EP2840159A1 - Procédé destiné à la fabrication d'un composant en acier - Google Patents

Procédé destiné à la fabrication d'un composant en acier Download PDF

Info

Publication number
EP2840159A1
EP2840159A1 EP13181374.3A EP13181374A EP2840159A1 EP 2840159 A1 EP2840159 A1 EP 2840159A1 EP 13181374 A EP13181374 A EP 13181374A EP 2840159 A1 EP2840159 A1 EP 2840159A1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
flat
retained austenite
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13181374.3A
Other languages
German (de)
English (en)
Other versions
EP2840159B1 (fr
EP2840159B8 (fr
Inventor
Brigitte Hammer
Thomas Heller
Frank Hisker
Rudolf Kawalla
Grzegorz Korpala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES13181374.3T priority Critical patent/ES2636780T3/es
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP13181374.3A priority patent/EP2840159B8/fr
Priority to US14/913,592 priority patent/US10301700B2/en
Priority to KR1020167006903A priority patent/KR20160047495A/ko
Priority to CN201480046408.0A priority patent/CN105518175B/zh
Priority to PCT/EP2014/067571 priority patent/WO2015024903A1/fr
Priority to JP2016535447A priority patent/JP6606075B2/ja
Publication of EP2840159A1 publication Critical patent/EP2840159A1/fr
Publication of EP2840159B1 publication Critical patent/EP2840159B1/fr
Application granted granted Critical
Publication of EP2840159B8 publication Critical patent/EP2840159B8/fr
Priority to JP2019072123A priority patent/JP2019151932A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Definitions

  • the invention relates to a method for producing a steel component, which has a tensile strength Rm of more than 1200 MPa and an elongation at break A50 of at least 6%.
  • Steel components produced according to the invention are distinguished by a very high strength in combination with good elongation properties and, as such, are particularly suitable as components for motor vehicle bodies.
  • flat steel product here by a rolling process produced steel sheets or steel strips and divided therefrom boards and the like understood.
  • Steel components of the type according to the invention are produced by a forming process from such flat steel products.
  • alloy contents are stated here only in “%”, this always means “% by weight”, unless expressly stated otherwise.
  • Thickness of not more than 3.5 mm should have a uniform distribution of its mechanical properties and a particularly good Lochetzweitungs .
  • the process envisages that a slab containing (in% by weight) 0.05-0.30% C, 0.03-1.0% Si, 1.5-3.5% Mn, up to 0.02% P, up to 0.005% S, up to 0.150 Al, up to 0.0200% N, and alternatively or in combination 0.003-0.20% Nb or 0.005-0.20% Ti, up to 1200 ° C is heated and then hot rolled at a hot rolling end temperature of at least 800 ° C, in particular 950 - 1050 ° C, to a hot strip.
  • the hot strip obtained is cooled at a cooling rate of 20 - 150 ° C / sec to a reel temperature of 300 - 550 ° C, in which it is wound into a coil.
  • the cooling starts within 2 seconds after the end of the hot rolling.
  • the hot rolled strip thus obtained shall have a fine bainitic structure with a bainite content of at least 90%, the average grain size of which shall not exceed 3,0 ⁇ m, the ratio of the longest axis length to the shortest axis length of the grains not exceeding 1, 5 and the length of the longest axis of the grains should not exceed 10 microns.
  • the remainder of the structure not occupied by bainite should consist of tempered martensite, which is very similar in its appearance and properties to bainite.
  • Hot rolled strips produced and produced in this manner have tensile strengths of 850 - 1103 MPa at an elongation of 15 - 23%.
  • a method for producing a steel sheet having a tensile strength of at least 1470 MPa in which the product of Elongation and tensile strength is at least 29000 MPa%.
  • the steel constituting the steel sheet contains, in addition to iron and unavoidable impurities (in% by weight), 0.30-0.73% C, up to 3.0% Si, up to 3.0 Al, the Sum of the Si and Al contents is at least 0.7%, 0.2-8.0% Cr, up to 10.0% Mn, the sum of the Cr and Mn contents being at least 1.0%, up to 0.1% P, up to 0.07% S and up to 0.010% N.
  • the steel sheet thus composed is processed such that the martensite area fraction in the range of 15-90% based on the total microstructure of the steel and the content of residual austenite of the structure is 10 - 50%. At least 50% of the martensite should be present as tempered martensite and the area fraction of tempered martensite should be at least 10%. If present in the structure, at the same time the area ratio of polygonal ferrites present in the structure should be at most 10%.
  • a hot rolled steel strip as set forth by heating a steel precursor such as a slab to 1000-1300 ° C and thereafter rolling it to a hot strip at a hot rolling end temperature of 870-950 ° C.
  • the resulting hot strip is then wound at a reel temperature of 350 - 720 ° C to form a coil. After coiling, pickling followed by cold rolling takes place at degrees of deformation of 40-90%.
  • the cold-rolled strip thus obtained is annealed for 15-1000 seconds at a temperature where it has a purely austenitic structure, and then at a cooling rate of at least 3 ° C / s cooled to a temperature ranging from below the martensite start temperature and reaching a temperature lower than 150 ° C lower temperature range to produce tempered martensite in the structure of the steel sheet. Thereafter, the cold rolled steel strip is heated to 340-500 ° C over a period of 15-1000 seconds to stabilize the retained austenite.
  • the cold-rolled steel sheets thus produced reached tensile strengths of more than 1600 MPa at an elongation of up to 27%.
  • the object of the invention was to specify a method which makes it possible in a simple way to produce complex shaped components from flat steel products of the type described above.
  • this object has been achieved by carrying out the operations specified in claim 1 for the production of high-strength steel components having good elongation properties.
  • the invention is based on the recognition that a component which is produced by forming a 150-400 ° C warm flat steel product of the type according to the invention, after a subsequent cooling to room temperature over the strength of the original Stahlflachöns significantly increased strength with almost unchanged elongation properties has.
  • the elongation properties of a component produced according to the invention thus do not decrease, in spite of the increased strength, compared to a component formed at room temperature.
  • the invention thus results from a pre-deformation at 150 - 400 ° C a significant increase in strength with unchanged extensibility of each component obtained.
  • the increase in strength achieved by the forming according to the invention is considerable.
  • the expansion properties of the component obtained according to the invention correspond to the elongation properties of the component formed at room temperature, so that the component produced according to the invention is particularly suitable for use in automobile bodies due to its deformation behavior.
  • the reason for the increase in strength achieved by the procedure according to the invention, according to the findings of the invention, is that in the structure of the present invention processed flat steel product present globular retained austenite, which is characterized by a grain size of at least 1 micron, under the load of the forming in accordance with the invention Temperature range of 150 - 400 ° C in film-like retained austenite and bainitic ferrite or below the martensite starting temperature converted into martensite. During the forming in the temperature range concerned, the globular retained austenite present in the steel flat product thus contributes to increasing the elongation at. After the forming and cooling of the component of the steel according to the invention then shows higher tensile strengths due to the additionally formed ferritic bainite or martensite.
  • the parts of film-like retained austenite which remain unchanged over cooling ensure the good residual elongation achieved after the transformation. This effect can be used particularly reliably if the flat steel product for the inventive transformation to the component is heated to 200-400 ° C., in particular 200-300 ° C.
  • the method according to the invention is particularly suitable for converting flat steel products which are provided with a metallic protective coating into components.
  • the metallic protective layer is at most slightly influenced by the invention taking place heating.
  • the protective coating may be a conventional zinc, zinc alloy, aluminum or aluminum alloy, magnesium or magnesium alloy coating.
  • composition of a flat steel product processed according to the invention has been chosen taking into account the following aspects:
  • the C content of the flat steel product according to the invention to at least 0.25 wt .-%, in particular at least 0.27 wt .-%, at least 0.28 wt .-% or at least 0.3 wt .-%, are set, wherein the be used by the comparably high carbon content effects particularly safe when the C content in the range of> 0.25 to 0.5 wt .-%, in particular 0.27 to 0.4 wt .-% or 0.28 - 0.4 wt .-%, is.
  • Si Due to the presence of Si in contents of 0.4-2.5% by weight and Al in contents of up to 3% by weight in the flat steel product processed according to the invention, carbide formation in the bainite can be suppressed and consequently the residual austenite stabilized by dissolved carbon become.
  • Si contributes to solid solution hardening. In order to avoid potentially harmful influences of Si, the Si content may be limited to 2.0 wt%. In order to use Si as a mixed-crystal former for increasing the strength, it may be expedient for the flat steel product processed according to the invention to contain at least 1% by weight of Si.
  • Al can partially replace the Si content in the steel processed according to the invention.
  • a minimum content of 0.4 wt .-% Al may be provided. This is especially true when the hardness or tensile strength of the steel is to be set to a lower value in favor of improved ductility by the addition of Al.
  • the optionally additionally present contents of Cu, Cr and Ni also contribute to the formation of bainite.
  • the martensite start temperature can be lowered and the tendency of the bainite to convert to pearlite or cementite can be suppressed.
  • Cr at levels up to the upper limit of not more than 2% by weight given in accordance with the invention promotes the ferritic transformation, whereby optimum effects of the presence of Cr in a flat steel product according to the invention result if the Cr content is reduced to 1.5% by weight. is limited.
  • Ti, V or Nb can support the formation of fine-grained microstructures and promote ferritic transformation.
  • these micro-alloying elements contribute to increasing the hardness by forming precipitates.
  • the positive effects of Ti, V and Nb in the flat steel product processed according to the invention can then be achieved particularly effectively use, if their content is in each case in the range of 0.002 to 0.15 wt .-%, in particular 0.14 wt .-% does not exceed.
  • the formation of the structure provided according to the invention can be ensured, in particular, by the contents of the steel flat product of Mn, Cr, Ni, Cu and C processed according to the invention having the following condition 1 ⁇ 0 . 5 % Mn + 0 . 167 % Cr + 0 . 125 % Ni + 0 . 125 % Cu + 1 . 334 % C ⁇ 2 meet, where with% Mn the respective Mn content in wt .-%, with% Cr of the respective Cr content in wt .-%, with% Ni of the respective Ni content in wt .-%, with% Cu of the respective Cu content in wt .-% and with% C of the respective C content in wt .-% are designated.
  • hot-rolled or cold-rolled flat steel products having a composition corresponding to the specifications according to the invention are suitable as the starting material for the process according to the invention.
  • eligible hot rolled flat steel products and a process for their preparation are the subject of the European patent application EP 12 17 83 30.2 , the content of which is hereby expressly incorporated into the disclosure of the present patent application.
  • the hot-rolled flat steel products produced according to this patent application are characterized by an optimum combination of elongation properties and strength.
  • This combination of properties can be achieved in a particularly reliable way that the structure of flat steel products processed according to the invention, in addition to optionally present fractions of up to 5% by volume of ferrite and up to 10% by volume of martensite, to at least 60% by volume of bainite and the balance of retained austenite, the retained austenite content being at least 10% by volume, at least a portion of the retained austenite is in block form and the blocks of the retained austenite present in block form at least 98% have a mean diameter of less than 5 microns.
  • obtained hot-rolled flat steel product has a two-phase dominated microstructure of which one dominant component is bainite and its second dominant component is retained austenite.
  • small amounts of martensite and ferrite may be present, but their contents are too low to have an influence on the properties of the hot-rolled steel flat product.
  • blocky retained austenite is referred to as the ratio of length / width, ie longest extent / thickness, of 1 to 5 in the structural components of retained austenite present in the structure.
  • retained austenite is referred to as "film-like” if the ratio of length / width is greater than 5 for the retained austenite accumulations present in the microstructure and the width of the respective microstructure constituents of retained austenite is less than 1 ⁇ m. Accordingly, film-like retained austenite is typically present as a finely distributed lamella.
  • a cold-rolled flat steel product suitable for carrying out the process according to the invention as starting material and a process for producing such a cold-rolled steel flat product are the subject of the European patent application 12 17 83 32.8 , the contents of which are hereby expressly included in the disclosure of the present patent application.
  • the microstructure of the cold-rolled steel flat product preferably consists of at least 20% by volume of bainite, 10 to 35% by volume of retained austenite and the remainder of martensite. It goes without saying that in the structure of the flat steel product technically unavoidable traces of other structural constituents can be present. Accordingly, such a cold-rolled flat steel product suitable for the processing according to the invention has a three-phase structure whose dominant constituent is bainite and which furthermore consists of retained austenite and the remainder of martensite.
  • the bainite content is at least 50% by volume, in particular at least 60% by volume, and the residual austenite content is in the range from 10 to 25% by volume, the remainder of the microstructure in each case also being filled with martensite.
  • the optimum martensite content is at least 10% by volume.
  • retained austenite In addition to the main components “Bainite”, “retained austenite” and “martensite” may be present in the cold-rolled steel flat product processed according to the invention contents of other microstructure constituents, but their proportions are too low to have an influence on the properties of the cold-rolled steel flat product.
  • the retained austenite is predominantly film-like with small globular islands of blocky retained austenite with a grain size ⁇ 5 ⁇ m in the case of such a flat steel product suitable for processing according to the invention, so that the retained austenite has a high stability and, consequently, a low tendency to undesirable transformation into martensite ,
  • the C content of the retained austenite is typically more than 1.0% by weight.
  • the above-mentioned martensite starting temperature ie the temperature at which martensite forms in steel processed according to the invention, can be determined in each case according to the article " Thermodynamic Exatrapolation and Martensite Start-Temperature of Substitutionally Alloyed Steels "by H. Bhadeshia, published in Metal Science 15 (1981), pages 178-180 explained procedure can be calculated.
  • the molten steel has been conventionally cast into slabs which have subsequently been heated to a reheating temperature TDC in a manner also conventional.
  • the heated slabs were hot rolled in a likewise conventional hot rolling mill to hot strips W1 - W4 with a thickness of 2.0 mm each.
  • the hot strips W1-W4 emerging from the hot rolling scale each had a hot rolling end temperature ET, from which they have been accelerated at a cooling rate KR to a coiling temperature HT. At this reel temperature HT, the hot strips W1 - W4 have been wound into coils.
  • the coils were then each cooled in a temperature range whose upper limit was determined by the respective reel temperature HT and the lower limit by the martensite starting temperature MS calculated for the steel S1.
  • the calculation of the martensite start temperature MS was carried out according to the article " Thermodynamic Exatrapolation and Martensite Start-Temperature of Substituted Alloyed Steels "by H. Bhadeshia, published in Metal Science 15 (1981), pages 178-180 explained procedure.
  • the duration over which the coil was cooled in the temperature range defined in the manner described above was such that the hot strips thus obtained each had a structure consisting of bainite and retained austenite, in which the proportions of others Structural constituents were present at most in ineffective, against "0" going amounts.
  • Table 3 also shows the mechanical properties tensile strength Rm, yield strength Rp, elongation at break A80, quality Rm * A80 and the respective retained austenite content RA determined for the individual hot strips W1-W4.
  • Samples of the steel flat products obtained in the form of the hot strips W1-W4 are then heated to a forming temperature UT lying in the range of 200-250 ° C. and formed into a single component with a degree of deformation of up to 15%.
  • the elongation at break A50 of the samples was> 30%, so that it was also possible to image complex shaped elements without the risk of crack formation in the temperature range of the forming process according to the invention.
  • the components converted from the samples of the hot strips W1-W4 were air-cooled to room temperature and their breaking elongation A50 and their tensile strength Rm were determined.
  • the tensile strength Rm of the samples formed according to the invention was 80-120 MPa higher than the samples converted at room temperature.
  • Fig. 2 is a section of a structural sample shown, which has been removed at room temperature from the component, which has been formed from the consisting of the steel S1 hot strip W2 in accordance with the invention at temperatures of 200 - 250 ° C.
  • Fig. 3a, 3b are in each case 20,000-fold magnification cut-outs of a structural sample of steel S1 existing steel component before ( Fig. 3a ) and after ( Fig. 3b ) reproduced the deformation of the invention.
  • FIG. 4a, 4b corresponding photographs of the structural samples of the existing steel S1 steel component ( Fig. 4a ) and after ( Fig. 4b ) of the inventive transformation in 50000-fold magnification.
  • FIG. 3a Comparison of FIG. 3a with the FIG. 3b and the FIG. 4a with the FIG. 4b clearly show the changes that are caused by a deformation according to the invention.
  • a flat steel product which, in addition to iron and unavoidable impurities (in% by weight) C: 0.10-0.60%, Si: 0.4-2.5%, Al: up to 3.0% Mn: 0.4 - 3.0%, Ni: up to 1%, Cu: up to 2.0%, Mo: up to 0.4%, Cr: up to 2%, Co: up to 1.5 %, Ti: up to 0.2%, Nb: up to 0.2%, V: up to 0.5%, the structure of the flat steel product consisting of at least 10% by volume of retained austenite, the globular retained austenite islands having a grain size of at least 1 micron.
  • the flat steel product is heated to 150-400 ° C forming temperature and formed at the forming temperature with a degree of deformation which is at most equal to the uniform strain Ag, to the component. Finally, the steel flat product thus obtained is cooled.
  • Such molded at elevated temperatures component has over the same flat steel product, but molded at room temperature components significantly increased strength.
  • Table 1 stolen C Si al Mn Ni Cu Cr other S1 0.48 1.5 0.02 1, 48 0.034 1.51 0.9 In% by weight, Remaining iron and unavoidable impurities hot strip OT [° C] ET [° C] KR [° C / s] HT [° C] MS [° C] W1 1150 970 20 350 245 W2 1200 1000 10 400 315 W3 1200 1000 20 450 270 W4 1150 1000 20 500 230 hot strip Rm [MPa] Rp [MPa] A80 [%] RM * A80 [MPa *%] RA [vol.%] W1 1357 807 22.2 27387 36 W2 1318 751 17, 8 21328 17 W3 1217 821 25.8 28544 32 W4 1345 889 21.0 25677 30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
EP13181374.3A 2013-08-22 2013-08-22 Procédé destiné à la fabrication d'un composant en acier Active EP2840159B8 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13181374.3A EP2840159B8 (fr) 2013-08-22 2013-08-22 Procédé destiné à la fabrication d'un composant en acier
ES13181374.3T ES2636780T3 (es) 2013-08-22 2013-08-22 Procedimiento para la fabricación de un componente de acero
KR1020167006903A KR20160047495A (ko) 2013-08-22 2014-08-18 강 부품의 제조 방법
CN201480046408.0A CN105518175B (zh) 2013-08-22 2014-08-18 用于制造钢构件的方法
US14/913,592 US10301700B2 (en) 2013-08-22 2014-08-18 Method for producing a steel component
PCT/EP2014/067571 WO2015024903A1 (fr) 2013-08-22 2014-08-18 Procédé permettant de produire un élément structural en acier
JP2016535447A JP6606075B2 (ja) 2013-08-22 2014-08-18 鋼部品を製造する方法
JP2019072123A JP2019151932A (ja) 2013-08-22 2019-04-04 鋼部品を製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13181374.3A EP2840159B8 (fr) 2013-08-22 2013-08-22 Procédé destiné à la fabrication d'un composant en acier

Publications (3)

Publication Number Publication Date
EP2840159A1 true EP2840159A1 (fr) 2015-02-25
EP2840159B1 EP2840159B1 (fr) 2017-05-10
EP2840159B8 EP2840159B8 (fr) 2017-07-19

Family

ID=49028953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13181374.3A Active EP2840159B8 (fr) 2013-08-22 2013-08-22 Procédé destiné à la fabrication d'un composant en acier

Country Status (7)

Country Link
US (1) US10301700B2 (fr)
EP (1) EP2840159B8 (fr)
JP (2) JP6606075B2 (fr)
KR (1) KR20160047495A (fr)
CN (1) CN105518175B (fr)
ES (1) ES2636780T3 (fr)
WO (1) WO2015024903A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217603A (zh) * 2021-04-30 2021-08-06 四川固锐德科技有限公司 用于重载车主减系统的圆柱轮及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109539A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance présentant une résistance et une formabilité améliorées et tôle d'acier à haute résistance obtenue par ce procédé
DE102016104800A1 (de) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil
CN106823880A (zh) * 2016-12-14 2017-06-13 苏州纽东精密制造科技有限公司 一种高强度耐腐蚀的高速搅拌器
RU2768717C1 (ru) * 2018-11-30 2022-03-24 Арселормиттал Холоднокатаный отожжённый стальной лист с высокой степенью раздачи отверстия и способ его изготовления
US11502402B2 (en) 2019-03-15 2022-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated patch antenna having insulating substrate with antenna cavity and high-K dielectric
US20230151468A1 (en) * 2020-04-22 2023-05-18 Thyssenkrupp Steel Europe Ag Hot-Rolled Flat Steel Product and Method for the Production Thereof
CN114774651A (zh) * 2022-04-18 2022-07-22 营口中车型钢新材料有限公司 一种铁路承重用YZ25SiMnMoV扁钢的热处理设计

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
US20060060269A1 (en) * 2003-03-26 2006-03-23 Chuo Hatsujo Kabushiki Kaisha Process for producing high-strength spring
WO2011111330A1 (fr) * 2010-03-09 2011-09-15 Jfeスチール株式会社 Tôle d'acier haute résistance et son procédé de production
WO2012063620A1 (fr) * 2010-11-11 2012-05-18 日本発條株式会社 Acier à ressort haute résistance, procédé de fabrication d'un ressort haute résistance et ressort haute résistance
US20120211128A1 (en) * 2005-09-21 2012-08-23 Arcelormittal France Method for making a steel part of multiphase microstructure

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159317A (ja) 1987-12-17 1989-06-22 Nippon Steel Corp 強度延性バランスの優れた高強度熱延鋼板の製造方法
US6190469B1 (en) 1996-11-05 2001-02-20 Pohang Iron & Steel Co., Ltd. Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
FR2796966B1 (fr) 1999-07-30 2001-09-21 Ugine Sa Procede de fabrication de bandes minces en acier de type "trip" et bandes minces ainsi obtenues
FR2834722B1 (fr) 2002-01-14 2004-12-24 Usinor Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
JP3921136B2 (ja) 2002-06-18 2007-05-30 新日本製鐵株式会社 バーリング加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法
EP1553202A1 (fr) 2004-01-09 2005-07-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Acier à très haute résistance mécanique ayant une excellente résistance à la fragilisation par l'hydrogène et son procédé de production
US7591977B2 (en) 2004-01-28 2009-09-22 Kabuhsiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
EP1749895A1 (fr) 2005-08-04 2007-02-07 ARCELOR France Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
EP1975266B1 (fr) 2005-12-28 2012-07-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Feuille d'acier ultra-resistante
EP1832667A1 (fr) * 2006-03-07 2007-09-12 ARCELOR France Procédé de fabrication de tôles d'acier à très hautes caractéristiques de résistance, de ductilité et de tenacité, et tôles ainsi produites
JP5030200B2 (ja) 2006-06-05 2012-09-19 株式会社神戸製鋼所 伸び、伸びフランジ性および溶接性に優れた高強度鋼板
JP4164537B2 (ja) 2006-12-11 2008-10-15 株式会社神戸製鋼所 高強度薄鋼板
EP1990431A1 (fr) 2007-05-11 2008-11-12 ArcelorMittal France Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
DE102007031711A1 (de) * 2007-07-06 2009-01-08 Rolls-Royce Deutschland Ltd & Co Kg Gehäusedeckbandsegment-Aufhängung
KR101067896B1 (ko) * 2007-12-06 2011-09-27 주식회사 포스코 강도 및 연성이 우수한 고탄소 강판 및 그 제조 방법
JP5365217B2 (ja) 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5402007B2 (ja) 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5365112B2 (ja) 2008-09-10 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5418047B2 (ja) 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2010065272A (ja) 2008-09-10 2010-03-25 Jfe Steel Corp 高強度鋼板およびその製造方法
JP5504636B2 (ja) 2009-02-04 2014-05-28 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP5412182B2 (ja) 2009-05-29 2014-02-12 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5671359B2 (ja) * 2010-03-24 2015-02-18 株式会社神戸製鋼所 温間加工性に優れた高強度鋼板
JP5672946B2 (ja) 2010-10-22 2015-02-18 Jfeスチール株式会社 成形性および強度上昇能に優れた温間成形用薄鋼板およびそれを用いた温間成形方法
JP5662902B2 (ja) * 2010-11-18 2015-02-04 株式会社神戸製鋼所 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品
JP2012240095A (ja) * 2011-05-20 2012-12-10 Kobe Steel Ltd 高強度鋼板の温間成形方法
KR20130081312A (ko) 2011-05-26 2013-07-16 신닛테츠스미킨 카부시키카이샤 기계 구조용 강 부품 및 그 제조 방법
US20130023635A1 (en) * 2011-07-18 2013-01-24 Nifant Ev Ilya E Catalysts based on heterocyclic-8-anilinoquinoline ligands
EP2848715B1 (fr) 2013-09-13 2018-10-31 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un composant en acier revêtu d'une coiffe métallique protégeant de la corrosion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364968B1 (en) 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
US20060060269A1 (en) * 2003-03-26 2006-03-23 Chuo Hatsujo Kabushiki Kaisha Process for producing high-strength spring
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
US20120211128A1 (en) * 2005-09-21 2012-08-23 Arcelormittal France Method for making a steel part of multiphase microstructure
WO2011111330A1 (fr) * 2010-03-09 2011-09-15 Jfeスチール株式会社 Tôle d'acier haute résistance et son procédé de production
EP2546382A1 (fr) 2010-03-09 2013-01-16 JFE Steel Corporation Tôle d'acier haute résistance et son procédé de production
WO2012063620A1 (fr) * 2010-11-11 2012-05-18 日本発條株式会社 Acier à ressort haute résistance, procédé de fabrication d'un ressort haute résistance et ressort haute résistance
US20130240093A1 (en) * 2010-11-11 2013-09-19 Nhk Spring Co., Ltd. Steel for high-strength spring, method for producing same, and high-strength spring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. BHADESHIA: "Thermodynamic Exatrapolation and Martensite-Start- Temperature of Substitutionally Alloyed Steels", METAL SCIENCE, vol. 15, 1981, pages 178 - 180
H. BHADESHIA: "Thermodynamic Exatrapolation and Martensite-Start-Temperature of Substitutionally Alloyed Steels", METAL SCIENCE, vol. 15, 1981, pages 178 - 180

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217603A (zh) * 2021-04-30 2021-08-06 四川固锐德科技有限公司 用于重载车主减系统的圆柱轮及其制备方法
CN113217603B (zh) * 2021-04-30 2023-02-24 四川固锐德科技有限公司 用于重载车主减系统的圆柱轮及其制备方法

Also Published As

Publication number Publication date
JP2019151932A (ja) 2019-09-12
WO2015024903A1 (fr) 2015-02-26
EP2840159B1 (fr) 2017-05-10
EP2840159B8 (fr) 2017-07-19
JP2016530403A (ja) 2016-09-29
US10301700B2 (en) 2019-05-28
CN105518175B (zh) 2017-07-11
JP6606075B2 (ja) 2019-11-13
KR20160047495A (ko) 2016-05-02
ES2636780T3 (es) 2017-10-09
US20160201157A1 (en) 2016-07-14
CN105518175A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
EP2840159B1 (fr) Procédé destiné à la fabrication d'un composant en acier
EP2690183B1 (fr) Produit plat en acier laminé à chaud et son procédé de fabrication
EP2663411B1 (fr) Procédé de fabrication d'un produit en acier plat laminé a chaud
EP2855718B1 (fr) Produit en acier plat et procédé de fabrication d'un produit en acier plat
EP3655560B1 (fr) Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
EP2439291B1 (fr) Acier à plusieurs phases, produit plat laminé à froid fabriqué à partir d'un tel acier à plusieurs phases et son procédé de fabrication
EP1918406B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases micro-allié en bore
EP2924141B1 (fr) Produit plat en acier laminé à froid et son procédé de fabrication
EP2690184B1 (fr) Cold rolled steel flat product and method for its production
EP1918402B1 (fr) Procédé de fabrication de produits plats en acier à partir d'un acier formant une structure de phases complexes
DE60315129T2 (de) Verfahren zur herstellung eines eisenhüttenprodukts aus unlegiertem stahl mit hohem kupfergehalt und danach erhaltenes eisenhüttenprodukt
EP2746409A1 (fr) Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial
WO2015117934A1 (fr) Produit en acier plat de résistance élevée ayant une texture à base de bainite et de martensite et procédé de fabrication d'un tel produit en acier plat
WO2014125016A1 (fr) Produit plat en acier laminé à froid pour emboutissage et son procédé de fabrication
EP1918405B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases allié en silice
DE102014005662A1 (de) Werkstoffkonzept für einen umformbaren Leichtbaustahl
EP1918404B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases allié en aluminium
WO2002048410A1 (fr) Procede de production de feuillards ou de toles a chaud en acier microallie
EP3872193A1 (fr) Procédé de fabrication d'un produit plat en acier laminé à chaud et produit plat en acier
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
EP3872194A1 (fr) Procédé de fabrication d'un produit plat en acier laminé à chaud et produit plat en acier
EP1411140B1 (fr) Procédé de fabrication de tôles ou de bandes d'acier laminées à froid ayant une excellente formabilité
EP3781717B1 (fr) Tõle en acier laminé à froid et son utilisation, et méthode de production d'un tel produit en acier plat
DE102015106780A1 (de) Verfahren zur Erzeugung eines Warm- oder Kaltbandes aus einem Stahl mit erhöhtem Kupfergehalt
DE102024104377A1 (de) Blechformteil mit verbessertem kathodischem Korrosionsschutz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013007199

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C21D0007100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20161021BHEP

Ipc: C21D 7/10 20060101AFI20161021BHEP

Ipc: C22C 38/04 20060101ALI20161021BHEP

Ipc: C22C 38/16 20060101ALI20161021BHEP

Ipc: C22C 38/08 20060101ALI20161021BHEP

Ipc: C22C 38/06 20060101ALI20161021BHEP

Ipc: C21D 9/00 20060101ALI20161021BHEP

Ipc: C22C 38/18 20060101ALI20161021BHEP

Ipc: C22C 38/02 20060101ALI20161021BHEP

INTG Intention to grant announced

Effective date: 20161118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HISKER, FRANK

Inventor name: HAMMER, BRIGITTE

Inventor name: KORPALA, GRZEGORZ

Inventor name: KAWALLA, RUDOLF

Inventor name: HELLER, THOMAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007199

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2636780

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007199

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

26N No opposition filed

Effective date: 20180213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170822

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130822

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892400

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200821

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201023

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210822

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230821

Year of fee payment: 11