EP2838454B1 - Dehnbare fusionsvorrichtung - Google Patents

Dehnbare fusionsvorrichtung Download PDF

Info

Publication number
EP2838454B1
EP2838454B1 EP13778307.2A EP13778307A EP2838454B1 EP 2838454 B1 EP2838454 B1 EP 2838454B1 EP 13778307 A EP13778307 A EP 13778307A EP 2838454 B1 EP2838454 B1 EP 2838454B1
Authority
EP
European Patent Office
Prior art keywords
endplate
fusion device
body portion
implant
translation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13778307.2A
Other languages
English (en)
French (fr)
Other versions
EP2838454A4 (de
EP2838454A1 (de
Inventor
Chad Glerum
Sean Suh
Mark Weiman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globus Medical Inc
Original Assignee
Globus Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globus Medical Inc filed Critical Globus Medical Inc
Publication of EP2838454A1 publication Critical patent/EP2838454A1/de
Publication of EP2838454A4 publication Critical patent/EP2838454A4/de
Application granted granted Critical
Publication of EP2838454B1 publication Critical patent/EP2838454B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4684Trial or dummy prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30148Convex polygonal shapes lozenge- or diamond-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/30207Double convex cones, i.e. element having two convex cones, one at each of its opposite ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • A61F2002/3021Three-dimensional shapes conical frustoconical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • A61F2002/30265Flat parallelepipeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30364Rotation about the common longitudinal axis
    • A61F2002/30365Rotation about the common longitudinal axis with additional means for limiting said rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/30364Rotation about the common longitudinal axis
    • A61F2002/30367Rotation about the common longitudinal axis with additional means for preventing said rotation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • A61F2002/30372Translation along the common longitudinal axis, e.g. piston with additional means for limiting said translation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • A61F2002/30373Translation along the common longitudinal axis, e.g. piston with additional means for preventing said translation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30405Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30482Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking cam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30484Mechanically expandable devices located on the first prosthetic part for locking into or onto the second prosthetic part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30492Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30495Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30517Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking plate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/3052Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts unrestrained in only one direction, e.g. moving unidirectionally
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/30523Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts by means of meshing gear teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/3055Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30556Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30576Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs
    • A61F2002/30578Special structural features of bone or joint prostheses not otherwise provided for with extending fixation tabs having apertures, e.g. for receiving fixation screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30594Special structural features of bone or joint prostheses not otherwise provided for slotted, e.g. radial or meridian slot ending in a polar aperture, non-polar slots, horizontal or arcuate slots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30601Special structural features of bone or joint prostheses not otherwise provided for telescopic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures

Definitions

  • the present invention relates to the apparatus for promoting an intervertebral fusion, and more particularly relates to an expandable fusion device capable of being inserted between adjacent vertebrae to facilitate the fusion process.
  • intervertebral fusion devices for fusing one or more adjacent vertebral bodies.
  • the intervertebral disc is first partially or fully removed.
  • An intervertebral fusion device is then typically inserted between neighboring vertebrae to maintain normal disc spacing and restore spinal stability, thereby facilitating an intervertebral fusion.
  • WO 2011/047230 A1 describes an expandable intervertebral cage according to the preamble of claim 1: it comprises a pair of endplates, a translation member with a pair of angled surfaces suitable for engaging and causing the outward expansion of said endplates and a body portion having a central opening for receiving the translation member. Further, said body has a first end, provided with one aperture for receiving a stabilization member and second end, provided with an opening seized to receive an actuation member for contacting the translation member. In the known device, rotating the actuation member can result in a rocking movement of the translation member and thus to an certain instability hindering the smooth continuous expansion of the implant.
  • the present invention provides an expandable fusion device capable of being installed inside an intervertebral disc space to maintain normal disc spacing and restore spinal stability, thereby facilitating an intervertebral fusion.
  • the fusion device includes a body portion, a first endplate, and a second endplate.
  • the first and second endplates are capable of being moved in a direction away from the body portion into an expanded configuration or capable of being moved towards the body portion into an unexpanded configuration.
  • the expandable fusion device is capable of being deployed and installed in the unexpanded configuration or the expanded configuration.
  • the expandable fusion device according to the invention is defined by claim 1: it comprises a body portion having a first end that includes a pair of apertures for receiving a pair of stabilization members.
  • an intervertebral implant comprising: a first endplate having an upper side and a lower side, wherein the first endplate includes a first opening configured to receive bone graft material; a second endplate having an upper side and a lower side, wherein the second endplate includes a second opening configured to receive bone graft material; a body portion having a first end, a second end, a first side portion connecting the first end and the second end, and a second side portion connecting the first end and the second end; and a translation member receivable in the body portion, the translation member including a first angled surface configured to engage a surface of the first endplate and a second angled surface configured to engage a surface of the second endplate.
  • the movement of the translation member causes the first angled surface to push against the surface of the first endplate and the second angled surface to push against the surface of the second endplate, thereby causing outward expansion of the first endplate and second endplate.
  • the body portion includes a first end having at least one angled surface to assist in distraction of vertebral bodies.
  • the first endplate includes at least two ramped surfaces.
  • each of the slopes of the at least two ramped surfaces is different from one another.
  • a spinal fusion is typically employed to eliminate pain caused by the motion of degenerated disk material.
  • a fusion device becomes permanently fixed within the intervertebral disc space.
  • FIG. 1 an exemplary embodiment of an expandable fusion device 10 is shown between adjacent vertebral bodies 2 and 3.
  • the fusion device 10 engages the endplates 4 and 5 of the adjacent vertebral bodies 2 and 3 and, in the installed position, maintains normal intervertebral disc spacing and restores spinal stability, thereby facilitating an intervertebral fusion.
  • the expandable fusion device 10 can be manufactured from a number of materials including titanium, stainless steel, titanium alloys, non-titanium metallic alloys, polymeric materials, plastics, plastic composites, PEEK, ceramic, and elastic materials.
  • bone graft or similar bone growth inducing material can be introduced around and within the fusion device 10 to further promote and facilitate the intervertebral fusion.
  • the fusion device 10 in one embodiment, is preferably packed with bone graft or similar bone growth inducing material to promote the growth of bone through and around the fusion device.
  • Such bone graft may be packed between the endplates of the adjacent vertebral bodies prior to, subsequent to, or during implantation of the fusion device.
  • the fusion device 10 includes a body portion 12, a first endplate 14, a second endplate 16, a translation member 18, a plurality of pins 20, an actuation member 22, and a locking mechanism 24.
  • the body portion 12 has a first end 26, a second end 28, a first side portion 30 connecting the first end 26 and the second end 28, and a second side portion 32 connecting the first end 26 and the second end 28.
  • the body portion 12 further includes an upper end 34, which is sized to receive at least a portion of the first endplate 14, and a lower end 36, which is sized to receive at least a portion of the second endplate 16.
  • the first end 26 of the fusion device 10 in an exemplary embodiment, includes at least one angled surface 38, but can include multiple angled surfaces.
  • the angled surface can serve to distract the adjacent vertebral bodies when the fusion device 10 is inserted into an intervertebral space.
  • there are at least two opposing angled surfaces forming a generally wedge shaped to distract the adjacent vertebral bodies when the fusion device 10 is inserted into an intervertebral space.
  • the second end 28 of the body portion 12 includes an opening 40 which may include threading. In another exemplary embodiment, the opening 40 may include ratchet teeth instead of threading.
  • the opening 40 extends from the second end 28 of the body portion 12 into a central opening 42 in the body portion 12. In one embodiment, the central opening 42 is sized to receive the translation member 18 and the opening 40 is sized to threadingly receive the actuation member 22. In another exemplary embodiment, the opening 40 is sized to receive the actuation member 22 in a ratcheting fashion.
  • first side portion 30 and second side portion 32 each include a recess 44 located towards the second end 28 of the body portion 12. The recess 44 is configured and dimensioned to receive an insertion instrument (not shown) that assists in the insertion of the fusion device 10 into an intervertebral space.
  • the first endplate 14 has an upper surface 46, a lower surface 48, and a through opening 49.
  • the through opening 49 in an exemplary embodiment, is sized to receive bone graft or similar bone growth inducing material and further allow the bone graft or similar bone growth inducing material to be packed in the central opening 42 in the body portion 12.
  • the lower surface 48 includes at least one extension 50 extending along at least a portion of the lower surface 48.
  • the extension 50 can extend along a substantial portion of the lower surface 48, including, along each side of the endplate 14 and along the front end of the endplate 14.
  • the extension 50 includes at least one slot 52, but can include any number of slots 52, including two sets of slots 52 opposing each other, as best seen in FIG. 2 .
  • the slots 52 are configured and dimensioned to receive pins 20 and are oriented in an oblique fashion. In another embodiment, the slots 52 may be oriented in a generally vertical orientation.
  • the extension 50 is sized to be received within the central opening 42 of the body portion 12.
  • the lower surface 48 of the first endplate 14 further includes, in an exemplary embodiment, at least one ramped surface 54.
  • the upper surface 46 of the first endplate 14 is flat and generally planar to allow the upper surface 46 of the endplate 14 to engage with the adjacent vertebral body 2.
  • the upper surface 46 can be curved convexly or concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral body 2.
  • the upper surface 46 can be generally planar but includes a generally straight ramped surface or a curved ramped surface. The ramped surface allows for engagement with the adjacent vertebral body 2 in a lordotic fashion. Turning back to FIGS.
  • the upper surface 46 includes texturing 58 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • the translation member 18 is sized to be received within the central opening 42 of the body portion 12 and includes at least a first expansion portion 60.
  • the translation member 18 includes a first expansion portion 60 and a second expansion portion 62, the expansion portions 60, 62 being connected together via a bridge portion 68. It is also contemplated that there may be more than two expansion portions where each of the expansion portions is connected by a bridge portion.
  • the expansion portions 60, 62 each have angled surfaces 64, 66 configured and dimensioned to engage the ramp surfaces54, 56 of the first and second endplates 14, 16.
  • the translation member 18 also includes recesses 70, 72, the recesses 70, 72 are sized to receive and retain pins 20.
  • the expansion portion 60 includes an opening 74, which is sized to receive a portion of the actuation member 22, and the expansion portion 62 includes a nose 76, which is received within an opening 78 in the first end 26 to stabilize the translation member 18 in the central opening 42 of the body member 12.
  • the actuation member 22 has a first end 80, a second end 82 and threading 84 extending along at least a portion thereof from the first end 80 to the second end 82. The threading 84 threadingly engages the threading extending along a portion of opening 40 in the body portion 12.
  • the actuation member 22 includes ratchet teeth instead of threading.
  • the ratchet teeth engage corresponding ratchet teeth in the opening 40 in the body portion 12.
  • the first end 80 includes a recess 86 dimensioned to receive an instrument (not shown) that is capable of advancing the actuation member 22 with respect to the body portion 12 of the fusion device 10.
  • the second end 82 of the actuation member 22 includes an extension 88 that is received within the opening 74 of the expansion portion 60.
  • the extension 88 may include a plurality of slits and a lip portion. The plurality of slits allows the extension portion 88 to flex inwardly reducing its diameter when received in the opening 74.
  • extension portion 88 Once the lip portion of the extension portion 88 is advanced beyond the end of the opening 74, the extension portion 88 will return back to its original diameter and the lip portion will engage the expansion portion 60. It is further contemplated that a pin member 90 can be included to prevent the extension portion from flexing inwardly thereby preventing the actuation member 22 from disengaging from the translation member 18.
  • the fusion device 10 can further include a locking mechanism 24.
  • the mechanism 24 is designed to resist rotation of the actuation member 22 rather than prevent rotation of the actuation member 22.
  • either deformable threading can be included on actuation member 22 or a disruption of the threading may be included where a deformable material is included in the threading disruption. It is contemplated that the deformable member or deformable threading can be made from a deformable or elastic, biocompatible material such as nitinol or PEEK.
  • FIGS. 1-8 and 10-11 a method of installing the expandable fusion device 10 is now discussed.
  • the intervertebral space Prior to insertion of the fusion device 10, the intervertebral space is prepared.
  • a diskectomy is performed where the intervertebral disc, in its entirety, is removed.
  • only a portion of the intervertebral disc can be removed.
  • the endplates of the adjacent vertebral bodies 2, 3 are then scraped to create an exposed end surface for facilitating bone growth across the invertebral space.
  • the expandable fusion device 10 is then introduced into the intervertebral space, with the first end 26 being inserted first into the disc space followed by the second end 28.
  • the fusion device 10 is in the unexpanded position when introduced into the intervertebral space.
  • the wedged shaped first end 26 will assist in distracting the adjacent vertebral bodies 2, 3 if necessary. This allows for the option of having little to no distraction of the intervertebral space prior to the insertion of the fusion device 10.
  • the intervertebral space may be distracted prior to insertion of the fusion device 10. The distraction provide some benefits by providing greater access to the surgical site making removal of the intervertebral disc easier and making scraping of the endplates of the vertebral bodies 2, 3 easier.
  • the fusion device 10 With the fusion device 10 inserted into and seated in the appropriate position in the intervertebral disc space, the fusion device can then expanded into the expanded position, as best seen in FIGS. 1 , 4 , 6 , 8 , and 11 .
  • an instrument is engaged with recess 86 in the actuation member 22.
  • the instrument is used to rotate actuation member 22.
  • actuation member 22 is threadingly engaged body portion 12 and is engaged with translation member 18; thus, as the actuation member 22 is rotated in a first direction, the actuation member 22 and the translation member 18 move with respect to the body portion 12 toward the first end 26 of the body portion 12.
  • the actuation member 22 is moved in a linear direction with the ratchet teeth engaging as means for controlling the movement of the actuation member 22 and the translation member 18.
  • the ramped surface 64, 66 of the expansion portions 60, 62 push against the ramped surfaces 54, 56 of the endplates 14, 16 pushing endplates 14, 16 outwardly into the expanded position.
  • FIGS. 10 and 11 Since the expansion of the fusion device 10 is actuated by a rotational input, the expansion of the fusion device 10 is infinite. In other words, the endplates 14, 16 can be expanded to an infinite number of heights dependent on the rotational advancement of the actuation member 22.
  • the fusion device 10 includes a locking mechanism 24 which assists in retaining the endplates 14, 16 at the desired height.
  • the expansion of the endplates 14, 16 can be varied based on the differences in the dimensions of the ramped surfaces 54, 56, 64, 66. As best seen in FIG. 13 , the endplates 14, 16 can be expanded in any of the following ways: straight rise expansion, straight rise expansion followed by a toggle into a lordotic expanded configuration, or a phase off straight rise into a lordotic expanded configuration.
  • the fusion device 10 can be contracted back to the unexpanded configuration, repositioned, and expanded again once the desired positioning is achieved.
  • the instrument is engaged with recess 86 in the actuation member 22.
  • the instrument is used to rotate actuation member 22.
  • actuation member 22 is threadingly engaged body portion 12 and is engaged with translation member 18; thus, as the actuation member 22 is rotated in a second direction, opposite the first direction, the actuation member 22 and translation member 18 move with respect to the body portion 12 toward the second end 28 of the body portion 12.
  • the pins 20, a portion of which are located within the slots 52 ride along the slots 52 pulling the endplates 14, 16 inwardly into the unexpanded position.
  • fusion device 10 is shown with an exemplary embodiment of artificial endplates 100.
  • Artificial endplates 100 allows the introduction of lordosis even when the endplates 14 and 16 of the fusion device 10 are generally planar.
  • the artificial endplates 100 have an upper surface 102 and a lower surface 104.
  • the upper surfaces 102 of the artificial endplates 100 have at least one spike 106 to engage the adjacent vertebral bodies.
  • the lower surfaces 104 have complementary texturing or engagement features on their surfaces to engage with the texturing or engagement features on the upper endplate 14 and the lower endplate 16 of the fusion device 10.
  • the upper surface 102 of the artificial endplates 100 have a generally convex profile and the lower surfaces 104 have a generally parallel profile to achieve lordosis.
  • fusion device 10 can be used with only one artificial endplate 100 to introduce lordosis even when the endplates 14 and 16 of the fusion device 10 are generally planar.
  • the artificial endplate 100 can either engage endplate 14 or engage endplate 16 and function in the same manner as described above with respect to two artificial endplates 100.
  • each fusion device 10 does not have to be finally installed in the fully expanded state. Rather, depending on the location of the fusion device 10 in the intervertebral disc space, the height of the fusion device 10 may vary from unexpanded to fully expanded.
  • the fusion device 210 includes a body portion 212, a first endplate 214, a second endplate 216, a translation member 218, an actuation member 220, and an insert 222.
  • the body portion 212 has a first end 224, a second end 226, a first side portion 228 connecting the first end 224 and the second end 226, and a second side portion 229 on the opposing side of the body portion 212 connecting the first end 224 and the second end 226.
  • the body portion 212 further includes an upper end 230, which is sized to receive at least a portion of the first endplate 214, and a lower end 232, which is sized to receive at least a portion of the second endplate 216.
  • the first end 224 of the body portion 212 includes at least one angled surface 234, but can include multiple angled surfaces.
  • the angled surface 234 can serve to distract the adjacent vertebral bodies when the fusion device 210 is inserted into an intervertebral space.
  • the second end 226 of the body portion 212 includes an opening 236 which may include threading.
  • the opening 236 may include ratchet teeth instead of threading.
  • the opening 236 extends from the second end 226 of the body portion 212 into a central opening (not illustrated) in the body portion 212.
  • the central opening is sized to receive the translation member 218, and the opening 236 is sized to threadingly receive the actuation member 220.
  • the opening 236 is sized to receive the actuation member 220 in a ratcheting fashion.
  • first side portion 228 and second side portion 229 each include a recess 238 located towards the second end 226 of the body portion 212.
  • the recess 238 is configured and dimensioned to receive an insertion instrument (not shown) that assists in the insertion of the fusion device 210 into an intervertebral space.
  • the first endplate 214 has an upper surface 240, a lower surface 242, and a through opening 243.
  • the through opening 243 in an exemplary embodiment, is sized to receive bone graft or similar bone growth inducing material and further allow the bone graft or similar bone growth inducing material to be packed in the central opening in the body portion 212.
  • the lower surface 242 includes at least one extension 244 extending along at least a portion of the lower surface 242.
  • the extension 244 can extend along a substantial portion of the lower surface 242, including, along each side of the endplate 214 and along the front end of the endplate 214.
  • the extension 244 includes at least one ramped portion 246, but can include any number of ramped portions, including two spaced ramped portions 246, 248 in the extension 244 that extend between each side of the endplate 214, as best seen in FIG. 18 . It is contemplated that the slope of the ramped portions 246, 248 can be equal or can differ from each other. The effect of varying the slopes of the ramped portions 246, 248 is discussed below.
  • the ramped portions 246, 248 further include grooved portions 247, 249 that are configured and dimensioned to receive angled surfaces 258, 260 of the translation member 218 and are oriented in an oblique fashion.
  • the grooved portions 246, 248 are dovetail grooves configured and dimensioned to hold the angled surfaces 258, 260 of the translation member 218 while allowing the angles surfaces 258, 260 to slide against the ramped portions 246, 248.
  • the upper surface 240 of the first endplate 214 is flat and generally planar to allow the upper surface 240 of the endplate 214 to engage with the adjacent vertebral body 202.
  • the upper surface 240 can be curved convexly or concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral body 202.
  • the upper surface 240 can be generally planar but includes a generally straight ramped surface or a curved ramped surface. The ramped surface allows for engagement with the adjacent vertebral body 202 in a lordotic fashion. Turning back to FIGS.
  • the upper surface 240 includes texturing 250 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • the translation member 218 is sized to be received within the central opening of the body portion 212 and includes at least a first expansion portion 252.
  • the translation member 218 includes a first expansion portion 252 and a second expansion portion 254, the expansion portions 252, 254 being connected together via a bridge portion 256. It is also contemplated that there may be more than two expansion portions where each of the expansion portions is connected by a bridge portion.
  • the expansion portions 252, 254 each have angled surfaces 258, 260 configured and dimensioned to engage the grooved portions 246, 248 of the first and second endplates 214, 216.
  • the translation member 218 includes an opening 262 in the first expansion portion 252, which is sized to receive a portion of the actuation member 220, as best seen in FIG. 18 .
  • the first expansion portion 252 includes a central bore 263 that extends from the opening 262 and through the first expansion portion 252.
  • the translation member 218 includes a hole 264 in the second expansion portion 254, which is sized to receive nose 266, as best seen in FIGS. 19 and 20 .
  • the hole 264 includes threading 268 for threadedly receiving a threaded end 270 of the nose 266, as shown on FIG. 20 .
  • the nose 266 is received in an opening 272 in the first end 234 of the body portion 212 to stabilize the translation member 218 in the central opening of the body portion 212.
  • the translation member 218 includes a locking mechanism 274, which is configured and adapted to engage the actuation member 220.
  • the locking mechanism 274 may extend from the first expansion portion 252.
  • the locking mechanism 274 includes a slot 276 configured and adapted to receive extension 287 of the actuation member 220.
  • the locking mechanism 274 further includes a stop 278 ( e.g., a rim, a lip, etc.) that engages the actuation member 220 when it is disposed in the slot 276.
  • the actuation member 220 has a first end 280, a second end 282, and threading (not illustrated) extending along at least a portion thereof from the first end 280 to the second end 282.
  • the threading threadingly engages the threading that extends along a portion of opening 236 in the body portion 212.
  • the actuation member 220 includes ratchet teeth instead of threading.
  • the ratchet teeth engage corresponding ratchet teeth in the opening 236 in the body portion 212.
  • the first end 280 includes a recess 284 dimensioned to receive an instrument (not shown) that is capable of advancing the actuation member 220 with respect to the body portion 212 of the fusion device 210.
  • the actuation member 220 includes a bore 285, as best seen by FIG. 18 , that extends from the recess 284 in the first end to the second 282.
  • the second end 282 of the actuation member 220 includes an extension 286 that is received within the opening 262 in the first expansion portion 252.
  • the extension 288 may include a lip portion 286 and a plurality of slits 288. The plurality of slits 288 are configured to receive inserts 222. Inserts 222 are provided to limit motion of the actuation member 220.
  • a pin member 290 can be included to further secure the actuation member 220 in the translation member 219.
  • the pin member 290 can be pressed into the central bore 285 of the actuation member 220 and the central bore 263 of the translation member, thereby preventing the actuation member 220 from disengaging from the translation member 218.
  • the fusion device 210 can further include a chamfered tip 224 for distraction of adjacent vertebrae.
  • the intervertebral space Prior to insertion of the fusion device 210, the intervertebral space is prepared. In one method of installation, a discectomy is performed where the intervertebral disc, in its entirety, is removed. Alternatively, only a portion of the intervertebral disc can be removed. The endplates of the adjacent vertebral bodies 202, 203 are then scraped to create an exposed end surface for facilitating bone growth across the invertebral space. The expandable fusion device 210 is then introduced into the intervertebral space, with the first end 222 of the body portion 212 being inserted first into the disc space followed by the second end 224.
  • the fusion device 210 is in the unexpanded position when introduced into the intervertebral space.
  • the wedged-shaped first end 222 should assist in distracting the adjacent vertebral bodies 202, 203, if necessary. This allows for the option of having little to no distraction of the intervertebral space prior to the insertion of the fusion device 210.
  • the intervertebral space may be distracted prior to insertion of the fusion device 210. The distraction provide some benefits by providing greater access to the surgical site making removal of the intervertebral disc easier and making scraping of the endplates of the vertebral bodies 202, 203 easier.
  • the fusion device 210 With the fusion device 210 inserted into and seated in the appropriate position in the intervertebral disc space, the fusion device can then expanded into the expanded position, as best seen in FIGS. 15 , 19, and 20 .
  • an instrument is engaged with recess 284 in the actuation member 220.
  • the instrument is used to rotate actuation member 220.
  • actuation member 220 can be threadingly engaging body portion 212 and is engaged with translation member 218; thus, as the actuation member 220 is rotated in a first direction, the actuation member 220 and the translation member 218 move with respect to the body portion 212 toward the first end 222 of the body portion 212.
  • the actuation member 220 is moved in a linear direction with the ratchet teeth engaging as means for controlling the movement of the actuation member 220 and the translation member 218.
  • the angled surfaces 258, 260 of the expansion portions 252, 254 push against the ramped portions 246, 248 of the endplates 214, 216 pushing endplates 214, 216 outwardly into the expanded position with the angled surfaces 258, 260 riding along the grooved portions 247, 248 of the ramped portions 246, 248. This can best be seen in FIGS. 19 and 20 . Since the expansion of the fusion device 210 is actuated by a rotational input, the expansion of the fusion device 210 is infinite.
  • the endplates 214, 216 can be expanded to an infinite number of heights dependent on the rotational advancement of the actuation member 220.
  • the fusion device 210 includes a locking mechanism 222 which assists in retaining the endplates 14, 16 at the desired height.
  • the expansion of the endplates 214, 216 can be varied based on the differences in the dimensions of the ramped portions 246, 2 48 and the angled surfaces 258, 260. As best seen in FIG. 22 , the endplates 214, 216 can be expanded in any of the following ways: straight rise expansion, straight rise expansion followed by a toggle into a lordotic expanded configuration, or a phase off straight rise into a lordotic expanded configuration.
  • the fusion device 210 can be contracted back to the unexpanded configuration, repositioned, and expanded again once the desired positioning is achieved.
  • the instrument is engaged with recess 284 in the actuation member 220. The instrument is used to rotate actuation member 220.
  • actuation member 220 can be threadingly engaging body portion 212 and is engaged with translation member 218; thus, as the actuation member 220 is rotated in a second direction, opposite the first direction, the actuation member 220 and translation member 218 move with respect to the body portion 212 toward the second end 226 of the body portion 212. As the translation member 218 moves, the angled surfaces 258, 260 of the translation member 218 ride along the grooved portions 247, 249 pulling the endplates 214, 216 inwardly into the unexpanded position.
  • fusion device 210 is shown with an exemplary embodiment of artificial endplates 300.
  • Artificial endplates 300 allows the introduction of lordosis even when the endplates 214 and 216 of the fusion device 210 are generally planar.
  • the artificial endplates 300 have an upper surface 302 and a lower surface 304.
  • the upper surfaces 302 of the artificial endplates 300 have at least one spike 306 to engage the adjacent vertebral bodies.
  • the lower surfaces 304 have complementary texturing or engagement features on their surfaces to engage with the texturing or engagement features on the upper endplate 214 and the lower endplate 216 of the fusion device 210.
  • the upper surface 302 of the artificial endplates 300 have a generally convex profile and the lower surfaces 304 have a generally parallel profile to achieve lordosis.
  • fusion device 210 can be used with only one artificial endplate 300 to introduce lordosis even when the endplates 214 and 216 of the fusion device 210 are generally planar.
  • the artificial endplate 300 can either engage endplate 214 or engage endplate 216 and function in the same manner as described above with respect to two artificial endplates 300.
  • the fusion device 210 includes a body portion 212, a first endplate 214, a second endplate 216, a translation member 218, and an actuation member 220.
  • the fusion device further includes a first ramped insert 320 and a second ramped insert 322.
  • the first ramped insert 320 includes a first ramped portion 324 and a second ramped portion 326, the first and second ramped portions 324, 326 being connected by a bridge portion 328.
  • the ramped portions 324, 326 each have grooved portions 330, 332 configured and dimensioned to receive angled surfaces 258, 260 of the translation member.
  • the ramped portions 324, 326 can be oriented in an oblique fashion, as illustrated.
  • the grooved portions 330, 332 are dovetail grooves configured and dimensioned to hold the angled surfaces 258, 260 of the translation member 218 while allowing the angles surfaces 258, 260 to slide against the ramped portions 324, 326.
  • the first ramped insert 320 should be configured and dimensioned to be engaged with the first endplate 214.
  • the first and second ramped portions 324, 326 include snap connectors 334, 336 for securing the first ramped insert 320 to the first endplate. It should be understood that the snap connectors 334, 336 are merely illustrative and that other suitable mechanisms for securing the first ramped inserted 320 with the first endplate 214 may be used.
  • the translation member 218 is sized to be received within the central opening of the body portion 212 and includes at least a first expansion portion 252.
  • the translation member 218 includes a first expansion portion 252 and a second expansion portion 254, the expansion portions 252, 254 being connected together via a bridge portion 256. It is also contemplated that there may be more than two expansion portions where each of the expansion portions is connected by a bridge portion.
  • the expansion portions 252, 254 each have angled surfaces 258, 260 configured and dimensioned to engage the grooved portions 330, 332 of the first and second ramped inserts 320, 322.
  • the angled surfaces 258, 260 include corresponding grooved portions 338, 340, as best seen in FIG. 27 , that slidingly engaged the grooved portions 330, 332 of the first and second ramped inserts 320, 322.
  • the expansion portion 252 includes an opening 262, which is sized to receive a portion of the actuation member 220, and the expansion portion 262 includes a nose 266, which is received within an opening 272 in the first end 234 of the body portion 212 to stabilize the translation member 218 in the central opening of the body portion 212.
  • the nose 266 is integral with the expansion portion 262.
  • the nose 266 is threadingly engaged with the expansion portion 262.
  • the translation member 218 includes a locking mechanism 274 to engage the actuation member 220, as illustrated in FIGS. 16-20 .
  • the actuation member 220 may include an extension 287 having a lip portion 286 (shown on FIGS. 16 and 18-20 ) that engages the expansion portion 262.
  • the extension 287 may, for example, be configured to flex inwardly reducing its diameter when received in the opening 262. Once the lip portion 286 of the extension 287 is advanced beyond the end of the opening 262, the extension portion 287 will return back to its original diameter and the lip portion 286 will engage the expansion portion 260.
  • the expandable fusion device 210 of FIGS. 24-27 can be inserted into the intervertebral space in a manner similar to that the previously described with respect to FIGS. 15-20 . After insertion, the expandable fusion device 210 of FIGS. 24-27 can be expanded into the expanded position, as best seen in FIGS. 24 and 25 .
  • an instrument is engaged with recess 284 in the actuation member 220. The instrument is used to rotate actuation member 220.
  • actuation member 220 can be threadingly engaging body portion 212 and is engaged with translation member 218; thus, as the actuation member 220 is rotated in a first direction, the actuation member 220 and the translation member 218 move with respect to the body portion 212 toward the first end 222 of the body portion 212.
  • the actuation member 220 is moved in a linear direction with the ratchet teeth engaging as means for controlling the movement of the actuation member 220 and the translation member 218.
  • the angled surfaces 258, 260 of the expansion portions 252, 254 push against the ramped portions 324, 326 of the first and second ramped inserts 320, 322 while riding along the grooved portions 330, 332, thus pushing first and second ramped inserts 320, 322 outwardly. Because the first and second ramped inserts 320, 322 are engaged with the endplates 214, 216, the endplates 214, 216 are also pushed outwardly into the expanded position.
  • the expandable fusion device 210 can be contracted back to the unexpanded configuration.
  • the instrument is engaged with recess 284 in the actuation member 220.
  • the instrument is used to rotate actuation member 220.
  • actuation member 220 can be threadingly engaging body portion 212 and is engaged with translation member 218; thus, as the actuation member 220 is rotated in a second direction, opposite the first direction, the actuation member 220 and translation member 218 move with respect to the body portion 212 toward the second end 226 of the body portion 212.
  • the angled surfaces 258, 260 of the translation member 218 ride along the grooved portions 330, 332 pulling the first and second ramped inserts 320, 322 and thus, the endplates 214, 216 inwardly into the unexpanded position.
  • first endplate 214 and the second endplate 216 each include additional geometry to help securely hold the endplates 214, 216 in place.
  • first endplate 214 and/or the second endplate 216 include threaded holes 341 through which the fasteners, such as screws 342, may be inserted.
  • the threaded holes 341 penetrate through the first endplate 214 and/or the second endplate 216 in an oblique fashion.
  • the screws 342 may inserted through the threaded holes 341 and into adjacent vertebral bodies 202, 203, to further secure the first endplate 214 and the second endplate 216 to the vertebral bodies 202, 203.
  • these fasteners may be removed once a more long-term interface has been established, or alternatively the fasteners may remain in place indefinitely or until the fusion device 210 needs adjustment and/or replacement.
  • the fusion device 210 expands laterally. Lateral expansion maximizes coverage of the intravertebral disc space for wider load distribution and stability providing a rigid foundation for fusion.
  • the fusion device 210 includes body portion 212, first endplate 344, and second endplate 346.
  • the first endplate 344 has an upper surface 348, a lower surface 350, and an inner surface 351 facing the body portion 212. It is contemplated that the upper surface 348 will engage adjacent vertebral body 202 (seen on FIG. 15 ) and the lower surface 350 will engage adjacent vertebral body 203 (seen on FIG. 15 ).
  • the upper surface 348 and the lower surface 350 are each flat and generally planar to allow the upper surface 348 to engage with the adjacent vertebral body 203.
  • the upper surface 348 and/or the lower surface 350 can be curved convexly or concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral bodies 202, 203.
  • the upper surface 348 and/or the lower surface 350 can be generally planar but includes a generally straight ramped surface or a curved ramped surface. The ramped surface allows for engagement with the adjacent vertebral body 202 and/or the adjacent vertebral body 203 in a lordotic fashion.
  • the upper surface 348 and/or lower surface 350 includes textures 352 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • the inner surface 351 includes at least one extension 354 extending along at least a portion of the inner surface 351.
  • the extension 354 can extend along a substantial portion of the inner surface 354, including, along each side of the endplate 344 and along the front end of the endplate 214.
  • the inner surface may include ramped surfaces and grooved portions in an exemplary embodiment. It is contemplated that the ramped surfaces and/or grooved portions may be similar to the ramped surfaces 246, 248 and grooved portion 247, 249 in extension 244 shown on FIGS. 18-20 .
  • the extension 354 may include slots 356 oriented in an oblique fashion through which pins 358 may be inserted.
  • the fusion device 210 further includes features to effectuate the lateral expansion of the first and second endplates 344, 346.
  • the fusion device 210 using a ramping system similar to the system illustrated in FIGS. 16 and 18-20 - for expanding the first and second endplates 344, 346.
  • the fusion device 210 further includes a translation member and actuation member, such as translation member 218 and actuation member 220 shown on FIGS. 16 and 18-20 . It is contemplated that the translation member may include angled surfaces that push against ramped surfaces in the extension 354, expanding the first and second endplates 344, 346 outwardly and away from the body portion 212.
  • pins 356 disposed through the slots 354 may be retained in the translation member.
  • dovetailing may be used for engagement of the angled surfaces and ramped surfaces.
  • the translation member and actuation member in this embodiment may be similar to the translation member 218 and actuation member 220 described above with respect FIGS. 15-20 .
  • the fusion device 210 further includes first and second ramped inserts that are secured within the first and second endplates 344, 346. The first and second ramped inserts may be similar to the first and second ramped inserts 320, 322 described above with respect to FIGS. 24-27 .
  • first and second endplates 344, 346 may thus be expanded outwardly. In this manner, the first and second endplates 344, 346 may be laterally expanded away from the body portion 212. It should be understood that other suitable techniques may also be used to effectuate this lateral expansion.
  • the fusion device 210 includes a body portion 212, a first endplate 400, a second endplate 402, a third endplate 404, a fourth endplate 406, and a translation member 218.
  • the fusion device 210 is configured to expand both vertically and laterally.
  • the body portion 212 has a first end 224, a second end 226, a first side portion 228 connecting the first end 224 and the second end 226, and a second side portion 229 on the opposing side of the body portion 212 connecting the first end 224 and the second end 226.
  • the body portion 212 further includes a top side portion 408 connecting the first end 224 and the second end 226, and a bottom side portion 410 on the opposing side of the body portion 212 connecting the first end 224 and the second end 226.
  • the body portion 212 further includes first gap 412 between the top side portion 408 and the first side portion 228, which is sized to receive at least a portion of the first endplate 400.
  • the body portion 212 further includes second gap 414 between the top side portion 408 and the second side portion 229, which is sized to receive at least a portion of the second endplate 402.
  • the body portion 212 further includes third gap 416 between the bottom side portion 410 and the first side portion 228, which is sized to receive at least a portion of the third endplate 404.
  • the body portion 212 further includes fourth gap 418 between the bottom side portion 410 and the second side portion 229, which is sized to receive at least a portion of the fourth endplate 406.
  • the first end 224 of the body portion 212 includes an opening 420.
  • the opening 420 extends from the first end 224 of the body portion 212 into a central opening 422.
  • the central opening 422 is sized to receive the translation member 218.
  • the second end 226 of the body portion 212 in an exemplary embodiment, includes an opening 236, which extends from the second end 226 of the body portion 212 into the central opening 422.
  • the first endplate 214 has a first end 424 and a second end 426.
  • the first endplate further includes an upper surface 240 connecting the first end 424 and the second end 426 and a lower surface 442 on an opposing side of the endplate 400 connecting the first end 424 and the second end 426.
  • the first endplate 214 may include a through opening sized to receive bone graft or similar bone growth inducing material and further allow the bone graft or similar bone growth inducing material to be packed in the central opening 422 in the body portion 212.
  • the lower surface 242 includes at least one first retaining socket 428 on the lower surface 242.
  • the lower surface 242 includes a first retaining socket 428 at the interior corner of the intersection of the first end 424 and the lower surface 242, and a second retaining socket 430 at the interior corner of the intersection of the first end 424 and the lower surface 242.
  • the upper surface 240 of the first endplate 400 is curved convexly.
  • the upper surface 240 is flat or curved concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral body 202.
  • the upper surface 240 can be generally planar but includes a generally straight ramped surface or a curved ramped surface. The ramped surface allows for engagement with the adjacent vertebral body 202 in a lordotic fashion.
  • the upper surface 240 includes texturing 250 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • the translation member 218 is sized to be received within the central opening 422 of the body portion 212.
  • the translation member 218 should be sized to allow longitudinal translation within the central opening 422.
  • the translation member 218 includes at least a first expansion portion 252.
  • the translation member 218 includes a first expansion portion 252 and a second expansion portion 254, the expansion portions 252, 254 being connected together via a bridge portion 256. It is also contemplated that there may be more than two expansion portions where each of the expansion portions is connected by a bridge portion.
  • the expansion portions 252, 254 each have angled surfaces 258, 260.
  • the angles surfaces 258, 260 each comprise first end 429 and second end 431 with second end 431 being wider than the first end 429.
  • the expansion portions 252, 254 include grooved portions 432, 434 on the edges of at least two sides ( e.g., the lateral sides) of the angled surfaces 258, 260.
  • the grooved portions 432, 434 are configured and dimensioned to engage the first and second retaining sockets 428, 430 on the endplates 400, 402, 404, 406.
  • the grooved portions 432, 434 retain the first and second retaining sockets 428, 430 in sliding engagement.
  • the translation member 218 includes a first end 436 and a second end 438.
  • the first end 436 of the translation member includes an extension 440 sized to be received within the opening 420 in the first end 224 of the body portion 212.
  • the second end 438 also can include a similar extension sized to be received within opening 232 in the second end 226 of the body portion 212.
  • the expandable fusion device 210 of FIGS. 32-34 can be inserted into the intervertebral space in a manner similar to that the previously described with respect to FIGS. 15-20 . After insertion, the expandable fusion device 210 of FIGS. 32-34 can be expanded into the expanded position. As previously mentioned, the fusion device 210 shown on FIGS. 32-34 expands both vertically and laterally. To expand the fusion device 210, the translation member 218 can be moved with respect to the body portion 212 toward the first end 224 of the body portion. An instrument can be used, in an exemplary embodiment.
  • the first retaining socket 428 and the second retaining socket 430 ride along the grooved portions 432, 434 of the expansion portions 252, 254 pushing the endplates 400, 402, 404, 406 outwardly in the direction indicated by arrows 442.
  • the endplates 400, 402, 404, 406 move outwardly in an oblique fashion to expand the fusion device 210 both vertically and laterally.
  • the expanded configuration of the expansion device 210 is best seen in FIG. 34 .
  • the expandable fusion device 210 can be contracted back to the unexpanded configuration.
  • the unexpanded configuration of the fusion device 210 is best seen in FIG. 34 .
  • the translation member 218 is moved with respect to the body portion 212 toward the second end 226 of the body portion 212.
  • the first retaining socket 428 and the second retaining socket 430 ride along the grooved portions 432, 434 of the expansion portions 252, 254 pulling the endplates 400, 402, 404, 406 inwardly in a direction opposite that indicated by arrows 442.
  • the endplates 400, 402, 404, 406 move inwardly in an oblique fashion to contract the fusion device 210 both vertically and laterally.
  • the unexpanded configuration of the expansion device 210 is best seen in FIG. 33 .
  • the fusion device 210 includes a body portion 212, a vertically expanding plate 500, and a gear 502.
  • a portion of the fusion device 210 is configured to expand vertically in at least one direction.
  • the vertically expanding plate 500 is configured to expand outwardly from the body portion 212. It is contemplated that an expandable fusion device 210 may be used to correct spinal curvature due to, for example, scoliosis, lordosis, and the like.
  • the body portion 212 has a first end 224, a second end 226, a first side portion 228 connecting the first end 224 and the second end 226, and a second side portion 229 on the opposing side of the body portion 212 connecting the first end 224 and the second end 226.
  • the first end 224 of the body portion 212 in an exemplary embodiment, includes at least one angled surface 234, but can include multiple angled surfaces.
  • the angled surface 234 can serve to distract the adjacent vertebral bodies when the fusion device 210 is inserted into an intervertebral space.
  • first side portion 228 and second side portion 229 each include a recess 238 located towards the second end 226 of the body portion 212.
  • the recess 238 is configured and dimensioned to receive an insertion instrument 504 that assists in the insertion of the fusion device 210 into an intervertebral space.
  • the body portion 212 includes an upper engagement surface 506 extending from the first end 224 towards the second end 226, and a lower engagement surface 508 extending between the first end 224 and the second end 226.
  • the upper engagement surface 506 has a through opening 510.
  • the lower engagement surface 508 may have a through opening that is similar to through opening 510.
  • the through opening 510 in an exemplary embodiment, is sized to receive bone graft or similar bone growth inducing material and further allow the bone graft or similar bone growth inducing material to be packed in the central opening in the body portion 212.
  • at least a portion of the body portion 212 is removed to form a landing 512 in the body portion 212.
  • a portion of the upper engagement surface 506 and the second end 226 are removed to form the landing 512 having an upper surface 514. While not illustrated, a portion of the lower engagement surface 508 and the second end 226 may be cut away, in an alternative embodiment, to form the landing 512.
  • the upper engagement surface 506 and the lower engagement surface 508 are flat and generally planar to allow engagement surfaces 506 to engage with the adjacent vertebral body 202 and the lower engagement surface 508 to engage with the adjacent vertebral body 203.
  • the upper engagement surface 506 and/or the lower engagement surface 508 can be curved convexly or concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral bodies 202, 203.
  • the upper engagement surface 506 and/or the lower engagement surface includes texturing 512 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • vertically expanding plate 500 is coupled to an end of threaded bolt 518, which is coupled to the gear 502.
  • the threaded bolt 518 is in threaded engagement with the gear 502.
  • a bolt having ratchet teeth may be used instead of threaded bolt 518.
  • the gear 502 is coupled to the landing 512. In one embodiment, the gear 502 is rotatably coupled to the landing 512.
  • the vertically expanding plate 500 includes a throughbore 519 and an upper surface 520.
  • the vertically expanding plate 500 is generally circular in shape. Other suitable configurations of the expanding plate 500 may also be suitable.
  • the vertically expanding plate may be generally rectangular in shape with rounded corners, as best seen in FIG. 37 .
  • the vertically expanding plate 500 is flat and generally planar to allow upper surface 520 to engage with the adjacent vertebral body 202.
  • the upper surface 520 can be curved convexly or concavely to allow for a greater or lesser degree of engagement with the adjacent vertebral bodies.
  • the upper surface 520 includes texturing 522 to aid in gripping the adjacent vertebral bodies.
  • the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.
  • the expandable fusion device 210 of FIGS. 35-37 can be inserted in the intervertebral space in a manner similar to that the previously described with respect to FIGS. 15-20 .
  • FIG. 38 illustrates the expandable fusion device 210 of FIG. 37 between adjacent vertebral bodies 202, 203 in an unexpanded position.
  • the expandable fusion device 210 of FIGS. 35-37 can be expanded into the expanded position.
  • a portion of the fusion device shown on FIGS. 35-37 expands vertically in at least one direction.
  • the gear 502 can be rotated in a first direction.
  • An instrument 526 having a gear 528 disposed on a distal end 530 of the instrument may be used to rotate the gear 502, as best seen on FIG. 36 .
  • an instrument (not illustrated) may be used to rotate actuation member 524 in a first direction.
  • the actuation member 524 is engaged with gear 502; thus, as the actuation member 524 is rotated in first direction, the gear 502 rotated in a first direction.
  • the embodiment with the actuation member 524 is best seen in FIG. 37 .
  • the threaded bolt 518 extends outward from the gear 502, thus extending the laterally expanding plate 500 outward from the body portion 212.
  • FIG. 39 illustrates the expandable fusion device 210 of FIG. 37 in an expanded position.
  • the expandable fusion device 210 can be contracted back to the unexpanded position.
  • the unexpanded position of the fusion device 210 is best seen in FIG. 38 .
  • the gear 502 is rotated in a second direction that is opposite the first direction.
  • the instrument 526 with the gear 528 may be used to rotate the gear 502.
  • an instrument may be used to rotate the actuation member 524 to turn the gear 502 in the second direction.
  • the threaded bolt 518 retracts pulling the laterally expanding plate 500 inward into the unexpanded position.
  • the fusion devices 210 can include additional features that provide additional benefits such as preventing screw loosening and added stability. These embodiments are discussed below.
  • FIGS. 40 and 41 show different views of a fusion device 210 including an advantageous interference nut 610 and stabilization members 622, 624 according to some embodiments.
  • the fusion device 210 includes many features similar to the above-described devices, including a body portion 212, a first endplate 214, a second endplate 216, a translation member 218, and an actuation member 220.
  • the first endplate 214 can include a pair of openings 243a and 243b through which bone graft material can be received or deposited.
  • the second endplate 16 can have similar openings, although they are not shown from the illustrated viewpoints.
  • the fusion device 210 includes a novel interference nut 610 that is operably attached to a rear section of the body portion 212, as well as a pair of stabilization members 622, 624.
  • FIG. 40 illustrates an exploded view of the alternative fusion device 210
  • FIG. 41 shows a top view of the same device with the first endplate 214 removed.
  • the translation member 218 includes three expansion portions 251, 252, and 254, which are connected via bridge portions 256.
  • the expansion portions 251, 252, and 254 each have angled surfaces that are configured to engage grooved portions of the first and second endplates 214 and 216.
  • the angled surfaces are of similar angles, while in other embodiments, the angled surfaces are of different angles.
  • this allows for an even expansion along a majority of the length of the body portion 212 of the fusion device 210.
  • the translation member 218 is received in the central opening of the body portion 212.
  • the body portion 212 can include a first end 224 and a second end 226.
  • the first end 224 includes one or more apertures 602, 604 as shown in FIGS. 40 and 41 . These apertures 602, 604 advantageously receive one or more stabilization members 622, 624.
  • the stabilization members 622, 624 each include a first substantially smooth portion 632, 634 and a second threaded portion 634, 644.
  • the stabilization members 622, 624 can be inserted through the apertures 602, 604 of the body portion 212, with the threaded portions 634, 644 serving as the leading end that enters the apertures. After passing through the apertures 602, 604 of the body portion 212, the stabilization members 622, 624 can come into contact with a side of the translation member 218.
  • the threaded portions 634, 644 of the stabilization members 622, 624 can be threaded into mateable threaded surfaces of the translation member 218.
  • this serves to prevent rocking of the body portion 212 during expansion and contraction of the device 210.
  • FIGS. 40 and 41 show a pair of stabilization members 622, 624
  • a single stabilization member or more than two stabilization members can be used to assist in preventing rocking of the body portion 212.
  • the stabilization members 622, 624 are illustrated as having a substantially cylindrical surface section, in other embodiments, the stabilization members 622, 624 can assume other shapes and geometries.
  • the stabilization members 622, 624 can have a surface that includes at least one edge or corner.
  • the body portion 212 also includes an interference nut 610 that is positioned within a rear section of the body portion 212.
  • the interference nut 610 is separate and removable from the body portion 212, while in other embodiments, the interference nut 610 is not removable from the body portion 212.
  • the interference nut 610 comprises a square nut that is operably connected to a rear section of the body portion 212.
  • the interference nut 610 can be mateably connected to a rear of the body portion 212, for example, via a dove-tail type cut that encapsulates the interference nut.
  • the interference nut 610 can be advantageously formed of a biocompatible material.
  • the interference nut 610 is formed of PEEK.
  • the interference nut 610 can include a hole (not shown) that is capable of receiving the actuation member 220 therethrough.
  • the actuation member 220 which can comprise a threaded set screw, passes through the interference nut 610 and into contact with the translation member 218, as best shown in FIG. 41 .
  • the interference nut 610 serves to add drag to the actuation member 220 as it passes therethrough, thereby establishing an interference fit. By providing an interference fit, the risk of the actuation member 220 being loosened prior to or during use is minimized.
  • FIGS. 42-44 show different views of an alternative fusion device 210 including novel side stabilization members 652, 654 and a low profile actuation member 220.
  • the fusion device 210 includes many features similar to the above-described devices, including a body portion 212, a translation member 218, and an actuation member 220.
  • the fusion device 210 can also include a first endplate 214 and a second endplate 216 for contacting vertebral surfaces, as best shown in FIG. 44 . Both the first endplate 214 and second endplate 216 can include a pair of openings through which bone graft material can be received or deposited.
  • the fusion device 210 includes novel side stabilization members 652, 654 that are introduced through side slots 213 and 214 of the body portion 212.
  • the fusion device 210 also includes a configuration that allows the actuation member 220 to be of low profile, as shown in FIG. 42 .
  • FIG. 42 illustrates a top view of the alternative fusion device 210 having side stabilization members with the first endplate 214 removed
  • FIG. 43 illustrates a perspective view of the same device
  • FIG. 44 illustrates a side cross-sectional view of the alternative fusion device 210 having side stabilization members.
  • the translation member 218 includes three expansion portions 251, 252, and 254, which are connected via bridge portions 256.
  • the expansion portions 251, 252, and 254 each have angled surfaces that are configured to engage grooved portions of the first and second endplates 214 and 216.
  • the angled surfaces are of similar angles, while in other embodiments, the angled surfaces can be of different angles.
  • by providing at least three expansion portions 251, 252 and 254 this allows for an even expansion along a majority of the length of the body portion 212 of the fusion device 210.
  • the translation member 218 is received in the central opening of the body portion 212.
  • the body portion 212 can include sidewalls that extend between the first end 224 and a second end 226. As shown in FIG. 43 , each of the sidewalls can include side slots 213, 214 for receiving one or more side stabilization members 652, 654.
  • the side stabilization members 652, 654 are similar to the stabilization members 622, 624 (shown in FIG. 40 ). That is, the side stabilization members 652, 654 can include a threaded portion and a substantially smooth portion.
  • the side stabilization members 652 can be inserted through the side slots 213, 214 of the body portion 212 and can operably attach (e.g., via threads) to the translation member 218.
  • the side slots 213, 214 help to provide rotational stability to the translation member 218 relative to the body portion 212 prior to or during use of the fusion device 210.
  • the fusion device 210 provides a configuration that includes a low profile actuation member 220.
  • the actuation member 220 (which can comprise a screw) can have a head portion that is substantially flush against the surface of the body portion 212, while a distal portion 221 of the actuation member 220 can extend through a wall of the translation member 218.
  • the actuation member 220 can comprise a set screw 772 accompanied by a flange 773 and an actuation element 774.
  • the set screw 772 and actuation element 774 can both be threaded.
  • the actuation element 774 is threaded forward, thereby pushing the first endplate 214 upwardly and the second endplate 216 downwardly to cause expansion of the actuation member 220.
  • the flange 773 which can be cylindrical, advantageously resists the opposing forces as the actuation element 774 is threaded forward, thereby helping to keep the fusion device 210 in an expanded configuration.
  • the fusion device 210 can collapse.
  • a blocking nut 771 can be provided that is threaded onto the back side of the set screw 772 to secure the set screw into place when the device 210 is collapsed.
  • FIGS. 49 and 50 Additional embodiments of an expandable fusion device 210 are shown in FIGS. 49 and 50 .
  • This fusion device 210 incorporates a ring member 802 into a pocket 820 formed in the translation member 218.
  • the fusion device 210 in FIGS. 49 and 50 include many features similar to the above-described devices, including a body portion 212, a first endplate 214, a second endplate 216, a translation member 218, an actuation member 220, and a pin member 290.
  • the first endplate 214 can include one or more openings through which bone graft material can be received or deposited.
  • the second endplate 216 can have similar openings, although they are not shown from the illustrated viewpoints.
  • the translation member 218 can be comprised of one or more ramped expansion portions, such as expansion portions 251 and 252, which are configured to assist in expansion and contraction of the fusion device 210, as discussed above.
  • the fusion device 210 incorporates a ring member 802 that is positioned between the actuation member 220 and the translation member 218.
  • the ring member 802 is received in a pocket 820 that is formed in one of the expansion portions (such as expansion portion 251) of the translation member 218.
  • the ring member 802 can comprise a closed annular body that can be received in a similarly shaped recess 820 formed in the body of an expansion portion 251 of the translation member 218.
  • Each of expansion portion 251, ring member 802 and actuation member 220 can be placed over a pin member 290.
  • the ring member 802 can be formed of a material that is different from the translation member 218 and/or actuation member 220.
  • the translation member 18 and/or actuation member 220 are comprised of a metal, such as a biocompatible stainless steel, titanium or metal alloy
  • the ring member 802 can be formed of a polymer such as polyether ether ketone (PEEK).
  • PEEK polyether ether ketone
  • the use of a PEEK ring member between the interface of the actuation member 220 and translation member 218 increases the expansion force of the ramped translation member 218 while using the same force as would be applied if the PEEK ring member was not in place.
  • the use of a PEEK ring member between the translation member 218 and actuation member 220 provides a buffer that can prevent galling that would occur due to metal-on-metal contact between the translation member and actuation member.
  • the translation member 218 can receive an insert having a different shape.
  • the translation member 218 can include one or more recesses that accommodate a wedge-shaped PEEK member between the translation member 218 and the actuation member 220.
  • the wedge-shaped PEEK member can also serve as a lubricious material that reduces the friction between the translation member 218 and the actuation member 220.
  • an insert can be placed between the translation member 218 and actuation member 220 without having to form a recess in the translation member.
  • a PEEK washer can be provided between the interface of the translation member 218 and actuation member 220.
  • each fusion device 210 does not have to be finally installed in the fully expanded state. Rather, depending on the location of the fusion device 210 in the intervertebral disc space, the height of the fusion device 210 may vary from unexpanded to fully expanded.
  • the fusion devices 210 can be put into place with the assistance of a novel expandable trial member.
  • the expandable trial member can be used prior to inserting an expandable fusion device in between vertebral bodies to obtain an accurate size measurement for the fusion device.
  • the expandable trial member can help a user determine a fusion device of an appropriate size to use in a vertebra.
  • the novel expandable trial member disclosed herein is configured such that the amount of distraction force applied to the trial member is linear and constant over its entire expansion range.
  • FIGS. 45-48 show different perspectives of an expandable trial member according to some embodiments.
  • FIG. 45 illustrates a perspective view of the trial member in a non-expanded configuration.
  • FIG. 46 illustrates a side cross-sectional view of the trial member in an expanded configuration.
  • FIG. 47 illustrates a top view of the trial member.
  • FIG. 48 shows an exploded view of the trial member.
  • the expandable trial member 700 comprises a body portion 712, an upper endplate 714, a lower endplate 716, a translation member 718 and an actuation member 720.
  • the trial member 700 is configured such that when the actuation member 720 (shown in FIG. 46 ) is pulled in a backward or proximal direction toward a handle portion 782 (shown in FIG. 47 ), inner shaft or rod member 722 (shown in FIG. 46 ) will push forward and cause inner ramped surfaces of the translation member 718 to translate relative to inner angled grooves cut into the upper endplate 714 and/or lower endplate 716, thereby causing expansion of the trial member 700.
  • the trial member 700 can collapse.
  • distal movement of the actuation member 720 can result in expansion of the expandable trial member
  • proximal movement of the actuation member 720 can result in collapse of the trial member.
  • the configuration of the trial member 700 thus allows pushing and pulling of the actuation member 720 to actuate the shaft or inner rod 722, thereby causing expansion or contraction of the trial member 700.
  • the amount of distraction force is linear over the entire expansion range of the trial member 700.
  • the expandable trial member 700 includes an upper endplate 714 and a lower endplate 716. As shown best in FIG. 46 , both the upper endplate 714 and lower endplate 716 can include one or more surface grooves 780. While the trial member 700 need not remain over an extended period of time within a vertebra, the surface grooves 780 advantageously help to retain the trial member 700 within a vertebra during its operational use.
  • a body portion 712 can be placed in between the upper endplate 714 and lower endplate 716.
  • the body portion 712 can include a sloped or chamfered anterior portion 734 (shown in FIG. 45 ) that assists in distraction of vertebral bodies.
  • the translation member 718 can be received therein.
  • the translation member 718 includes a plurality of upper ramped surfaces 751, 752 and 754 and a plurality of lower ramped surfaces 756, 757 and 758.
  • the upper and lower endplates 714 and 716 can include one or more holes 711 that accommodate the upper and lower ramped surfaces when the trial member 700 is in a closed configuration.
  • the upper ramped surfaces and lower ramped surfaces are configured to slidably mate with corresponding grooves (such as upper grooves 746 and 748 and lower groove 749 shown in FIG. 46 ).
  • the body portion 712 can include a pair of side slots 713, as shown in FIG. 45 .
  • the side slots 713 are configured to each receive a side stabilization member 762.
  • the stabilization members 762 comprise stabilizer screws that contact the translation member 718.
  • the stabilization members 762 help keep the translation member 718 centered inside the body portion 712 to prevent twisting as it translates forward and backwards.
  • the trial member 700 is configured to expand to have a trial height that is at least fifty percent higher than a height of the trial member 700 in its closed configuration. In other embodiments, the trial member 700 is configured to expand to have a trial height that is at least two times the height of the trial member 700 in its closed configuration.
  • FIGS. 51-55 show different views of some embodiments of a proximal portion 750 of a trial member 700.
  • the trial member 700 can be a single piece that extends from a proximal end to a distal end.
  • the proximal portion 750 can comprise a removable handle portion 782 that is configured to operably attach to a body of the trial member 700.
  • the proximal portion 750 is configured to assist in movement of the inner shaft 722 of the trial member, thereby causing expansion and contraction of the trial member upper and lower endplates.
  • proximal portion 750 can comprise a novel locking member that operably mates the proximal portion 750 to the inner shaft 722, thereby allowing the inner shaft 722 to be pulled back.
  • the removable proximal portion 750 is configured to operably attach to a body of the trial member (such as shown in FIG. 47 ).
  • the proximal portion 750 is comprised of a handle 782 in the form of a housing member, a removable engagement insert 816, and a slidable locking member 740.
  • the interior of the proximal portion 750 is configured to have a threaded insert 816 that mates with an exterior threaded surface 724 along the body of the trial member 700.
  • a surface of the slidable locking member 740 pushes against the inner shaft 722 (shown in FIG. 53 as within the exterior threaded surface 724), thereby causing expansion of the trial member endplates.
  • the body of the handle portion 782 is configured to receive a threaded insert 816 therein.
  • the threaded insert 816 is comprised of the same material as the exterior threaded surface 724 of the body, in other embodiments, the threaded insert 816 and threaded surface 724 are of different materials.
  • the threaded insert 816 can be a polymer, such as PEEK, while the exterior threaded surface 724 can be a metal, such as stainless steel.
  • PEEK polymer
  • the exterior threaded surface 724 can be a metal, such as stainless steel.
  • pin members 826 can be provided to contact the surface of the insert 816 along with the inner wall of the handle portion 782 (as shown in FIG. 54 ). As shown in FIG. 55 , a plurality of pin members 826 can be provided that align with the longitudinal axis of the insert 816 to prevent rotation of the insert 816.
  • the slidable locking member 740 can be moved from an unlocked to a locked configuration such that the inner shaft 722 is operably mated with the proximal portion 750 via the locking member 740. More details regarding the slidable locking member 740 are discussed below.
  • FIG. 39 illustrates the proximal portion 750 of the trial member with the slidable locking member 740 in an unlocked configuration
  • FIG. 54 illustrates the proximal portion 750 of the trial member with the slidable locking member 740 in a locked configuration
  • the proximal portion 750 is able to translate along the body of the trial member, thereby pushing on the inner shaft 722 and causing expansion of the trial member endplates.
  • the proximal portion 750 is operably mated to the inner shaft 722, thereby allowing the inner shaft 722 to be pulled back via the proximal portion 750 in situ.
  • the slidable locking member 7540 comprises an insert attached to the proximal portion 750 of the trial member.
  • the locking member 740 comprises a J-shaped or hook-shaped body that is configured to slide up and down in order to provide unlocked and locked configurations, as shown in FIGS. 51 and 52 respectively.
  • the body of the locking member 740 can include a nub 749 (identified in FIGS. 53 and 54 ) that can be received in a snap-fit into corresponding grooves 751a and 751b formed in the proximal portion 750. When the nub 749 is in groove 751a, the locking member 740 is in an unlocked configuration. When the nub 749 is in groove 751b, the locking member 740 is in a locked configuration.
  • the hook-shaped body of the locking member 740 also includes a mating end 747 that can be received in a complementary mating portion 723 of the inner shaft 722.
  • a mating end 747 When the mating end 747 is received in the mating portion 723 of the inner shaft 722, this advantageously mates the proximal portion 750 to the inner shaft 722, thereby allowing the inner shaft 722 to be pulled back in situ if desired.
  • the locking member 740 is of the same material as surfaces of the proximal portion 750 and/or the inner shaft 722. In other embodiments, the locking member 740 is of a different material from surfaces of the proximal portion 750 and/or the inner shaft 722.
  • the locking member 740 can be formed of a polymer such as PEEK, while an adjacent surface of the proximal portion 750 is a metal such as stainless steel.
  • a cavity is formed in a vertebral space between two vertebrae.
  • An expandable trial member including a first endplate, a second endplate, a translation member with ramped surfaces, a body portion and an actuation member can be provided.
  • the trial member can be introduced into the vertebral space.
  • the actuation member can be rotated, thereby causing expansion of the first endplate and second endplate via motion of the translation member.
  • an assessment can be made as to the proper size of an expandable fusion device.
  • an expandable fusion device comprising a first endplate, a second endplate, a translation member with ramped surfaces, a body portion and an actuation member
  • the trial member can include an interference nut that is attached to a rear section of the body portion, one or more front or side stabilization members, a flange, a blocking nut, or combinations thereof.
  • the expandable fusion device can be inserted into the vertebral space in an unexpanded form. Once in the vertebral space, the actuation member of the fusion device can be rotated, thereby causing expansion of the first endplate and second endplate via motion of the translation member. Once in its expanded form, the fusion device is kept in place and can remain in the vertebral space for an extended period of time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Claims (14)

  1. Zwischenwirbelimplantat, umfassend:
    - eine erste Endplatte (214) mit einer Oberseite und einer Unterseite, wobei die Oberseite der ersten Endplatte (214) eine strukturierte Oberfläche umfasst;
    - eine zweite Endplatte (216) mit einer Oberseite und einer Unterseite, wobei die Unterseite der zweiten Endplatte (216) eine strukturierte Oberfläche umfasst;
    - ein Übertragungselement (218), das zwischen der ersten Endplatte und der zweiten Endplatte aufgenommen ist,
    - wobei das Übertragungselement (218) eine erste abgewinkelte Oberfläche (251, 252, 254) umfasst, die eingerichtet ist, um mit einer Kontaktfläche der ersten Endplatte (214) in Eingriff zu stehen, und eine zweite abgewinkelte Fläche (251, 252, 254) umfasst, die eingerichtet ist, um mit einer Kontaktfläche der zweiten Endplatte (216) in Eingriff zu stehen,
    - einen Körperbereich (212) mit einer zentralen Öffnung zur Aufnahme des Übertragungselements (218),
    - wobei der Körperbereich (212) ein erstes Ende (224) und ein zweites Ende (226) umfasst, und
    - wobei die Bewegung des Übertragungselements (218) bewirkt, um die erste abgewinkelte Oberfläche (251, 252, 254) gegen die Kontaktfläche der ersten Endplatte (214) und die zweite abgewinkelte Fläche (251, 252, 254) gegen die Kontaktfläche der zweiten Endplatte (216) zu drücken, wodurch eine Erweiterung der ersten Endplatte (214) und der zweiten Endplatte (216) nach außen bewirkt wird, und
    - wobei das zweite Ende (226) mit einer Öffnung (236) versehen ist, die zur Aufnahme eines Betätigungselements (220) zum Kontaktieren des Übertragungselements (218) dimensioniert ist,
    - dadurch gekennzeichnet, dass
    - das Implantat ferner ein Paar von Stabilisierungselementen (622, 624) aufweist, die durch eine Öffnung des Körperbereichs positioniert sind, und
    - das erste Ende (224) ein Paar von Öffnungen (602, 604) zur Aufnahme des Paars von Stabilisierungselementen (622, 624) umfasst.
  2. Implantat nach Anspruch 1, wobei eine Drehung des Betätigungselements (220) eine Erweiterung des Zwischenwirbelimplantats bewirkt.
  3. Implantat nach Anspruch 2, wobei das Betätigungselement (220) ein Gewindeelement aufweist.
  4. Implantat nach Anspruch 2, wobei eine Drehung des Betätigungselements (220) eine Übertragungsbewegung des Übertragungselements (218) bewirkt.
  5. Implantat nach Anspruch 1, wobei die erste Endplatte (214) ein Paar von geneigten Oberflächen umfasst.
  6. Implantat nach Anspruch 1, wobei das Übertragungselement (218) ein Paar von geneigten Oberflächen (251, 252, 254) aufweist, die durch einen Brückenbereich (256) verbunden sind.
  7. Implantat nach Anspruch 1, wobei das Übertragungselement (218) eine zentrale Öffnung umfasst.
  8. Implantat nach Anspruch 1, wobei die Kontaktflächen der ersten (214) und zweiten Endplatten (216) Schwalbenschwanznuten aufweisen.
  9. Implantat nach Anspruch 1, wobei der Körperbereich (212) ein erstes Ende (224), ein zweites Ende (226), ein erstes Seitenteil (228), das das erste Ende (224) und das zweite Ende (226) verbindet, und ein zweites Seitenteil (229) aufweist, das das erste Ende (224) und das zweite Ende (226) verbindet.
  10. Implantat nach Anspruch 9, das ferner eine PEEK-Eingriffsmutter (610) aufweist, die innerhalb eines hinteren Abschnitts des Körperbereichs (212) positioniert ist.
  11. Implantat nach Anspruch 1, wobei die erste Endplatte (214) ein Paar von Öffnungen aufweist, durch die Transplantatmaterial aufgenommen oder abgelegt werden kann.
  12. Implantat nach Anspruch 1, wobei das Paar von Stabilisierungselementen (622, 624) einen ersten, im Wesentlichen glatten Bereich (632, 634) und ein zweiten Gewindebereich (634, 644) aufweist.
  13. Implantat nach Anspruch 1, das ferner ein Betätigungselement (220) in der Form einer Gewinde-Stellschraube aufweist.
  14. Implantat nach Anspruch 13, das ferner eine Eingriffsmutter (610) mit einem Loch aufweist, das in der Lage ist, die Gewinde-Stellschraube (220) dadurch aufzunehmen, wobei die Gewinde-Stellschraube (220) durch die Eingriffsmutter (610) hindurchgeht und mit dem Übertragungselement (218) in Kontakt ist.
EP13778307.2A 2012-04-19 2013-04-19 Dehnbare fusionsvorrichtung Active EP2838454B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/451,097 US8556979B2 (en) 2009-10-15 2012-04-19 Expandable fusion device and method of installation thereof
PCT/US2013/037311 WO2013158960A1 (en) 2012-04-19 2013-04-19 Expandable fusion device and method of installation thereof

Publications (3)

Publication Number Publication Date
EP2838454A1 EP2838454A1 (de) 2015-02-25
EP2838454A4 EP2838454A4 (de) 2015-12-16
EP2838454B1 true EP2838454B1 (de) 2019-10-23

Family

ID=49385030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13778307.2A Active EP2838454B1 (de) 2012-04-19 2013-04-19 Dehnbare fusionsvorrichtung

Country Status (4)

Country Link
US (4) US8556979B2 (de)
EP (1) EP2838454B1 (de)
JP (1) JP6096282B2 (de)
WO (1) WO2013158960A1 (de)

Families Citing this family (326)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
BRPI0407142A (pt) 2003-02-14 2006-01-10 Depuy Spine Inc Dispositivo de fusão intervertebral formado in situ
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
FR2871366A1 (fr) 2004-06-09 2005-12-16 Ceravic Soc Par Actions Simpli Implant expansible prothetique osseux
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US8597360B2 (en) 2004-11-03 2013-12-03 Neuropro Technologies, Inc. Bone fusion device
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
EP2023864B1 (de) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Dehnbare stützvorrichtung
US8034110B2 (en) 2006-07-31 2011-10-11 Depuy Spine, Inc. Spinal fusion implant
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
EP2237748B1 (de) 2008-01-17 2012-09-05 Synthes GmbH Dehnbares bandscheibenimplantat
US8088163B1 (en) 2008-02-06 2012-01-03 Kleiner Jeffrey B Tools and methods for spinal fusion
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US20100204795A1 (en) 2008-11-12 2010-08-12 Stout Medical Group, L.P. Fixation device and method
US8366748B2 (en) 2008-12-05 2013-02-05 Kleiner Jeffrey Apparatus and method of spinal implant and fusion
US9247943B1 (en) 2009-02-06 2016-02-02 Kleiner Intellectual Property, Llc Devices and methods for preparing an intervertebral workspace
US9220547B2 (en) 2009-03-27 2015-12-29 Spinal Elements, Inc. Flanged interbody fusion device
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9050194B2 (en) 2009-05-06 2015-06-09 Stryker Spine Expandable spinal implant apparatus and method of use
JP5907458B2 (ja) 2009-07-06 2016-04-26 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 拡張可能固定アセンブリ
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US20170238984A1 (en) 2009-09-18 2017-08-24 Spinal Surgical Strategies, Llc Bone graft delivery device with positioning handle
US9629729B2 (en) 2009-09-18 2017-04-25 Spinal Surgical Strategies, Llc Biological delivery system with adaptable fusion cage interface
US8906028B2 (en) 2009-09-18 2014-12-09 Spinal Surgical Strategies, Llc Bone graft delivery device and method of using the same
US10098758B2 (en) * 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US9168138B2 (en) 2009-12-09 2015-10-27 DePuy Synthes Products, Inc. Aspirating implants and method of bony regeneration
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US9554909B2 (en) 2012-07-20 2017-01-31 Jcbd, Llc Orthopedic anchoring system and methods
CA2787152C (en) 2010-01-13 2018-06-05 Edward Jeffrey Donner Sacroiliac joint fixation fusion system
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
US9757154B2 (en) 2010-01-13 2017-09-12 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9333090B2 (en) * 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9788961B2 (en) 2010-01-13 2017-10-17 Jcbd, Llc Sacroiliac joint implant system
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
WO2011097315A1 (en) 2010-02-02 2011-08-11 Azadeh Farin Spine surgery device
US8343224B2 (en) 2010-03-16 2013-01-01 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9282979B2 (en) 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
JP5850930B2 (ja) 2010-06-29 2016-02-03 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング 離反椎間インプラント
CA2804723A1 (en) 2010-07-15 2012-01-19 Nlt Spine Ltd. Surgical systems and methods for implanting deflectable implants
WO2012027490A2 (en) 2010-08-24 2012-03-01 Stout Medical Group, L.P. Support device and method for use
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US9308099B2 (en) 2011-02-14 2016-04-12 Imds Llc Expandable intervertebral implants and instruments
US8394129B2 (en) 2011-03-10 2013-03-12 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US8518087B2 (en) 2011-03-10 2013-08-27 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US8790375B2 (en) 2011-03-18 2014-07-29 Raed M. Ali, M.D., Inc. Transpedicular access to intervertebral spaces and related spinal fusion systems and methods
US9265620B2 (en) 2011-03-18 2016-02-23 Raed M. Ali, M.D., Inc. Devices and methods for transpedicular stabilization of the spine
EP2688518A4 (de) 2011-03-22 2014-08-20 Depuy Synthes Products Llc Universelles testverfahren für bandscheibenimplantate
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
WO2013023098A1 (en) 2011-08-09 2013-02-14 Neuropro Spinal Jaxx Inc. Bone fusion device, apparatus and method
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
WO2013052807A2 (en) 2011-10-05 2013-04-11 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bone fusion system
US10799367B2 (en) 2011-10-05 2020-10-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bone fusion system
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8628578B2 (en) * 2011-12-19 2014-01-14 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US9445919B2 (en) 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US20130261747A1 (en) * 2012-03-30 2013-10-03 Christophe Geisert ALIF Spinal Implant
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US9532883B2 (en) 2012-04-13 2017-01-03 Neuropro Technologies, Inc. Bone fusion device
US9622876B1 (en) 2012-04-25 2017-04-18 Theken Spine, Llc Expandable support device and method of use
EP3281609B1 (de) 2012-05-29 2019-02-27 NLT Spine Ltd. Expandierendes implantat
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US12004905B2 (en) 2012-06-21 2024-06-11 Globus Medical, Inc. Medical imaging systems using robotic actuators and related methods
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11974822B2 (en) 2012-06-21 2024-05-07 Globus Medical Inc. Method for a surveillance marker in robotic-assisted surgery
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
EP2877127B1 (de) 2012-07-26 2019-08-21 Synthes GmbH Expandierbares implantat
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US9987142B2 (en) 2012-08-31 2018-06-05 Institute for Musculoskeletal Science and Education, Ltd. Fixation devices for anterior lumbar or cervical interbody fusion
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
EP2742914A1 (de) * 2012-12-14 2014-06-18 FACET-LINK Inc. Stufenlos höhenverstellbares Zwischenwirbelfusionsimplantat
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9277928B2 (en) 2013-03-11 2016-03-08 Interventional Spine, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US10426632B2 (en) 2013-03-13 2019-10-01 Life Spine, Inc. Expandable spinal interbody assembly
US11304818B2 (en) 2013-03-13 2022-04-19 Life Spine, Inc. Expandable spinal interbody assembly
US10687962B2 (en) 2013-03-14 2020-06-23 Raed M. Ali, M.D., Inc. Interbody fusion devices, systems and methods
EP2967909A4 (de) * 2013-03-14 2016-10-05 Raed M Ali M D Inc Vorrichtungen, systeme und verfahren für seitliche intervertebrale fusion
WO2014159739A1 (en) 2013-03-14 2014-10-02 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US9993353B2 (en) 2013-03-14 2018-06-12 DePuy Synthes Products, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US11311312B2 (en) 2013-03-15 2022-04-26 Medtronic, Inc. Subcutaneous delivery tool
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
WO2014151934A1 (en) 2013-03-15 2014-09-25 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
WO2014145939A2 (en) * 2013-03-15 2014-09-18 Spectrum Spine Ip Holdings, Llc Expandable inter-body fusion devices and methods
US9220610B2 (en) * 2013-03-20 2015-12-29 Kuei Jung CHEN Textured implant device having series extendible blades
CN108175543B (zh) 2013-05-14 2021-04-16 脊柱诊察公司 椎间装置和相关方法
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
US9603717B2 (en) * 2013-07-03 2017-03-28 Spinefrontier, Inc System and method for an expandable intervertebral implant
US10149770B2 (en) 2013-07-09 2018-12-11 Seaspine, Inc. Orthopedic implant with adjustable angle between tissue contact surfaces
FR3008301B1 (fr) * 2013-07-11 2016-12-23 Biotechni Dispositif pour la distraction d'un tissu
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9186259B2 (en) 2013-09-09 2015-11-17 Ouroboros Medical, Inc. Expandable trials
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
WO2015063721A1 (en) 2013-10-31 2015-05-07 Nlt Spine Ltd. Adjustable implant
US9737411B2 (en) 2013-12-11 2017-08-22 Nlt Spine Ltd. Worm-gear actuated orthopedic implants and methods
US10314631B2 (en) 2013-12-17 2019-06-11 H. Lee Moffitt Cancer Center And Research Institute, Inc. Transdiscal screw
US9642720B2 (en) * 2013-12-19 2017-05-09 Amendia, Inc. Expandable spinal implant
FR3015221B1 (fr) 2013-12-23 2017-09-01 Vexim Systeme d'implant intravertebral expansible avec fixation pediculaire posterieure
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US9402739B2 (en) * 2014-02-07 2016-08-02 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9662224B2 (en) 2014-02-07 2017-05-30 Globus Medical, Inc. Variable lordosis spacer and related methods of use
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
US9757248B2 (en) 2014-04-08 2017-09-12 Degen Medical, Inc. Intervertebral spacers
US9456817B2 (en) 2014-04-08 2016-10-04 DePuy Synthes Products, Inc. Methods and devices for spinal correction
WO2015162256A1 (en) 2014-04-24 2015-10-29 KB Medical SA Surgical instrument holder for use with a robotic surgical system
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
US10322011B2 (en) 2014-06-03 2019-06-18 Atlas Spine, Inc. Spinal implant device with bone screws
US10034767B2 (en) 2014-06-03 2018-07-31 Atlas Spine, Inc. Spinal implant device
US10610377B2 (en) 2014-06-03 2020-04-07 Atlas Spine, Inc. Spinal implant device
US9445920B2 (en) 2014-06-03 2016-09-20 Atlas Spine, Inc. Spinal implant device
US9717605B2 (en) 2014-06-03 2017-08-01 Atlas Spine, Inc. Spinal implant device
US9314348B2 (en) 2014-06-04 2016-04-19 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
WO2015198335A1 (en) 2014-06-25 2015-12-30 Nlt Spine Ltd. Expanding implant with hinged arms
CN107072673A (zh) 2014-07-14 2017-08-18 Kb医疗公司 用于在骨组织中制备孔的防滑手术器械
US10322009B2 (en) * 2014-08-01 2019-06-18 H. Lee Moffitt Cancer Center And Research Institute, Inc. Expandable intervertebral cage
US10034769B2 (en) 2014-08-26 2018-07-31 Atlas Spine, Inc. Spinal implant device
US9622872B2 (en) * 2014-09-23 2017-04-18 Warsaw Orthopedic, Inc. Intervertebral spinal implant and method
US9730806B2 (en) 2014-10-27 2017-08-15 Warsaw Orthopedic, Inc. Spinal implant system and method
US9937053B2 (en) 2014-11-04 2018-04-10 Warsaw Orthopedic, Inc. Expandable interbody implant
US9060876B1 (en) 2015-01-20 2015-06-23 Ouroboros Medical, Inc. Stabilized intervertebral scaffolding systems
US9907670B2 (en) 2015-01-21 2018-03-06 Warsaw Orthopedic, Inc. Unitarily formed expandable spinal implant and method of manufacturing and implanting same
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
WO2016131903A1 (en) 2015-02-18 2016-08-25 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
WO2016145165A1 (en) * 2015-03-10 2016-09-15 Atlas Spine, Inc. Spinal implant device
US20160354161A1 (en) 2015-06-05 2016-12-08 Ortho Kinematics, Inc. Methods for data processing for intra-operative navigation systems
US9707100B2 (en) 2015-06-25 2017-07-18 Institute for Musculoskeletal Science and Education, Ltd. Interbody fusion device and system for implantation
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US11369483B2 (en) 2015-07-17 2022-06-28 Expanding Innovations, Inc. Intervertebral devices and related methods
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US9713536B2 (en) 2015-08-12 2017-07-25 Warsaw Orthopedic, Inc. Expandable spinal implant and method of implanting same
WO2017035155A1 (en) 2015-08-25 2017-03-02 Imds Llc Expandable intervertebral implants
US10687905B2 (en) 2015-08-31 2020-06-23 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10610376B2 (en) 2015-10-16 2020-04-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method
USD797290S1 (en) 2015-10-19 2017-09-12 Spinal Surgical Strategies, Llc Bone graft delivery tool
US10188526B2 (en) 2015-10-26 2019-01-29 Warsaw Orthopedic, Inc. Spinal implant system and method
US10779955B2 (en) 2015-10-26 2020-09-22 Warsaw Orthopedic, Inc. Spinal implant system and method
US10076423B2 (en) 2016-01-04 2018-09-18 Warsaw Orthopedic, Inc. Pivoting wedge expanding spinal implant and method of implanting same
US10137006B2 (en) 2016-01-28 2018-11-27 Warsaw Orthopedic, Inc. Geared cam expandable interbody implant and method of implanting same
US9937054B2 (en) 2016-01-28 2018-04-10 Warsaw Orthopedic, Inc. Expandable implant and insertion tool
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
EP3241518B1 (de) 2016-04-11 2024-10-23 Globus Medical, Inc Systeme für chirurgische werkzeuge
EP3457964B1 (de) 2016-05-19 2023-12-13 Auctus Surgical, Inc. Modulationssysteme für die wirbelsäulenkrümmung
JP6995789B2 (ja) 2016-06-28 2022-01-17 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー 拡張可能かつ角度調節可能な椎間ケージ
CN109688980B (zh) 2016-06-28 2022-06-10 Eit 新兴移植技术股份有限公司 具有关节运动接头的可扩张和角度可调节的椎间笼
US10258483B2 (en) 2016-08-19 2019-04-16 Degen Medical, Inc. Laminate implantable medical devices
US9883953B1 (en) 2016-09-21 2018-02-06 Integrity Implants Inc. Stabilized laterovertically-expanding fusion cage systems with tensioner
US11707203B2 (en) 2016-10-11 2023-07-25 Wenzel Spine, Inc. Systems for generating image-based measurements during diagnosis
US10307265B2 (en) 2016-10-18 2019-06-04 Institute for Musculoskeletal Science and Education, Ltd. Implant with deployable blades
US10993815B2 (en) 2016-10-25 2021-05-04 Imds Llc Methods and instrumentation for intervertebral cage expansion
US10405992B2 (en) 2016-10-25 2019-09-10 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
US10449060B2 (en) 2016-10-25 2019-10-22 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
FR3058044A1 (fr) * 2016-10-27 2018-05-04 Ldr Medical Cage intersomatique expansible
FR3058043B1 (fr) * 2016-10-27 2020-11-13 Ldr Medical Cage intersomatique expansible
US10238503B2 (en) 2016-11-01 2019-03-26 Warsaw Orthopedic, Inc. Expandable spinal implant system with a biased tip and method of using same
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
EP3568109A4 (de) 2017-01-10 2020-09-16 Integrity Implants Inc. Expandierbare zwischenwirbelfusionsvorrichtung
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
EP3360502A3 (de) 2017-01-18 2018-10-31 KB Medical SA Robotische navigation von robotischen chirurgischen systemen
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
EP3357459A1 (de) 2017-02-03 2018-08-08 Spinal Surgical Strategies, LLC Knochenimplantateinführungsvorrichtung mit positionierungsgriff
CN106726020B (zh) * 2017-02-14 2018-09-07 广州爱锘德医疗器械有限公司 升降椎间融合器
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
CN107411853B (zh) * 2017-03-28 2023-03-21 广州爱锘德医疗器械有限公司 椎间融合器
US20180289432A1 (en) 2017-04-05 2018-10-11 Kb Medical, Sa Robotic surgical systems for preparing holes in bone tissue and methods of their use
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US9962272B1 (en) 2017-06-28 2018-05-08 Amendia, Inc. Intervertebral implant device with lordotic expansion
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11224522B2 (en) 2017-07-24 2022-01-18 Integrity Implants Inc. Surgical implant and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US10022239B1 (en) * 2017-08-16 2018-07-17 Hammill Medical LLC Spinal implant with opposing taper coaxial drive system
US10709578B2 (en) 2017-08-25 2020-07-14 Integrity Implants Inc. Surgical biologics delivery system and related methods
US11801144B2 (en) 2017-09-14 2023-10-31 Degen Medical, Inc. Methods of making medical devices
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US10945859B2 (en) 2018-01-29 2021-03-16 Amplify Surgical, Inc. Expanding fusion cages
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
WO2019165152A1 (en) 2018-02-22 2019-08-29 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
AU2019226102A1 (en) 2018-02-22 2020-08-13 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
AU2019226567B2 (en) 2018-03-01 2024-04-11 Integrity Implants Inc. Expandable fusion device with independent expansion systems
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US10849758B2 (en) 2018-08-22 2020-12-01 Institute for Musculoskeletal Science and Education, Ltd. Spinal fusion implant
CA3111008A1 (en) 2018-09-20 2020-03-26 Spinal Elements, Inc. Spinal implant device
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11123198B2 (en) 2018-11-13 2021-09-21 Degen Medical, Inc. Expandable spacers
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11234829B2 (en) 2019-01-21 2022-02-01 Degen Medical, Inc. Expandable intervertebral spacers
CN109938889B (zh) * 2019-03-11 2020-01-17 珠海维尔康生物科技有限公司 一种可植骨高度可调的撑开式融合器
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant
USD955579S1 (en) 2019-04-26 2022-06-21 Warsaw Orthopedic, Inc. Surgical implant
USD948048S1 (en) 2019-04-26 2022-04-05 Warsaw Orthopedic, Inc. Surgical implant
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
EP3979951A1 (de) 2019-06-10 2022-04-13 Life Spine, Inc. Expandierbare implantatanordnung mit kompressionsmerkmalen
US12042395B2 (en) 2019-06-11 2024-07-23 Life Spine, Inc. Expandable implant assembly
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11678906B2 (en) 2019-09-09 2023-06-20 Amplify Surgical, Inc. Multi-portal surgical systems, cannulas, and related technologies
US11464648B2 (en) 2019-09-09 2022-10-11 Amplify Surgical, Inc. Multi-portal surgical systems
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11547575B2 (en) 2019-09-27 2023-01-10 Degen Medical, Inc. Expandable intervertebral spacers
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11992373B2 (en) 2019-12-10 2024-05-28 Globus Medical, Inc Augmented reality headset with varied opacity for navigated robotic surgery
IT201900023913A1 (it) * 2019-12-13 2021-06-13 Sps S R L Gabbia intersomatica per stabilizzazione vertebrale
US12064189B2 (en) 2019-12-13 2024-08-20 Globus Medical, Inc. Navigated instrument for use in robotic guided surgery
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
CN115175641A (zh) * 2020-03-05 2022-10-11 上海凯利泰医疗科技股份有限公司 可扩展的椎体融合器
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11065127B1 (en) 2020-04-01 2021-07-20 Hammill Medical LLC Dual-lead thread drive screw for a lateral expanding coaxial spinal implant
US11382761B2 (en) 2020-04-11 2022-07-12 Neurostructures, Inc. Expandable interbody spacer
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11304817B2 (en) 2020-06-05 2022-04-19 Neurostructures, Inc. Expandable interbody spacer
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US12070276B2 (en) 2020-06-09 2024-08-27 Globus Medical Inc. Surgical object tracking in visible light via fiducial seeding and synthetic image registration
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11602440B2 (en) 2020-06-25 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11166825B1 (en) 2020-07-01 2021-11-09 Warsaw Orthopedic, Inc. Spinal implant
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11554020B2 (en) 2020-09-08 2023-01-17 Life Spine, Inc. Expandable implant with pivoting control assembly
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US12076091B2 (en) 2020-10-27 2024-09-03 Globus Medical, Inc. Robotic navigational system
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11395743B1 (en) 2021-05-04 2022-07-26 Warsaw Orthopedic, Inc. Externally driven expandable interbody and related methods
US11833059B2 (en) 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11285014B1 (en) 2020-11-05 2022-03-29 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11517443B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Dual wedge expandable implant, system and method of use
US11376134B1 (en) 2020-11-05 2022-07-05 Warsaw Orthopedic, Inc. Dual expanding spinal implant, system, and method of use
US11291554B1 (en) 2021-05-03 2022-04-05 Medtronic, Inc. Unibody dual expanding interbody implant
US11517363B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Screw driver and complimentary screws
US11963881B2 (en) 2020-11-05 2024-04-23 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
WO2022109524A1 (en) 2020-11-19 2022-05-27 Spinal Elements, Inc. Curved expandable interbody devices and deployment tools
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11717419B2 (en) 2020-12-10 2023-08-08 Neurostructures, Inc. Expandable interbody spacer
US12070286B2 (en) 2021-01-08 2024-08-27 Globus Medical, Inc System and method for ligament balancing with robotic assistance
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11730608B2 (en) 2021-07-13 2023-08-22 Warsaw Orthopedic, Inc. Monoblock expandable interbody implant
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
CN113509295A (zh) * 2021-08-10 2021-10-19 上海锐植医疗器械有限公司 一种后植骨高度可调的融合器
DE202021105393U1 (de) * 2021-10-05 2021-10-11 Richard Wolf Gmbh Aufspreizbares Zwischenwirbelimplantat
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
US11850163B2 (en) 2022-02-01 2023-12-26 Warsaw Orthopedic, Inc. Interbody implant with adjusting shims
US12090064B2 (en) 2022-03-01 2024-09-17 Medos International Sarl Stabilization members for expandable intervertebral implants, and related systems and methods
US12103480B2 (en) 2022-03-18 2024-10-01 Globus Medical Inc. Omni-wheel cable pusher
US12048493B2 (en) 2022-03-31 2024-07-30 Globus Medical, Inc. Camera tracking system identifying phantom markers during computer assisted surgery navigation
US11950770B1 (en) 2022-12-01 2024-04-09 Amplify Surgical, Inc. Multi-portal split cannulas, endoscopic hemostatic dispensers and surgical tools

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4599086A (en) 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
SU1424826A1 (ru) 1986-05-22 1988-09-23 Белорусский научно-исследовательский институт травматологии и ортопедии Фиксатор позвоночника
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
DE4012622C1 (en) 1990-04-20 1991-07-18 Eska Medical Luebeck Medizintechnik Gmbh & Co, 2400 Luebeck, De Two-part metal vertebra implant - has parts locked by two toothed racks, pre-stressed by elastic cushion between both implant parts
AT394307B (de) 1990-07-24 1992-03-10 Mohamed Ibrahim Dr Rasheed Wirbelprothese
US5390683A (en) 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5123926A (en) 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
DE4128332A1 (de) 1991-08-27 1993-03-04 Man Ceramics Gmbh Wirbelknochenersatz
US5290312A (en) 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
FR2692952B1 (fr) 1992-06-25 1996-04-05 Psi Amortisseurs perfectionnes a limite de deplacement.
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
ES2161725T3 (es) 1993-02-09 2001-12-16 Depuy Acromed Inc Disco intervertebral.
DE4423826B4 (de) 1993-07-07 2007-01-04 Pentax Corp. Keramische Wirbelprothese
DE4327054C1 (de) 1993-08-12 1995-04-13 Schaefer Micomed Gmbh Ventrales Zwischenwirbelimplantat
FR2715293B1 (fr) 1994-01-26 1996-03-22 Biomat Cage intersomatique vertébrale.
DE19580181B4 (de) 1994-03-23 2004-10-28 Schnorrenberg Chirurgiemechanik Gmbh Positionier- und Stützvorrichtung für die Wirbelsäule
DE4423257C2 (de) 1994-07-02 2001-07-12 Ulrich Heinrich Implantat zum Einsetzen zwischen Wirbelkörper der Wirbelsäule als Platzhalter
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5653763A (en) 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
DE29606468U1 (de) * 1996-04-09 1997-08-07 Waldemar Link GmbH & Co, 22339 Hamburg Wirbelsäulenfixateur
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US6039761A (en) 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
US6045579A (en) 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6641614B1 (en) 1997-05-01 2003-11-04 Spinal Concepts, Inc. Multi-variable-height fusion device
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
DE19807236C2 (de) * 1998-02-20 2000-06-21 Biedermann Motech Gmbh Zwischenwirbelimplantat
US6126689A (en) 1998-06-15 2000-10-03 Expanding Concepts, L.L.C. Collapsible and expandable interbody fusion device
FR2794968B1 (fr) 1999-06-17 2002-09-06 Dimso Sa Implant intersomatique rachidien a picots saillants
JP4141640B2 (ja) 1998-06-23 2008-08-27 ストリケ、スピーヌ 固着構成要素を有する脊椎間インプラント
WO2000007527A1 (en) 1998-08-03 2000-02-17 Synthes Ag Chur Intervertebral allograft spacer
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
FR2782632B1 (fr) 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg Cage de fusion intersomatique expansible
AU4988700A (en) 1999-05-05 2000-11-17 Gary K. Michelson Spinal fusion implants with opposed locking screws
AU770261B2 (en) 1999-06-04 2004-02-19 Warsaw Orthopedic, Inc. Artificial disc implant
US6419705B1 (en) 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
WO2002009626A1 (en) 1999-07-26 2002-02-07 Advanced Prosthetic Technologies, Inc. Improved spinal surgical prosthesis
US7918888B2 (en) 1999-10-13 2011-04-05 Hamada James S Spinal fusion instrumentation, implant and method
FR2799638B1 (fr) 1999-10-14 2002-08-16 Fred Zacouto Fixateur et articulation vertebrale
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US8535378B2 (en) 2004-05-10 2013-09-17 Roger P. Jackson Vertebral interbody spacer
US6666891B2 (en) 2000-11-13 2003-12-23 Frank H. Boehm, Jr. Device and method for lumbar interbody fusion
US6443989B1 (en) 2000-12-04 2002-09-03 Roger P. Jackson Posterior expandable fusion cage
FR2817462B1 (fr) 2000-12-05 2003-08-08 Stryker Spine Sa Implant intersomatique rachidien distractable in situ comportant des points de passage dur
US6773460B2 (en) 2000-12-05 2004-08-10 Roger P. Jackson Anterior variable expandable fusion cage
DE10065232C2 (de) 2000-12-27 2002-11-14 Ulrich Gmbh & Co Kg Implantat zum Einsetzen zwischen Wirbelkörper sowie Operationsinstrument zur Handhabung des Implantats
WO2002098332A1 (en) 2001-02-16 2002-12-12 Sulzer Spine-Tech Inc. Bone implants and methods
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
DE10138079B4 (de) 2001-08-03 2004-02-12 Biedermann Motech Gmbh Platzhalter mit veränderbarer axialer Länge
US6648917B2 (en) 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
US20050149188A1 (en) 2002-02-07 2005-07-07 Cook Stephen D. Anterior spinal implant
EP1482877B1 (de) 2002-03-11 2007-05-30 Spinal Concepts Inc. Einrichtung zum einsetzen von wirbelsäulenimplantaten
US7070598B2 (en) 2002-06-25 2006-07-04 Sdgi Holdings, Inc. Minimally invasive expanding spacer and method
US20040087947A1 (en) 2002-08-28 2004-05-06 Roy Lim Minimally invasive expanding spacer and method
US7018415B1 (en) 2002-09-23 2006-03-28 Sdgi Holdings, Inc. Expandable spinal fusion device and methods of promoting spinal fusion
FR2846550B1 (fr) 2002-11-05 2006-01-13 Ldr Medical Prothese de disque intervertebral
WO2004047689A1 (en) 2002-11-21 2004-06-10 Sdgi Holdings, Inc. Systems and techniques for intravertebral spinal stablization with expandable devices
NZ540265A (en) 2002-12-17 2006-04-28 Synthes Gmbh Intervertebral implant with joint parts mounted on roller bodies
US7828849B2 (en) 2003-02-03 2010-11-09 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
DE50313446D1 (de) 2003-02-06 2011-03-10 Synthes Gmbh Zwischenwirbelimplantat
ES2300566T3 (es) 2003-04-28 2008-06-16 Synthes Gmbh Implante intervertebral.
US7753956B2 (en) * 2003-05-27 2010-07-13 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US20060229729A1 (en) 2003-08-05 2006-10-12 Gordon Charles R Expandable intervertebral implant for use with instrument
US7204853B2 (en) 2003-08-05 2007-04-17 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US7316714B2 (en) 2003-08-05 2008-01-08 Flexuspine, Inc. Artificial functional spinal unit assemblies
US20050080422A1 (en) 2003-10-14 2005-04-14 Centerpulse Spine-Tech, Inc. Instruments for use with implants, and methods
US7217293B2 (en) 2003-11-21 2007-05-15 Warsaw Orthopedic, Inc. Expandable spinal implant
US7217291B2 (en) 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US20050171541A1 (en) 2003-12-19 2005-08-04 Boehm Frank H.Jr. Device for lumbar surgery
JP2007519492A (ja) 2004-01-30 2007-07-19 オステオテック,インコーポレイテッド 脊椎融合のための積み重ねインプラント
US7850733B2 (en) 2004-02-10 2010-12-14 Atlas Spine, Inc. PLIF opposing wedge ramp
US8894709B2 (en) 2004-06-30 2014-11-25 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US8021428B2 (en) 2004-06-30 2011-09-20 Depuy Spine, Inc. Ceramic disc prosthesis
US7931688B2 (en) 2004-08-25 2011-04-26 Spine Wave, Inc. Expandable interbody fusion device
US7799081B2 (en) 2004-09-14 2010-09-21 Aeolin, Llc System and method for spinal fusion
US8298235B2 (en) 2004-09-30 2012-10-30 Depuy Spine, Inc. Instrument and method for the insertion and alignment of an intervertebral implant
US8409282B2 (en) 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
CA2585450A1 (en) 2004-10-25 2006-05-04 Alphaspine, Inc. Expandable intervertebral spacer method and apparatus
US20060095136A1 (en) 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
US20060122701A1 (en) 2004-11-23 2006-06-08 Kiester P D Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same
US7655046B2 (en) 2005-01-20 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal fusion cage and associated instrumentation
US8057548B2 (en) 2005-03-16 2011-11-15 Dennis Lee Abernathie Spinal fusion cage, method of design, and method of use
US7780732B2 (en) 2005-03-16 2010-08-24 Dennis Lee Abernathie Spinal fusion cage and method of use
JP2008534162A (ja) 2005-03-31 2008-08-28 ライフ・スパイン・インコーポレーテッド 拡張可能な椎体間及び椎体内装置
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7655043B2 (en) 2005-04-29 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal implant and associated instrumentation
US7951199B2 (en) 2005-06-15 2011-05-31 Miller Jimmy D Lateral expandable interbody fusion cage
JP5081822B2 (ja) 2005-07-14 2012-11-28 スタウト メディカル グループ,エル.ピー. 拡張可能支持デバイスおよびシステム
US20070050030A1 (en) 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US20070050032A1 (en) 2005-09-01 2007-03-01 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US7985256B2 (en) 2005-09-26 2011-07-26 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
US7674294B2 (en) 2005-12-01 2010-03-09 Warsaw Orthopedic, Inc. End device for a vertebral implant
WO2007076377A2 (en) 2005-12-19 2007-07-05 Stout Medical Group, L.P. Expandable support device
JP2009522013A (ja) 2005-12-28 2009-06-11 スタウト メディカル グループ,エル.ピー. 拡張可能な支持具及び使用方法
US7901409B2 (en) 2006-01-20 2011-03-08 Canaveral Villegas Living Trust Intramedullar devices and methods to reduce and/or fix damaged bone
US7892239B2 (en) 2006-03-22 2011-02-22 Beacon Biomedical, Llc Pivotable interbody spacer system and method
US20070270963A1 (en) 2006-04-27 2007-11-22 Sdgi Holdings, Inc. Intervertebral implants and methods of use
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
EP2023864B1 (de) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Dehnbare stützvorrichtung
US7771473B2 (en) 2006-07-06 2010-08-10 Lanx, Inc. Expandable spinal fusion cage
US20080021559A1 (en) 2006-07-06 2008-01-24 Lanx, Llc Expandable spinal fusion cage
US8062303B2 (en) 2006-08-16 2011-11-22 K2M, Inc. Apparatus and methods for inserting an implant
GB0620400D0 (en) 2006-10-13 2006-11-22 Seddon Peter Spinal implant
US7815683B2 (en) 2006-10-16 2010-10-19 Warsaw Orthopedic, Inc. Implants with helical supports and methods of use for spacing vertebral members
US8328871B2 (en) 2006-11-09 2012-12-11 Warsaw Orthopedic, Inc. Expanding vertebral body implant
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US20080167657A1 (en) 2006-12-31 2008-07-10 Stout Medical Group, L.P. Expandable support device and method of use
US8273124B2 (en) 2007-05-17 2012-09-25 Depuy Spine, Inc. Self-distracting cage
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8114092B2 (en) 2007-06-07 2012-02-14 Exactech, Inc. Inserter for a spinal implant
US8403961B2 (en) * 2007-06-22 2013-03-26 Simpirica Spine, Inc. Methods and devices for controlled flexion restriction of spinal segments
US8133232B2 (en) 2007-07-17 2012-03-13 Expanding Orthopedics Inc. Expandable bone device
US8241331B2 (en) 2007-11-08 2012-08-14 Spine21 Ltd. Spinal implant having a post-operative adjustable dimension
WO2009067568A1 (en) 2007-11-19 2009-05-28 Magellan Spine Technologies, Inc. Spinal implants and methods
EP2237748B1 (de) 2008-01-17 2012-09-05 Synthes GmbH Dehnbares bandscheibenimplantat
US8105358B2 (en) * 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US8216314B2 (en) 2008-02-13 2012-07-10 Marc Richelsoph Distractable spinal implant assembly
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
CN102014801B (zh) 2008-03-07 2014-02-05 新特斯有限责任公司 可扩展椎间间隔装置
US20090240334A1 (en) 2008-03-19 2009-09-24 Richelsoph Marc E Vertebral device for restoration of vertebral body height
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
WO2009125242A1 (en) 2008-04-08 2009-10-15 Vexim Apparatus for restoration of the spine and methods of use thereof
ES2361099B1 (es) 2008-05-26 2012-05-08 Rudolf Morgenstern Lopez "prótesis intervertebral"
US20090299478A1 (en) 2008-06-03 2009-12-03 Warsaw Orthopedic, Inc. Lordotic Implant for Posterior Approach
US8361152B2 (en) 2008-06-06 2013-01-29 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US8110004B2 (en) 2008-08-21 2012-02-07 The Trustees Of The Stevens Institute Of Technology Expandable interbody fusion cage with rotational insert
US8328872B2 (en) 2008-09-02 2012-12-11 Globus Medical, Inc. Intervertebral fusion implant
US20100082109A1 (en) 2008-09-22 2010-04-01 Stout Medical Group, L.P. Expandable intervertebral implant
US8137405B2 (en) 2008-10-08 2012-03-20 K2M, Inc. Spinal interbody spacer
US8545566B2 (en) 2008-10-13 2013-10-01 Globus Medical, Inc. Articulating spacer
US8147554B2 (en) 2008-10-13 2012-04-03 Globus Medical, Inc. Intervertebral spacer
US20100204795A1 (en) 2008-11-12 2010-08-12 Stout Medical Group, L.P. Fixation device and method
US20100191336A1 (en) 2008-11-12 2010-07-29 Stout Medical Group. L.P. Fixation device and method
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US8216278B2 (en) 2008-12-22 2012-07-10 Synthes Usa, Llc Expandable interspinous process spacer
US8540452B2 (en) 2008-12-31 2013-09-24 Spinex Tec, Llc Flexible joint arrangement incorporating flexure members
US8252054B2 (en) 2009-01-14 2012-08-28 Stout Medical Group, L.P. Expandable support device and method of use
US9050194B2 (en) 2009-05-06 2015-06-09 Stryker Spine Expandable spinal implant apparatus and method of use
WO2010132841A1 (en) 2009-05-14 2010-11-18 Stout Medical Group, L.P. Expandable support device and method of use
US20100331981A1 (en) 2009-06-30 2010-12-30 Zimmer, Inc. Screw thread placement in a porous medical device
CN102625682B (zh) 2009-07-22 2015-04-01 斯普耐技术有限责任公司 采用同轴螺纹齿轮套机构的椎体撑开与融合装置
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8685098B2 (en) 2010-06-25 2014-04-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8062375B2 (en) * 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8679183B2 (en) 2010-06-25 2014-03-25 Globus Medical Expandable fusion device and method of installation thereof
US8894711B2 (en) 2010-01-11 2014-11-25 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
US8795366B2 (en) 2010-01-11 2014-08-05 Innova Spinal Technologies, Llc Expandable intervertebral implant and associated surgical method
US8282683B2 (en) 2010-04-12 2012-10-09 Globus Medical, Inc. Expandable vertebral implant
US8460387B2 (en) 2010-06-04 2013-06-11 Spartan Cage, LLC Intervertebral implant and face plate combination
JP6074363B2 (ja) 2010-09-03 2017-02-01 グローバス メディカル インコーポレイティッド 拡張可能な固定デバイスおよびその設置方法
US8845731B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8852279B2 (en) 2010-09-03 2014-10-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
WO2012112596A1 (en) 2011-02-14 2012-08-23 Imds Corporation Expandable intervertebral implants
US8486149B2 (en) 2011-02-23 2013-07-16 DePuy Synthes Products, LLC Expandable interbody fusion implant
US9017412B2 (en) 2011-04-29 2015-04-28 Life Spine, Inc. Spinal interbody implant with bone screw retention
US9233007B2 (en) 2012-02-13 2016-01-12 Blue Tip Biologics, Llc Expandable self-anchoring interbody cage for orthopedic applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8556979B2 (en) 2013-10-15
JP6096282B2 (ja) 2017-03-15
US8888853B2 (en) 2014-11-18
US20130006361A1 (en) 2013-01-03
US9204974B2 (en) 2015-12-08
EP2838454A4 (de) 2015-12-16
US20140058519A1 (en) 2014-02-27
US20140052254A1 (en) 2014-02-20
EP2838454A1 (de) 2015-02-25
US20150051703A1 (en) 2015-02-19
WO2013158960A1 (en) 2013-10-24
JP2015514514A (ja) 2015-05-21
US8926704B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
US12070396B2 (en) Expandable fusion device and method of installation thereof
US11957603B2 (en) Expandable fusion device and method of installation thereof
US10617533B2 (en) Expandable fusion device and method of installation thereof
EP2838454B1 (de) Dehnbare fusionsvorrichtung
US8888854B2 (en) Expandable fusion device and method of installation thereof
EP2747714B1 (de) Dehnbare fusionsvorrichtung
EP2833812B1 (de) Dehnbare fusionsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151117

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/44 20060101ALI20151111BHEP

Ipc: A61B 17/70 20060101AFI20151111BHEP

Ipc: A61L 27/14 20060101ALI20151111BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013062031

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61B0017700000

Ipc: A61F0002440000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/30 20060101ALN20190520BHEP

Ipc: A61F 2/44 20060101AFI20190520BHEP

Ipc: A61F 2/46 20060101ALN20190520BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/30 20060101ALN20190605BHEP

Ipc: A61F 2/46 20060101ALN20190605BHEP

Ipc: A61F 2/44 20060101AFI20190605BHEP

INTG Intention to grant announced

Effective date: 20190624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013062031

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1192818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013062031

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1192818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240402

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 12