics to the other images.
  • the projection optics in a prism with a tip can produce four separate images of the light exit surface of the primary optics which are offset from one another in the horizontal direction.
  • the projection lens can even produce five separate images of the light exit surface of the primary optics which are offset from one another in the horizontal direction.
  • the images are preferably offset from one another by w '/ 4 or w' / 5, where w 'is the width, in particular an angular width, of a pixel of the resulting light distribution, that is to say a partial image of a partial light exit surface of a primary optic element.
  • the alternating optical regions formed on the at least one active optical surface of the projection optics have an amplitude of less than 0.1 mm, preferably less than a few tens of micrometers, very particularly preferably of a few micrometers.
  • a headlights according to the invention can be realized.
  • a motor vehicle headlight according to the invention is designated in its entirety with reference number 1.
  • the headlight 1 has a housing 2, which is preferably made of plastic.
  • the headlight housing 2 has a light exit opening 4, which is closed by means of a transparent cover plate 5.
  • the cover plate 5 is made of glass or plastic. At least in some areas, optically effective profiles (for example prisms or cylindrical lenses) can be arranged on the cover plate 5 in order to scatter the light passing through (so-called diffuser plate). However, it is also conceivable that the cover plate 5 is designed without such optically active elements (so-called clear plate).
  • a light module 6 is arranged in the interior of the headlight housing 2.
  • the light module 6 can be used to generate any headlight function or a part thereof.
  • the light module 6 can be used to generate a low beam distribution, a high beam distribution, a fog light distribution or any adaptive light distribution.
  • a further light module 7 can be arranged in the housing 2. This is used, for example, to generate a further headlight function. But it would also be conceivable that the light modules 6, 7 together form one generate certain headlight function.
  • the light module 7 could generate a low-beam basic light distribution with a relatively wide scatter and a horizontal cut-off line.
  • the light module 6 could then produce a low beam spot light distribution which is relatively strongly concentrated in comparison with the low beam basic light distribution of the light module 7 and has an asymmetrical light-dark boundary on the upper side. A superimposition of the basic light distribution and the spot light distribution results in a conventional low beam distribution.
  • further light modules are arranged in the headlight housing 2.
  • only one light module for example the light module 6 without the light module 7, can be arranged in the headlight housing 2.
  • one or more light modules, such as the light module 8 shown by way of example are also arranged in the housing 2.
  • the lamp module 8 is used to generate any lamp function, for example a flashing light, a position light, a daytime running light, etc.
  • the light module 6 is preferably designed as an LED module according to the invention.
  • the LED module 6 is in detail in Figure 2 shown.
  • the LED module 6 has a light source in the form of an LED matrix, which is designated in its entirety by the reference number 10.
  • the LED matrix 10 has a plurality of LED chips 11 arranged side by side and one above the other in a matrix.
  • the LED module 6 comprises a primary optic, which is designated in its entirety by the reference number 12.
  • the primary optics 12 have a plurality of primary optics elements 13 arranged side by side and one above the other in a matrix. In the illustrated In the exemplary embodiment, each LED chip 11 is assigned its own primary optical element 13.
  • the LED chip 11 emits light in a main emission direction 14, which largely couples into the primary optic element 13 via a light entry surface 15.
  • the primary optics element 13 itself can be designed as a conventional reflector for specular reflection or as a so-called attachment optics element made of a transparent material (for example glass or plastic) for total reflection.
  • the primary optics element 13 is designed as a totally reflective front lens made of a transparent plastic material.
  • the primary optics 12 can bundle the light emitted by the LED matrix 10.
  • the LED module 6 comprises projection optics 16 which are designed as an optical lens.
  • the projection optics 16 is also referred to as secondary optics.
  • the projection optics 16 can be designed as a conventional optical lens or as an achromatic lens.
  • the headlamp 1 with the LED module 6 is also referred to as a matrix headlamp, since it generates a light distribution with a plurality of pixel or strip-shaped partial light distributions arranged next to and / or one above the other.
  • the individual partial light distributions that are generated by the light of an LED 11 and the associated primary optical element 13 are also referred to as pixels.
  • Each of the partial light distributions is shown by imaging a partial light exit surface of an individual primary optical element 13 the primary optics 12 are generated by means of the projection optics 16.
  • a light distribution of a matrix headlight 1 known from the prior art is shown by way of example.
  • the light distribution 20 is shown on a measuring screen 21, which is arranged at a defined distance from the headlight 1 or the LED module 6 in front of the motor vehicle.
  • the light distribution 20 shown here by way of example has a large number of pixels 22, 23, 24 arranged next to and above one another.
  • the pixels 22, 23, 24 in the exemplary embodiment shown are arranged in three rows and in thirty columns.
  • the pixels of the upper row are designated by the reference symbol 22, the pixels of the middle row by the reference symbol 23 and the pixels of the lower row by the reference symbol 24.
  • Each pixel 22, 23, 24 of the light distribution 20 shown is generated by an LED chip 11 in cooperation with the associated primary optics element 13 after projection by the secondary optics 16.
  • the individual LED chips 11 of the LED matrix 12 By specifically controlling the individual LED chips 11 of the LED matrix 12, it is possible to vary the resulting light distribution 20 almost as desired. For example, it is conceivable to temporarily switch off those LED chips 11 in whose pixel area of the light distribution 20 other road users have been detected. In this way, driving can be carried out continuously with high beam, whereby glare to other road users is prevented by the pixels 22, 23, 24 which are locally removed from the light distribution 20 (so-called partial high beam). It would also be conceivable that the LED module 6 generates a low beam distribution with an asymmetrical upper cut-off line, the LED chips 11 for generating the upper row of pixels 22 are switched off except for a few LED chips 11 for generating pixels 22 on the own traffic side.
  • any other adaptive light distributions 20 can also be achieved by specifically switching the LEDs 11 on / off and / or dimming them.
  • the resulting light distribution 20 can have an undesirable color fringe.
  • the aim of the present invention is to improve the homogeneity of the light distribution 20 with regard to disturbing color effects and intensity fluctuations.
  • the present invention proposes a special homogenizing projection optics (or secondary optics) 16 as a component of a matrix headlight 1 for motor vehicles, in which a light exit surface 17 of the primary optics 12 consists of a plurality of periodic structures that are lined up in a pixel or stripe fashion by the special projection optics 16 is projected onto the road to implement a dynamic low beam, partial high beam, matrix light or high beam function.
  • the projection optics 16 generate at least two separate ones on the image side, ie on the roadway or on a measuring screen 21 Figures 25, 26 (cf. Figures 4 and 5 ) of the light exit surface 17 of the primary optics 12 on the object side.
  • a superimposition of the at least two separate images 25, 26 results in a resulting light distribution 27 (cf. Figure 6 ), the at least two images 25, 26 being offset from one another in the horizontal direction in such a way that there is a clear improvement in the homogeneity of the light distribution 27. In particular, undesired color effects or intensity fluctuations in the light distribution 27 are selectively reduced or even completely eliminated.
  • the separate images 25, 26 of the light exit surface 17 of the primary optics 12 are generated by a common projection optics 16.
  • a first image 25 of the light exit surface 17 of the primary optics 12, which can be generated by the projection optics 16 according to the invention, is exemplified in FIG Figure 4 shown.
  • Figure 25 from Figure 4 is offset by about 1/4 pixel to the left with respect to the vertical VV in the example shown.
  • a second image 26 of the light exit surface 17 of the primary optics 12 is shown.
  • the second separate figure 26 is shifted by about 1 ⁇ 4 pixel to the right with respect to the vertical VV in the exemplary embodiment shown.
  • the first and second images 25, 26 are thus offset relative to one another by approximately 1/2 pixel.
  • Each figure 25, 26 contributes half the common luminous flux to the resulting total light distribution 27, or half the intensity and half the illuminance to the total value of the light distribution 27.
  • the intensity of the individual images 25, 26 depends on the length of the prism surfaces or on the proportion of the prism base surface which is assigned to the corresponding prism surface.
  • a preferred embodiment comprises prisms with the same prism base area proportions.
  • FIG. 7 Shown is the light distribution 20 that was generated using a conventional LED module.
  • the light distribution 20 shown is a low beam or partial high beam, the entire area of the oncoming lane having been removed from the light distribution 20 in order to prevent oncoming road users from being dazzled.
  • the light distribution 20 is shown on a measuring screen 21. It can be clearly seen that the lines 30 of the same intensity or illuminance have inhomogeneities which are recognizable by the restless line course.
  • the lines 31 of the same intensity or illuminance have significantly fewer inhomogeneities in the light distribution 27 generated with the matrix headlamp 1 according to the invention or the LED module 6 according to the invention, which is recognizable by the much quieter line profile.
  • the Figures 7 and 8 show by way of example the same low beam pattern 20, 27 of a matrix headlight 1 with an LED matrix light source 10 with three lines. All LED chips 11 of the LED matrix 10 which generate pixels of the upper and lower lines on the left side of the light distribution 20, 27, plus one pixel on the right side of the light distribution 20, 27 next to the HV point, are switched off, so as not to dazzle oncoming traffic.
  • the ISO lines 30 in Figure 7 are much more restless.
  • the ISO lines 31 from the light distribution 27 Figure 8 on the other hand are smoother and have fewer deviations
  • FIG. 9 An LED module 6 according to the invention with a projection optics 16 according to the invention is shown in detail.
  • the embodiment of the projection optics 16 shown is used to generate two separate images 25, 26 of the light exit surface 17 of the primary optics 12.
  • the projection optics 16 can also be designed such that they produce more than two separate images that are shifted in the horizontal direction.
  • the projection optics 16 has two parallel optical axes, which are designated by the reference numerals 40 and 41.
  • the reference numeral 42 denotes a module axis of the LED module 6, which runs from the center of the primary optics 12 in the direction of travel 3.
  • the distance between the optical axes 40, 41 is small and only so large that the projection optics 16 can project two separate images 25, 26 with 1/2 pixel spacing onto the road in front of the motor vehicle.
  • the optical axes 40, 41 are preferably arranged on a common horizontal plane, which preferably also includes the module axis 42.
  • the projection optics 16 are in two halves 16a, 16b along a vertical central plane, which includes the module axis 42 divided.
  • the one half 16a is preferably assigned the optical axis 41 and the other half 16b is preferably the optical axis 40.
  • the projection optics 16 It is not necessary that all active optical surfaces of the projection optics 16 have to experience a division and / or displacement of the generating surfaces. It is entirely sufficient if only one of these surfaces is shaped in a corresponding manner. This can be, for example, a light entry surface, a light exit surface or an intermediate surface of the primary optics 16. At least one of the active optical surfaces of the projection optics 16 must, however, be modified such that the at least two images 25, 26 of the light exit surface 17 of the primary optics 12 can be generated, which are offset from one another in the horizontal direction.
  • FIG 10 Another embodiment of an LED module 6 according to the invention is shown with two optical axes 43, 44 which run obliquely to one another.
  • the optical axes 43, 44 preferably intersect in a plane of the light exit surface 17 of the primary optics 12.
  • the optical axes 43, 44 are preferably arranged on a common horizontal plane, which preferably also includes the module axis 42.
  • a first half 16a is assigned to the projection optics 16 of the optical axis 44 and a second half 16b is assigned to the projection optics 16 of the optical axis 43.
  • FIG. 11 is a corresponding one Embodiment shown, wherein alternating optical regions 16c, 16d arranged side by side are formed on the light exit surface of the projection optics 16.
  • the regions 16c, 16d are arranged in strips on the light exit surface of the projection optics 16.
  • the areas can also be designed like a checkerboard or in any other way.
  • the optical areas 16c, 16d are not formed on the light exit surface, but on the light entry surface or any other surface between the light entry surface and the light exit surface of the projection optics 16.
  • the optical regions 16c, 16d are designed to generate essentially identical images 25, 26 of the exit surface 17 of the primary optics 12. All areas 16c together produce a first image of the light exit surface 17 and all areas 16d together produce a second image 26 of the exit surface 17.
  • the first optical areas 16c are preferably the first optical axis 40 and the second optical areas 16d are preferably the second optical axis 41 assigned.
  • projection optics 16 can be implemented, which can produce several separate images 25, 26 of the light exit surface 17 of the primary optics 12, which are offset relative to one another in the horizontal direction.
  • the first optical regions 16c form a first group, which produce the first image 25 of the exit surface 17, and the second regions 16d form a second group, which generate the second image 26 of the exit surface 17 of the primary optics 12.
  • the first areas 16c are marked with hatching. However, this serves first Line for identification and for better differentiation of the two areas 16c, 16d from each other.
  • This does not necessarily mean that an optically effective structure, for example a scattering structure, is formed in the areas 16c on the light exit surface of the projection optics 16, whereas such a structure is not formed in the areas 16d. However, this would be entirely possible. It would also be conceivable to provide a scattering structure on the entire light exit surface of the projection optics 16.
  • FIG 12 A further exemplary embodiment of an LED module 6 according to the invention or a projection optics 16 according to the invention is shown.
  • an active optical surface of the projection optics 16 in the exemplary embodiment shown the light exit surface, is provided with a plurality of prisms which are arranged next to one another and which extend over the entire surface and whose longitudinal axes run parallel to one another and in the vertical direction.
  • a first prism surface 16e of the prisms produces a first image 25 of the exit surface 17 of the primary optics 12.
  • Another prism surface 16f of the prisms produces a second image 26 of the exit surface 17 of the primary optics 12.
  • a first prism surface 16e with a second prism surface 16f forms one of the Prisms on the light exit surface of the projection optics 16.
  • the first prism surfaces 16e are preferably assigned the first optical axis 41 and the other prism surfaces 16f the second optical axis 42. In this way too, separate images 25, 26 of the exit surface 17 of the primary optics 12 can be generated, which are offset from one another in the horizontal direction.
  • the amplitudes of the prism structure on the light exit surface of the projection optics 16 Figure 12 are relatively small, making them difficult to see with the naked eye.
  • the magnitude of the amplitudes is thought to be from a few micrometers to a few tens of micrometers.
  • the structures are perceived by an observer from outside the headlight 1 through the cover plate 5 at best as slightly indicated strips or alternatively as a relatively unobtrusive checkerboard pattern on the projection optics 16.
  • FIG. 13 Various design options for the prism structure are proposed on the optically active surface of the projection optics 16.
  • a cross section through one of the prisms is shown above, and below that are the images of the light exit surface 17 of the primary optics 12 that can be achieved by the prism structure shown.
  • the prism structure Figure 13a corresponds to the prism structure, which in the embodiment of the projection optics 16 Figure 12 was applied.
  • the images 25 and 26 that can be achieved in this way are offset from one another by 1/2 pixel width w '.
  • a tip of the prisms 16e, 16f is flattened over their entire longitudinal extent, so that there is a roof surface 16g of the prisms, which generates a further image 28 of the light exit surface 17 of the primary optics 12, which leads to the other two images 25, 26 which are formed by the prism surfaces 16e, 16f are generated, is offset in the horizontal direction.
  • the three images 25, 26, 28 are preferably offset from one another in the horizontal direction by 1/3 pixel width w '.
  • the prism angle ⁇ must be adapted in a suitable form.
  • the Surface 16g creates an image 28 in the center of the light distribution.
  • the prism surfaces 16e, 16f of the prisms over their entire longitudinal extent in each case in two partial surfaces 16e1, 16e2; 16f1, 16f2 divided.
  • the partial areas 16e1, 16e2; 16f1, 16f2 of a prism surface 16e; 16f produce two separate and offset images 25, 28; 26, 29, which also go with the other figures 26, 29; 25, 28 are offset.
  • the four images 25, 26, 28, 29 of the light exit surface 17 of the primary optics 12 are each offset by 1/4 pixel width w 'from one another.
  • FIG 14 Further possible configurations of the prism structure are shown on the optically active surface of the projection optics 16.
  • the real prisms of Figure 14a ), 14b), 14c) essentially correspond to the prisms from the Figures 13a ), 13b), 13c).
  • straight sections 16h are provided between the individual prisms 16e, 16f. This makes it possible to use the prism structure out Figure 14a ) to generate a total of two plus one three separate images of the light exit surface 17 of the primary optics 12. It is the same with the prism structure Figure 14b ) possible to create a total of two plus two four separate images.
  • the strips 16g and 16h can produce identical images, because the optical axes are not tilted towards one another, and the images therefore lie one above the other.
  • the prism structure can be used Figure 14c ) four plus one five images of the light exit surface 17 of the primary optics 12 are generated.
  • H 1 2nd Pixel offset w 2nd ⁇ sin ⁇ 4th n PMMA - cos ⁇ 4th
  • FIG. 16 is an example of a section of a surface structure for an optically active surface of a projection optics 16 according to the invention shown.
  • the structure of the 1st order is shown with a solid line 50, a structure of the 2nd order with a dashed line 51 and a sum of the two structures 50, 51 with the reference symbol 52.
  • the first-order structure 50 generates two separate images 25, 26 of the light exit surface 17 of the primary optics 12, which are shifted from one another by 1/2 pixel width.
  • the second-order prism structure 51 has half the frequency (double period) and, with one of its flanks (prism surfaces), always tilts two adjacent flanks (an entire period) of the first-order structure 50 and thus leads to a shift of the images from each other by 1 / 4 pixel width.
  • the prism structure 52 is the sum (resulting) of the 1st order prism structure 50 and the 2nd order prism structure 51.
  • the amplitude h of the 1st order structure 50 is related to the required deflection angle of +/- 0.3 °.
  • the second-order prism structure 51 has the same amplitude h as the first-order prism structure 50. In principle, higher-order adaptations can also be generated in the manner described.

Description

Die vorliegende Erfindung betrifft ein LED-Modul eines Kraftfahrzeugscheinwerfers. Das LED-Modul weist eine Lichtquelle in Form einer LED-Matrix, die mehrere matrixartig neben- und/oder übereinander angeordnete LED-Chips umfasst, eine Primäroptik, die mehrere matrixartig neben- und/oder übereinander angeordnete Primäroptikelemente umfasst, zum Bündeln des von der Lichtquelle ausgesandten Lichts und die Projektionsoptik auf. Die Projektionsoptik projiziert eine Austrittsfläche der Primäroptik zur Erzeugung einer vorgegebenen Lichtverteilung auf eine Fahrbahn vor ein Fahrzeug.The present invention relates to an LED module of a motor vehicle headlight. The LED module has a light source in the form of an LED matrix, which comprises a plurality of LED chips arranged side by side and / or one above the other, a primary optic which comprises a plurality of primary optical elements arranged side by side and / or one above the other, for bundling the one of the Light source emitted light and the projection optics. The projection optics project an exit surface of the primary optics to generate a predetermined light distribution onto a roadway in front of a vehicle.

Außerdem betrifft die vorliegende Erfindung einen Kraftfahrzeugscheinwerfer mit einem solchen
LED-Modul.
The present invention also relates to a motor vehicle headlight having such a headlight
LED module.

Kraftfahrzeugscheinwerfer mit einer Lichtquelle in Form einer LED-Matrix, die mehrere matrixartig neben- und/oder übereinander angeordnete LED-Chips umfasst, werden auch als Matrix-Scheinwerfer bezeichnet. Dabei kann die LED-Matrix aus einer einzelnen Reihe oder Spalte mit mehreren LED-Chips oder aus mehreren über- bzw. nebeneinander angeordneten Reihen bzw. Spalten mit jeweils mehreren LED-Chips bestehen. Matrix-Scheinwerfer erzeugen eine Lichtverteilung auf der Fahrbahn vor dem Kraftfahrzeug, die eine Vielzahl von neben- bzw. übereinander angeordneten Teillichtverteilungen in Form von Pixeln oder Streifen aufweist. Dabei erzeugt in der Regel jeder LED-Chip eine eigene Teillichtverteilung. Durch gezieltes Ansteuern, insbesondere Ein-/ Ausschalten oder Dimmen, der einzelnen LED-Chips der Matrix-Lichtquelle ist es möglich, die Form und Intensität der Lichtverteilung zu beeinflussen. Auf diese Weise kann ein Matrix-Scheinwerfer ohne bewegbare Teile zur Erzeugung einer adaptiven Lichtverteilung genutzt werden. Insbesondere kann auf diese Weise eine Abblendlicht-Grundlichtverteilung mit horizontaler Helldunkelgrenze, eine herkömmliche Abblendlichtverteilung mit asymmetrischer Helldunkelgrenze, eine Fernlichtverteilung, eine Teilfernlichtverteilung, bei der gezielt Bereiche aus der Lichtverteilung ausgenommen werden, wo andere Verkehrsteilnehmer detektiert wurden, oder eine Markierungslichtverteilung, bei der gezielt auf der Fahrbahn vor dem Fahrzeug detektierte Objekte angestrahlt werden, erzeugt werden. Matrix-Scheinwerfer sind in unterschiedlichen Ausführungsformen aus dem Stand der Technik bekannt, vgl. bspw. EP 2 306 073 A2 , EP 2 306 074 A2 , EP 2 306 075 A2 oder DE 10 2008 013 603 A1 .Motor vehicle headlights with a light source in the form of an LED matrix, which comprises a plurality of LED chips arranged side by side and / or one above the other, are also referred to as matrix headlights. The LED matrix can consist of a single row or column with several LED chips or of several rows or columns arranged one above the other or next to one another, each with several LED chips. Matrix headlights generate a light distribution on the road in front of the motor vehicle, which has a plurality of partial light distributions arranged next to or above one another in the form of pixels or strips. As a rule, each LED chip generates its own partial light distribution. By targeted control, in particular switching on / off or dimming, of the individual LED chips of the matrix light source, it is possible to influence the shape and intensity of the light distribution. In this way, a matrix headlamp without movable parts can be used to generate an adaptive light distribution. In particular, a low-beam headlight distribution with a horizontal light-dark boundary, a conventional low-beam light distribution with an asymmetrical light-dark boundary, a high beam distribution, a partial high beam distribution in which areas are specifically excluded from the light distribution where other road users have been detected, or a marker light distribution in which the objects detected on the road ahead of the vehicle are generated. Matrix headlights are known in different embodiments from the prior art, cf. e.g. EP 2 306 073 A2 , EP 2 306 074 A2 , EP 2 306 075 A2 or DE 10 2008 013 603 A1 .

Ferner sind bspw. aus der DE 10 2011 077 132 A1 und der DE 10 2011 077 636 A1 Ansätze speziell zu sog. Streifen-Scheinwerfern bekannt, bei denen die erzeugte Lichtverteilung eine Vielzahl von nebeneinander angeordneten streifenförmigen Teillichtverteilungen umfasst.Furthermore, for example DE 10 2011 077 132 A1 and the DE 10 2011 077 636 A1 Approaches specifically known for so-called strip headlights, in which the generated Light distribution comprises a plurality of strip-shaped partial light distributions arranged next to one another.

Aus der DE 10 2010 046 626 B4 sind Ansätze zur Ausgestaltung einer farbkorrigierenden Projektionsoptik für Matrix-Scheinwerfer bekannt.From the DE 10 2010 046 626 B4 approaches for designing a color-correcting projection optics for matrix headlights are known.

Schließlich wird in der EP 2 280 215 A2 vorgeschlagen, die Homogenität und die Auflösung der Abbildung in der resultierenden Lichtverteilung durch die Verwendung von mehreren LED-Modulen in einem Scheinwerfer zu verbessern. Jeder Primäroptik ist eine individuelle Projektionsoptik (oder Sekundäroptik) zugeordnet. Für den bekannten Scheinwerfer werden also immer zwei Lichtquellen-Module, mindestens zwei Primäroptik-Module und mindestens zwei Sekundäroptik-Module miteinander kombiniert. Von außen sind somit mindestens zwei Lichtaustrittsflächen je Matrix-Scheinwerfer sichtbar. Es entsteht ein sog. Facetten-Auge-Scheinwerfermodul. Die auf die Fahrbahn projizierten streifenförmigen Teillichtverteilungen haben eine relativ große Winkelbreite von mindestens 2° horizontal oder sogar noch deutlich mehr. Die Überlagerung solcher breiter Streifen verbessert zwar die Homogenität der Lichtverteilung, reduziert aber die erzielbare Auflösung. Der bekannte Scheinwerfer erfordert mindestens zwei vollständige, voneinander unabhängige Lichtmodule je Scheinwerfer, wobei jedes Lichtmodul eine LED-Matrix, eine Primäroptik und eine Sekundäroptik aufweist. Somit besteht ein solcher Scheinwerfer aus mindestens zwei Lichtquellen, zwei Primäroptiken und zwei Sekundäroptiken.Finally, in the EP 2 280 215 A2 proposed to improve the homogeneity and the resolution of the image in the resulting light distribution by using several LED modules in one headlight. Each primary optic is assigned an individual projection optic (or secondary optic). For the known headlight, two light source modules, at least two primary optics modules and at least two secondary optics modules are therefore always combined. At least two light exit surfaces per matrix headlight are therefore visible from the outside. A so-called facet-eye headlight module is created. The strip-shaped partial light distributions projected onto the roadway have a relatively large angular width of at least 2 ° horizontally or even significantly more. The superimposition of such wide stripes improves the homogeneity of the light distribution, but reduces the achievable resolution. The known headlamp requires at least two complete, mutually independent light modules per headlamp, each light module having an LED matrix, a primary optic and a secondary optic. Such a headlamp thus consists of at least two light sources, two primary optics and two secondary optics.

Bei sämtlichen aus dem Stand der Technik bekannten Matrix-Scheinwerfern ergibt sich jedoch das Problem, dass es in der resultierenden Lichtverteilung zu Farb- und Intensitätsschwankungen kommt. Diese werden hauptsächlich durch die Dispersion (Veränderung der Brechzahl optischer Materialien in Abhängigkeit von der Lichtwellenlänge) und Abbildungsfehler der Projektionsoptik verursacht. Die Farbschwankungen treten insbesondere am Rand der einzelnen Teillichtverteilungen auf.With all matrix headlights known from the prior art, however, there is the problem that the resulting light distribution leads to color and Fluctuations in intensity come. These are mainly caused by the dispersion (change in the refractive index of optical materials depending on the light wavelength) and aberrations of the projection optics. The color fluctuations occur particularly at the edge of the individual partial light distributions.

Ausgehend von dem beschriebenen Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein
LED-Modul der eingangs genannten Art oder Teile davon dahingehend auszugestalten und weiterzubilden, dass der Scheinwerfer mit einer einzelnen Primäroptik und einer einzelnen Projektionsoptik eine verbesserte Homogenität der resultierenden Lichtverteilung aufweist, wobei die Lichtverteilung von außen sichtbar aus einer einzelnen Lichtaustrittsöffnung bzw. aus einer einzelnen Projektionsoptik aus dem Scheinwerfer austreten soll.
Based on the described prior art, the present invention is based on the object
To design and develop an LED module of the type mentioned at the outset such that the headlight with a single primary optic and a single projection optic has improved homogeneity of the resulting light distribution, the light distribution being visible from the outside from a single light exit opening or from a single projection optic should emerge from the headlight.

Zur Lösung dieser Aufgabe wird ausgehend von
dem LED-Modul der eingangs genannten Art vorgeschlagen, dass die Projektionsoptik derart ausgebildet ist, dass sie auf ihrer Bildseite mindestens zwei separate, in horizontaler Richtung zueinander versetzte Abbildungen der Austrittsfläche der Primäroptik erzeugt, so dass eine Überlagerung der erzeugten Abbildungen eine Homogenität der Lichtverteilung verbessert.
To solve this problem, starting from
In the LED module of the type mentioned at the outset, it is proposed that the projection optics be designed in such a way that on its image side it generates at least two separate images of the exit surface of the primary optics which are offset from one another in the horizontal direction, so that superimposition of the images produced improves homogeneity of the light distribution .

Mit dem erfindungsgemäßen LED-Modul ist es möglich, die gewünschte verbesserte und homogenere Matrix-Lichtverteilung aus einer einzelnen sichtbaren und erlebbaren Austrittsöffnung zu generieren (sog. Ein-Auge-Matrix-Scheinwerfer). Die vorgeschlagene Projektionsoptik erreicht eine Kompensation von Farbeffekten und Homogenitäts- bzw. Intensitätsschwankungen bis zu einer halben Pixelbreite, ohne dass es des Einsatzes von Spezialgläsern oder -kunststoffen bedarf und ohne die Abbildungsschärfe, insbesondere die Pixel-Kantenschärfe zu verringern. Dank der vorgeschlagenen Projektionsoptik kann in einem Matrix-Scheinwerfer somit eine Farbkompensation und Homogenitätsverbesserung ohne zusätzliche Schärfeeinbußen, insbesondere bezogen auf die periodisch erscheinenden Farb-, Homogenitäts- und Abbildungsfehler, erzielt werden.With the LED module according to the invention, it is possible to generate the desired improved and more homogeneous matrix light distribution from a single visible and tangible outlet opening (so-called one-eye matrix headlights). The proposed projection optics compensate for color effects and homogeneity or intensity fluctuations up to half a pixel width without the use of Special glasses or plastics are required and without reducing the image sharpness, in particular the pixel edge sharpness. Thanks to the proposed projection optics, color compensation and homogeneity improvement can thus be achieved in a matrix headlamp without additional loss of sharpness, in particular in relation to the periodically appearing color, homogeneity and imaging errors.

Ein wichtiger Aspekt der vorliegenden Erfindung ist darin zu sehen, dass eine einzelne matrixartige Lichtquelle, der eine einzelne integrale Primäroptik vorgeschaltet ist, deren Austrittslichtverteilung auf der Lichtaustrittsfläche über eine einzelne integrale Projektionsoptik derart auf der Fahrbahn abgebildet wird, dass mindestens zwei separate Primäroptik-Abbildungen entstehen, so dass in ihrem Zusammenwirken Pixelkanten und Grenzensteilheiten erhalten bleiben und sich die restlichen periodisch auftretenden Farb- und Homogenitäts- bzw. Intensitätsschwankungen gegenseitig kompensieren. Es gibt verschiedene Möglichkeiten, die Projektionslinse im Sinne der Erfindung auszugestalten, dass sie den oben beschriebenen Effekt erzeugt.An important aspect of the present invention can be seen in the fact that a single matrix-like light source, which is preceded by a single integral primary optics, whose exit light distribution on the light exit surface is imaged on the roadway via a single integral projection optics such that at least two separate primary optics images are created , so that pixel edges and steepness of boundaries are retained in their interaction and the remaining periodically occurring color and homogeneity or intensity fluctuations compensate each other. There are various ways of designing the projection lens in the sense of the invention that it produces the effect described above.

Zur Realisierung des erfindungsgemäßen LED-Moduls ist es denkbar, eine oder mehrere aktive optisch wirksame Flächen der Projektionsoptik zu variieren. Insbesondere kann dies eine Lichteintrittsfläche, eine Lichtaustrittsfläche und/oder eine beliebig andere Fläche dazwischen (bspw. bei einem Achromaten) sein. Die aktive optisch wirksame Fläche der Projektionsoptik wird vorzugsweise derart geteilt und/oder verschoben, dass die mindestens zwei separaten, in horizontaler Richtung zueinander verschobenen Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugt werden. Jede der erzeugten Abbildungen trägt einen Teil des gemeinsamen Lichtstroms bzw. einen Teil der Intensität und der Beleuchtungsstärke bei. Der Anteil, den jede Abbildung beiträgt, hängt von der Anzahl der erzeugten separaten Abbildungen ab. So ist der Anteil vorzugsweise bei zwei Abbildungen 50% und dementsprechend bei drei Abbildungen 33% des gemeinsamen Werts der resultierenden Lichtverteilung.To implement the LED module according to the invention, it is conceivable to vary one or more active optically active surfaces of the projection optics. In particular, this can be a light entry surface, a light exit surface and / or any other surface in between (for example in the case of an achromatic lens). The active optically active surface of the projection optics is preferably divided and / or shifted in such a way that the at least two separate images of the light exit surface of the primary optics which are shifted in the horizontal direction are produced. Each of the images generated contributes part of the common luminous flux or part of the intensity and illuminance. The proportion that each image contributes depends on the number of separate images generated. The proportion is preferably 50% for two images and accordingly 33% for three images of the common value of the resulting light distribution.

Vorteilhafterweise ist die Projektionsoptik derart ausgebildet ist, dass die separaten Abbildungen der Austrittsfläche der Primäroptik jeweils um einen Wert b/n zueinander versetzt sind, wobei b eine Breite, insbesondere eine Winkelbreite, eines durch die Abbildung einer einzelnen Lichtaustrittsfläche eines einzelnen Primäroptikelements gebildeten Pixels und n eine Anzahl der von der Projektionsoptik erzeugten separaten Abbildungen der Austrittsfläche der Primäroptik ist. Wenn die Projektionsoptik bspw. zur Erzeugung von zwei separaten Abbildungen der Lichtaustrittsfläche der Primäroptik ausgebildet ist, sind diese beiden Abbildungen vorzugsweise um eine halbe Pixelbreite zueinander versetzt.
Dementsprechend sind die Abbildungen der Lichtaustrittsfläche der Primäroptik vorzugsweise um ein Drittel der Pixelbreite zueinander versetzt, wenn die Projektionsoptik zur Erzeugung von drei separaten Abbildungen ausgebildet ist. Auf diese Weise kann eine besonders homogene Lichtverteilung erzeugt werden.
The projection optics are advantageously designed such that the separate images of the exit surface of the primary optics are each offset by a value b / n, where b is a width, in particular an angular width, of a pixel formed by the imaging of an individual light exit surface of an individual primary optic element and n is a number of separate images of the exit surface of the primary optics generated by the projection optics. If the projection optics are designed, for example, to generate two separate images of the light exit surface of the primary optics, these two images are preferably offset from one another by half a pixel width.
Accordingly, the images of the light exit surface of the primary optics are preferably offset from one another by a third of the pixel width if the projection optics are designed to produce three separate images. In this way, a particularly homogeneous light distribution can be generated.

Ein wichtiger Aspekt der vorliegenden Erfindung ist darin zu sehen, dass eine einzelne matrixartige Lichtquelle, der eine einzelne integrale Primäroptik vorgeschaltet ist, deren Austrittslichtverteilung auf der Lichtaustrittsfläche über eine einzelne integrale Projektionsoptik derart auf der Fahrbahn abgebildet wird, dass mindestens zwei separate Primäroptik-Abbildungen entstehen, so dass in ihrem Zusammenwirken Pixelkanten und Grenzensteilheiten erhalten bleiben und sich die restlichen periodisch auftretenden Farb- und Homogenitäts- bzw. Intensitätsschwankungen gegenseitig kompensieren. Es gibt verschiedene Möglichkeiten, die Projektionslinse im Sinne der Erfindung auszugestalten, dass sie den oben beschriebenen Effekt erzeugt.An important aspect of the present invention can be seen in the fact that a single matrix-like light source, which is preceded by a single integral primary optics, whose exit light distribution on the light exit surface is imaged on the roadway via a single integral projection optics such that at least two separate ones Primary optics images are created so that pixel edges and steepness of boundaries are retained in their interaction and the other periodically occurring fluctuations in color and homogeneity or intensity compensate each other. There are various ways of designing the projection lens in the sense of the invention that it produces the effect described above.

Gemäß einer ersten vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die Projektionsoptik mindestens zwei getrennte optische Achsen aufweist. Die getrennten optischen Achsen der Projektionsoptik verlaufen bevorzugt in derselben horizontalen Ebene. Die horizontale Ebene umfasst vorzugsweise eine Modulachse eine LED-Moduls, das mit der Projektionslinse versehen ist. Die Modulachse verläuft bevorzugt von der Mitte der Lichtaustrittsfläche der Primäroptik in Fahrtrichtung. Der Abstand der optischen Achsen zueinander ist relativ gering. Er wird so gewählt, dass separate Abbildungen der Lichtaustrittsfläche der Primäroptik generiert werden, die in horizontaler Richtung um einen Bruchteil eines Pixels zueinander versetzt sind. Die unterschiedlichen optischen Achsen der Projektionsoptik bewirken, dass verschiedene Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugt werden. Die Anzahl der durch die Projektionslinse erzeugten separaten Abbildungen entspricht der Anzahl der getrennten optischen Achsen. Die Abbildungen der Lichtaustrittsfläche der Primäroptik sind entsprechend dem Verlauf der optischen Achsen zueinander versetzt. Dadurch, dass die optischen Achsen in derselben horizontalen Ebene verlaufen, sind die separaten Abbildungen lediglich in horizontaler Richtung zueinander versetzt. Wären die optischen Achsen in unterschiedlichen horizontalen Ebenen angeordnet, ergäbe sich zusätzlich noch ein vertikaler Versatz der Abbildungen zueinander.According to a first advantageous development of the present invention, it is proposed that the projection optics have at least two separate optical axes. The separate optical axes of the projection optics preferably run in the same horizontal plane. The horizontal plane preferably comprises a module axis of an LED module which is provided with the projection lens. The module axis preferably runs from the center of the light exit surface of the primary optics in the direction of travel. The distance between the optical axes is relatively small. It is chosen so that separate images of the light exit surface of the primary optics are generated, which are offset from one another in the horizontal direction by a fraction of a pixel. The different optical axes of the projection optics mean that different images of the light exit surface of the primary optics are generated. The number of separate images generated by the projection lens corresponds to the number of separate optical axes. The images of the light exit surface of the primary optics are offset from one another in accordance with the course of the optical axes. The fact that the optical axes run in the same horizontal plane means that the separate images are only offset from one another in the horizontal direction. If the optical axes were arranged in different horizontal planes, this would result there is also a vertical offset of the images to each other.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die getrennten optischen Achsen der Projektionsoptik parallel und beabstandet zueinander verlaufen. Alternativ wird vorgeschlagen, dass die getrennten optischen Achsen der Projektionsoptik schräg zueinander verlaufen. In diesem Fall schneiden sich die optischen Achsen der Projektionsoptik vorzugsweise in einer Ebene der Lichtaustrittsfläche der Primäroptik. Die Ebene der Lichtaustrittsfläche verläuft vorzugsweise senkrecht zu der horizontalen Ebene, in der die optischen Achsen angeordnet sind. Besonders bevorzugt ist, wenn sich die schräg stehenden optischen in einem Schnittpunkt der Modulachse mit der Lichtaustrittsfläche der Primäroptik schneiden.According to a preferred embodiment of the invention, it is proposed that the separate optical axes of the projection optics run parallel and at a distance from one another. Alternatively, it is proposed that the separate optical axes of the projection optics run at an angle to one another. In this case, the optical axes of the projection optics preferably intersect in a plane of the light exit surface of the primary optics. The plane of the light exit surface is preferably perpendicular to the horizontal plane in which the optical axes are arranged. It is particularly preferred if the oblique optical intersect at an intersection of the module axis with the light exit surface of the primary optics.

Gemäß einer anderen bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass mindestens eine aktive optische Fläche der Projektionsoptik mit neben- und/oder übereinander angeordneten alternierenden optischen Bereichen zum Erzeugen von im Wesentlichen gleichen Abbildungen der Austrittsfläche der Primäroptik versehen ist, wobei eine erste Gruppe der optischen Bereiche eine erste Abbildung der Austrittsfläche der Primäroptik erzeugt und mindestens eine weitere Gruppe der optischen Bereiche eine mindestens eine weitere Abbildung der Austrittsfläche der Primäroptik erzeugt, wobei die erzeugten Abbildungen in der resultierenden Lichtverteilung in horizontaler Richtung versetzt zueinander angeordnet sind. In diesem Sinne kann mindestens eine aktive optische Fläche der Projektionsoptik streifen- oder schachbrettartig mit den alternierenden Bereichen versehen sein. Jeder Gruppe von Bereichen ist eine eigene optische Achse zugeordnet, die getrennt von den optischen Achsen der anderen Gruppen von Bereichen ist.According to another preferred embodiment of the present invention, it is proposed that at least one active optical surface of the projection optics be provided with alternating optical regions arranged next to and / or one above the other for generating essentially identical images of the exit surface of the primary optics, a first group of the optical ones Areas produces a first image of the exit surface of the primary optics and at least one further group of the optical regions generates an at least one further image of the exit surface of the primary optics, the generated images being arranged offset from one another in the horizontal direction in the resulting light distribution. In this sense, at least one active optical surface of the projection optics can be provided with the alternating regions in the manner of a strip or checkerboard. Each group of areas is assigned its own optical axis, which is separate from the optical axes of the other groups of areas.

Vorzugsweise sind die alternierenden optischen Bereiche auf einer Lichtaustrittsfläche der Projektionsoptik ausgebildet. Bevorzugt ist ferner, dass die alternierenden optischen Bereiche streifenförmig ausgebildet sind, wobei sich die Streifen in vertikaler Richtung erstrecken. Wenn die Projektionsoptik zwei separate Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugt, sind die streifenförmigen Bereiche vorzugsweise abwechselnd einer von zwei Gruppen zugeordnet. Dementsprechend ist vorzugsweise jeder dritte streifenförmige Bereich einer von drei Gruppen zugeordnet, wenn die Projektionsoptik drei separate Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugt.The alternating optical regions are preferably formed on a light exit surface of the projection optics. It is further preferred that the alternating optical regions are designed in the form of strips, the strips extending in the vertical direction. If the projection optics produce two separate images of the light exit surface of the primary optics, the strip-shaped areas are preferably assigned alternately to one of two groups. Accordingly, every third strip-shaped area is preferably assigned to one of three groups if the projection optics generate three separate images of the light exit surface of the primary optics.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die aktive optische Fläche der Projektionsoptik mit mehreren, sich über die gesamte Fläche erstreckenden, nebeneinander angeordneten Prismen versehen ist, deren Längsachsen parallel zueinander verlaufen, wobei eine Prismafläche der Prismen die erste Abbildung der Austrittsfläche der Primäroptik erzeugt und die andere Prismafläche der Prismen die zweite Abbildung der Austrittsfläche der Primäroptik erzeugt. Die Prismaflächen können eben oder gewölbt ausgebildet sein.According to a further preferred embodiment of the invention, it is proposed that the active optical surface of the projection optics be provided with a plurality of prisms arranged alongside one another, which extend over the entire surface and whose longitudinal axes run parallel to one another, with a prism surface of the prisms being the first image of the exit surface of the Primary optics and the other prism surface of the prisms creates the second image of the exit surface of the primary optics. The prism surfaces can be flat or curved.

Gemäß noch einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass eine Spitze der Prismen über deren gesamte Längserstreckung abgeflacht ist, so dass sich eine Dachfläche der Prismen ergibt, welche eine weitere Abbildung der Lichtaustrittsfläche der Primäroptik erzeugt, die zu den anderen beiden Abbildungen in horizontaler Richtung versetzt ist. Auf diese Weise kann die Projektionsoptik also drei separate, in horizontaler Richtung zueinander versetzte Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugen. Die Abbildungen sind vorzugsweise um b/3 zueinander versetzt, wobei b die Breite, insbesondere eine Winkelbreite, eines Pixels der resultierenden Lichtverteilung, also eine Teil-Abbildung einer Teil-Lichtaustrittsfläche eines Primäroptikelements ist.According to yet another preferred embodiment of the present invention, it is proposed that a tip of the prisms be flattened over their entire longitudinal extent, so that there is a roof surface of the prisms, which produces a further image of the light exit surface of the primary optics, which corresponds to the other two images in FIG is offset in the horizontal direction. In this way, the projection optics can be three separate ones in horizontal Create images of the light exit surface of the primary optics that are offset in relation to one another. The images are preferably offset from one another by b / 3, where b is the width, in particular an angular width, of a pixel of the resulting light distribution, that is to say a partial image of a partial light exit surface of a primary optic element.

Gemäß noch einer anderen bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass die Prismaflächen der Prismen über deren gesamte Längserstreckung jeweils in zwei Teilflächen unterteilt sind, wobei eine Berührungslinie der Teilflächen einer Prismafläche eines Prismas parallel zu der Längsachse des Prismas verläuft, wobei die Teilflächen jeweils eine separate und zu den anderen Abbildungen versetzt angeordnete Abbildung der Lichtaustrittsfläche der Primäroptik erzeugen. Auf diese Weise kann die Projektionsoptik also bei einem Prisma mit Spitze vier separate, in horizontaler Richtung zueinander versetzte Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugen. Bei einem Prisma mit abgeflachter Spitze und Dachfläche kann die Projektionslinse sogar fünf separate, in horizontaler Richtung zueinander versetzte Abbildungen der Lichtaustrittsfläche der Primäroptik erzeugen. Die Abbildungen sind vorzugsweise um w'/4 bzw. w'/5 zueinander versetzt, wobei w' die Breite, insbesondere eine Winkelbreite, eines Pixels der resultierenden Lichtverteilung, also eine Teil-Abbildung einer Teil-Lichtaustrittsfläche eines Primäroptikelements ist.According to yet another preferred embodiment of the invention, it is proposed that the prism surfaces of the prisms are each divided into two partial surfaces over their entire longitudinal extent, a line of contact of the partial surfaces of a prism surface of a prism running parallel to the longitudinal axis of the prism, the partial surfaces each being a separate one and generate a staggered image of the light exit surface of the primary optics to the other images. In this way, the projection optics in a prism with a tip can produce four separate images of the light exit surface of the primary optics which are offset from one another in the horizontal direction. In the case of a prism with a flattened tip and roof surface, the projection lens can even produce five separate images of the light exit surface of the primary optics which are offset from one another in the horizontal direction. The images are preferably offset from one another by w '/ 4 or w' / 5, where w 'is the width, in particular an angular width, of a pixel of the resulting light distribution, that is to say a partial image of a partial light exit surface of a primary optic element.

Selbstverständlich können auch andere geeignete Strukturen zum Erzeugen der separaten Abbildungen der Lichtaustrittsfläche der Primäroptik vorgesehen sein. Ferner ist es denkbar, die Strukturen zum Erzeugen der separaten Abbildungen durch eine beliebige Streustruktur zu überlagern.Of course, other suitable structures can also be provided for generating the separate images of the light exit surface of the primary optics. Furthermore, it is conceivable to add the structures for generating the separate images using any scattering structure overlay.

Schließlich wird vorgeschlagen, dass die auf der mindestens einen aktiven optischen Fläche der Projektionsoptik ausgebildeten alternierenden optischen Bereiche eine Amplitude von weniger als 0,1 mm, vorzugsweise von weniger als einigen zig Mikrometern, ganz besonders bevorzugt von einigen Mikrometern aufweisen.Finally, it is proposed that the alternating optical regions formed on the at least one active optical surface of the projection optics have an amplitude of less than 0.1 mm, preferably less than a few tens of micrometers, very particularly preferably of a few micrometers.

Durch Verwendung eines erfindungsgemäßen LED-Moduls kann ein
erfindungsgemäßer Scheinwerfer realisiert werden.
By using an LED module according to the invention, a
headlights according to the invention can be realized.

Weitere Merkmale und Vorteile der Erfindung sind nachfolgend unter Bezugnahme auf die Figuren näher erläutert. Es zeigen:

Fig. 1
einen erfindungsgemäßen Kraftfahrzeugscheinwerfer gemäß einer bevorzugten Ausführungsform;
Fig. 2
ein erfindungsgemäßes LED-Modul eines Kraftfahrzeugscheinwerfers gemäß einer bevorzugten Ausführungsform;
Fig. 3
eine Lichtverteilung eines aus dem Stand der Technik bekannten Matrix-Scheinwerfers;
Fig. 4
eine erste Abbildung einer Lichtaustrittsfläche einer Primäroptik eines erfindungsgemäßen LED-Moduls;
Fig. 5
eine zweite Abbildung einer Lichtaustrittsfläche einer Primäroptik des erfindungsgemäßen LED-Moduls;
Fig. 6
eine aus einer Überlagerung der Abbildungen aus den Fig. 4 und 5 resultierende Lichtverteilung des erfindungsgemäßen LED-Moduls;
Fig. 7
eine beispielhafte Lichtverteilung mit ISO-Linien auf einem Messschirm eines aus dem Stand der Technik bekannten LED-Moduls;
Fig. 8
eine der Lichtverteilung aus Fig. 7 entsprechende beispielhafte Lichtverteilung eines erfindungsgemäßen LED-Moduls;
Fig. 9
eine erfindungsgemäße Projektionsoptik mit parallelen optischen Achsen;
Fig. 10
eine erfindungsgemäße Projektionsoptik mit schräg stehenden optischen Achsen;
Fig. 11
eine erfindungsgemäße Projektionsoptik mit alternierenden optisch wirksamen Bereichen auf der Lichtaustrittsfläche;
Fig. 12
eine erfindungsgemäße Projektionsoptik mit einer Prisma-Struktur auf der Lichtaustrittsfläche;
Fig. 13
verschiedene Beispiele für Strukturen auf einer optisch aktiven Fläche einer erfindungsgemäßen Projektionsoptik;
Fig. 14
weitere Beispiele für Strukturen auf einer optisch aktiven Fläche einer erfindungsgemäßen Projektionsoptik;
Fig. 15
ein Ausschnitt einer Prisma-Struktur auf einer optisch aktiven Fläche einer erfindungsgemäßen Projektionsoptik; und
Fig. 16
weitere Beispiele für Strukturen auf einer optisch aktiven Fläche einer erfindungsgemäßen Projektionsoptik.
Further features and advantages of the invention are explained in more detail below with reference to the figures. Show it:
Fig. 1
a motor vehicle headlight according to the invention according to a preferred embodiment;
Fig. 2
an inventive LED module of a motor vehicle headlight according to a preferred embodiment;
Fig. 3
a light distribution of a matrix headlight known from the prior art;
Fig. 4
a first image of a light exit surface of a primary optics of an LED module according to the invention;
Fig. 5
a second image of a light exit surface primary optics of the LED module according to the invention;
Fig. 6
one from an overlay of the images from the Fig. 4 and 5 resulting light distribution of the LED module according to the invention;
Fig. 7
an exemplary light distribution with ISO lines on a measuring screen of an LED module known from the prior art;
Fig. 8
one of the light distribution Fig. 7 corresponding exemplary light distribution of an LED module according to the invention;
Fig. 9
projection optics according to the invention with parallel optical axes;
Fig. 10
projection optics according to the invention with inclined optical axes;
Fig. 11
projection optics according to the invention with alternating optically effective areas on the light exit surface;
Fig. 12
projection optics according to the invention with a prism structure on the light exit surface;
Fig. 13
various examples of structures on an optically active surface of a projection optics according to the invention;
Fig. 14
further examples of structures on an optically active surface of a projection optics according to the invention;
Fig. 15
a section of a prism structure on an optically active surface of a projection optics according to the invention; and
Fig. 16
further examples of structures on an optically active surface of a projection optics according to the invention.

In Figur 1 ist ein erfindungsgemäßer Kraftfahrzeugscheinwerfer in seiner Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Der Scheinwerfer 1 weist ein Gehäuse 2 auf, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 3 weist das Scheinwerfergehäuse 2 eine Lichtaustrittsöffnung 4 auf, die mittels einer transparenten Abdeckscheibe 5 verschlossen ist. Die Abdeckscheibe 5 besteht aus Glas oder Kunststoff. Auf der Abdeckscheibe 5 können zumindest bereichsweise optisch wirksame Profile (z.B. Prismen oder Zylinderlinsen) angeordnet sein, um das hindurchtretende Licht zu streuen (sogenannte Streuscheibe). Es ist aber auch denkbar, dass die Abdeckscheibe 5 ohne solche optisch wirksamen Elemente ausgebildet ist (sogenannte klare Scheibe).In Figure 1 A motor vehicle headlight according to the invention is designated in its entirety with reference number 1. The headlight 1 has a housing 2, which is preferably made of plastic. In a light exit direction 3, the headlight housing 2 has a light exit opening 4, which is closed by means of a transparent cover plate 5. The cover plate 5 is made of glass or plastic. At least in some areas, optically effective profiles (for example prisms or cylindrical lenses) can be arranged on the cover plate 5 in order to scatter the light passing through (so-called diffuser plate). However, it is also conceivable that the cover plate 5 is designed without such optically active elements (so-called clear plate).

Im Inneren des Scheinwerfergehäuses 2 ist ein Lichtmodul 6 angeordnet. Das Lichtmodul 6 kann zur Erzeugung einer beliebigen Scheinwerferfunktion oder eines Teils davon dienen. Insbesondere kann das Lichtmodul 6 zur Erzeugung einer Abblendlichtverteilung, einer Fernlichtverteilung, einer Nebellichtverteilung oder einer beliebigen adaptiven Lichtverteilung dienen. Ferner kann in dem Gehäuse 2 ein weiteres Lichtmodul 7 angeordnet sein. Dieses dient bspw. zur Erzeugung einer weiteren Scheinwerferfunktion. Es wäre aber auch denkbar, dass die Lichtmodule 6, 7 zusammen eine bestimmte Scheinwerferfunktion erzeugen. So könnte beispielsweise das Lichtmodul 7 eine Abblendlicht-Grundlichtverteilung mit einer relativ breiten Streuung und einer horizontalen Hell-Dunkel-Grenze erzeugen. Das Lichtmodul 6 könnte dann eine Abblendlicht-Spotlichtverteilung erzeugen, die im Vergleich zu der Abblendlicht-Grundlichtverteilung des Lichtmoduls 7 relativ stark konzentriert ist und an der Oberseite eine asymmetrische Hell-Dunkel-Grenze aufweist. Eine Überlagerung der Grundlichtverteilung und der Spotlichtverteilung ergibt eine herkömmliche Abblendlichtverteilung. Selbstverständlich ist es denkbar, dass in dem Scheinwerfergehäuse 2 außer den Lichtmodulen 6, 7 noch weitere Lichtmodule angeordnet sind. Außerdem kann in dem Scheinwerfergehäuse 2 lediglich ein Lichtmodul, beispielsweise das Lichtmodul 6 ohne das Lichtmodul 7, angeordnet sein. Schließlich ist es möglich, dass in dem Gehäuse 2 auch eines oder mehrere Leuchtenmodule, wie das beispielhaft eingezeichnete Leuchtenmodul 8, angeordnet sind. Das Leuchtenmodul 8 dient zur Erzeugung einer beliebigen Leuchtenfunktion, beispielsweise eines Blinklichts, eines Positionslichts, eines Tagfahrlichts, etc.A light module 6 is arranged in the interior of the headlight housing 2. The light module 6 can be used to generate any headlight function or a part thereof. In particular, the light module 6 can be used to generate a low beam distribution, a high beam distribution, a fog light distribution or any adaptive light distribution. Furthermore, a further light module 7 can be arranged in the housing 2. This is used, for example, to generate a further headlight function. But it would also be conceivable that the light modules 6, 7 together form one generate certain headlight function. For example, the light module 7 could generate a low-beam basic light distribution with a relatively wide scatter and a horizontal cut-off line. The light module 6 could then produce a low beam spot light distribution which is relatively strongly concentrated in comparison with the low beam basic light distribution of the light module 7 and has an asymmetrical light-dark boundary on the upper side. A superimposition of the basic light distribution and the spot light distribution results in a conventional low beam distribution. Of course, it is conceivable that in addition to the light modules 6, 7, further light modules are arranged in the headlight housing 2. In addition, only one light module, for example the light module 6 without the light module 7, can be arranged in the headlight housing 2. Finally, it is possible that one or more light modules, such as the light module 8 shown by way of example, are also arranged in the housing 2. The lamp module 8 is used to generate any lamp function, for example a flashing light, a position light, a daytime running light, etc.

Das Lichtmodul 6 ist vorzugsweise als ein erfindungsgemäßes LED-Modul ausgebildet. Das LED-Modul 6 ist im Detail in Figur 2 gezeigt. Das LED-Modul 6 weist eine Lichtquelle in Form einer LED-Matrix auf, die in ihrer Gesamtheit mit dem Bezugszeichen 10 bezeichnet ist. Die LED-Matrix 10 weist mehrere matrixartig neben- und übereinander angeordnete LED-Chips 11 auf. Ferner umfasst das LED-Modul 6 eine Primäroptik, die in ihrer Gesamtheit mit dem Bezugszeichen 12 bezeichnet ist. Die Primäroptik 12 weist mehrere matrixartig neben- und übereinander angeordnete Primäroptikelemente 13 auf. In dem dargestellten Ausführungsbeispiel ist jedem LED-Chip 11 ein eigenes Primäroptikelement 13 zugeordnet. Wie anhand des Ausschnitts I, der ein solches Primäroptikelement 13 zusammen mit einem ihm zugeordneten LED-Chip 11 zeigt, gezeigt, sendet der LED-Chip 11 Licht in einer Hauptabstrahlrichtung 14 aus, das größtenteils über eine Lichteintrittsfläche 15 in das Primäroptikelement 13 einkoppelt. Das Primäroptikelement 13 selbst kann als ein herkömmlicher Reflektor für Spiegelreflexion oder als ein sogenanntes Vorsatzoptikelement aus einem transparenten Material (z.B. Glas oder Kunststoff) für Totalreflexion ausgebildet sein. In dem dargestellten Beispiel ist das Primäroptikelement 13 als eine totalreflektierende Vorsatzoptik aus einem transparenten Kunststoffmaterial ausgebildet. Die Primäroptik 12 kann das von der LED-Matrix 10 ausgesandte Licht bündeln. Schließlich umfasst das LED-Modul 6 eine Projektionsoptik 16, die als eine optische Linse ausgebildet ist. Die Projektionsoptik 16 wird auch als Sekundäroptik bezeichnet. Sie projiziert eine Austrittsfläche 17 der Primäroptik 12 zur Erzeugung einer vorgegebenen Lichtverteilung auf eine Fahrbahn vor ein mit dem Scheinwerfer 1 und dem LED-Modul 6 ausgestattetes Fahrzeug. Die Projektionsoptik 16 kann als eine herkömmliche optische Linse oder als ein Achromat ausgebildet sein.The light module 6 is preferably designed as an LED module according to the invention. The LED module 6 is in detail in Figure 2 shown. The LED module 6 has a light source in the form of an LED matrix, which is designated in its entirety by the reference number 10. The LED matrix 10 has a plurality of LED chips 11 arranged side by side and one above the other in a matrix. Furthermore, the LED module 6 comprises a primary optic, which is designated in its entirety by the reference number 12. The primary optics 12 have a plurality of primary optics elements 13 arranged side by side and one above the other in a matrix. In the illustrated In the exemplary embodiment, each LED chip 11 is assigned its own primary optical element 13. As shown in section I, which shows such a primary optic element 13 together with an LED chip 11 assigned to it, the LED chip 11 emits light in a main emission direction 14, which largely couples into the primary optic element 13 via a light entry surface 15. The primary optics element 13 itself can be designed as a conventional reflector for specular reflection or as a so-called attachment optics element made of a transparent material (for example glass or plastic) for total reflection. In the example shown, the primary optics element 13 is designed as a totally reflective front lens made of a transparent plastic material. The primary optics 12 can bundle the light emitted by the LED matrix 10. Finally, the LED module 6 comprises projection optics 16 which are designed as an optical lens. The projection optics 16 is also referred to as secondary optics. It projects an exit surface 17 of the primary optics 12 for generating a predetermined light distribution onto a roadway in front of a vehicle equipped with the headlamp 1 and the LED module 6. The projection optics 16 can be designed as a conventional optical lens or as an achromatic lens.

Der Scheinwerfer 1 mit dem LED-Modul 6 wird auch als ein Matrix-Scheinwerfer bezeichnet, da er eine Lichtverteilung mit mehreren neben- und/oder übereinander angeordneten pixel- oder streifenförmigen Teillichtverteilungen erzeugt. Die einzelnen Teillichtverteilungen, die von dem Licht einer LED 11 und dem zugehörigen Primäroptikelement 13 erzeugt werden, werden auch als Pixel bezeichnet. Jede der Teillichtverteilungen wird durch die Abbildung einer Teil-Lichtaustrittsfläche eines einzelnen Primäroptikelements 13 der Primäroptik 12 mittels der Projektionsoptik 16 erzeugt. In Figur 3 ist beispielhaft eine Lichtverteilung eines aus dem Stand der Technik bekannten Matrix-Scheinwerfers 1 gezeigt. Die Lichtverteilung 20 ist auf einem Messschirm 21 abgebildet, der in einem definierten Abstand zu dem Scheinwerfer 1 bzw. dem LED-Modul 6 vor dem Kraftfahrzeug angeordnet ist. Auf dem Messschirm sind zudem eine Horizontale HH sowie eine dazu senkrecht verlaufende Vertikale VV eingezeichnet. Es ist deutlich zu erkennen, dass die hier beispielhaft dargestellte Lichtverteilung 20 eine Vielzahl von neben- und übereinander angeordneten Pixeln 22, 23, 24 aufweist. Insbesondere sind die Pixel 22, 23, 24 in dem dargestellten Ausführungsbeispiel in drei Reihen sowie in dreißig Spalten angeordnet. Die Pixel der oberen Reihe sind mit dem Bezugszeichen 22, die Pixel der mittleren Reihe mit dem Bezugszeichen 23 und die Pixel der unteren Reihe mit dem Bezugszeichen 24 bezeichnet. Jedes Pixel 22, 23, 24 der dargestellten Lichtverteilung 20 wird durch einen LED-Chip 11 im Zusammenwirken mit dem zugeordneten Primäroptikelement 13 nach Projektion durch die Sekundäroptik 16 erzeugt.The headlamp 1 with the LED module 6 is also referred to as a matrix headlamp, since it generates a light distribution with a plurality of pixel or strip-shaped partial light distributions arranged next to and / or one above the other. The individual partial light distributions that are generated by the light of an LED 11 and the associated primary optical element 13 are also referred to as pixels. Each of the partial light distributions is shown by imaging a partial light exit surface of an individual primary optical element 13 the primary optics 12 are generated by means of the projection optics 16. In Figure 3 a light distribution of a matrix headlight 1 known from the prior art is shown by way of example. The light distribution 20 is shown on a measuring screen 21, which is arranged at a defined distance from the headlight 1 or the LED module 6 in front of the motor vehicle. A horizontal HH and a vertical VV running perpendicular to it are also drawn on the measuring screen. It can be clearly seen that the light distribution 20 shown here by way of example has a large number of pixels 22, 23, 24 arranged next to and above one another. In particular, the pixels 22, 23, 24 in the exemplary embodiment shown are arranged in three rows and in thirty columns. The pixels of the upper row are designated by the reference symbol 22, the pixels of the middle row by the reference symbol 23 and the pixels of the lower row by the reference symbol 24. Each pixel 22, 23, 24 of the light distribution 20 shown is generated by an LED chip 11 in cooperation with the associated primary optics element 13 after projection by the secondary optics 16.

Durch ein gezieltes Ansteuern der einzelnen LED-Chips 11 der LED-Matrix 12 ist es möglich, die resultierende Lichtverteilung 20 nahezu beliebig zu variieren. So ist es beispielsweise denkbar, diejenigen LED-Chips 11 vorübergehend auszuschalten, in deren Pixel-Bereich der Lichtverteilung 20 andere Verkehrsteilnehmer detektiert worden sind. Auf diese Weise kann kontinuierlich mit Fernlicht gefahren werden, wobei eine Blendung anderer Verkehrsteilnehmer durch die lokal aus der Lichtverteilung 20 herausgenommenen Pixel 22, 23, 24 verhindert wird (sogenanntes Teilfernlicht). Ebenso wäre es denkbar, dass das LED-Modul 6 eine Abblendlichtverteilung mit asymmetrischer oberer Hell-Dunkel-Grenze erzeugt, wobei die LED-Chips 11 zur Erzeugung der oberen Reihe der Pixel 22 bis auf einige wenige LED-Chips 11 zur Erzeugung der Pixel 22 auf der eigenen Verkehrsseite ausgeschaltet sind. Zusätzlich wäre es denkbar, auf einer Fahrbahn vor dem Kraftfahrzeug detektierte Objekte durch gezieltes Einschalten einzelner LED-Chips 11 zur Erzeugung eines oder mehrerer Pixel 22, 23 oberhalb der Hell-Dunkel-Grenze der Abblendlichtverteilung einzuschalten, damit die vor der Fahrbahn detektierten Objekte gezielt angestrahlt werden können (sog. Markierungslicht oder Markerlight). Auch beliebig andere adaptive Lichtverteilungen 20 können durch gezieltes Ein-/ Ausschalten und/oder Dimmen der LEDs 11 erzielt werden.By specifically controlling the individual LED chips 11 of the LED matrix 12, it is possible to vary the resulting light distribution 20 almost as desired. For example, it is conceivable to temporarily switch off those LED chips 11 in whose pixel area of the light distribution 20 other road users have been detected. In this way, driving can be carried out continuously with high beam, whereby glare to other road users is prevented by the pixels 22, 23, 24 which are locally removed from the light distribution 20 (so-called partial high beam). It would also be conceivable that the LED module 6 generates a low beam distribution with an asymmetrical upper cut-off line, the LED chips 11 for generating the upper row of pixels 22 are switched off except for a few LED chips 11 for generating pixels 22 on the own traffic side. In addition, it would be conceivable to switch on objects detected on a roadway in front of the motor vehicle by deliberately switching on individual LED chips 11 to generate one or more pixels 22, 23 above the cut-off line of the low beam so that the objects detected in front of the roadway are illuminated in a targeted manner can be (so-called marker light or marker light). Any other adaptive light distributions 20 can also be achieved by specifically switching the LEDs 11 on / off and / or dimming them.

Insbesondere entlang des Rands der einzelnen Pixel 22, 23, 24 kann die resultierende Lichtverteilung 20 einen unerwünschten Farbsaum aufweisen. Zudem kann es in der Lichtverteilung 20 zu deutlich sichtbaren Intensitätsschwankungen kommen. Mit der vorliegenden Erfindung soll die Homogenität der Lichtverteilung 20 hinsichtlich störender Farbeffekte und Intensitätsschwankungen verbessert werden.In particular, along the edge of the individual pixels 22, 23, 24, the resulting light distribution 20 can have an undesirable color fringe. In addition, there can be clearly visible intensity fluctuations in the light distribution 20. The aim of the present invention is to improve the homogeneity of the light distribution 20 with regard to disturbing color effects and intensity fluctuations.

Die vorliegende Erfindung schlägt insbesondere eine spezielle homogenisierende Projektionsoptik (oder Sekundäroptik) 16 als Bestandteil eines Matrix-Scheinwerfers 1 für Kraftfahrzeuge vor, in dem eine Lichtaustrittsfläche 17 der Primäroptik 12 aus mehreren pixel- oder streifenförmig aneinander gereihten periodischen Strukturen besteht, die durch die spezielle Projektionsoptik 16 auf die Fahrbahn projiziert wird, um eine dynamische Abblendlicht-, Teilfernlicht-, Matrixlicht- oder Fernlichtfunktion zu realisieren. Die Projektionsoptik 16 erzeugt auf der Bildseite, d.h. auf der Fahrbahn oder auf einem Messschirm 21, mindestens zwei separate Abbildungen 25, 26 (vgl. Figuren 4 und 5) der objektseitig befindlichen Lichtaustrittsfläche 17 der Primäroptik 12. Durch eine Überlagerung der mindestens zwei separaten Abbildungen 25, 26 ergibt sich eine resultierende Lichtverteilung 27 (vgl. Figur 6), wobei die mindestens zwei Abbildungen 25, 26 derart in horizontaler Richtung zueinander versetzt sind, dass sich eine deutliche Verbesserung der Homogenität der Lichtverteilung 27 ergibt. Insbesondere werden unerwünschte Farbeffekte oder Intensitätsschwankungen in der Lichtverteilung 27 gezielt verringert bzw. sogar ganz eliminiert. Die separaten Abbildungen 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12 werden durch eine gemeinsame Projektionsoptik 16 erzeugt.In particular, the present invention proposes a special homogenizing projection optics (or secondary optics) 16 as a component of a matrix headlight 1 for motor vehicles, in which a light exit surface 17 of the primary optics 12 consists of a plurality of periodic structures that are lined up in a pixel or stripe fashion by the special projection optics 16 is projected onto the road to implement a dynamic low beam, partial high beam, matrix light or high beam function. The projection optics 16 generate at least two separate ones on the image side, ie on the roadway or on a measuring screen 21 Figures 25, 26 (cf. Figures 4 and 5 ) of the light exit surface 17 of the primary optics 12 on the object side. A superimposition of the at least two separate images 25, 26 results in a resulting light distribution 27 (cf. Figure 6 ), the at least two images 25, 26 being offset from one another in the horizontal direction in such a way that there is a clear improvement in the homogeneity of the light distribution 27. In particular, undesired color effects or intensity fluctuations in the light distribution 27 are selectively reduced or even completely eliminated. The separate images 25, 26 of the light exit surface 17 of the primary optics 12 are generated by a common projection optics 16.

Eine erste Abbildung 25 der Lichtaustrittsfläche 17 der Primäroptik 12, die durch die erfindungsgemäße Projektionsoptik 16 erzeugt werden kann, ist beispielhaft in Figur 4 gezeigt. Die Abbildung 25 aus Figur 4 ist in dem dargestellten Beispiel um etwa 1/4 Pixel nach links bezüglich der Vertikalen VV versetzt. In Figur 5 ist eine zweite Abbildung 26 der Lichtaustrittsfläche 17 der Primäroptik 12 dargestellt. Die zweite separate Abbildung 26 ist in dem dargestellten Ausführungsbeispiel um etwa ¼ Pixel nach rechts bezüglich der Vertikalen VV verschoben. Damit sind die erste und die zweite Abbildung 25, 26 um etwa 1/2 Pixel relativ zueinander versetzt. Jede Abbildung 25, 26 trägt den halben gemeinsamen Lichtstrom zu der resultierenden Gesamtlichtverteilung 27 bei bzw. die halbe Intensität und die halbe Beleuchtungsstärke zum Gesamtwert der Lichtverteilung 27. Da die Kanten der Pixel 22, 23, 24 und die Pixelmitten der Abbildungen 25, 26 nicht übereinander liegen, kompensieren sich Farb- und Intensitäts-Inhomogenitäten durch Überlagerung der Abbildungen 25, 26 gegenseitig. Damit ist es mit der vorliegenden Erfindung möglich, aus nur einem LED-Modul 6 mit einer Primäroptik 12 und einer Projektionsoptik 16 eine wesentlich homogenere Lichtverteilung 27 zu generieren als dies im Stand der Technik unter vergleichbaren Bedingungen bzw. Voraussetzungen möglich ist.A first image 25 of the light exit surface 17 of the primary optics 12, which can be generated by the projection optics 16 according to the invention, is exemplified in FIG Figure 4 shown. Figure 25 from Figure 4 is offset by about 1/4 pixel to the left with respect to the vertical VV in the example shown. In Figure 5 A second image 26 of the light exit surface 17 of the primary optics 12 is shown. The second separate figure 26 is shifted by about ¼ pixel to the right with respect to the vertical VV in the exemplary embodiment shown. The first and second images 25, 26 are thus offset relative to one another by approximately 1/2 pixel. Each figure 25, 26 contributes half the common luminous flux to the resulting total light distribution 27, or half the intensity and half the illuminance to the total value of the light distribution 27. Since the edges of the pixels 22, 23, 24 and the pixel centers of figures 25, 26 do not lying on top of one another, color and intensity inhomogeneities compensate for one another by superimposing the figures 25, 26. So that's it with the The present invention makes it possible to generate a significantly more homogeneous light distribution 27 from only one LED module 6 with a primary optic 12 and a projection optic 16 than is possible in the prior art under comparable conditions or conditions.

Die Intensität der Einzelabbildungen 25, 26 hängt ab von der Länge der Prismenflächen bzw. vom Anteil der Prismenbasisfläche, welcher der entsprechenden Prismenfläche zugeordnet ist. Eine bevorzugte Ausführungsform umfasst Prismen mit gleichen Prismenbasisflächenanteilen.The intensity of the individual images 25, 26 depends on the length of the prism surfaces or on the proportion of the prism base surface which is assigned to the corresponding prism surface. A preferred embodiment comprises prisms with the same prism base area proportions.

Zur Veranschaulichung der Erfindung wird auf die in den Figuren 7 und 8 gezeigten Lichtverteilungen 20, 27 mit eingezeichneten ISO-Linien (Isolux-Linien zur Bezeichnung von Bereichen gleicher Beleuchtungsstärke) verwiesen. In Figur 7 ist die Lichtverteilung 20 gezeigt, die mittels eines herkömmlichen LED-Moduls erzeugt wurde. Bei der dargestellten Lichtverteilung 20 handelt es sich um eine Abblendlichtverteilung bzw. um ein Teilfernlicht, wobei der gesamte Bereich der Gegenfahrbahn aus der Lichtverteilung 20 herausgenommen wurde, um eine Blendung entgegenkommender Verkehrsteilnehmer zu verhindern. Die Lichtverteilung 20 ist auf einem Messschirm 21 abgebildet. Es ist deutlich zu erkennen, dass die Linien 30 gleicher Intensität bzw. Beleuchtungsstärke Inhomogenitäten aufweisen, die durch den unruhigen Linienverlauf erkennbar sind. Im Gegensatz dazu weisen die Linien 31 gleicher Intensität bzw. Beleuchtungsstärke bei der mit dem erfindungsgemäßen Matrix-Scheinwerfer 1 bzw. dem erfindungsgemäßen LED-Modul 6 erzeugten Lichtverteilung 27 deutlich weniger Inhomogenitäten auf, was durch den deutlich ruhigeren Linienverlauf erkennbar ist.To illustrate the invention, reference is made to the in the Figures 7 and 8 shown light distributions 20, 27 with drawn ISO lines (Isolux lines to denote areas of the same illuminance). In Figure 7 Shown is the light distribution 20 that was generated using a conventional LED module. The light distribution 20 shown is a low beam or partial high beam, the entire area of the oncoming lane having been removed from the light distribution 20 in order to prevent oncoming road users from being dazzled. The light distribution 20 is shown on a measuring screen 21. It can be clearly seen that the lines 30 of the same intensity or illuminance have inhomogeneities which are recognizable by the restless line course. In contrast to this, the lines 31 of the same intensity or illuminance have significantly fewer inhomogeneities in the light distribution 27 generated with the matrix headlamp 1 according to the invention or the LED module 6 according to the invention, which is recognizable by the much quieter line profile.

Die Figuren 7 und 8 zeigen exemplarisch das gleiche Abblendlichtmuster 20, 27 eines Matrix-Scheinwerfers 1 mit einer LED-Matrixlichtquelle 10 mit drei Zeilen. Alle LED-Chips 11 der LED-Matrix 10, die Pixel der oberen und unteren Zeile auf der linken Seite der Lichtverteilung 20, 27 erzeugen, plus jeweils ein Pixel auf der rechten Seite der Lichtverteilung 20, 27 neben dem HV-Punkt sind ausgeschaltet, um den Gegenverkehr nicht zu blenden. Die ISO-Linien 30 in Figur 7 verlaufen deutlich unruhiger. Die ISO-Linien 31 der Lichtverteilung 27 aus Figur 8 sind dagegen glatter und mit weniger Abweichungen versehenThe Figures 7 and 8 show by way of example the same low beam pattern 20, 27 of a matrix headlight 1 with an LED matrix light source 10 with three lines. All LED chips 11 of the LED matrix 10 which generate pixels of the upper and lower lines on the left side of the light distribution 20, 27, plus one pixel on the right side of the light distribution 20, 27 next to the HV point, are switched off, so as not to dazzle oncoming traffic. The ISO lines 30 in Figure 7 are much more restless. The ISO lines 31 from the light distribution 27 Figure 8 on the other hand are smoother and have fewer deviations

In Figur 9 ist ein erfindungsgemäßes LED-Modul 6 mit einer erfindungsgemäßen Projektionsoptik 16 im Detail dargestellt. Die dargestellte Ausführungsform der Projektionsoptik 16 dient zur Erzeugung zweier separater Abbildungen 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12. Selbstverständlich kann die Projektionsoptik 16 auch so ausgestaltet werden, dass sie mehr als zwei separate und zueinander in horizontaler Richtung verschobene Abbildungen erzeugt. Die Projektionsoptik 16 weist zwei parallele optische Achsen auf, die mit den Bezugszeichen 40 und 41 bezeichnet sind. Mit dem Bezugszeichen 42 ist eine Modulachse des LED-Moduls 6 bezeichnet, die von der Mitte der Primäroptik 12 in Fahrtrichtung 3 verläuft. Der Abstand zwischen den optischen Achsen 40, 41 ist gering und lediglich so groß, dass die Projektionsoptik 16 zwei separate Abbildungen 25, 26 mit 1/2 Pixelabstand auf die Fahrbahn vor das Kraftfahrzeug projizieren kann. Die optischen Achsen 40, 41 sind vorzugsweise auf einer gemeinsamen horizontalen Ebene angeordnet, die vorzugsweise auch die Modulachse 42 umfasst. In dem dargestellten Ausführungsbeispiel ist die Projektionsoptik 16 entlang einer vertikalen Mittelebene, welche die Modulachse 42 umfasst, in zwei Hälften 16a, 16b unterteilt. Der einen Hälfte 16a ist vorzugsweise die optische Achse 41 und der anderen Hälfte 16b vorzugsweise die optische Achse 40 zugeordnet.In Figure 9 An LED module 6 according to the invention with a projection optics 16 according to the invention is shown in detail. The embodiment of the projection optics 16 shown is used to generate two separate images 25, 26 of the light exit surface 17 of the primary optics 12. Of course, the projection optics 16 can also be designed such that they produce more than two separate images that are shifted in the horizontal direction. The projection optics 16 has two parallel optical axes, which are designated by the reference numerals 40 and 41. The reference numeral 42 denotes a module axis of the LED module 6, which runs from the center of the primary optics 12 in the direction of travel 3. The distance between the optical axes 40, 41 is small and only so large that the projection optics 16 can project two separate images 25, 26 with 1/2 pixel spacing onto the road in front of the motor vehicle. The optical axes 40, 41 are preferably arranged on a common horizontal plane, which preferably also includes the module axis 42. In the exemplary embodiment shown, the projection optics 16 are in two halves 16a, 16b along a vertical central plane, which includes the module axis 42 divided. The one half 16a is preferably assigned the optical axis 41 and the other half 16b is preferably the optical axis 40.

Es ist nicht erforderlich, dass alle aktiven optischen Flächen der Projektionsoptik 16 eine Teilung und/oder Verschiebung der erzeugenden Flächen erfahren müssen. Es reicht völlig aus, wenn lediglich eine dieser Flächen in entsprechender Weise ausgeformt ist. Dies kann beispielsweise eine Lichteintrittsfläche, eine Lichtaustrittsfläche oder eine dazwischen angeordnete Fläche der Primäroptik 16 sein. Mindestens eine der aktiven optischen Flächen der Projektionsoptik 16 muss jedoch so modifiziert sein, dass die mindestens zwei Abbildungen 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12 erzeugt werden können, die in horizontaler Richtung zueinander versetzt sind.It is not necessary that all active optical surfaces of the projection optics 16 have to experience a division and / or displacement of the generating surfaces. It is entirely sufficient if only one of these surfaces is shaped in a corresponding manner. This can be, for example, a light entry surface, a light exit surface or an intermediate surface of the primary optics 16. At least one of the active optical surfaces of the projection optics 16 must, however, be modified such that the at least two images 25, 26 of the light exit surface 17 of the primary optics 12 can be generated, which are offset from one another in the horizontal direction.

In Figur 10 ist eine weitere Ausführungsform eines erfindungsgemäßen LED-Moduls 6 mit zwei optischen Achsen 43, 44 gezeigt, die schräg zueinander verlaufen. Vorzugsweise schneiden sich die optischen Achsen 43, 44 in einer Ebene der Lichtaustrittsfläche 17 der Primäroptik 12. Auch die optischen Achsen 43, 44 sind vorzugsweise auf einer gemeinsamen horizontalen Ebene angeordnet, die vorzugsweise auch die Modulachse 42 umfasst. In der dargestellten Ausführungsform ist eine erste Hälfte 16a der Projektionsoptik 16 der optischen Achse 44 und eine zweite Hälfte 16b der Projektionsoptik 16 der optischen Achse 43 zugeordnet.In Figure 10 Another embodiment of an LED module 6 according to the invention is shown with two optical axes 43, 44 which run obliquely to one another. The optical axes 43, 44 preferably intersect in a plane of the light exit surface 17 of the primary optics 12. Also the optical axes 43, 44 are preferably arranged on a common horizontal plane, which preferably also includes the module axis 42. In the embodiment shown, a first half 16a is assigned to the projection optics 16 of the optical axis 44 and a second half 16b is assigned to the projection optics 16 of the optical axis 43.

Eine andere bevorzugte Ausführungsform der erfindungsgemäßen Projektionsoptik 16 basiert auf einer speziellen Struktur auf einer der aktiven optischen Flächen der Projektionsoptik 16. In Figur 11 ist ein entsprechendes Ausführungsbeispiel gezeigt, wobei auf der Lichtaustrittsfläche der Projektionsoptik 16 nebeneinander angeordnete alternierende optische Bereiche 16c, 16d ausgebildet sind. In dem dargestellten Ausführungsbeispiel sind die Bereiche 16c, 16d streifenförmig auf der Lichtaustrittsfläche der Projektionsoptik 16 angeordnet. Selbstverständlich können die Bereiche auch schachbrettartig oder in beliebiger anderer Weise ausgebildet sein. Ferner ist es denkbar, dass die optischen Bereiche 16c, 16d nicht auf der Lichtaustrittsfläche, sondern auf der Lichteintrittsfläche oder einer beliebig anderen Fläche zwischen der Lichteinrittsfläche und der Lichtaustrittsfläche der Projektionsoptik 16 ausgebildet sind. Die optischen Bereiche 16c, 16d sind zum Erzeugen von im Wesentlichen gleichen Abbildungen 25, 26 der Austrittsfläche 17 der Primäroptik 12 ausgebildet. Dabei erzeugen alle Bereiche 16c zusammen eine erste Abbildung der Lichtaustrittsfläche 17 und alle Bereiche 16d zusammen eine zweite Abbildung 26 der Austrittsfläche 17. Den ersten optischen Bereichen 16c ist vorzugsweise die erste optische Achse 40 und den zweiten optischen Bereichen 16d ist vorzugsweise die zweite optische Achse 41 zugeordnet. Auch auf diese Weise kann eine Projektionsoptik 16 realisiert werden, die mehrere separate Abbildungen 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12 erzeugen kann, die in horizontaler Richtung relativ zueinander versetzt sind. Bei dem Ausführungsbeispiel aus Figur 11 bilden also die ersten optischen Bereiche 16c eine erste Gruppe, welche die erste Abbildung 25 der Austrittsfläche 17 erzeugen, und die zweiten Bereiche 16d bilden eine zweite Gruppe, welche die zweite Abbildung 26 der Austrittsfläche 17 der Primäroptik 12 erzeugen.Another preferred embodiment of the projection optics 16 according to the invention is based on a special structure on one of the active optical surfaces of the projection optics 16. In Figure 11 is a corresponding one Embodiment shown, wherein alternating optical regions 16c, 16d arranged side by side are formed on the light exit surface of the projection optics 16. In the exemplary embodiment shown, the regions 16c, 16d are arranged in strips on the light exit surface of the projection optics 16. Of course, the areas can also be designed like a checkerboard or in any other way. Furthermore, it is conceivable that the optical areas 16c, 16d are not formed on the light exit surface, but on the light entry surface or any other surface between the light entry surface and the light exit surface of the projection optics 16. The optical regions 16c, 16d are designed to generate essentially identical images 25, 26 of the exit surface 17 of the primary optics 12. All areas 16c together produce a first image of the light exit surface 17 and all areas 16d together produce a second image 26 of the exit surface 17. The first optical areas 16c are preferably the first optical axis 40 and the second optical areas 16d are preferably the second optical axis 41 assigned. In this way too, projection optics 16 can be implemented, which can produce several separate images 25, 26 of the light exit surface 17 of the primary optics 12, which are offset relative to one another in the horizontal direction. In the embodiment Figure 11 Thus, the first optical regions 16c form a first group, which produce the first image 25 of the exit surface 17, and the second regions 16d form a second group, which generate the second image 26 of the exit surface 17 of the primary optics 12.

In Figur 11 sind die ersten Bereiche 16c mit einer Schraffur gekennzeichnet. Diese dient jedoch in erster Linie zur Kenntlichmachung und zur besseren Unterscheidung der beiden Bereiche 16c, 16d voneinander. Das bedeutet nicht zwangsläufig, dass auf der Lichtaustrittsfläche der Projektionsoptik 16 in den Bereichen 16c eine optisch wirksame Struktur, beispielsweise eine Streustruktur, ausgebildet ist, wohingegen in den Bereichen 16d eine solche Struktur nicht ausgebildet ist. Allerdings wäre dies durchaus möglich. Ebenso wäre es denkbar, auf der gesamten Lichtaustrittsfläche der Projektionsoptik 16 eine Streustruktur vorzusehen.In Figure 11 the first areas 16c are marked with hatching. However, this serves first Line for identification and for better differentiation of the two areas 16c, 16d from each other. This does not necessarily mean that an optically effective structure, for example a scattering structure, is formed in the areas 16c on the light exit surface of the projection optics 16, whereas such a structure is not formed in the areas 16d. However, this would be entirely possible. It would also be conceivable to provide a scattering structure on the entire light exit surface of the projection optics 16.

In Figur 12 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäßen LED-Moduls 6 bzw. einer erfindungsgemäßen Projektionsoptik 16 gezeigt. Dabei ist eine aktive optische Fläche der Projektionsoptik 16, in dem dargestellten Ausführungsbeispiel die Lichtaustrittsfläche, mit mehreren, sich über die gesamte Fläche erstreckenden, nebeneinander angeordneten Prismen versehen, deren Längsachsen parallel zueinander und in vertikaler Richtung verlaufen. Eine erste Prismafläche 16e der Prismen erzeugt eine erste Abbildung 25 der Austrittsfläche 17 der Primäroptik 12. Eine andere Prismafläche 16f der Prismen erzeugt eine zweite Abbildung 26 der Austrittsfläche 17 der Primäroptik 12. Somit bildet jeweils eine erste Prismafläche 16e mit einer zweiten Prismafläche 16f eines der Prismen auf der Lichtaustrittsfläche der Projektionsoptik 16. Vorzugsweise ist den ersten Prismenflächen 16e die erste optische Achse 41 und den anderen Prismenflächen 16f die zweite optische Achse 42 zugeordnet. Auch auf diese Weise können separate Abbildungen 25, 26 der Austrittsfläche 17 der Primäroptik 12 erzeugt werden, die in horizontaler Richtung versetzt zueinander sind.In Figure 12 A further exemplary embodiment of an LED module 6 according to the invention or a projection optics 16 according to the invention is shown. In this case, an active optical surface of the projection optics 16, in the exemplary embodiment shown the light exit surface, is provided with a plurality of prisms which are arranged next to one another and which extend over the entire surface and whose longitudinal axes run parallel to one another and in the vertical direction. A first prism surface 16e of the prisms produces a first image 25 of the exit surface 17 of the primary optics 12. Another prism surface 16f of the prisms produces a second image 26 of the exit surface 17 of the primary optics 12. Thus, a first prism surface 16e with a second prism surface 16f forms one of the Prisms on the light exit surface of the projection optics 16. The first prism surfaces 16e are preferably assigned the first optical axis 41 and the other prism surfaces 16f the second optical axis 42. In this way too, separate images 25, 26 of the exit surface 17 of the primary optics 12 can be generated, which are offset from one another in the horizontal direction.

Die Amplituden der Prismenstruktur auf der Lichtaustrittsfläche der Projektionsoptik 16 aus Figur 12 sind relativ klein, so dass sie mit bloßem Auge nur schwer erkennbar sind. Insbesondere ist an eine Größenordnung der Amplituden von einigen Mikrometern bis zu einigen zehn Mikrometern gedacht. Die Strukturen werden von einem Beobachter von außerhalb des Scheinwerfers 1 durch die Abdeckscheibe 5 hindurch somit allenfalls als leicht angedeutete Streifen oder alternativ als relativ unauffälliges Schachbrettmuster auf der Projektionsoptik 16 wahrgenommen.The amplitudes of the prism structure on the light exit surface of the projection optics 16 Figure 12 are relatively small, making them difficult to see with the naked eye. In particular, the magnitude of the amplitudes is thought to be from a few micrometers to a few tens of micrometers. The structures are perceived by an observer from outside the headlight 1 through the cover plate 5 at best as slightly indicated strips or alternatively as a relatively unobtrusive checkerboard pattern on the projection optics 16.

In Figur 13 sind verschiedene Ausgestaltungsmöglichkeiten der Prismastruktur auf der optisch aktiven Fläche der Projektionsoptik 16 vorgeschlagen. In jeder der Teilfiguren 13a), 13b), 13c) ist oben jeweils ein Querschnitt durch eines der Prismen gezeigt, und darunter sind die durch die gezeigte Prismenstruktur erzielbaren Abbildungen der Lichtaustrittsfläche 17 der Primäroptik 12 dargestellt.In Figure 13 Various design options for the prism structure are proposed on the optically active surface of the projection optics 16. In each of the partial figures 13a), 13b), 13c), a cross section through one of the prisms is shown above, and below that are the images of the light exit surface 17 of the primary optics 12 that can be achieved by the prism structure shown.

Die Prismenstruktur aus Figur 13a) entspricht der Prismenstruktur, die bei dem Ausführungsbeispiel der Projektionsoptik 16 aus Figur 12 angewandt wurde. Die dadurch erzielbaren Abbildungen 25 und 26 sind um 1/2 Pixelbreite w' zueinander versetzt. Bei dem Ausführungsbeispiel aus Figur 13b) ist eine Spitze der Prismen 16e, 16f über deren gesamte Längserstreckung abgeflacht, so dass sich eine Dachfläche 16g der Prismen ergibt, welche eine weitere Abbildung 28 der Lichtaustrittsfläche 17 der Primäroptik 12 erzeugt, die zu den anderen beiden Abbildungen 25, 26, die durch die Prismenflächen 16e, 16f erzeugt werden, in horizontaler Richtung versetzt ist. Die drei Abbildungen 25, 26, 28 sind vorzugsweise um 1/3 Pixelbreite w' in horizontaler Richtung zueinander versetzt. Um die gewünschte Teilung auf 1/3 der Pixel- oder Streifenbreite w' zu erreichen, muss der Prismenwinkel α in geeigneter Form angepasst werden. Die Fläche 16g erzeugt ein Abbild 28 im Zentrum der Lichtverteilung. Bei der Ausführungsform aus Figur 13c) sind die Prismenflächen 16e, 16f der Prismen über deren gesamte Längserstreckung jeweils in zwei Teilflächen 16e1, 16e2; 16f1, 16f2 unterteilt. Dabei verläuft eine Berührungslinie der Teilflächen 16e1, 16e2; 16f1, 16f2 einer Prismafläche 16e; 16f eines Prismas parallel zu einer Längsachse des Prismas. Die Teilflächen 16e1, 16e2; 16f1, 16f2 einer Prismafläche 16e; 16f erzeugen zwei separate und versetzt zueinander angeordnete Abbildungen 25, 28; 26, 29, die auch zu den anderen Abbildungen 26, 29; 25, 28 versetzt sind. Insbesondere wird vorgeschlagen, dass die vier Abbildungen 25, 26, 28, 29 der Lichtaustrittsfläche 17 der Primäroptik 12 jeweils um 1/4 Pixelbreite w' zueinander versetzt sind.The prism structure Figure 13a ) corresponds to the prism structure, which in the embodiment of the projection optics 16 Figure 12 was applied. The images 25 and 26 that can be achieved in this way are offset from one another by 1/2 pixel width w '. In the embodiment Figure 13b ), a tip of the prisms 16e, 16f is flattened over their entire longitudinal extent, so that there is a roof surface 16g of the prisms, which generates a further image 28 of the light exit surface 17 of the primary optics 12, which leads to the other two images 25, 26 which are formed by the prism surfaces 16e, 16f are generated, is offset in the horizontal direction. The three images 25, 26, 28 are preferably offset from one another in the horizontal direction by 1/3 pixel width w '. In order to achieve the desired division to 1/3 of the pixel or stripe width w ', the prism angle α must be adapted in a suitable form. The Surface 16g creates an image 28 in the center of the light distribution. In the embodiment Figure 13c ) are the prism surfaces 16e, 16f of the prisms over their entire longitudinal extent in each case in two partial surfaces 16e1, 16e2; 16f1, 16f2 divided. Here, a line of contact of the partial areas 16e1, 16e2; 16f1, 16f2 of a prism surface 16e; 16f of a prism parallel to a longitudinal axis of the prism. The partial areas 16e1, 16e2; 16f1, 16f2 of a prism surface 16e; 16f produce two separate and offset images 25, 28; 26, 29, which also go with the other figures 26, 29; 25, 28 are offset. In particular, it is proposed that the four images 25, 26, 28, 29 of the light exit surface 17 of the primary optics 12 are each offset by 1/4 pixel width w 'from one another.

Selbstverständlich wäre es denkbar, durch andere Ausgestaltungen der Prismenstruktur auch mehr als vier Abbildungen der Lichtaustrittsfläche 17 der Primäroptik 12 zu erzeugen. So wäre es beispielsweise denkbar, dass bei der Prismenstruktur aus Figur 13c) die Spitze der Prismen über deren gesamte Längserstreckung abgeflacht ist, so dass sich eine Dachfläche ähnlich der Dachfläche 16c der Prismenstruktur aus Figur 13b) ergibt, welche eine weitere Abbildung der Lichtaustrittsfläche 17 der Primäroptik 12 erzeugt.Of course, it would also be conceivable to generate more than four images of the light exit surface 17 of the primary optics 12 by means of other configurations of the prism structure. So it would be conceivable, for example, that the prism structure Figure 13c ) the tip of the prisms is flattened over their entire longitudinal extent, so that a roof surface similar to the roof surface 16c of the prism structure Figure 13b ), which produces a further image of the light exit surface 17 of the primary optics 12.

In Figur 14 sind weitere mögliche Ausgestaltungen der Prismenstruktur auf der optisch aktiven Fläche der Projektionsoptik 16 dargestellt. Die eigentlichen Prismen der Figur 14a), 14b), 14c) entsprechen im Wesentlichen den Prismen aus den Figuren 13a), 13b), 13c). Bei dem Ausführungsbeispiel aus Figur 14 sind jedoch gerade Abschnitte 16h zwischen den einzelnen Prismen 16e, 16f vorgesehen. Dadurch ist es möglich, mit der Prismenstruktur aus Figur 14a) insgesamt zwei plus eine gleich drei separate Abbildungen der Lichtaustrittsfläche 17 der Primäroptik 12 zu erzeugen. Ebenso ist es mit der Prismenstruktur gemäß Figur 14b) möglich, insgesamt zwei plus zwei gleich vier separate Abbildungen zu erzeugen. Die Streifen 16g und 16h können identische Abbilder erzeugen, denn die optischen Achsen werden nicht zueinander verkippt, und dadurch liegen die Abbilder übereinander. In entsprechender Weise können durch die Prismenstruktur aus Figur 14c) vier plus eine gleich fünf Abbildungen der Lichtaustrittsfläche 17 der Primäroptik 12 erzeugt werden.In Figure 14 Further possible configurations of the prism structure are shown on the optically active surface of the projection optics 16. The real prisms of Figure 14a ), 14b), 14c) essentially correspond to the prisms from the Figures 13a ), 13b), 13c). In the embodiment Figure 14 however, straight sections 16h are provided between the individual prisms 16e, 16f. This makes it possible to use the prism structure out Figure 14a ) to generate a total of two plus one three separate images of the light exit surface 17 of the primary optics 12. It is the same with the prism structure Figure 14b ) possible to create a total of two plus two four separate images. The strips 16g and 16h can produce identical images, because the optical axes are not tilted towards one another, and the images therefore lie one above the other. In a corresponding manner, the prism structure can be used Figure 14c ) four plus one five images of the light exit surface 17 of the primary optics 12 are generated.

Anhand der Figuren 15 und 16 wird nachfolgend erläutert, wie die Höhe der Prismenstruktur einer erfindungsgemäßen Projektionslinse 16 berechnet werden kann. Dabei wird in Figur 15 beispielhaft von der Prismenstruktur gemäß Figur 12 und Figur 13a) ausgegangen. In Figur 15 bedeuten:

h =
Prismenhöhe in Millimeter,
w =
Wellenlänge (eine Periode) der Prismenstruktur (oder Basisbreite eines Prismas) in Millimeter,
ε =
Lichteinfallswinkel bezüglich einer Flächennormalen der Prismenfläche 16f,
ω =
Lichtauskoppelwinkel bezüglich der Flächennormalen der Prismenfläche 16f,
δ =
ω - ε = Winkeldifferenz zwischen einfallendem Lichtstrahl und ausgekoppeltem Lichtstrahl,
α =
Prismenwinkel bezüglich eines Lots bzw. Winkel einer Prismenfläche 16e, 16f bezüglich einer Lotfläche, und
ϕ =
Pixelbreite in Winkelgrad.
Based on Figures 15 and 16 It is explained below how the height of the prism structure of a projection lens 16 according to the invention can be calculated. Thereby in Figure 15 exemplary of the prism structure according to Figure 12 and Figure 13a ) went out. In Figure 15 mean:
h =
Prism height in millimeters,
w =
Wavelength (one period) of the prism structure (or base width of a prism) in millimeters,
ε =
Light incidence angle with respect to a surface normal of the prism surface 16f,
ω =
Light decoupling angle with respect to the surface normal of the prism surface 16f,
δ =
ω - ε = angle difference between incident light beam and outcoupled light beam,
α =
Prism angle with respect to a plumb or angle of a prism surface 16e, 16f with respect to a plumb surface, and
ϕ =
Pixel width in degrees.

In der Prismenstruktur aus Figur 15 gilt folgender Zusammenhang: tan = h w 2 = 2 h w

Figure imgb0001
In the prism structure Figure 15 the following relationship applies: tan = H w 2nd = 2nd H w
Figure imgb0001

Zudem gilt die Snell'sche Gleichung: sin ε sin ω = n L n PMMA

Figure imgb0002
The Snell equation also applies: sin ε sin ω = n L n PMMA
Figure imgb0002

Daraus ergibt sich nach dem Umformen und mit nL=1 für Luft: sin ω = n PMMA sin ε

Figure imgb0003
This results after the forming and with n L = 1 for air: sin ω = n PMMA sin ε
Figure imgb0003

Für ω ergibt sich somit: ω = arcsin n PMMA sin ε

Figure imgb0004
For ω we get: ω = arcsin n PMMA sin ε
Figure imgb0004

Ferner gilt: δ = ω ε = arcsin n PMMA sin ε ε = ! 1 4 Pixelbreite ° φ

Figure imgb0005
The following also applies: δ = ω - ε = arcsin n PMMA sin ε - ε = ! 1 4th Pixel width ° φ
Figure imgb0005

Die Winkeldifferenz muss für zwei separate Abbildungen 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12 also +/- 1/4 Pixelbreite sein, damit die beiden Abbildungen 25, 26 um 1/2 Pixelbreite zueinander versetzt sind. Damit ergibt sich aus Gleichung (4): arcsin n PMMA sin ε = φ 4 + ε

Figure imgb0006
und nach einer Umformung n PMMA sin ε = sin φ 4 + ε
Figure imgb0007
bzw. n PMMA sin ε = sin φ 4 cos ε + cos φ 4 sin ε
Figure imgb0008
und n PMMA cos φ 4 sin ε = sin φ 4 cos ε
Figure imgb0009
The angle difference must therefore be +/- 1/4 pixel width for two separate images 25, 26 of the light exit surface 17 of the primary optics 12, so that the two images 25, 26 are offset from one another by 1/2 pixel width. This results from equation (4): arcsin n PMMA sin ε = φ 4th + ε
Figure imgb0006
and after reshaping n PMMA sin ε = sin φ 4th + ε
Figure imgb0007
respectively. n PMMA sin ε = sin φ 4th cos ε + cos φ 4th sin ε
Figure imgb0008
and n PMMA - cos φ 4th sin ε = sin φ 4th cos ε
Figure imgb0009

Daraus ergibt sich tan ε = sin φ 4 n PMMA cos φ 4

Figure imgb0010
bzw. ε = arctan sin φ 4 n PMMA cos φ 4
Figure imgb0011
This results in tan ε = sin φ 4th n PMMA - cos φ 4th
Figure imgb0010
respectively. ε = arctan sin φ 4th n PMMA - cos φ 4th
Figure imgb0011

Für α = ε ergibt sich: ε = arctan h w 2 = arctan 2 h w

Figure imgb0012
For α = ε we get: ε = arctan H w 2nd = arctan 2nd H w
Figure imgb0012

Aus den Gleichungen (10) und (11) folgt: 2 h w = sin φ 4 n PMMA cos φ 4

Figure imgb0013
From equations (10) and (11) it follows: 2nd H w = sin φ 4th n PMMA - cos φ 4th
Figure imgb0013

Somit ergibt sich für einen 1/2 Pixelversatz für die erforderliche Prismenhöhe h: h 1 2 Pixelversatz = w 2 sin φ 4 n PMMA cos φ 4

Figure imgb0014
So for a 1/2 pixel offset for the required prism height h: H 1 2nd Pixel offset = w 2nd sin φ 4th n PMMA - cos φ 4th
Figure imgb0014

Bei einem 1/2 Pixelversatz werden die Abbilder 25, 26 um ϕ/2 zueinander verschoben (+/-ϕ/4). Dabei handelt es sich um eine sog. Kompensation 1. Ordnung. Für eine Kompensation 2. Ordnung müssen zwei 2er- Abbildungsgruppen zueinander verschoben werden. Nachfolgend wird erläutert, wie man die Prismenhöhe h für eine Kompensation 2. Ordnung ermitteln kann: h 1 2 Pixelversatz = Pixelversatz von φ 4 = + / φ 8

Figure imgb0015
With a 1/2 pixel offset, the images 25, 26 um ϕ / 2 shifted to each other (+/- ϕ / 4). This is a so-called first-order compensation. For a 2nd order compensation, two groups of two must be shifted towards each other. The following explains how the prism height h can be determined for a 2nd order compensation: H 1 2nd Pixel offset = Pixel offset of φ 4th = + / - φ 8th
Figure imgb0015

Damit ergibt sich für die Prismenhöhe h: h 1 2 Pixelversatz = 2 w 2 sin φ 8 n PMMA cos φ 8

Figure imgb0016
This results in the prism height h: H 1 2nd Pixel offset = 2nd w 2nd sin φ 8th n PMMA - cos φ 8th
Figure imgb0016

Bei sehr kleinen Winkeln gilt: sin ϑ = ϑ und sin ϑ 2 = ϑ 2 und sin ϑ 8 = 1 2 sin φ 4 cos φ 4 cos φ 8 1

Figure imgb0017
For very small angles: sin ϑ = ϑ and sin ϑ 2nd = ϑ 2nd and sin ϑ 8th = 1 2nd sin φ 4th cos φ 4th cos φ 8th 1
Figure imgb0017

Damit ergibt sich für die Prismenhöhe h für die Kompensation 2. Ordnung: h 1 4 Pixelversatz = 2 w 2 1 2 sin φ 4 n PMMA cos φ 4 = h 1 2 Pixelversatz

Figure imgb0018
The prism height h for 2nd order compensation is: H 1 4th Pixel offset = 2nd w 2nd 1 2nd sin φ 4th n PMMA - cos φ 4th = H 1 2nd Pixel offset
Figure imgb0018

Zusammenfassend kann somit gesagt werden, dass für kleine Winkel die Kompensation 1. Ordnung, 2. Ordnung usw. mit Dreieckstrukturen erfolgen, die sich überlagern, und die eine 2-fache, 4-fache usw. Wellenlänge und die gleiche Amplitude haben. In Figur 16 ist beispielhaft ein Ausschnitt einer Oberflächenstruktur für eine optisch aktive Fläche einer erfindungsgemäßen Projektionsoptik 16 dargestellt. Dabei ist die Struktur 1. Ordnung mit einer durchgezogenen Linie 50 eingezeichnet, eine Struktur 2. Ordnung mit einer gestrichelten Linie 51 und eine Summe der beiden Strukturen 50, 51 mit dem Bezugszeichen 52.In summary, it can thus be said that for small angles, the 1st order, 2nd order etc. compensation takes place with triangular structures which overlap and which have a 2-fold, 4-fold etc. wavelength and the same amplitude. In Figure 16 is an example of a section of a surface structure for an optically active surface of a projection optics 16 according to the invention shown. The structure of the 1st order is shown with a solid line 50, a structure of the 2nd order with a dashed line 51 and a sum of the two structures 50, 51 with the reference symbol 52.

Die Struktur 1. Ordnung 50 generiert zwei separate Abbilder 25, 26 der Lichtaustrittsfläche 17 der Primäroptik 12, die um 1/2 Pixelbreite zueinander verschoben sind. Die Prismenstruktur 2. Ordnung 51 hat die halbe Frequenz (doppelte Periode) und verkippt mit einer ihrer Flanken (Prismenflächen) immer zwei benachbarte Flanken (eine ganze Periode) der Struktur 1. Ordnung 50 und führt somit zu einer Verschiebung der Abbildungen zueinander von 1/4 Pixelbreite.The first-order structure 50 generates two separate images 25, 26 of the light exit surface 17 of the primary optics 12, which are shifted from one another by 1/2 pixel width. The second-order prism structure 51 has half the frequency (double period) and, with one of its flanks (prism surfaces), always tilts two adjacent flanks (an entire period) of the first-order structure 50 and thus leads to a shift of the images from each other by 1 / 4 pixel width.

Die Prismenstruktur 52 ist die Summe (resultierende) der Prismenstruktur 1. Ordnung 50 und der Prismenstruktur 2. Ordnung 51.The prism structure 52 is the sum (resulting) of the 1st order prism structure 50 and the 2nd order prism structure 51.

Die Amplitude h der Struktur 1. Ordnung 50 hängt mit dem erforderlichen Auslenkwinkel von +/- 0,3° zusammen. Bei einer Periode (Wellenlänge w) von 2 mm und einer Brechzahl nPMMA = 1,49 und von nLuft = 1,0 ergibt sich für die Prismenhöhe h: h 1 2 Pixelversatz = w 2 sin 0,3 ° H n PMMA cos 0,3 ° H = 10,7 μm

Figure imgb0019
The amplitude h of the 1st order structure 50 is related to the required deflection angle of +/- 0.3 °. With a period (wavelength w) of 2 mm and a refractive index n PMMA = 1.49 and n air = 1.0, the following results for the prism height h: H 1 2nd Pixel offset = w 2nd sin 0.3 ° H n PMMA - cos 0.3 ° H = 10.7 μm
Figure imgb0019

Die errechnete Prismenhöhe h = 10,7 µm ist relativ groß. Daher wird die Wellenlänge w von ursprünglich 2 mm auf 1 mm halbiert. Damit ergibt sich dann für die Amplitude h der Prismenstruktur: h 1 2 Pixelversatz = w = 1 mm 2 sin 0,3 ° H 1,49 cos 0,3 ° H = 5,3 μm

Figure imgb0020
The calculated prism height h = 10.7 µm is relatively large. Therefore, the wavelength w is halved from the original 2 mm to 1 mm. This then results in the amplitude h of the prism structure: H 1 2nd Pixel offset = w = 1 mm 2nd sin 0.3 ° H 1.49 - cos 0.3 ° H = 5.3 μm
Figure imgb0020

Die Prismenstruktur 51 wird über die Prismenstruktur 1. Ordnung 50 gelegt, soll aber nur die halbe Auslenkung erreichen (1/2 · 1/2 Pixel → +/- 0,15° H). Aus der Gleichung (14) ergibt sich damit: h 1 4 Pixelversatz = 2 w 2 sin 0,15 ° H 1,49 cos 0,15 ° H = 5,3 μm

Figure imgb0021
The prism structure 51 is placed over the 1st order prism structure 50, but should only reach half the deflection (1/2 × 1/2 pixel → +/- 0.15 ° H). From equation (14) we get: H 1 4th Pixel offset = 2nd w 2nd sin 0.15 ° H 1.49 - cos 0.15 ° H = 5.3 μm
Figure imgb0021

Somit wird also das Ergebnis aus Gleichung (15) bestätigt. Die Prismenstruktur 2. Ordnung 51 hat die gleiche Amplitude h wie die Prismenstruktur 1. Ordnung 50. Auf die beschriebene Weise können grundsätzlich auch Anpassungen höherer Ordnung generiert werden.Thus, the result from equation (15) is confirmed. The second-order prism structure 51 has the same amplitude h as the first-order prism structure 50. In principle, higher-order adaptations can also be generated in the manner described.

Claims (16)

  1. LED module (6) of a motor vehicle headlamp (1), the LED module (6) having a light source (10) in the form of an LED matrix which comprises a plurality of LED chips (11) arranged next to and/or above one another in a matrix-like manner, a primary optic (12) which comprises a plurality of primary optic elements (13) arranged next to and/or above one another in a matrix-like manner, for focusing the light emitted by the light source (10), and a projection optic (16), which projects an exit surface (17) of the primary optic (12) onto a roadway in front of a vehicle in order to produce a predetermined light distribution (27), characterized in that the projection optic (16) is designed in such a way that it produces on its image side at least two separate images (25, 26) of the exit surface (17) of the primary optic (12), which images are offset relative to one another in the horizontal direction, so that a superposition of the images (25, 26) produced improves homogeneity of the light distribution (27).
  2. LED module (6) according to claim 1, characterized in that the separate images (25, 26, 28, 29) of the light exit surface (17) of the primary optic (12) are each offset relative to one another by a value w'/n, where w' is a width, in particular an angular width, of a pixel formed by imaging a single light-emitting surface of a single primary optical element (13) in the resulting light distribution (27), and n is a number of separate images (25, 26, 28, 29) of the light-emitting surface (17) of the primary optical element (12) produced by the projection optic (16).
  3. LED module (6) according to claim 1 or 2, characterized in that the projection optic (16) improves the homogeneity of the light distribution (27) with respect to a compensation of intensity fluctuations and undesired colour effects in the light distribution.
  4. LED module (6) according to any of claims 1 to 3, characterized in that the projection optic (16) has at least two separate optical axes (40, 41; 43, 44).
  5. LED module (6) according to claim 4, characterized in that the separate optical axes (40, 41; 43, 44) of the projection optic (16) run in the same horizontal plane.
  6. LED module (6) according to claim 4 or 5, characterized in that the separate optical axes (40, 41) of the projection optic (16) run parallel to and spaced apart from one another.
  7. LED module (6) according to claim 4 or 5, characterized in that the separate optical axes (43, 44) of the projection optic (16) run at an angle to one another.
  8. LED module (6) according to claim 7, characterized in that the optical axes (43, 44) of the projection optic (16) intersect in a plane of the light-emitting surface (17) of the primary optic (12).
  9. LED module (6) according to any one of claims 1 to 3, characterized in that at least one active optical surface of the projection optic (16) is provided with alternating optical regions (16c, 16d) arranged next to and/or above one another for generating substantially identical images (25, 26) of the exit surface (17) of the primary optic (12), wherein a first group (16c) of the optical regions generates a first image (25) of the light exit surface (17) of the primary optic (12) and at least one further group (16d) of the optical regions generates at least one further image (26) of the exit surface (17) of the primary optic (12), wherein the generated images (25, 26) are arranged offset to each other in the resulting light distribution (27) in horizontal direction.
  10. LED module (6) according to claim 9, characterized in that the alternating optical regions (16c, 16d) are formed on a light exit surface of the projection optic (16).
  11. LED module (6) according to claim 9 or 10, characterized in that the alternating optical regions (16c, 16d) are formed into stripes, the stripes extending in a vertical direction.
  12. LED module (6) according to any one of claims 9 to 11, characterized in that the active optical surface of the projection optic (16) is provided with a plurality of prisms (16e, 16f) which extend over the entire surface, are arranged next to one another and whose longitudinal axes run parallel to one another, one prism surface (16e) of the prisms, which forms a first optical region, produces the first image (25) of the light exit surface (17) of the primary optic (12) and the other prism surface (16f) of the prisms, which forms a further optical region, produces the second image (26) of the exit surface (17) of the primary optic (12).
  13. LED module (6) according to claim 12, characterized in that a tip of the prisms (16e, 16f) is flattened over their entire longitudinal extension, so that a roof surface (16g) of the prisms is obtained, which produces a further image (28) of the light exit surface (17) of the primary optic (12), which is offset in the horizontal direction relative to the other two images (25, 26).
  14. LED module (6) according to claim 12 or 13, characterized in that the prism faces (16e, 16f) of the prisms are each divided over their entire longitudinal extent into two partial faces (16e1, 16e2; 16f1, 16f2), a line of contact of the partial faces (16e1, 16e2; 16f1, 16f2) of a prism face (16e; 16f) of a prism runs parallel to the longitudinal axis of the prism, wherein the partial faces (16e1, 16e2; 16f1, 16f2) each produce a separate image (25, 26, 28, 29) of the light exit surface (17) of the primary optic (12), which image is offset relative to the other images (25, 26).
  15. LED module (6) according to one of claims 9 to 14, characterized in that the alternating optical regions (16c, 16d; 16e, 16f) formed on the at least one active optical surface of the projection optic (16) have an amplitude of less than 0.1 mm, preferably of less than a few tens of micrometers, very particularly preferably of a few micrometers.
  16. Motor vehicle headlamp (1) having an LED module (6) which has a light source (10) in the form of an LED matrix which comprises a plurality of LED chips (11) arranged next to and/or above one another in a matrix-like manner, a primary optic (12) which comprises a plurality of primary optic elements (13) arranged next to and/or above one another in a matrix-like manner, for focusing the light emitted by the light source (10), and a projection optic (16), which projects an exit surface of the primary optic (16) onto a roadway in front of a vehicle in order to produce a predetermined light distribution (27), characterized in that the projection optic (16) is designed in such a way that, on its image side, it produces at least two separate images (25, 26) of the exit surface (17) of the primary optic (12), which images are offset with respect to one another in the horizontal direction, so that a superposition of the images (25, 26) produced improves homogeneity of the light distribution (27).
EP14180018.5A 2013-09-06 2014-08-06 Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens Active EP2846077B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013217843.3A DE102013217843A1 (en) 2013-09-06 2013-09-06 Projection optics for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlights with such a projection optics

Publications (3)

Publication Number Publication Date
EP2846077A2 EP2846077A2 (en) 2015-03-11
EP2846077A3 EP2846077A3 (en) 2015-03-25
EP2846077B1 true EP2846077B1 (en) 2020-04-22

Family

ID=51292832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14180018.5A Active EP2846077B1 (en) 2013-09-06 2014-08-06 Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens

Country Status (4)

Country Link
US (1) US9476558B2 (en)
EP (1) EP2846077B1 (en)
CN (1) CN104421714B (en)
DE (1) DE102013217843A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633263B1 (en) * 2017-05-24 2022-12-28 Stanley Electric Co., Ltd. Lamp fitting

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516836B1 (en) * 2015-04-10 2016-09-15 Zizala Lichtsysteme Gmbh Lighting device with beam diaphragm and motor vehicle headlights
JP6693052B2 (en) * 2015-06-02 2020-05-13 市光工業株式会社 Vehicle lighting
EP3379139A4 (en) 2015-11-20 2019-07-31 Koito Manufacturing Co., Ltd. Lamp fitting unit
JP6709114B2 (en) * 2016-06-22 2020-06-10 スタンレー電気株式会社 Vehicle lighting
FR3053010A1 (en) * 2016-06-28 2017-12-29 Valeo Vision LIGHTING SYSTEM FOR A VEHICLE HAVING A MODULAR LUMINOUS INTENSITY LEVEL
FR3056694B1 (en) * 2016-09-29 2020-06-19 Valeo Vision LIGHTING DEVICE FOR A MOTOR VEHICLE COMPRISING A LIGHT GUIDE
DE102016119321A1 (en) * 2016-10-11 2018-04-12 HELLA GmbH & Co. KGaA Lighting device for a motor vehicle, in particular headlight of a motor vehicle
TWI607179B (en) 2016-11-30 2017-12-01 隆達電子股份有限公司 Lens array, vehicle lamp lenses using lens array, and vehicle lamp using vehicle lamp lenses
DE102016124800A1 (en) * 2016-12-19 2018-06-21 Automotive Lighting Reutlingen Gmbh Primary optics module for use in a motor vehicle lighting device and motor vehicle lighting device with such a primary optics module
DE102016225583B4 (en) * 2016-12-20 2018-08-16 Audi Ag Control of a lighting device by touch
FR3062217B1 (en) * 2017-01-20 2021-03-19 Valeo Vision JOINING OF PIXELIZED LIGHT SOURCES
AT519125B1 (en) 2017-01-20 2018-04-15 Zkw Group Gmbh Lighting device for a motor vehicle headlight and motor vehicle headlights
WO2018149407A1 (en) * 2017-02-14 2018-08-23 亿光电子工业股份有限公司 Light-guiding component, light-guiding device, and lighting module
DE102017204097A1 (en) 2017-03-13 2018-09-13 Osram Gmbh OPTICS, LIGHTING SYSTEM AND HEADLIGHTS
FR3068658B1 (en) * 2017-07-06 2021-04-16 Valeo Vision MOTOR VEHICLE LIGHTING DEVICE
FR3069045B1 (en) 2017-07-13 2019-10-04 Valeo Vision LIGHTING DEVICE PROJECTING TWO MATRIXES OF VERTICALLY LUMINOUS LIGHT PIXELS
CN107795952B (en) * 2017-10-31 2024-04-02 马瑞利汽车零部件(芜湖)有限公司 Matrix type condensing lens for realizing self-adaptive high beam function
KR102036749B1 (en) * 2017-12-14 2019-10-28 에스엘 주식회사 Lamp for vehicle
FR3077366B1 (en) * 2018-01-29 2020-01-17 Valeo Vision LIGHT MODULE COMPRISING A PRIMARY OPTICAL ELEMENT EQUIPPED WITH TWO SHAPING PATCHES
CN108224355B (en) * 2018-02-22 2024-02-13 华域视觉科技(上海)有限公司 Lamp pattern for vehicle and production method thereof
DE102018110793A1 (en) * 2018-05-04 2019-11-07 HELLA GmbH & Co. KGaA projection headlights
DE102018207063A1 (en) * 2018-05-07 2019-11-07 Osram Gmbh OPTICS, OPTICAL ARRANGEMENT AND HEADLIGHTS
FR3084724B1 (en) * 2018-07-31 2021-04-16 Valeo Vision LIGHT MODULE WITH FOUR GUIDING PARTS
CN215863191U (en) * 2018-08-22 2022-02-18 亮锐控股有限公司 Optical device for automotive lighting comprising a light guide
EP3847056A4 (en) 2018-09-05 2021-10-27 Flex-N-gate Advanced Product Development, LLC Vehicle adaptable driving beam headlamp
CN111221112A (en) * 2018-11-27 2020-06-02 扬明光学股份有限公司 Pattern projecting apparatus and method of manufacturing the same
US11391429B2 (en) 2019-05-20 2022-07-19 Hasco Vision Technology Co., Ltd. Vehicle lamp optical element assembly, vehicle illumination module, vehicle lamp, and vehicle
DE102019127406A1 (en) * 2019-10-11 2021-04-15 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with an ambient lighting device
EP3862623B1 (en) 2020-02-10 2022-11-02 Lumileds LLC Imaging lens for use in a light module for a vehicle headlamp, light module, and vehicle headlamp

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339704A (en) * 1995-06-12 1996-12-24 Nippondenso Co Ltd Light device for use with vehicle
US7563008B2 (en) * 2006-03-28 2009-07-21 Visteon Global Technologies, Inc. LED projector headlamps using single or multi-faceted lenses
JP4982269B2 (en) * 2007-06-27 2012-07-25 株式会社小糸製作所 Lighting fixtures for vehicles
DE102008005488B4 (en) * 2008-01-22 2016-10-06 Hella Kgaa Hueck & Co. Headlights for vehicles
DE102008013603B4 (en) 2008-03-11 2017-06-22 Automotive Lighting Reutlingen Gmbh Light module for a lighting device
TW201022592A (en) * 2008-12-15 2010-06-16 Create Electronic Optical Co Optical lens and light emitting diode (LED) illuminating device thereof
EP2211089A1 (en) * 2009-01-26 2010-07-28 GLP German Light Products GmbH Apparatus and method for outputting a mixed-colored light beam
AT508604B1 (en) 2009-07-31 2012-07-15 Zizala Lichtsysteme Gmbh LED MOTOR VEHICLE HEADLIGHT FOR GENERATING A DYNAMIC LIGHT DISTRIBUTION
DE102009053581B3 (en) 2009-10-05 2011-03-03 Automotive Lighting Reutlingen Gmbh Light module for a lighting device of a motor vehicle
DE102010023360A1 (en) 2009-10-05 2011-04-07 Automotive Lighting Reutlingen Gmbh For producing different light distributions vehicle headlights equipped with semiconductor light sources
DE102010029176A1 (en) 2009-10-05 2012-12-27 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a semiconductor light sources, a primary optics and a secondary optics having light module
DE102010046626B4 (en) 2010-09-16 2013-05-16 Automotive Lighting Reutlingen Gmbh Color-correcting projection optics for a light module of a motor vehicle headlight
DE102011077636A1 (en) 2011-04-27 2011-11-03 Automotive Lighting Reutlingen Gmbh Light module for head lamp system of motor vehicle i.e. motor car, has sub modules separately controlled to generate set of strip-shaped segments of spot distribution, where strip-shaped segments are complement to spot distribution
DE102011077132A1 (en) 2011-04-27 2012-01-12 Automotive Lighting Reutlingen Gmbh Light module for use in motor car headlamp for creating basic distribution of high beam light distribution, has blocking segment retrofitted to basic light distribution of high beam light distribution
JP5950385B2 (en) * 2012-01-25 2016-07-13 株式会社小糸製作所 Vehicle headlamp
DE102012202508B4 (en) * 2012-02-17 2017-10-05 Automotive Lighting Reutlingen Gmbh Optical fiber device for a motor vehicle light
AT513206B1 (en) * 2012-07-18 2015-04-15 Zizala Lichtsysteme Gmbh Lighting unit for a headlight
AT513341B1 (en) * 2012-09-03 2015-06-15 Zizala Lichtsysteme Gmbh Lighting unit for a headlight

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633263B1 (en) * 2017-05-24 2022-12-28 Stanley Electric Co., Ltd. Lamp fitting

Also Published As

Publication number Publication date
US9476558B2 (en) 2016-10-25
CN104421714A (en) 2015-03-18
EP2846077A3 (en) 2015-03-25
US20150070926A1 (en) 2015-03-12
EP2846077A2 (en) 2015-03-11
DE102013217843A1 (en) 2015-03-12
CN104421714B (en) 2017-09-22

Similar Documents

Publication Publication Date Title
EP2846077B1 (en) Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens
EP3714205B1 (en) Light module for a motor vehicle headlamp
EP3365594B1 (en) Micro-projection light module for a motor vehicle headlight, for achieving aplanatic light distrubtion
EP3365593B1 (en) Micro-projection light module for a vehicle headlight
EP2893249B1 (en) Lighting unit for a headlight
EP2910847B1 (en) Light module of a motor vehicle headlight and headlight with such a light module
EP2789901B1 (en) Light module of a motor vehicle lighting device
DE102014205994B4 (en) Light module with semiconductor light source and attachment optics and motor vehicle headlight with such a light module
DE102011078653B4 (en) Attachment optics for the bundling of emitted light of at least one semiconductor light source
EP2984396B1 (en) Lamp unit comprising a shield having at least one light window
DE102015224745B4 (en) Motor vehicle headlight with a base light assembly and a high beam assembly
EP2799761A2 (en) Light module for a motor vehicle headlamp
WO2013020155A1 (en) Led light-source module for a vehicle headlight
AT508604A1 (en) LED MOTOR VEHICLE HEADLIGHT FOR GENERATING A DYNAMIC LIGHT DISTRIBUTION
EP2746644B1 (en) Motor vehicle headlamp with a dazzle-free main beam
AT511760A1 (en) LED LIGHT SOURCE MODULE FOR A LED MOTOR VEHICLE HEADLIGHT AND LED MOTOR VEHICLE HEADLAMP AND HEADLAMP SYSTEM
EP3301350B1 (en) Light module for a motor vehicle headlamp
WO2018023141A1 (en) Motor vehicle headlight
WO2016062520A1 (en) Light module of an illumination device and illumination device comprising such a light module
DE102017115899A1 (en) Motor vehicle lamp and motor vehicle headlight with such a lamp
DE102009008418A1 (en) Lighting device for automobile, has filter that is transparent for infrared radiation of light source and is reflected for radiation of another light source, and ray of light emitting from latter source is alignable
EP2840298B1 (en) Curve-light module without mechanical components
DE10312364B4 (en) Headlamp for creating a clear cut-off on the road
EP2187114A1 (en) Headlamp for vehicles
EP4194744A1 (en) Light module of a motor vehicle headlight and motor vehicle headlight comprising such a light module

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20140806

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20150216BHEP

R17P Request for examination filed (corrected)

Effective date: 20150923

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014014027

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041143000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/24 20180101ALI20190911BHEP

Ipc: F21S 41/255 20180101ALI20190911BHEP

Ipc: F21S 41/143 20180101AFI20190911BHEP

Ipc: F21S 41/663 20180101ALI20190911BHEP

Ipc: F21S 41/20 20180101ALI20190911BHEP

Ipc: F21S 41/275 20180101ALI20190911BHEP

Ipc: F21S 41/32 20180101ALI20190911BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUCHBERGER, CHRISTIAN

Inventor name: KIESEL, MARKUS

Inventor name: STEFANOV, EMIL P

Inventor name: LICHT, MARTIN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014027

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1260585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 10