EP2834661A1 - Dispositif de détection optoélectronique, en particulier scanneur à laser, comportant une unité de réception adaptée pour une réduction optimisée du niveau de réception - Google Patents
Dispositif de détection optoélectronique, en particulier scanneur à laser, comportant une unité de réception adaptée pour une réduction optimisée du niveau de réceptionInfo
- Publication number
- EP2834661A1 EP2834661A1 EP13712214.9A EP13712214A EP2834661A1 EP 2834661 A1 EP2834661 A1 EP 2834661A1 EP 13712214 A EP13712214 A EP 13712214A EP 2834661 A1 EP2834661 A1 EP 2834661A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- receiving
- sensor device
- diaphragm
- frame
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/04—Adaptation of rangefinders for combination with telescopes or binoculars
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/10—Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/04—Systems determining the presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4868—Controlling received signal intensity or exposure of sensor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
Definitions
- Optoelectronic sensor device in particular laser scanner, with an adapted receiving unit for optimized reception level reduction
- the invention relates to an optoelectronic sensor device - in particular a laser scanner or a lidar device - for a motor vehicle which is designed to detect objects located in an environment of the motor vehicle.
- Sensor device comprises a transmitting unit for emitting an optical
- Transmission signal or a transmitted light beam as well as a receiving unit for
- the receiving unit has at least two receiving elements
- the receiving unit also includes a receiving optical system, in particular a receiving lens, which in the propagation direction of the received signal to the
- Receiving elements is upstream and, for example, to focus the
- the sensor device comprises, for example, a holding device for holding the receiving optics, as well as a diaphragm for reducing the intensity of the received signal.
- the invention also relates to a motor vehicle having such an optoelectronic sensor device.
- Sensor devices are already known from the prior art and are mounted, for example, on motor vehicles in order to detect the environment of the motor vehicle while the motor vehicle is in operation or during operation. These are scanning optical measuring devices for detecting objects or obstacles in an environmental region of the motor vehicle, which measure the distance between the motor vehicle and the objects according to the light pulse transit time method.
- Such a laser scanner is for example from the document
- a transmitting unit - this includes, for example, a laser diode - emits a light beam, which then reflects on an object located in the vicinity of the motor vehicle and in the form of a received signal or received light beam to a receiving unit of
- the receiving unit usually includes a plurality of identical photodiodes as receiving elements - in particular so-called avalanche detectors. Photodiodes - which are arranged distributed in a straight line. In order to achieve a correct resolution of the detected objects, at least three or four such photodiodes are usually required, which are distributed in the vehicle vertical direction, ie one above the other. Thus, a certain depth can be achieved, comparable to a 3D shot, which makes it possible to distinguish an object such as another vehicle from the gray background.
- the emitted by the transmitter light beam is usually by means of a suitable deflection - such as a mirror element - in the vertical direction, and optionally also in the horizontal direction, pivoted so that the environment of the motor vehicle is virtually scanned.
- the transmitting unit is located here
- Transmitting unit are arranged distributed in the vertical direction.
- these photodiodes are physically constructed the same, these photodiodes "see” the detected objects with a time lag, and therefore the intensity of the received signal is different for each photodiode, and this distribution of light intensity at the photodiodes again depends directly from their arrangement relative to the transmitting unit, which, as already explained, lies above the photodiodes, in order to avoid an overdriving of the photodiodes or to reduce the receiving sensitivity and thus also a "blindness" of the photodiodes
- An optoelectronic sensor device for a motor vehicle is designed to detect objects located in an environment of the motor vehicle, namely in particular for measuring a distance between an object and the motor vehicle.
- the sensor device includes a transmitting unit, which is designed to emit an optical transmission signal or a transmitted light beam.
- the sensor device also includes a receiving unit, which is designed to receive a received signal, which is the transmission signal reflected by an object.
- the receiving unit has at least two along one
- Receiving optics in particular a receiving lens, which is arranged in the propagation direction of the received signal in front of the receiving elements and thus lies in a receiving path or in the propagation path of the received signal.
- Sensor device also has a holding device, which for holding the
- Receiving optics is formed, and a diaphragm, which is designed to reduce the intensity of the received signal. According to the invention it is provided that the diaphragm is held on the holding device.
- the mask is held directly on the holding device for defined reduction of the light intensity or is carried by this holding device, so that after removal of the
- the diaphragm can remain on the holding device.
- Another advantage of the sensor device according to the invention is that a certain geometry of the receiving optics - in particular a specific lens geometry - also with different
- the optoelectronic sensor device is preferably a laser scanner or else a lidar device (light detection and ranging).
- the diaphragm is preferably a fixed, and thus in operation non-movable, stationary element, which is arranged in the receiving path, ie in the propagation path of the received signal.
- the diaphragm can basically be upstream of the receiving optics. Alternatively, however, it can also be provided that the diaphragm in the propagation direction of the
- Receiving signal is arranged behind the receiving optics.
- the transmission signal is in particular a transmitted light beam, which is preferably pivotable, in particular in a pivoting direction pivotally, which coincides with the distribution direction of the receiving elements - in particular with the vertical direction.
- a movable deflection element such as a mirror element, be provided, as described for example in the document DE 101 43 060 A1.
- the receiving elements are photodiodes, in particular avalanche photodiodes.
- At least three such receiving elements are preferably provided. It can be provided, for example, that the sensor device has two or three or four or five receiving elements. In one embodiment, the
- the at least three receiving elements are preferably arranged distributed along a straight line or lie on a common imaginary straight line, which runs in the distribution direction of the receiving elements.
- the receiving elements are also arranged distributed equidistant.
- the transmitting unit is preferably located above the receiving unit. It can also be provided in one embodiment that the transmitting unit - that is, at least one diode of the transmitting unit - is located on a common line with the receiving elements, namely in particular on the vertical.
- the transmitting unit preferably comprises a transmitting diode, in particular a laser diode, which is designed to emit the optical transmission signal.
- the diaphragm is preferably formed of an aluminum alloy. Alternatively, it can also be provided that the panel is made of plastic.
- the holding device may be formed of an aluminum alloy or plastic. It is preferred if the diaphragm is formed of a same material as the holding device. The materials mentioned allow a low-cost attachment of the holding device and the diaphragm in a housing of the sensor device. It is particularly preferred if the material of the holding device corresponds to the material of a housing part, on which the
- This housing part may for example be a holding plate for the holding device.
- the diaphragm is an inherently rigid element.
- a particularly stable arrangement of the diaphragm can be made possible on the holding device, which also provides for a particularly precise and defined reduction of the intensity of the received signal.
- the diaphragm can also have additional functions, such as the holder of the receiving optics.
- the diaphragm is formed integrally with the holding device.
- the aperture is virtually a component of
- Holding device can even support the support of the receiving optics.
- the diaphragm can also be an independent element, which is connected to the holding device.
- the diaphragm can also have a holding function for the receiving optics, so that the receiving optics is at least supported by the diaphragm.
- the aperture takes two different functions, namely on the one hand, the function of reducing the light intensity and on the other hand, the function of holding the receiving optics.
- the diaphragm is made elongated, so that it is provided in the form of an elongated element which extends along the distribution direction of the receiving elements. Just then, in each case a different intensity of the received signal can be achieved for the receiving elements.
- Receive signal is different at each receiving element, depending on the distance in which the respective receiving element is to the transmitting unit.
- the diaphragm is a flat element which lies substantially in a plane which is oriented perpendicular to the propagation direction of the received signal and thus parallel to the plane of the receiving optics.
- Reception element is designed to taper. This embodiment is based on the recognition that the intensity of the incident received signal at the receiving unit located farthest with respect to the transmitting unit is greater than the intensity of the received received signal
- the aperture is formed tapered towards the transmitting unit, so that it can be achieved that each receiving element about one same light intensity is exposed. It is thus an override of individual receiving elements prevented.
- the aperture is formed in the manner of a trapezoid whose legs can be straight or curved. If a curved configuration of the respective legs is selected, then it proves to be advantageous if these legs are concave in the direction towards each other. Thus, a tapered shape of the aperture can be realized without much effort.
- the diaphragm can be arranged mirror-symmetrically with respect to a center axis or an axis of symmetry of the receiving optics.
- Receiving signal can be effectively reduced.
- the diaphragm is formed from a material which is not transparent to the optical reception signal.
- the material of the diaphragm has a defined partial transparency.
- the bezel may lie in a common plane with the sides of the frame, and the receiving optics may be brought into abutment with the bezel.
- the diaphragm is preferably formed integrally with the frame and thus forms a part of the frame itself and serves as a
- the receiving optics may be connected to the frame, for example via an adhesive connection and / or a latching connection and / or a clip connection.
- the diaphragm is designed as a spring element which presses the receiving optics against the frame.
- Embodiment has the advantage that the diaphragm thus assumes an additional holding function and thus also serves to attach the receiving optics to the frame.
- the spring element can with the frame, for example via a
- the spring element is also formed integrally with the frame.
- the spring element is thus preferably located on one side of the receiving optics, which faces away from the receiving elements. This side of the receiving optics is preferably the side which is formed like a bulbous or arched.
- the receiving optics is a receiving lens, which is preferably for
- the receiving optics may have a square shape in cross section. It preferably has a first side, which is flat and which faces the receiving elements, and a second side, which is curved and formed by the
- a motor vehicle according to the invention comprises an inventive
- Embodiments of the invention represent and the invention is thus not limited to the following embodiments. Show it:
- Fig. 1 in a schematic representation of an optoelectronic
- FIG. 2 is a schematic representation of the rear side of a holding device and a receiving optical system, the position of a transmitting unit being indicated;
- FIG. 5 to 7 in a schematic representation of a holding device
- a sensor device 1 shown only schematically in FIG. 1 is, for example, a laser scanner or a lidar device.
- the sensor device 1 can be used in a motor vehicle and serves to detect objects in one
- the sensor device 1 can for example be mounted on a bumper or behind a windshield or on a side edge.
- the sensor device 1 includes a transmitting unit 2, which has a transmitting diode 3, which is a laser diode in the embodiment.
- a transmitting diode 3 which is a laser diode in the embodiment.
- For transmitting unit 2 belongs to the outside of a transmission optics 4, namely, for example, a lens.
- the transmitting unit 2 emits an optical transmission signal 5, that is to say a transmitted light beam in the form of a laser beam.
- the transmission signal 5 or the laser beam is then by means of a suitable
- Deflection device pivoted in the vertical direction 6 and, for example, also deflected, as already described for example in the document DE 101 43 060 A1.
- the transmitting unit 2 (seen in the vertical direction of the vehicle) above a receiving unit 7, which for
- Receiving a received signal 8 is used.
- this received signal 8 is the transmission signal 5 reflected by an object.
- the transmission signal 5 is therefore reflected at an object in the surroundings of the motor vehicle and then arrives again in the form of the reception signal 8 for the sensor device 1.
- the receiving unit 7 includes on the one hand a plurality of receiving elements, in the exemplary embodiment, three receiving elements 9, 10, 1 first
- the receiving elements 9, 10, 1 1 are in
- Embodiment photodiodes namely in particular the so-called avalanche photodiodes.
- the receiving elements 9, 10, 1 1 are distributed along a distribution direction 12, which coincides with the vertical direction 6.
- Receiving elements 9, 10, 1 1 lie on a common imaginary line, namely here on a common vertical.
- the receiving unit 7 also includes a receiving optical system 13, which is designed here as a receiving lens.
- a receiving optical system 13 which is designed here as a receiving lens.
- Receiving signal 8 is the receiving optics 13 in front of the receiving elements 9, 10, 1 1, so that this receiving optics 13 is the receiving elements 9, 10, 1 1 upstream.
- the receiving optics 13 has a flat rear side 15, which faces the receiving elements 9, 10, 1 1, as well as a curved front side 16, which of the
- Receiving elements 9, 10, 1 1 faces away and facing the propagation direction 14.
- the receiving optics 13 is thus in a receiving path 17, which a
- Propagation path of the received signal 8 is.
- the transmission signal 5 is pivoted at least in the vertical direction 6 (can also be in the horizontal direction), so that the reception elements 9, 10, 11 receive the reception signal 8 at different times.
- the receiving unit 1 1 located farthest from the transmitting unit 2 receives a
- Receiving light beam 18, while the central receiving element 10 at another time receive a received light beam 19 and the transmitting unit 2 closest to the receiving element 9, a further received light beam 20 at yet another time. It turned out that one
- Receiving light beam 18 has the greatest intensity, which of the
- Receiving element 1 1 is received, which is furthest with respect to the transmitting unit 2.
- the intensity of the received signal 8 also depends on the distance at which the detected object to the sensor device 1 is located.
- a holding device 22 is shown according to a first embodiment of the invention, which is designed to hold the receiving optics 13 in the receiving path 14.
- the receiving optics 13 is thus held in a desired position, wherein in Fig. 2, the flat rear side 15 of the receiving optics 13 is shown, that is, the side which faces the receiving elements 9, 10, 1 1.
- the position of the transmitting unit 2 is shown schematically in Fig. 2, as well as the propagation direction 14 of the received signal 8 (perpendicular to
- the holding device 22 is formed by a frame 23, which represents a socket, in which the receiving optics 13 is received with its flat back 15.
- the receiving optics 13 may be fixed in the frame 23, for example by means of an adhesive connection and / or a latching connection.
- a defined by the frame 23 level is perpendicular to
- the receiving optics 13 thus lies within the frame 23 and is thus by a total of four sides 24, 25, 26, 27 of the frame 23rd
- the frame 23 is a square frame and is thus adapted to the square shape of the receiving optics 13.
- the above-mentioned panel 21 is formed integrally with the frame 23 and extends between two opposite sides 24, 26 of the frame 23, so that the panel 21, the two opposite sides 24, 26 (ie, the lower and the upper Side) of the frame 23 bridged or spanned.
- the plane of the diaphragm 21 is perpendicular to the propagation direction 14 and thus coincides with the plane of the frame 23. Accordingly, the diaphragm 21 lies in a common plane with all sides 24 to 27 of the frame 23 and thus forms a support for the rear side 15 of the receiving optics 13.
- the diaphragm 21 is also an elongate element which extends in the distribution direction 6 and in the propagation direction 14 au addition to overlapping with the receiving elements 9, 10, 1 1 is arranged.
- the diaphragm 21 is also in the direction of the transmission unit 2 formed tapered so that the width of the aperture 21 in a direction perpendicular to the propagation direction 14 and perpendicular to the distribution direction 6 is continuously or steadily reduced.
- Fig. 2 formed in the manner of a trapezoid panel 21 has curved legs 28, 29, these legs 28, 29 are basically also performed in a straight line. This essentially depends on which reduction of the intensity of the respective received light paths 18, 19, 20 is to be achieved.
- the diaphragm 21 extends outwardly in the middle along an axis of symmetry 30 of the receiving optics 13, which in turn in the vertical direction 6 or along the
- Distribution direction 12 runs.
- the entire frame 23 including the aperture 21 may be formed for example of plastic or even an aluminum alloy. Consequently, the aperture 21, as well as the frame 23, are intrinsically stiff elements.
- FIGS. 3 and 4 each show a perspective view of the frame 23 and of the receiving optics 13 according to FIG. 2, with the position of the transmitting unit 2 additionally being indicated.
- the holding device 22 includes, for example, adjusting elements 31, 32, which represent guides for an adjustment of the frame 23 or the receiving optics 13.
- Receiving optics 13 may be arranged so that the receiving optics 13 rests with its rear side 15 on the aperture 21. However, it can also be provided that - additionally or alternatively - a diaphragm 21 'on the front side 16 of the receiving optics 13 is arranged. Such an embodiment is shown in FIGS. 5 to 7. This embodiment corresponds essentially and in particular in its function to the embodiment according to FIGS. 2 to 4, so that only differences between them are explained in more detail below.
- the diaphragm 21 ' is designed here as a spring element, by means of which the receiving optics 13 is clamped to the frame 23 with a spring force.
- the aperture 21 ' presses the receiving optics 13 against the socket or against the frame 23, so that the receiving optics 13 is held or fastened to the frame 23 by means of the spring force.
- the panel 21 ' can be attached to the frame 23, for example by means of a latching connection here.
- the aperture 21 ' can first be received with its free end 33 in a recess in the lower side 26 of the frame 23 and then pivoted so long in the direction of the receiving optics 13, to a formed on the opposite end 34 locking element 35 in a corresponding detent opening in the upper side 24 of the frame 23 engages.
- the panel 21 ' is also formed integrally with the frame 23 or alternatively is connected to the frame 23 by means of an adhesive connection.
- the diaphragm 21 ' is substantially trapezoidal or designed in the manner of a trapezoid, whose legs 28', 29 'may be rectilinear or curved.
- the diaphragm 21 ' is tapered in the direction of the transmitter unit 2.
- Receiving elements 1 1 reduced to a greater extent than the intensity of
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
L'invention concerne un dispositif de détection optoélectronique (1) pour un véhicule automobile, pour appréhender des objets présents dans un environnement du véhicule, comportant une unité émettrice (2) destinée à émettre un signal d'émission optique (5), une unité de réception (7) destinée à capter un signal de réception (8), lequel est le signal d'émission (5) réfléchi par un objet, l'unité de réception (7) comportant au moins deux éléments récepteurs (9, 10, 11) distribués le long d'une direction de distribution (12), de même qu'une optique de réception (13), en particulier une lentille de réception, laquelle est intercalée en amont des éléments récepteurs (9, 10, 11) dans la direction de propagation (14) du signal de réception (8). Un dispositif de maintien (22) sert à maintenir l'optique de réception (13) et un diaphragme (21, 21') sert à réduire l'intensité du signal de réception (8), le diaphragme (21, 21') étant maintenu sur le dispositif de maintien (22).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012006869A DE102012006869A1 (de) | 2012-04-04 | 2012-04-04 | Optoelektronische Sensoreinrichtung, insbesondere Laserscanner, mit einer angepassten Empfangseinheit zur optimierten Empfangspegelreduzierung |
PCT/EP2013/056032 WO2013149852A1 (fr) | 2012-04-04 | 2013-03-22 | Dispositif de détection optoélectronique, en particulier scanneur à laser, comportant une unité de réception adaptée pour une réduction optimisée du niveau de réception |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2834661A1 true EP2834661A1 (fr) | 2015-02-11 |
Family
ID=47997455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13712214.9A Withdrawn EP2834661A1 (fr) | 2012-04-04 | 2013-03-22 | Dispositif de détection optoélectronique, en particulier scanneur à laser, comportant une unité de réception adaptée pour une réduction optimisée du niveau de réception |
Country Status (7)
Country | Link |
---|---|
US (1) | US9606222B2 (fr) |
EP (1) | EP2834661A1 (fr) |
JP (1) | JP6067835B2 (fr) |
KR (1) | KR101638273B1 (fr) |
CN (1) | CN104272133B (fr) |
DE (1) | DE102012006869A1 (fr) |
WO (1) | WO2013149852A1 (fr) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015104212A1 (de) | 2015-03-20 | 2016-09-22 | Valeo Schalter Und Sensoren Gmbh | Linsenvorrichtung für einen optoelektronischen Sensor eines Kraftfahrzeugs mit Befestigungseinrichtung, optoelektronischer Sensor, Kraftfahrzeug sowie Verfahren |
US10557939B2 (en) | 2015-10-19 | 2020-02-11 | Luminar Technologies, Inc. | Lidar system with improved signal-to-noise ratio in the presence of solar background noise |
CN108369274B (zh) | 2015-11-05 | 2022-09-13 | 路明亮有限责任公司 | 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统 |
EP3411660A4 (fr) | 2015-11-30 | 2019-11-27 | Luminar Technologies, Inc. | Système lidar avec laser distribué et plusieurs têtes de détection et laser pulsé pour système lidar |
DE102015121415A1 (de) * | 2015-12-09 | 2017-06-14 | Valeo Schalter Und Sensoren Gmbh | Verfahren zum Erkennen einer Funktionsbeeinträchtigung eines Laserscanners, Laserscanner und Kraftfahrzeug |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
US9810775B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Q-switched laser for LIDAR system |
US9905992B1 (en) | 2017-03-16 | 2018-02-27 | Luminar Technologies, Inc. | Self-Raman laser for lidar system |
US9810786B1 (en) | 2017-03-16 | 2017-11-07 | Luminar Technologies, Inc. | Optical parametric oscillator for lidar system |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US10007001B1 (en) | 2017-03-28 | 2018-06-26 | Luminar Technologies, Inc. | Active short-wave infrared four-dimensional camera |
US10139478B2 (en) | 2017-03-28 | 2018-11-27 | Luminar Technologies, Inc. | Time varying gain in an optical detector operating in a lidar system |
US10121813B2 (en) | 2017-03-28 | 2018-11-06 | Luminar Technologies, Inc. | Optical detector having a bandpass filter in a lidar system |
US11119198B2 (en) | 2017-03-28 | 2021-09-14 | Luminar, Llc | Increasing operational safety of a lidar system |
US10267899B2 (en) | 2017-03-28 | 2019-04-23 | Luminar Technologies, Inc. | Pulse timing based on angle of view |
US10254388B2 (en) | 2017-03-28 | 2019-04-09 | Luminar Technologies, Inc. | Dynamically varying laser output in a vehicle in view of weather conditions |
US10114111B2 (en) | 2017-03-28 | 2018-10-30 | Luminar Technologies, Inc. | Method for dynamically controlling laser power |
US10545240B2 (en) | 2017-03-28 | 2020-01-28 | Luminar Technologies, Inc. | LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity |
US10209359B2 (en) | 2017-03-28 | 2019-02-19 | Luminar Technologies, Inc. | Adaptive pulse rate in a lidar system |
US10061019B1 (en) | 2017-03-28 | 2018-08-28 | Luminar Technologies, Inc. | Diffractive optical element in a lidar system to correct for backscan |
US10732281B2 (en) | 2017-03-28 | 2020-08-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
US10088559B1 (en) | 2017-03-29 | 2018-10-02 | Luminar Technologies, Inc. | Controlling pulse timing to compensate for motor dynamics |
US10641874B2 (en) | 2017-03-29 | 2020-05-05 | Luminar Technologies, Inc. | Sizing the field of view of a detector to improve operation of a lidar system |
US10969488B2 (en) | 2017-03-29 | 2021-04-06 | Luminar Holdco, Llc | Dynamically scanning a field of regard using a limited number of output beams |
US10254762B2 (en) | 2017-03-29 | 2019-04-09 | Luminar Technologies, Inc. | Compensating for the vibration of the vehicle |
WO2018183715A1 (fr) | 2017-03-29 | 2018-10-04 | Luminar Technologies, Inc. | Procédé de commande de puissance de crête et de puissance moyenne par le biais d'un récepteur laser |
US10983213B2 (en) | 2017-03-29 | 2021-04-20 | Luminar Holdco, Llc | Non-uniform separation of detector array elements in a lidar system |
US10663595B2 (en) | 2017-03-29 | 2020-05-26 | Luminar Technologies, Inc. | Synchronized multiple sensor head system for a vehicle |
US11002853B2 (en) | 2017-03-29 | 2021-05-11 | Luminar, Llc | Ultrasonic vibrations on a window in a lidar system |
US10976417B2 (en) | 2017-03-29 | 2021-04-13 | Luminar Holdco, Llc | Using detectors with different gains in a lidar system |
US10191155B2 (en) | 2017-03-29 | 2019-01-29 | Luminar Technologies, Inc. | Optical resolution in front of a vehicle |
US10684360B2 (en) | 2017-03-30 | 2020-06-16 | Luminar Technologies, Inc. | Protecting detector in a lidar system using off-axis illumination |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
US10241198B2 (en) | 2017-03-30 | 2019-03-26 | Luminar Technologies, Inc. | Lidar receiver calibration |
US10401481B2 (en) | 2017-03-30 | 2019-09-03 | Luminar Technologies, Inc. | Non-uniform beam power distribution for a laser operating in a vehicle |
US10295668B2 (en) | 2017-03-30 | 2019-05-21 | Luminar Technologies, Inc. | Reducing the number of false detections in a lidar system |
US20180284246A1 (en) | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Using Acoustic Signals to Modify Operation of a Lidar System |
US11022688B2 (en) | 2017-03-31 | 2021-06-01 | Luminar, Llc | Multi-eye lidar system |
US10677897B2 (en) | 2017-04-14 | 2020-06-09 | Luminar Technologies, Inc. | Combining lidar and camera data |
EP3392676B1 (fr) | 2017-04-18 | 2020-07-01 | Espros Photonics AG | Dispositif de détection optoélectrique et son procédé de commande |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US10324185B2 (en) * | 2017-11-22 | 2019-06-18 | Luminar Technologies, Inc. | Reducing audio noise in a lidar scanner with a polygon mirror |
US10451716B2 (en) | 2017-11-22 | 2019-10-22 | Luminar Technologies, Inc. | Monitoring rotation of a mirror in a lidar system |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
US11988773B2 (en) | 2018-02-23 | 2024-05-21 | Innovusion, Inc. | 2-dimensional steering system for lidar systems |
US11808888B2 (en) | 2018-02-23 | 2023-11-07 | Innovusion, Inc. | Multi-wavelength pulse steering in LiDAR systems |
US10324170B1 (en) | 2018-04-05 | 2019-06-18 | Luminar Technologies, Inc. | Multi-beam lidar system with polygon mirror |
US11029406B2 (en) | 2018-04-06 | 2021-06-08 | Luminar, Llc | Lidar system with AlInAsSb avalanche photodiode |
DE102018109544A1 (de) * | 2018-04-20 | 2019-10-24 | Sick Ag | Optoelektronischer Sensor und Verfahren zur Abstandsbestimmung |
US10348051B1 (en) | 2018-05-18 | 2019-07-09 | Luminar Technologies, Inc. | Fiber-optic amplifier |
DE102018208897A1 (de) | 2018-06-06 | 2019-12-12 | Robert Bosch Gmbh | Empfangseinrichtung für ein Lidar-System |
US10591601B2 (en) | 2018-07-10 | 2020-03-17 | Luminar Technologies, Inc. | Camera-gated lidar system |
US10627516B2 (en) * | 2018-07-19 | 2020-04-21 | Luminar Technologies, Inc. | Adjustable pulse characteristics for ground detection in lidar systems |
US10551501B1 (en) | 2018-08-09 | 2020-02-04 | Luminar Technologies, Inc. | Dual-mode lidar system |
US10340651B1 (en) | 2018-08-21 | 2019-07-02 | Luminar Technologies, Inc. | Lidar system with optical trigger |
US11774561B2 (en) | 2019-02-08 | 2023-10-03 | Luminar Technologies, Inc. | Amplifier input protection circuits |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4215817C1 (en) * | 1992-05-11 | 1993-03-11 | Visolux-Elektronik Gmbh, 1000 Berlin, De | Self-monitoring protection unit preventing driverless vehicle hitting obstacle - uses reflection light scanner as light grid filtering out background using floor or ground as reference |
DE29913513U1 (de) * | 1999-08-03 | 1999-11-25 | Leuze Electronic Gmbh + Co, 73277 Owen | Lichttaster |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645858Y2 (ja) * | 1986-11-12 | 1994-11-24 | 富士写真フイルム株式会社 | 測距用受光素子 |
JPH086307Y2 (ja) * | 1989-08-08 | 1996-02-21 | 北陽電機株式会社 | 光センサ |
US5354983A (en) * | 1990-04-10 | 1994-10-11 | Auto-Sense, Limited | Object detector utilizing a threshold detection distance and suppression means for detecting the presence of a motor vehicle |
US5233382A (en) * | 1991-04-03 | 1993-08-03 | Fuji Photo Film Company, Ltd. | Range finding device unaffected by environmental conditions |
JP2880821B2 (ja) * | 1991-04-03 | 1999-04-12 | 富士写真フイルム株式会社 | 測距用光学モジュール |
JP3490141B2 (ja) * | 1994-06-09 | 2004-01-26 | 富士フイルムマイクロデバイス株式会社 | 外光三角方式距離測定装置 |
JP3135194B2 (ja) | 1994-09-16 | 2001-02-13 | キヤノン株式会社 | 測距装置及び測距装置の保護カバー |
JPH10239050A (ja) * | 1997-02-27 | 1998-09-11 | Fuji Electric Co Ltd | 測距装置 |
DE10026668A1 (de) * | 2000-05-29 | 2001-12-06 | Sick Ag | Laserscanner |
DE10130763A1 (de) | 2001-06-26 | 2003-01-02 | Bosch Gmbh Robert | Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich |
DE10143060A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Erfassungseinrichtung |
CA2560084C (fr) * | 2004-03-16 | 2012-07-03 | Sign-Tronic Ag | Procede de formation d'un faisceau lumineux d'une intensite lumineuse sensiblement constante |
TWI254143B (en) * | 2004-08-04 | 2006-05-01 | Delta Electronics Inc | Magnetic dynamic diaphragm controller |
DE102004053730B4 (de) * | 2004-11-06 | 2014-04-03 | Carl Zeiss Jena Gmbh | Verfahren und Anordnung zur Unterdrückung von Falschlicht |
DE102007055771A1 (de) * | 2007-12-12 | 2009-06-18 | Hilti Aktiengesellschaft | Laserdistanzmesser |
WO2010026853A1 (fr) * | 2008-09-05 | 2010-03-11 | 住友金属鉱山株式会社 | Film de revêtement noir, son procédé de fabrication, plaque de protection contre la lumière noire et plaque de diaphragme, diaphragme pour commande de quantité de lumière, obturateur et bande de protection contre la lumière résistant à la chaleur comportant chacun la plaque de protection contre la lumière noire |
-
2012
- 2012-04-04 DE DE102012006869A patent/DE102012006869A1/de active Pending
-
2013
- 2013-03-22 KR KR1020147030812A patent/KR101638273B1/ko active IP Right Grant
- 2013-03-22 EP EP13712214.9A patent/EP2834661A1/fr not_active Withdrawn
- 2013-03-22 CN CN201380024704.6A patent/CN104272133B/zh active Active
- 2013-03-22 JP JP2015503815A patent/JP6067835B2/ja active Active
- 2013-03-22 US US14/390,508 patent/US9606222B2/en active Active
- 2013-03-22 WO PCT/EP2013/056032 patent/WO2013149852A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4215817C1 (en) * | 1992-05-11 | 1993-03-11 | Visolux-Elektronik Gmbh, 1000 Berlin, De | Self-monitoring protection unit preventing driverless vehicle hitting obstacle - uses reflection light scanner as light grid filtering out background using floor or ground as reference |
DE29913513U1 (de) * | 1999-08-03 | 1999-11-25 | Leuze Electronic Gmbh + Co, 73277 Owen | Lichttaster |
Non-Patent Citations (1)
Title |
---|
See also references of WO2013149852A1 * |
Also Published As
Publication number | Publication date |
---|---|
US9606222B2 (en) | 2017-03-28 |
US20150177368A1 (en) | 2015-06-25 |
KR20150002741A (ko) | 2015-01-07 |
CN104272133A (zh) | 2015-01-07 |
JP6067835B2 (ja) | 2017-01-25 |
WO2013149852A1 (fr) | 2013-10-10 |
KR101638273B1 (ko) | 2016-07-08 |
JP2015518144A (ja) | 2015-06-25 |
CN104272133B (zh) | 2017-12-12 |
DE102012006869A1 (de) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2834661A1 (fr) | Dispositif de détection optoélectronique, en particulier scanneur à laser, comportant une unité de réception adaptée pour une réduction optimisée du niveau de réception | |
EP2936193B1 (fr) | Système optique de détection d'objets à mems et véhicule à moteur équipé d'un tel système de détection | |
DE102015115011A1 (de) | Laserscanner für Kraftfahrzeuge | |
DE102016010985A1 (de) | Laser-scanner zur abstandsmessung bei kraftfahrzeugen | |
DE102019103965A1 (de) | Zielerfassungsvorrichtung | |
DE102009017742A1 (de) | Stereokameraeinheit | |
DE102009047303A1 (de) | Einrichtung für die Kalibrierung eines Sensors | |
DE102012212150A1 (de) | Laserradarvorrichtung, die zwischen einem Kennzeichenschild und einemFahrzeugaufbau angeordnet ist | |
EP2732309A1 (fr) | Dispositif de mesure optique pour un véhicule, appareil d'assistance au conducteur comprenant un tel dispositif de mesure ainsi que véhicule équipé d'un dispositif de mesure correspondant | |
DE102012025467A1 (de) | Optoelektronische Sensoreinrichtung zur Bestimmung eines Reflexionsvermögens unter Berücksichtigung von Intensitätsverlusten, Kraftfahrzeug und entsprechendes Verfahren | |
EP3658956B1 (fr) | Unité lidar avec élément de montage pour la pose d'un module émetteur et d'un module récepteur | |
EP2909650B1 (fr) | Système de détection optoélectronique à consommation d'énergie réduite, véhicule à moteur et procédé correspondant | |
EP2732305B1 (fr) | Dispositif de mesure optique pour un véhicule, dispositif d'aide à la conduite comprenant un dispositif de mesure de ce type et véhicule équipé d'un dispositif de mesure correspondant | |
EP3516420B1 (fr) | Dispositif émetteur pour un dispositif de détection optique, dispositif de détection optique, véhicule automobile et procédé | |
DE102015112295A1 (de) | Sendeeinrichtung für eine optische Detektionsvorrichtung eines Kraftfahrzeugs, optische Detektionsvorrichtung, Kraftfahrzeug sowie Verfahren | |
DE102017209259A1 (de) | Lidarsystem | |
WO2017005653A1 (fr) | Module détecteur pour un dispositif de détection optique | |
EP3349042B1 (fr) | Capteur de surveillance et véhicule relié par le plancher | |
DE102015106595A1 (de) | Lasersensor für ein Kraftfahrzeug mit Parabolspiegel, Fahrerassistenzsystem sowie Kraftfahrzeug | |
EP4063902A1 (fr) | Capteur optoélectronique et procédé de détection d'objets | |
DE102016117853A1 (de) | Sendeeinrichtung für eine optische Erfassungsvorrichtung, optische Erfassungsvorrichtung, Kraftfahrzeug sowie Verfahren | |
EP3953735A1 (fr) | Capteur lidar pour l'enregistrement optique d'un champ de vision et procédé pour la commande du capteur lidar | |
DE102016118481A1 (de) | Abtasteinheit einer optischen Sende- und Empfangseinrichtung einer optischen Detektionsvorrichtung eines Fahrzeugs | |
WO2021078552A1 (fr) | Dispositif d'étalonnage pour l'étalonnage d'au moins un dispositif de détection optique | |
EP0935142B1 (fr) | Capteur optoélectronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141001 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160930 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171027 |