EP4194744A1 - Light module of a motor vehicle headlight and motor vehicle headlight comprising such a light module - Google Patents
Light module of a motor vehicle headlight and motor vehicle headlight comprising such a light module Download PDFInfo
- Publication number
- EP4194744A1 EP4194744A1 EP22203122.1A EP22203122A EP4194744A1 EP 4194744 A1 EP4194744 A1 EP 4194744A1 EP 22203122 A EP22203122 A EP 22203122A EP 4194744 A1 EP4194744 A1 EP 4194744A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- light module
- matrix
- light source
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 65
- 238000009826 distribution Methods 0.000 claims abstract description 37
- 238000003384 imaging method Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 17
- 230000007704 transition Effects 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000004907 flux Effects 0.000 description 12
- 230000009467 reduction Effects 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
- F21S41/153—Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/255—Lenses with a front view of circular or truncated circular outline
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/265—Composite lenses; Lenses with a patch-like shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/40—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
- F21S41/43—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0061—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
- G02B19/0066—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0988—Diaphragms, spatial filters, masks for removing or filtering a part of the beam
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/005—Diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/13—Arrangement or contour of the emitted light for high-beam region or low-beam region
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2107/00—Use or application of lighting devices on or in particular types of vehicles
- F21W2107/10—Use or application of lighting devices on or in particular types of vehicles for land vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
- F21Y2105/14—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
- F21Y2105/16—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the invention relates to a motor vehicle headlight comprising a housing with a light exit opening closed by a transparent cover plate and a light module of the type mentioned which is arranged in the housing and is used to implement at least part of a resulting light distribution of the Headlight images in a main light exit direction on a roadway in front of the motor vehicle.
- Light modules of motor vehicle headlights for generating an adaptive light distribution are known from the prior art, the light modules each having a matrix LED and a projection lens.
- the matrix LED comprises a large number of individually controllable LEDs arranged above and next to each other or staggered in a matrix-like manner, which, depending on the control, produce more or fewer or brighter or darker points of light (so-called pixels) of the resulting light distribution.
- a matrix LED typically has between 200 and 20,000 individually controllable pixels.
- the projection lens images the points of light emitted by the matrix LED or the light distribution generated on the matrix LED as the resulting light distribution of the light module on a roadway in front of the motor vehicle.
- the adaptively changeable light distribution can be generated without moving parts of the light module.
- the light distribution can be changed dynamically, e.g Cornering light shines the further into a curve traveled by the motor vehicle, the tighter the curve is), a city light distribution, a country road light distribution, a freeway light distribution, a full high beam, etc. can be changed.
- the projection lens It is also known to construct the projection lens from a plurality of lens elements arranged one behind the other in the direction of light passage. For reasons of weight and cost, an attempt is made to produce the projection lens from as few inexpensive lens elements as possible. However, such systems tend to have a sharp drop in imaging quality at the edge. In general, the image quality at the edge is not so important, but it must not fall below a limit set by the customer (ie the vehicle manufacturer).
- Such light modules are, for example, from the DE 10 2019 202 434 A1 and the DE 10 2019 102 475 A1 known.
- the light modules disclosed there show projection lens systems consisting of three to five individual lenses, some of which are very strongly aspherical, with relatively good imaging properties.
- Such individual lenses are expensive and require high precision during production and assembly.
- a light module of a motor vehicle headlight with a lens system that makes use of these properties is, for example DE 10 2020 100 762 A1 known.
- a lens mount of at least one individual lens of the imaging lens system serves as the so-called aperture stop.
- These lens mounts usually have a round shape.
- the shape of the lens mount cannot be freely changed, since this would also change the shape of the individual lens.
- the known light module lacks the necessary flexibility to be able to optimally improve the optical imaging properties.
- the object of the present invention is to use simple means to improve the imaging properties of a lens system in a light module with a matrix light source in the edge regions of the imaged light distribution.
- the light module also includes a diaphragm placed in the beam path between the matrix light source and a first individual lens of the lens system, which is designed to have a selective effect on edge regions of the light distribution of the light module shown have.
- the imaging properties in the edge areas of the resulting Improve light distribution and at the same time the imaging properties and the efficiency in the center (near an optical axis of the light module) do not change.
- the diaphragm reduces the scattered light, and it can be integrated inexpensively into a mount for the first individual lens. Another advantage is that the diaphragm allows the diameter of some of the individual lenses that follow in the beam path to be reduced, which saves weight and material costs.
- the diaphragm be designed not to have any influence on an area in the center of the matrix light source. Accordingly, provision can also be made for the diaphragm to be designed to reduce a light intensity in an edge region of the light distribution that is shown.
- the luminous intensity indicates the luminous flux related to the solid angle.
- the diaphragm is particularly preferably designed to reduce the light intensity in a peripheral region of the light distribution shown to 40% to 70% of a value without the diaphragm.
- the introduction of the diaphragm into the beam path causes a reduction in the luminous intensity (or the luminous flux) by around 30% to 60% in the edge area of the light distribution shown.
- the light module has an aperture stop arranged in the beam path between two individual lenses of the lens system, and that the configuration and dimensions of the stop are selected in such a way that a numerical aperture of the lens system specified by the aperture stop is on an optical axis of the Light module, i.e. in the center of the light distribution shown, is not reduced.
- the aperture can only be used to reduce the numerical aperture of the lens system in a marginal area of the light distribution shown.
- the diaphragm comprises a light passage opening which has a central main opening and laterally therefrom secondary openings of smaller surface area, the secondary openings each being in a transition region of the light passage opening into the skip the main opening.
- the central main opening is larger in area than the individual secondary openings in order to largely avoid a reduction in the numerical aperture on the optical axis of the light module.
- the side openings are each smaller than the main opening because they reduce the numerical aperture of the lens system in the edge areas of the light distribution shown.
- a numerical aperture predetermined by the aperture diaphragm of the light module is reduced by the secondary openings.
- the central main opening has an essentially rectangular shape, with a width (2b) of the main opening being smaller than a height (2c) of the main opening and/or that the lateral secondary openings have an essentially rectangular shape.
- the central main opening has a height (2c) that is selected in such a way that a diameter of at least one light beam emitted by at least one central individual light source of the matrix light source is not restricted by the aperture . This ensures that a reduction in the numerical aperture on the optical axis of the light module is largely avoided.
- the lateral secondary openings have a height (2d) that is selected in such a way that a diameter of at least one light beam emitted by at least one individual light source arranged in a lateral edge area of the matrix light source passes through the aperture cut off above and below.
- 2d a height of at least one light beam emitted by at least one individual light source arranged in a lateral edge area of the matrix light source passes through the aperture cut off above and below.
- the central main opening has a height (2c) and that the lateral subsidiary openings each have a height (2d) which is approximately 40% to 60% of the height (2c) of the main opening.
- the lateral secondary openings are each arranged and formed in the aperture in such a way that a diameter of at least one light bundle, which was emitted by at least one individual light source arranged in a lateral edge area of the matrix light source, passes through the aperture on an edge area of the secondary opening opposite the main opening is cut off. What is achieved in this way is that the numerical aperture of the lens system in the edge regions of the imaged light distribution is reduced to the side outwards through the secondary openings.
- the light passage opening has an overall width (2a) and that the central main opening has a width (2b) which is approximately 40% to 60% of the overall width (2a) of the light passage opening.
- the height of the light passage opening increases in the transition area from a height (2d) of the secondary openings via an edge area of the light passage opening with an inclined or curved, in particular outwardly curved, course to a height (2c) of the main opening.
- the transition area has a width (2e) which is approximately 5% to 20% of the total width (2a) of the light passage opening, or alternatively that the transition area has a width (2e) of zero.
- a light module according to the invention of a motor vehicle headlight is denoted in its entirety by the reference numeral 10 in a preferred embodiment.
- the light module 10 comprises a matrix light source 12 with a multiplicity of individually controllable individual light sources arranged in a matrix-like manner, which each emit more or less light for generating a single point of light (so-called pixels) depending on their control.
- the individual light sources can be arranged next to and/or on top of one another or offset relative to one another, so that the term “matrix-like” in the sense of the present invention also includes a series of several individual light sources arranged next to or on top of one another.
- the matrix light source 12 preferably comprises a plurality of individual light sources arranged in rows and columns in the manner of a matrix.
- the light source 12 is embodied as a matrix LED, which comprises a multiplicity of individual LEDs arranged in a matrix-like manner, each of which can generate a pixel.
- the light module 10 includes a lens system 14 for imaging the light points generated by the matrix light source 12 onto a roadway in front of the motor vehicle in order to generate a resulting light distribution of the light module 10.
- the light distribution can be used to implement a lighting function (e.g. fog light, turning light or cornering light, daytime running lights, position lights, etc.) or at least part of a headlight function (e.g. low beam, high beam, low beam basic light, low beam spotlight, high beam basic light, high beam spotlight, partial high beam, etc.).
- a lighting function e.g. fog light, turning light or cornering light, daytime running lights, position lights, etc.
- a headlight function e.g. low beam, high beam, low beam basic light, low beam spotlight, high beam basic light, high beam spotlight, partial high beam, etc.
- an area of a high beam distribution in which another, for example, preceding or oncoming road user was detected is masked out in order to achieve optimum illumination of the area in front of the vehicle for the driver of the motor vehicle without dazzling the detected road user.
- the lens system 14 has a plurality of individual lenses 16, 18, 20 arranged one behind the other in a beam path.
- the first individual lens 16 is designed as a plano-convex glass lens, the planar side of which represents a light entry surface 16a.
- the second individual lens 18 is designed as an achromat (achromatic two-lens lens) in order to reduce the effects of chromatic aberration, if possible even to avoid them entirely.
- achromat achromatic two-lens lens
- the third individual lens 20 is formed by a biconvex plastic lens.
- the lens system 14 or the combination of the individual lenses 16, 18, 20 forms projection optics which project the individual light distributions on the light exit surfaces of the individual light sources (or the light distribution on the matrix light source 12) along an optical axis 22 of the light module 10 in the direction of travel of the motor vehicle as the resulting light distribution of light module 10 on the road.
- the light module 10 has an aperture 24 which is located between the first individual lens 16 and the matrix light source 12 . Furthermore, the light module 10 can have a further screen in the form of an aperture screen 26 between two of the individual lenses 16 , 18 , 20 . In the example shown, an aperture stop 26 is arranged between the second individual lens 18 and the third individual lens 20 . The aperture stop 26 limits a numerical aperture of the lens system 14.
- the aperture 24 is preferably located close to the matrix light source 12.
- a distance between the matrix light source 12 and the aperture 24 is preferably in a range of 2 mm and 6 mm.
- the proximity of the aperture 24 to the matrix light source 12 is important, because only then are the light beams emanating from the matrix light source 12 sufficiently spatially separated from one another, and the aperture 24 can be designed in such a way that they have a selective effect on the edge areas of the mapped light distribution of the light module 10 has.
- the light module 10 with the aperture 24 is used to improve the modulation transfer function (MTF).
- MTF modulation transfer function
- aperture 24 is in figure 2 shown in a plan view (eg against a light exit direction of the light beams).
- An example of a matrix light source 12 with four individual light sources 12a, 12b, 12c, 12d (aspect ratio 1:4) arranged next to one another in a row is shown in FIG figure 3 shown in a plan view.
- the optical axis 22 is perpendicular to a center of the point or area A.
- the light emission surfaces of the individual light sources 12a, 12b, 12c, 12d all have approximately the same dimensions or the same area.
- the diaphragm 24 is designed in such a way that it has no influence on the area in the center of the matrix light source 12 or on the light bundles emitted by the individual light sources in this area.
- the aperture 24 therefore has no influence, for example, on the light from the points or areas A and B of the matrix light source 12 in figure 3 .
- the screen 24 is designed in such a way that the light intensity at the edge of the matrix light source 12 or the light bundle emitted by this area is reduced to 40% to 70% of the value without the screen 24 .
- the aperture 24 thus reduces, for example, the luminous intensity of the light from the point or the area C of the matrix light source 12 in figure 3 by 30% to 60%.
- the screen 24 comprises a light passage opening 28 which has a central main opening 30 and side openings 32 of smaller surface area, the secondary openings 32 each merging into the main opening 30 in a transition region 34 of the light passage opening 28 .
- the various areas 30, 32, 34 are delimited from one another by dashed lines for better understanding. It goes without saying that the light passage opening 28 actually does not have these dashed lines.
- the lateral secondary openings 32 have the same dimensions. However, it would also be conceivable for the secondary openings 32 to have different shapes and/or dimensions.
- figure 4 shows the transmission of light bundles 36A, 36B, 36C from the points or areas A, B and C of the matrix light source 12 through the diaphragm 24 or its light passage opening 28.
- the diameter dA, dB of the light bundles 36A, 36B from the points or Areas A, B is restricted by the aperture stop 26, while the light beam 36C from point or area C is cut off by the stop 24. Without the stop 24, the light beam 36C would have the same diameter dC as the light beams 36A and 36B.
- the central main opening 30 has a height h30, which is selected in such a way that a diameter dA, dB of at least one light beam 36A, 36B, which was emitted by at least one central individual light source of the matrix light source 12, which is located, for example, at the point or Area A or B of the matrix light source 12 is not limited by the aperture 24.
- the lateral secondary openings 32 preferably have a height h32, which is selected in such a way that a diameter dC of at least one light bundle 36C, which was emitted by at least one individual light source arranged in a lateral edge region C of the matrix light source 12, through the Aperture 24 is cut off at the top and bottom.
- the lateral secondary openings 32 can each be arranged and configured in the aperture 24 such that the diameter dC of the at least one light bundle 36C, which was emitted by at least one individual light source arranged in a lateral edge region C of the matrix light source 12, through the aperture 24 is cut off on an edge region 38 of the secondary opening 32 opposite the main opening 30 .
- the central main opening 30 preferably has an essentially rectangular shape, with a width b30 of the main opening 30 being smaller than a height h30 of the main opening 30.
- the side secondary openings 32 preferably also have an essentially rectangular shape.
- the light passage opening 28 advantageously has an overall width b28.
- the width b30 of the central main opening 30 is approximately 40% to 60% of the total width b28 of the light passage opening 28.
- the height h32 of the secondary openings 32 is preferably approximately 40% to 60% of the height h30 of the central main opening 30.
- the height of the light passage opening 28 increases in the transition region 34 from the height h32 of the secondary openings 32 via an upper or lower edge section 40 of the light passage opening 28 with a sloping straight course to the height h30 of the main opening 30 (cf. figure 2 ).
- the height of the light passage opening 28 in the transition region 34 increases from the height h32 of the secondary openings 32 via an upper or lower edge section 40 of the light passage opening 28 with a curved, in particular arc-shaped, progression to the height h30 of the main opening 30 expanded (cf. figure 9 ).
- the transition region 34 preferably has a width b34 which is approximately 5% to 20% of the total width b28 of the light passage opening 28 (cf. figure 2 ). Alternatively, it would also be conceivable for the transition area 34 to have a width of zero (cf. figure 10 ). The transition between a height of the main opening 30 and a height of the secondary openings 32 is thus abrupt or stepped. In the example of figure 10 In addition, the main opening 30 of the light passage opening 28 of the panel 24 is limited neither upwards nor downwards. This is possible because the aperture 24 from the figures 2 and 4 the upper and lower edge areas of the main opening 30 do not restrict the central light beams 36A or 36B anyway.
- the values for the dimensions (height h30 and width b30) of the main opening 30 are preferably selected in such a way that a numerical aperture of the lens system 14 on the optical axis 22 is not reduced, i.e. has no effect.
- the numerical aperture of the system is preferably defined by the aperture stop 26 .
- figure 5 shows an example of a radius or spot radius R of a light bundle 36 of an individual light source of the matrix light source 12, the individual light source starting from point A along the x-axis (cf. figure 3 ) is moved to the point C and on the y-axis the radius R is plotted between points A and C as a function of the position of the individual light source.
- the radius R without the aperture 24 is drawn in with a solid line and the radius R with the aperture 24 is drawn in with a dashed line.
- the radius R (and thus also the diameter dA, dB) of the light beams 36A, 36B from the points or areas A, B is limited at most by the aperture stop 26, but not by the stop 24, while the radius R (and thus also the diameter dC) of the light beam 36C is cut off from the point or area C by the diaphragm 24 (cf. dashed line in area C). Without the aperture 24, the bundle 36C would have a larger diameter, e.g. the same diameter dA; dB as one of the light beams 36A; 36B (see solid line in area C).
- figure 6 shows an example of a luminous flux L of a light bundle 36 of an individual light source of the matrix light source 12, the individual light source starting from point A along the x-axis (cf. figure 3 ) is moved to point C and the luminous flux L is plotted on the y-axis as a function of the position of the individual light source between points A and C.
- the luminous flux L without screen 24 is drawn in with a solid line and the luminous flux L with screen 24 is drawn in with a dashed line.
- the luminous flux L of the light bundles 36A, 36B from the points or areas A, B through the aperture 24 does not experience any losses, while the relative luminous flux L of the light bundle 36C from the point or area C through the aperture 24 experiences a relative loss (cf. dashed line in area C). Without the stop 24, the beam 36C would have no losses (see solid line in region C).
- a reduction in the opening angle or the numerical aperture at the edge of the field (or the light emission surface) of the matrix light source 12 leads to a loss of luminous flux, but at the same time the aberrations ( Image errors) of the lens system 14 reduced.
- This improvement in image quality is in figure 5 based on the spot radius R (root mean square (RMS) spot radius) as a function of the position of the individual light source on the matrix light source 12 (field position).
- the diaphragm 24 shows an effect only at the edge of the field (reduction of the radius R) and only there does the Aperture 24 Luminous flux lost. This decrease in luminous flux L is shown schematically in figure 6 shown.
- the positive effect of the diaphragm 24 is for a test image (illuminated stripes on the matrix light source 12, through the optical axis 22 and along its long side) based on the Figures 7 and 8 shown where figure 7 the test image without aperture 24 and figure 8 the test image with aperture 24 shows.
- the dark areas in the test image represent a low (relative) luminous intensity (eg 10 -2 ), and the brighter the areas are, the greater the (relative) luminous intensity (eg 10 3 ).
- the aperture 24 causes the luminous stripe to be somewhat sharper at the outer edge area (approximately from ⁇ 10).
- the glowing streak is noticeably wider at the edge of the field, while remaining largely unchanged in the center.
- the imaging quality is improved essentially in a direction perpendicular to the long side, ie in the y-direction.
- the test images of Figures 7 and 8 were generated by way of example using a simulated optical system that is constructed similarly to the optical system (the light module 10). figure 1 , and has a numerical aperture of about 0.6.
- FIG. 9 Alternative forms of the aperture 24 are in the Figures 9 and 10 shown.
- the curved edge section 40' is preferably formed by an arc of a circle. From the point of view of the light passage opening 28, the arc of a circle is preferably curved outwards.
- the diaphragm 24 or its light passage opening 28 adapts better to a circular light distribution of the central light beam, for example the light beam B (cf. figure 4 ), at.
- the screen 24 can also consist of two partial screens 24a, 24b, which are arranged laterally in the area of the secondary openings 32, and between which the central main opening 30 is formed. Upper and lower edge portions of the main opening 30 are not required because the aperture 24 is close to the optical axis 22, i.e. in the center, should not have any effect. If the imaging properties are only to be improved on the left-hand or right-hand side, it is sufficient to use just one of the partial diaphragms 24a, 24b.
- a motor vehicle headlight according to the invention is exemplified in figure 11 1 and designated by the reference numeral 100 in its entirety.
- the headlight 100 has a housing 102 which is preferably made of a plastic and includes a light exit opening 104 which is closed by a transparent cover plate 106 .
- the cover plate 38 is made of glass or plastic and can be designed with optically active elements (eg cylindrical lenses, prisms or the like) which scatter the light passing through, in particular in a horizontal direction.
- the cover pane 106 is preferably designed as a so-called clear pane without any optically active elements.
- the headlight 100 is designed for installation in a corresponding installation opening of a motor vehicle.
- a light module 10 according to the invention is arranged inside the housing 102 .
- the light modules 10 can also be arranged in the housing 102 . It is also conceivable that other light modules, in figure 11 symbolically represented by the reference number 108, are arranged inside the housing 102, which are used, for example, to implement a lighting function (e.g. indicator light, cornering light, daytime running light, position light, etc.) or at least part of a headlight function (e.g. low beam/basic light, Low beam spotlight, high beam basic light, high beam spotlight, etc.) are formed.
- a main light exit direction 110 of the light generated by the light modules 10, 108 runs approximately parallel to a direction of travel of the motor vehicle in which the headlight 100 is mounted.
- the light exit direction 110 preferably also runs approximately parallel to the optical axis 22 of the light module 10.
- the present invention thus relates to a panel 24 for a so-called micro-LED matrix headlight module 10.
- the panel 24 is positioned in the vicinity of the matrix light source 12.
- the geometry of the aperture or light passage opening 28 is adapted to the shape of the light source 12 or its light emission surface.
- the geometry of the light passage opening 28 results from the fact that light bundles 36A, 36B emitted by at least one individual light source of the matrix light source 12 which are located in central points or areas A, B of the matrix light source 12, should not be influenced or hardly influenced by the diaphragm 24, and on the other hand light bundles 36C, which were emitted by at least one individual light source of the matrix light source 12, which are located in an edge area C of the matrix light source 12, are to be cut off by the aperture 24 at least in an outer edge area.
- the invention was described as an example using a matrix light source 12 with an aspect ratio of 1:4 and a correspondingly configured geometry of the diaphragm 24 . Of course, these explanations also apply in a corresponding manner to a matrix light source 12 with a different aspect ratio and a diaphragm 24 with a corresponding geometry.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Die Erfindung betrifft ein Lichtmodul (10) eines Kraftfahrzeugscheinwerfers (100), umfassend- eine Matrix-Lichtquelle (12) mit einer Vielzahl von mehreren matrixartig angeordneten, einzeln ansteuerbaren Einzellichtquellen, die abhängig von ihrer Ansteuerung jeweils mehr oder weniger Licht zum Erzeugen eines einzelnen Lichtpunkts emittieren, und- ein Linsensystem (14) zum Abbilden der von der Matrix-Lichtquelle (12) erzeugten Lichtpunkte auf einer Fahrbahn vor dem Kraftfahrzeug zur Erzeugung einer resultierenden Lichtverteilung des Lichtmoduls (12), wobei das Linsensystem (14) mehrere in einem Strahlengang hintereinander angeordnete Einzellinsen (16, 18, 20) aufweist.Es wird vorgeschlagen, dass das Lichtmodul (12) eine in den Strahlengang zwischen der Matrix-Lichtquelle (12) und einer ersten Einzellinse (16) des Linsensystems (14) eingebrachte Blende (24) umfasst, die ausgebildet ist, eine selektive Wirkung auf Randbereiche der abgebildeten Lichtverteilung des Lichtmoduls (12) zu haben.The invention relates to a light module (10) of a motor vehicle headlight (100), comprising a matrix light source (12) with a multiplicity of several individually controllable individual light sources arranged in a matrix, which each emit more or less light for generating a single point of light depending on their control emit, and- a lens system (14) for imaging the light points generated by the matrix light source (12) on a roadway in front of the motor vehicle to generate a resulting light distribution of the light module (12), the lens system (14) having several in a beam path one behind the other arranged individual lenses (16, 18, 20). It is proposed that the light module (12) has a diaphragm (24) placed in the beam path between the matrix light source (12) and a first individual lens (16) of the lens system (14). comprises, which is designed to have a selective effect on edge areas of the imaged light distribution of the light module (12).
Description
Die vorliegende Erfindung betrifft ein Lichtmodul eines Kraftfahrzeugscheinwerfers, umfassend
- eine Matrix-Lichtquelle mit einer Vielzahl von matrixartig angeordneten, einzeln ansteuerbaren Einzellichtquellen, die abhängig von ihrer Ansteuerung jeweils mehr oder weniger Licht zum Erzeugen eines einzelnen Lichtpunkts emittieren, und
- ein Linsensystem zum Abbilden der von der Matrix-Lichtquelle erzeugten Lichtpunkte auf einer Fahrbahn vor dem Kraftfahrzeug zur Erzeugung einer resultierenden Lichtverteilung des Lichtmoduls, wobei das Linsensystem mehrere in einem Strahlengang hintereinander angeordnete Einzellinsen aufweist.
- a matrix light source with a multiplicity of individually controllable individual light sources which are arranged in a matrix-like manner and which, depending on their control, each emit more or less light for generating a single point of light, and
- a lens system for imaging the points of light generated by the matrix light source on a roadway in front of the motor vehicle to generate a resulting light distribution of the light module, the lens system having a plurality of individual lenses arranged one behind the other in a beam path.
Ferner betrifft die Erfindung einen Kraftfahrzeugscheinwerfer umfassend ein Gehäuse mit einer durch eine transparente Abdeckscheibe verschlossenen Lichtaustrittsöffnung und ein in dem Gehäuse angeordnetes Lichtmodul der genannten Art, das zur Realisierung zumindest eines Teils einer resultierenden Lichtverteilung des Scheinwerfers Licht in einer Haupt-Lichtaustrittsrichtung auf einer Fahrbahn vor dem Kraftfahrzeug abbildet.Furthermore, the invention relates to a motor vehicle headlight comprising a housing with a light exit opening closed by a transparent cover plate and a light module of the type mentioned which is arranged in the housing and is used to implement at least part of a resulting light distribution of the Headlight images in a main light exit direction on a roadway in front of the motor vehicle.
Aus dem Stand der Technik sind Lichtmodule von Kraftfahrzeugscheinwerfern zur Erzeugung einer adaptiven Lichtverteilung bekannt, wobei die Lichtmodule jeweils eine Matrix-LED und eine Projektionslinse aufweisen. Die Matrix-LED umfasst eine Vielzahl matrixartig über- und nebeneinander bzw. versetzt zueinander angeordnete, einzeln ansteuerbare LEDs, die je nach Ansteuerung mehr oder weniger bzw. hellere oder dunklere Lichtpunkte (sog. Pixel) der resultierenden Lichtverteilung erzeugen. Nach dem derzeitigen Stand der Technik umfasst eine Matrix-LED typischerweise zwischen 200 und 20.000 einzeln ansteuerbare Pixel auf.Light modules of motor vehicle headlights for generating an adaptive light distribution are known from the prior art, the light modules each having a matrix LED and a projection lens. The matrix LED comprises a large number of individually controllable LEDs arranged above and next to each other or staggered in a matrix-like manner, which, depending on the control, produce more or fewer or brighter or darker points of light (so-called pixels) of the resulting light distribution. According to the current state of the art, a matrix LED typically has between 200 and 20,000 individually controllable pixels.
Die Projektionslinse bildet die von der Matrix-LED emittierten Lichtpunkte bzw. die auf der Matrix-LED erzeugt Lichtverteilung als resultierende Lichtverteilung des Lichtmoduls auf einer Fahrbahn vor dem Kraftfahrzeug ab. Dabei kann die adaptive veränderbare Lichtverteilung ohne bewegte Teile des Lichtmoduls erzeugt werden. Durch gezielte Ansteuerung der Matrix-LED kann die Lichtverteilung dynamisch bspw. zwischen einer Abblendlichtverteilung, einer Teilfernlichtverteilung (d.h. einem Fernlicht, bei dem die Bereiche der Lichtverteilung, in denen andere Verkehrsteilnehmer detektiert wurden, ausgeblendet oder gedimmt sind), einer dynamischen Kurvenlichtverteilung (d.h. das Kurvenlicht leuchtet umso weiter in eine von dem Kraftfahrzeug durchfahrene Kurve hinein, desto enger die Kurve ist), einer Stadtlichtverteilung, einer Landstraßenlichtverteilung, einer Autobahnlichtverteilung, einem vollen Fernlicht etc. verändert werden.The projection lens images the points of light emitted by the matrix LED or the light distribution generated on the matrix LED as the resulting light distribution of the light module on a roadway in front of the motor vehicle. The adaptively changeable light distribution can be generated without moving parts of the light module. By specifically controlling the matrix LED, the light distribution can be changed dynamically, e.g Cornering light shines the further into a curve traveled by the motor vehicle, the tighter the curve is), a city light distribution, a country road light distribution, a freeway light distribution, a full high beam, etc. can be changed.
Es ist ferner bekannt, die Projektionslinse aus mehreren in Lichtdurchtrittsrichtung hintereinander angeordneten Linsenelemente aufzubauen. Aus Gewichts- und Kostengründen wird versucht, die Projektionslinse aus möglichst wenigen, kostengünstigen Linsenelementen herzustellen. Solche Systeme neigen jedoch dazu, dass die Abbildungsqualität am Rand stark abnimmt. Im Allgemeinen ist die Abbildungsqualität am Rand nicht so wichtig, dennoch darf sie einen vom Kunden (d.h. dem Fahrzeughersteller) festgelegten Grenzwert nicht unterschreiten.It is also known to construct the projection lens from a plurality of lens elements arranged one behind the other in the direction of light passage. For reasons of weight and cost, an attempt is made to produce the projection lens from as few inexpensive lens elements as possible. However, such systems tend to have a sharp drop in imaging quality at the edge. In general, the image quality at the edge is not so important, but it must not fall below a limit set by the customer (ie the vehicle manufacturer).
Derartige Lichtmodule sind bspw. aus der
Darüber hinaus ist es bekannt, z.B. aus Eugene Hecht: Optics, 4. Auflage, Pearson 2002, dass das Einbringen einer Blende (sog. Apodisation) in ein Linsensystem die optischen Abbildungseigenschaften positiv beeinflussen kann. Ein Lichtmodul eines Kraftfahrzeugscheinwerfers mit einem Linsensystem, das sich diese Eigenschaften zu Nutze macht, ist bspw. aus der
Ausgehend von dem beschriebenen Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Abbildungseigenschaften eines Linsensystems in einem Lichtmodul mit Matrix-Lichtquelle in den Randbereichen der abgebildeten Lichtverteilung mit einfachen Mitteln zu verbessern.Proceeding from the described state of the art, the object of the present invention is to use simple means to improve the imaging properties of a lens system in a light module with a matrix light source in the edge regions of the imaged light distribution.
Zur Lösung dieser Aufgabe wird ein Lichtmodul mit den Merkmalen des Anspruchs 1 vorgeschlagen. Insbesondere wird ausgehend von dem Lichtmodul der eingangs genannten Art vorgeschlagen, dass das Lichtmodul ferner eine in den Strahlengang zwischen der Matrix-Lichtquelle und einer ersten Einzellinse des Linsensystems eingebrachte Blende umfasst, die ausgebildet ist, eine selektive Wirkung auf Randbereiche der abgebildeten Lichtverteilung des Lichtmoduls zu haben.To solve this problem, a light module with the features of claim 1 is proposed. In particular, based on the light module of the type mentioned at the outset, it is proposed that the light module also includes a diaphragm placed in the beam path between the matrix light source and a first individual lens of the lens system, which is designed to have a selective effect on edge regions of the light distribution of the light module shown have.
Durch das Einbringen einer speziellen Blende zwischen der Matrix-Lichtquelle und einer ersten Einzellinse des abbildenden Linsensystems kann erreicht werden, dass sich die Abbildungseigenschaften in den Randbereichen der resultierenden Lichtverteilung verbessern und dass sich gleichzeitig die Abbildungseigenschaften und die Effizienz im Zentrum (nahe einer optischen Achse des Lichtmoduls) nicht verändern. Darüber hinaus reduziert die Blende das Streulicht, und sie kann kostengünstig in eine Halterung der ersten Einzellinse integriert werden. Ein weiterer Vorteil ist, dass die Blende es erlaubt, den Durchmesser einiger im Strahlengang nachfolgender Einzellinsen zu verringern, was Gewicht und Materialkosten spart.By introducing a special aperture between the matrix light source and a first individual lens of the imaging lens system, the imaging properties in the edge areas of the resulting Improve light distribution and at the same time the imaging properties and the efficiency in the center (near an optical axis of the light module) do not change. In addition, the diaphragm reduces the scattered light, and it can be integrated inexpensively into a mount for the first individual lens. Another advantage is that the diaphragm allows the diameter of some of the individual lenses that follow in the beam path to be reduced, which saves weight and material costs.
Gemäß einer vorteilhaften Weiterbildung der Erfindung wird vorgeschlagen, dass die Blende ausgebildet ist, auf einen Bereich im Zentrum der Matrix-Lichtquelle keinen Einfluss zu haben. Dementsprechend kann ferner vorgesehen sein, dass die Blende ausgebildet ist, eine Lichtstärke in einem Randbereich der abgebildeten Lichtverteilung zu reduzieren. Die Lichtstärke gibt den auf den Raumwinkel bezogenen Lichtstrom an.According to an advantageous development of the invention, it is proposed that the diaphragm be designed not to have any influence on an area in the center of the matrix light source. Accordingly, provision can also be made for the diaphragm to be designed to reduce a light intensity in an edge region of the light distribution that is shown. The luminous intensity indicates the luminous flux related to the solid angle.
Besonders bevorzugt ist die Blende ausgebildet, die Lichtstärke in einem Randbereich der abgebildeten Lichtverteilung auf 40% bis 70% eines Wertes ohne die Blende zu reduzieren. Mit anderen Worten, das Einbringen der Blende in den Strahlengang bewirkt in dem Randbereich der abgebildeten Lichtverteilung eine Reduzierung der Lichtstärke (bzw. des Lichtstroms) um etwa 30% bis 60%.The diaphragm is particularly preferably designed to reduce the light intensity in a peripheral region of the light distribution shown to 40% to 70% of a value without the diaphragm. In other words, the introduction of the diaphragm into the beam path causes a reduction in the luminous intensity (or the luminous flux) by around 30% to 60% in the edge area of the light distribution shown.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass das Lichtmodul eine im Strahlengang zwischen zwei Einzellinsen des Linsensystems angeordnete Aperturblende aufweist, und dass Ausgestaltung und Abmessungen der Blende derart gewählt sind, dass eine von der Aperturblende vorgegebene numerische Apertur des Linsensystems auf einer optischen Achse des Lichtmoduls, also im Zentrum der abgebildeten Lichtverteilung, gerade nicht verringert wird. Lediglich in einem Randbereich der abgebildeten Lichtverteilung kann durch die Blende die numerische Apertur des Linsensystems verringert werden.According to a preferred embodiment of the invention, it is proposed that the light module has an aperture stop arranged in the beam path between two individual lenses of the lens system, and that the configuration and dimensions of the stop are selected in such a way that a numerical aperture of the lens system specified by the aperture stop is on an optical axis of the Light module, i.e. in the center of the light distribution shown, is not reduced. The aperture can only be used to reduce the numerical aperture of the lens system in a marginal area of the light distribution shown.
Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung wird vorgeschlagen, dass die Blende eine Lichtdurchtrittsöffnung umfasst, die eine zentrale Hauptöffnung und seitlich davon flächenmäßig kleinere Nebenöffnungen aufweist, wobei die Nebenöffnungen jeweils in einem Übergangsbereich der Lichtdurchtrittsöffnung in die Hauptöffnung übergehen. Die zentrale Hauptöffnung ist flächenmäßig größer als die einzelnen Nebenöffnungen, um eine Verringerung der numerischen Apertur auf der optischen Achse des Lichtmoduls weitgehend zu vermeiden. Die seitlichen Nebenöffnungen sind jeweils kleiner als die Hauptöffnung, da durch sie die numerische Apertur des Linsensystems in den Randbereichen der abgebildeten Lichtverteilung verringert wird. Insbesondere wird durch die Nebenöffnungen eine von der Aperturblende des Lichtmoduls vorgegebene numerische Apertur verringert.According to a further advantageous development of the invention, it is proposed that the diaphragm comprises a light passage opening which has a central main opening and laterally therefrom secondary openings of smaller surface area, the secondary openings each being in a transition region of the light passage opening into the skip the main opening. The central main opening is larger in area than the individual secondary openings in order to largely avoid a reduction in the numerical aperture on the optical axis of the light module. The side openings are each smaller than the main opening because they reduce the numerical aperture of the lens system in the edge areas of the light distribution shown. In particular, a numerical aperture predetermined by the aperture diaphragm of the light module is reduced by the secondary openings.
Es wird ferner vorgeschlagen, dass die zentrale Hauptöffnung eine im Wesentlichen rechteckige Form aufweist, wobei eine Breite (2b) der Hauptöffnung kleiner ist als eine Höhe (2c) der Hauptöffnung und/oder dass die seitlichen Nebenöffnungen eine im Wesentlichen rechteckige Form aufweisen.It is further proposed that the central main opening has an essentially rectangular shape, with a width (2b) of the main opening being smaller than a height (2c) of the main opening and/or that the lateral secondary openings have an essentially rectangular shape.
Gemäß einer bevorzugten Ausführungsform wird vorgeschlagen, dass die zentrale Hauptöffnung eine Höhe (2c) aufweist, die derart gewählt ist, dass ein Durchmesser von mindestens einem Lichtbündel, das von mindestens einer zentralen Einzellichtquelle der Matrix-Lichtquelle ausgesandt wurde, durch die Blende nicht beschränkt ist. Dadurch wird erreicht, dass eine Verringerung der numerischen Apertur auf der optischen Achse des Lichtmoduls weitgehend vermieden wird.According to a preferred embodiment, it is proposed that the central main opening has a height (2c) that is selected in such a way that a diameter of at least one light beam emitted by at least one central individual light source of the matrix light source is not restricted by the aperture . This ensures that a reduction in the numerical aperture on the optical axis of the light module is largely avoided.
In entsprechender Weise wird vorgeschlagen, dass die seitlichen Nebenöffnungen eine Höhe (2d) aufweisen, die derart gewählt ist, dass ein Durchmesser von mindestens einem Lichtbündel, das von mindestens einer in einem seitlichen Randbereich der Matrix-Lichtquelle angeordneten Einzellichtquelle ausgesandt wurde, durch die Blende nach oben und unten abgeschnitten ist. Auf diese Weise wird erreicht, dass durch die Nebenöffnungen die numerische Apertur des Linsensystems in den Randbereichen der abgebildeten Lichtverteilung nach oben und unten hin verringert wird.Correspondingly, it is proposed that the lateral secondary openings have a height (2d) that is selected in such a way that a diameter of at least one light beam emitted by at least one individual light source arranged in a lateral edge area of the matrix light source passes through the aperture cut off above and below. What is achieved in this way is that the numerical aperture of the lens system is reduced upwards and downwards in the edge regions of the imaged light distribution through the secondary openings.
In diesem Sinne wird vorgeschlagen, dass die zentrale Hauptöffnung eine Höhe (2c) aufweist und dass die seitlichen Nebenöffnungen jeweils eine Höhe (2d) aufweisen, die etwa 40% bis 60% der Höhe (2c) der Hauptöffnung ist.In this sense, it is proposed that the central main opening has a height (2c) and that the lateral subsidiary openings each have a height (2d) which is approximately 40% to 60% of the height (2c) of the main opening.
Vorteilhafterweise sind die seitlichen Nebenöffnungen jeweils derart in der Blende angeordnet und ausgebildet, dass ein Durchmesser von mindestens einem Lichtbündel, das von mindestens einer in einem seitlichen Randbereich der Matrix-Lichtquelle angeordneten Einzellichtquelle ausgesandt wurde, durch die Blende auf einem der Hauptöffnung gegenüberliegenden Randbereich der Nebenöffnung abgeschnitten ist. Auf diese Weise wird erreicht, dass durch die Nebenöffnungen die numerische Apertur des Linsensystems in den Randbereichen der abgebildeten Lichtverteilung zur Seite nach außen hin verringert wird.Advantageously, the lateral secondary openings are each arranged and formed in the aperture in such a way that a diameter of at least one light bundle, which was emitted by at least one individual light source arranged in a lateral edge area of the matrix light source, passes through the aperture on an edge area of the secondary opening opposite the main opening is cut off. What is achieved in this way is that the numerical aperture of the lens system in the edge regions of the imaged light distribution is reduced to the side outwards through the secondary openings.
In diesem Sinne wird vorgeschlagen, dass die Lichtdurchtrittsöffnung eine Gesamtbreite (2a) aufweist und dass die zentrale Hauptöffnung eine Breite (2b) aufweist, die in etwa 40% bis 60% der Gesamtbreite (2a) der Lichtdurchtrittsöffnung ist.In this sense it is proposed that the light passage opening has an overall width (2a) and that the central main opening has a width (2b) which is approximately 40% to 60% of the overall width (2a) of the light passage opening.
Gemäß einer bevorzugten Ausführungsform wird vorgeschlagen, dass sich die Höhe der Lichtdurchtrittsöffnung in dem Übergangsbereich von einer Höhe (2d) der Nebenöffnungen über einen Randbereich der Lichtdurchtrittsöffnung mit schrägem oder gebogenem, insbesondere nach außen gewölbtem, Verlauf auf eine Höhe (2c) der Hauptöffnung erweitert.According to a preferred embodiment, it is proposed that the height of the light passage opening increases in the transition area from a height (2d) of the secondary openings via an edge area of the light passage opening with an inclined or curved, in particular outwardly curved, course to a height (2c) of the main opening.
Insbesondere wird vorgeschlagen, dass der Übergangsbereich eine Breite (2e) aufweist, die etwa 5% bis 20% der Gesamtbreite (2a) der Lichtdurchtrittsöffnung ist oder alternativ, dass der Übergangsbereich eine Breite (2e) von Null aufweist.In particular, it is proposed that the transition area has a width (2e) which is approximately 5% to 20% of the total width (2a) of the light passage opening, or alternatively that the transition area has a width (2e) of zero.
Weitere Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend unter Bezugnahme auf die Figuren näher erläutert. Es wird betont, dass auch einzelne in den Figuren gezeigte Merkmale jeweils für sich alleine erfindungswesentlich sein können, selbst wenn dies in der Beschreibung nicht ausdrücklich erwähnt ist. Ferner wäre es denkbar, dass eine Kombination mehrerer Merkmale aus den Figuren, auch aus verschiedenen Figuren, erfindungswesentlich sein können, selbst wenn diese Kombination in der Beschreibung nicht ausdrücklich erwähnt ist. Es zeigen:
- Figur 1
- ein erfindungsgemäßes Lichtmodul in einer bevorzugten Ausführungsform in einer schematischen Seitenansicht;
- Figur 2
- eine Blende eines erfindungsgemäßen Lichtmoduls in einer bevorzugten Ausführungsform in einer Draufsicht;
- Figur 3
- eine Matrix-Lichtquelle eines erfindungsgemäßen Lichtmoduls in einer bevorzugten Ausführungsform in einer Draufsicht;
- Figur 4
- einen Ausschnitt einer Blende eines erfindungsgemäßen Lichtmoduls in einer bevorzugten Ausführungsform in einer Draufsicht;
- Figur 5
- einen Radius R eines Lichtbündels mindestens einer Einzellichtquelle, die entlang einer quer zu einer optischen Achse des Lichtmoduls und von einem Zentrum A zu einem Randbereich C der Matrix-Lichtquelle verläuft, verschoben wird, mit Blende (gestrichelt) und ohne Blende (durchgezogen);
- Figur 6
- einen relativen Lichtstrom L eines Lichtbündels mindestens einer Einzellichtquelle, die entlang einer quer zu einer optischen Achse des Lichtmoduls und von einem Zentrum A zu einem Randbereich C der Matrix-Lichtquelle verläuft, verschoben wird, mit Blende (gestrichelt) und ohne Blende (durchgezogen);
- Figur 7
- ein Testbild in der Form eines leuchtenden Streifens auf der Matrix-Lichtquelle durch die optische Achse des Lichtmoduls ohne Blende;
- Figur 8
- ein Testbild in der Form eines leuchtenden Streifens auf der Matrix-Lichtquelle durch die optische Achse des Lichtmoduls mit Blende;
- Figur 9
- eine erste alternative Blendenform in einer Draufsicht;
Figur 10- eine zweite alternative Blendenform in einer Draufsicht; und
- Figur 11
- einen erfindungsgemäßen Kraftfahrzeugscheinwerfer in einer schematischen Ansicht.
- figure 1
- a light module according to the invention in a preferred embodiment in a schematic side view;
- figure 2
- a panel of a light module according to the invention in a preferred embodiment in a plan view;
- figure 3
- a matrix light source of a light module according to the invention in a preferred embodiment in a plan view;
- figure 4
- a section of a panel of a light module according to the invention in a preferred embodiment in a plan view;
- figure 5
- a radius R of a light bundle of at least one individual light source, which runs along a transverse to an optical axis of the light module and from a center A to an edge region C of the matrix light source, is shifted, with an aperture (dashed) and without an aperture (solid);
- figure 6
- a relative luminous flux L of a light bundle of at least one individual light source, which runs along a transverse to an optical axis of the light module and from a center A to an edge region C of the matrix light source, is shifted, with an aperture (dashed) and without an aperture (solid);
- figure 7
- a test pattern in the form of a luminous stripe on the matrix light source through the optical axis of the light module without an aperture;
- figure 8
- a test pattern in the form of a luminous stripe on the matrix light source through the optical axis of the light module with aperture;
- figure 9
- a first alternative aperture shape in a plan view;
- figure 10
- a second alternative aperture shape in a plan view; and
- figure 11
- a motor vehicle headlight according to the invention in a schematic view.
In
Ferner umfasst das Lichtmodul 10 ein Linsensystem 14 zum Abbilden der von der Matrix-Lichtquelle 12 erzeugten Lichtpunkte auf eine Fahrbahn vor dem Kraftfahrzeug zur Erzeugung einer resultierenden Lichtverteilung des Lichtmoduls 10. Die Lichtverteilung kann zur Realisierung einer Leuchtenfunktion (z.B. Nebellicht, Abbiege- oder Kurvenlicht, Tagfahrlicht, Positionslicht, etc.) oder zumindest eines Teils einer Scheinwerferfunktion (z.B. Abblendlicht, Fernlicht, Abblendlicht-Grundlicht, Abblendlicht-Spotlicht, Fernlicht-Grundlicht, Fernlicht-Spotlicht, Teilfernlicht etc.) genutzt werden. Bei einem Teilfernlicht wird ein Bereich einer Fernlichtverteilung, in dem ein anderer z.B. vorausfahrender oder entgegenkommender Verkehrsteilnehmer detektiert wurde, ausgeblendet, um für den Fahrer des Kraftfahrzeugs eine optimale Ausleuchtung des Vorfelds vor dem Kraftfahrzeug ohne eine Blendung des detektierten Verkehrsteilnehmers zu realisieren.Furthermore, the
Das Linsensystem 14 weist mehrere in einem Strahlengang hintereinander angeordnete Einzellinsen 16, 18, 20 auf. In dem gezeigten Beispiel ist die erste Einzellinse 16 als eine plankonvexe Glaslinse ausgebildet, deren plane Seite eine Lichteintrittsfläche 16a darstellt. Die zweite Einzellinse 18 ist in dem Beispiel als ein Achromat (achromatischer Zweilinser) ausgebildet, um die Auswirkungen einer chromatischen Aberration zu verringern, nach Möglichkeit sogar ganz zu vermeiden. Durch Kombination einer positiven Linse 18a und einer negativen Linse 18b aus transparentem Material mit unterschiedlich steilem Brechzahlverlauf, d.h. mit unterschiedlicher Abbe-Zahl, lässt sich eine Umkehr im Verlauf der Schnittweite mit der Wellenlänge erreichen, und der Farblängsfehler der chromatischen Aberration ist korrigiert. Die dritte Einzellinse 20 wird in dem Beispiel durch eine bikonvexe Kunststofflinse gebildet. Das Linsensystem 14 bzw. die Kombination der Einzellinsen 16, 18, 20 bildet eine Projektionsoptik, welche die Einzel-Lichtverteilungen auf den Lichtaustrittsflächen der Einzellichtquellen (bzw. die Lichtverteilung auf der Matrix-Lichtquelle 12) entlang einer optischen Achse 22 des Lichtmoduls 10 in Fahrtrichtung des Kraftfahrzeugs als resultierende Lichtverteilung des Lichtmoduls 10 auf der Fahrbahn abbildet.The
Es wird vorgeschlagen, dass das Lichtmodul 10 eine Blende 24 aufweist, die sich zwischen der ersten Einzellinse 16 und der Matrix-Lichtquelle 12 befindet. Ferner kann das Lichtmodul 10 eine weitere Blende in der Form einer Apperturblende 26 zwischen zwei der Einzellinsen 16, 18, 20 aufweisen. In dem gezeigten Beispiel ist eine Apperturblende 26 zwischen der zweiten Einzellinse 18 und der dritten Einzellinse 20 angeordnet. Die Apperturblende 26 beschränkt eine numerische Apertur des Linsensystems 14.It is proposed that the
Bevorzugt befindet sich die Blende 24 nahe an der Matrix-Lichtquelle 12. Ein Abstand zwischen der Matrix-Lichtquelle 12 und der Blende 24 liegt bevorzugt in einem Bereich von 2mm und 6mm. Die Nähe der Blende 24 zu der Matrix-Lichtquelle 12 ist wichtig, denn nur dann sind die von der Matrix-Lichtquelle 12 ausgehenden Lichtbündel genügend räumlich voneinander getrennt, und kann die Blende 24 so ausgelegt werden, dass sie eine selektive Wirkung auf Randbereiche der abgebildeten Lichtverteilung des Lichtmoduls 10 hat. Das Lichtmodul 10 mit der Blende 24 dient zur Verbesserung der Modulationstransferfunktion (MTF).The
Ein Beispiel für die Blende 24 ist in
Die Blende 24 ist so ausgestaltet, dass sie auf den Bereich im Zentrum der Matrix-Lichtquelle 12 bzw. auf die von den Einzellichtquellen in diesem Bereich emittierten Lichtbündel, keinen Einfluss hat. Somit hat die Blende 24 bspw. keinen Einfluss auf das Licht aus den Punkten bzw. Bereichen A und B der Matrix-Lichtquelle 12 in
Die Blende 24 umfasst eine Lichtdurchtrittsöffnung 28, die eine zentrale Hauptöffnung 30 und seitlich davon flächenmäßig kleinere Nebenöffnungen 32 aufweist, wobei die Nebenöffnungen 32 jeweils in einem Übergangsbereich 34 der Lichtdurchtrittsöffnung 28 in die Hauptöffnung 30 übergehen. In
Die zentrale Hauptöffnung 30 weist eine Höhe h30 auf, die derart gewählt ist, dass ein Durchmesser dA, dB von mindestens einem Lichtbündel 36A, 36B, das von mindestens einer zentralen Einzellichtquelle der Matrix-Lichtquelle 12 ausgesandt wurde, die sich bspw. im Punkt oder Bereich A oder B der Matrix-Lichtquelle 12 befindet, durch die Blende 24 nicht beschränkt ist.The central
Ferner kann der
Die zentrale Hauptöffnung 30 weist bevorzugt eine im Wesentlichen rechteckige Form auf, wobei eine Breite b30 der Hauptöffnung 30 kleiner ist als eine Höhe h30 der Hauptöffnung 30. Die seitlichen Nebenöffnungen 32 weisen vorzugsweise ebenfalls eine im Wesentlichen rechteckige Form auf.The central
Vorteilhafterweise weist die Lichtdurchtrittsöffnung 28 eine Gesamtbreite b28 auf. Die Breite b30 der zentralen Hauptöffnung 30 ist in etwa 40% bis 60% der Gesamtbreite b28 der Lichtdurchtrittsöffnung 28. Vorzugsweise beträgt die Höhe h32 der Nebenöffnungen 32 in etwa 40% bis 60% der Höhe h30 der zentralen Hauptöffnung 30.The light passage opening 28 advantageously has an overall width b28. The width b30 of the central
Die Höhe der Lichtdurchtrittsöffnung 28 erweitert sich in dem Übergangsbereich 34 von der Höhe h32 der Nebenöffnungen 32 über einen oberen bzw. unteren Randabschnitt 40 der Lichtdurchtrittsöffnung 28 mit schrägem geradem Verlauf auf die Höhe h30 der Hauptöffnung 30 (vgl.
Der Übergangsbereich 34 weist bevorzugt eine Breite b34 auf, die etwa 5% bis 20% der Gesamtbreite b28 der Lichtdurchtrittsöffnung 28 ist (vgl.
Die Werte für die Abmessungen (Höhe h30 und Breite b30) der Hauptöffnung 30 sind bevorzugt so gewählt, dass eine numerische Apertur des Linsensystems 14 auf der optischen Achse 22 gerade nicht verringert wird, d.h. keine Wirkung hat. Die numerische Apertur des Systems ist vorzugsweise durch die Apperturblende 26 festgelegt.The values for the dimensions (height h30 and width b30) of the
Eine Verkleinerung des Öffnungswinkels bzw. der numerischen Apertur am Rande des Feldes (bzw. der Lichtabstrahlfläche) der Matrix-Lichtquelle 12 (z.B. um den Punkt bzw. Bereich C herum) führt zwar zu einem Verlust an Lichtstrom, gleichzeitig werden aber auch die Aberrationen (Bildfehler) des Linsensystems 14 reduziert. Diese Verbesserung der Abbildungsqualität ist in
Die positive Wirkung der Blende 24 ist für ein Testbild (leuchtender Streifen auf der Matrix-Lichtquelle 12, durch die optische Achse 22 und entlang ihrer Längsseite) anhand der
Alternative Formen der Blende 24 sind in den
Alternativ kann die Blende 24 auch aus zwei Teilblenden 24a, 24b bestehen, die seitlich im Bereich der Nebenöffnungen 32 angeordnet sind, und zwischen denen die zentrale Hauptöffnung 30 ausgebildet ist. Oberen und unteren Randabschnitte der Hauptöffnung 30 sind nicht erforderlich, da die Blende 24 nahe der optischen Achse 22, also im Zentrum, keine Wirkung zeigen soll. Falls die die Abbildungseigenschaften nur auf der linken oder rechten Seite verbessert werden sollen, genügt es, eine einzige der Teilblenden 24a, 24b einzusetzen.Alternatively, the
Ein erfindungsgemäßer Kraftfahrzeugscheinwerfer ist beispielhaft in
Zusammenfassend betrifft die vorliegende Erfindung also eine Blende 24 für ein sog. Mikro-LED-Matrix Scheinwerfermodul 10. Die Blende 24 ist in der Nähe der Matrix-Lichtquelle 12 positioniert. Die Geometrie der Blenden- oder Lichtdurchtrittsöffnung 28 ist an die Form der Lichtquelle 12 bzw. deren Lichtabstrahlfläche angepasst. Die Geometrie der Lichtdurchtrittsöffnung 28 ergibt sich dadurch, dass Lichtbündel 36A, 36B, die von mindestens einer Einzellichtquelle der Matrix-Lichtquelle 12 ausgesandt wurden, die sich in zentralen Punkten bzw. Bereichen A, B der Matrix-Lichtquelle 12 befinden, durch die Blende 24 nicht oder kaum beeinflusst werden sollen, und andererseits aber Lichtbündel 36C, die von mindestens einer Einzellichtquelle der Matrix-Lichtquelle 12 ausgesandt wurden, die sich in einem Randbereich C der Matrix-Lichtquelle 12 befinden, durch die Blende 24 zumindest in einem äußeren Randbereich abgeschnitten werden sollen. Die Erfindung wurde beispielhaft anhand einer Matrix-Lichtquelle 12 mit einem Seitenverhältnis von 1:4 und einer entsprechend ausgestalteten Geometrie der Blende 24 beschrieben. Selbstverständlich gelten diese Ausführungen in entsprechender Weise auch für eine Matrix-Lichtquelle 12 mit einem anderen Seitenverhältnis und eine Blende 24 mit einer entsprechenden Geometrie.In summary, the present invention thus relates to a
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021132692.3A DE102021132692A1 (en) | 2021-12-10 | 2021-12-10 | Light module of a motor vehicle headlight and motor vehicle headlight with such a light module |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4194744A1 true EP4194744A1 (en) | 2023-06-14 |
EP4194744B1 EP4194744B1 (en) | 2024-06-12 |
Family
ID=83995054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22203122.1A Active EP4194744B1 (en) | 2021-12-10 | 2022-10-21 | Light module of a motor vehicle headlight and motor vehicle headlight comprising such a light module |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4194744B1 (en) |
CN (1) | CN116255585A (en) |
DE (1) | DE102021132692A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2306074A2 (en) * | 2009-10-05 | 2011-04-06 | Automotive Lighting Reutlingen GmbH | Motor vehicle headlight with a semiconductor source, light module with a primary lens and a secondary lens |
DE102013227194A1 (en) * | 2013-12-27 | 2015-07-02 | Automotive Lighting Reutlingen Gmbh | Motor vehicle headlamps |
WO2016161471A1 (en) * | 2015-04-10 | 2016-10-13 | Zkw Group Gmbh | Lighting device having light-guiding shield |
DE102019202434A1 (en) | 2018-02-22 | 2019-08-22 | Koito Manufacturing Co., Ltd. | vehicle light |
CN111219679A (en) * | 2020-02-13 | 2020-06-02 | 江苏大学 | Matrix type LED pixel lamp optical system for automobile illumination |
DE102019102475A1 (en) | 2019-01-31 | 2020-08-06 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
DE102019118264A1 (en) * | 2019-07-05 | 2021-01-07 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
DE102020100762A1 (en) | 2020-01-15 | 2021-07-15 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012077274A1 (en) | 2010-12-08 | 2014-05-19 | パナソニック株式会社 | Lighting device |
JP5831751B2 (en) | 2011-11-16 | 2015-12-09 | スタンレー電気株式会社 | Vehicle headlamp |
WO2017164328A1 (en) | 2016-03-24 | 2017-09-28 | 株式会社小糸製作所 | Vehicle lamp, vehicle lamp control system, and vehicle provided with vehicle lamp and vehicle lamp control system |
DE102018008760A1 (en) | 2018-11-08 | 2019-04-25 | Daimler Ag | Vehicle headlight with a light source |
CN111271679B (en) | 2018-12-05 | 2022-02-22 | Sl株式会社 | Vehicle lamp |
CN115280064A (en) | 2020-03-10 | 2022-11-01 | 株式会社小糸制作所 | Lamp unit and vehicle lamp |
-
2021
- 2021-12-10 DE DE102021132692.3A patent/DE102021132692A1/en active Pending
-
2022
- 2022-10-21 EP EP22203122.1A patent/EP4194744B1/en active Active
- 2022-12-09 CN CN202211583804.XA patent/CN116255585A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2306074A2 (en) * | 2009-10-05 | 2011-04-06 | Automotive Lighting Reutlingen GmbH | Motor vehicle headlight with a semiconductor source, light module with a primary lens and a secondary lens |
DE102013227194A1 (en) * | 2013-12-27 | 2015-07-02 | Automotive Lighting Reutlingen Gmbh | Motor vehicle headlamps |
WO2016161471A1 (en) * | 2015-04-10 | 2016-10-13 | Zkw Group Gmbh | Lighting device having light-guiding shield |
DE102019202434A1 (en) | 2018-02-22 | 2019-08-22 | Koito Manufacturing Co., Ltd. | vehicle light |
DE102019102475A1 (en) | 2019-01-31 | 2020-08-06 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
DE102019118264A1 (en) * | 2019-07-05 | 2021-01-07 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
DE102020100762A1 (en) | 2020-01-15 | 2021-07-15 | HELLA GmbH & Co. KGaA | Lighting device for a motor vehicle, in particular high-resolution headlights |
CN111219679A (en) * | 2020-02-13 | 2020-06-02 | 江苏大学 | Matrix type LED pixel lamp optical system for automobile illumination |
Also Published As
Publication number | Publication date |
---|---|
CN116255585A (en) | 2023-06-13 |
EP4194744B1 (en) | 2024-06-12 |
DE102021132692A1 (en) | 2023-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2846077B1 (en) | Projection lens for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlamp with such a projection lens | |
EP2910847B1 (en) | Light module of a motor vehicle headlight and headlight with such a light module | |
EP3394504B1 (en) | Headlamp for a vehicle | |
DE102015224745B4 (en) | Motor vehicle headlight with a base light assembly and a high beam assembly | |
DE102016102263B4 (en) | Lighting device, in particular a headlight for motor vehicles | |
DE102008013603A1 (en) | Light module for a lighting device | |
CH671455A5 (en) | ||
EP3301350B1 (en) | Light module for a motor vehicle headlamp | |
DE102014116862A1 (en) | Headlight system for motor vehicles | |
DE102011078653A1 (en) | Attachment optics for the bundling of emitted light of at least one semiconductor light source | |
WO2018023141A1 (en) | Motor vehicle headlight | |
DE102017107781A1 (en) | Primary optical unit for a light module | |
DE102018105720B4 (en) | Light module for motor vehicle headlights | |
EP3812653B1 (en) | Signal light with a light guide | |
DE102014201749A1 (en) | Microlens arrangement and illumination device for uniform illumination with microlens arrangement | |
DE102018112453A1 (en) | Advance light module | |
DE102020107926A1 (en) | Microlens projection module with beam end adapted to the divergence of illumination | |
EP4194744B1 (en) | Light module of a motor vehicle headlight and motor vehicle headlight comprising such a light module | |
EP3899354A1 (en) | Lighting device for a motor vehicle headlight, and motor vehicle headlight | |
EP3230650B1 (en) | Headlight for vehicles | |
DE102011002260A1 (en) | Adaptive lighting device used in motor vehicle, has voltage control unit which supplies electrical voltage to optical transmission segments that are formed in such way to change transmissivity, when electrical voltage is applied | |
DE4129955C2 (en) | Motor vehicle lighting device with light guide elements | |
DE602004002016T2 (en) | Car headlights that can illuminate elevated traffic signs | |
DE102020132350A1 (en) | Light module for a motor vehicle headlight | |
WO2004006560A1 (en) | Line illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231114 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240131 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502022001040 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240913 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240912 |