EP2825832A2 - Wärmeübertrager - Google Patents

Wärmeübertrager

Info

Publication number
EP2825832A2
EP2825832A2 EP13710830.4A EP13710830A EP2825832A2 EP 2825832 A2 EP2825832 A2 EP 2825832A2 EP 13710830 A EP13710830 A EP 13710830A EP 2825832 A2 EP2825832 A2 EP 2825832A2
Authority
EP
European Patent Office
Prior art keywords
tubes
fluid
heat exchanger
segment
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13710830.4A
Other languages
English (en)
French (fr)
Other versions
EP2825832B1 (de
Inventor
Klaus Irmler
Peter Geskes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP2825832A2 publication Critical patent/EP2825832A2/de
Application granted granted Critical
Publication of EP2825832B1 publication Critical patent/EP2825832B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Definitions

  • the invention relates to a heat exchanger, in particular an exhaust gas evaporator, with a housing having a fluid inlet and a fluid outlet for a first medium, such as in particular exhaust gas, arranged in the housing transversely to the flow direction of the first fluid tubes, which are flowed through by a second medium and inlet side and outlet side are arranged in a tube sheet with their ends and connected fluid-tight.
  • a first medium such as in particular exhaust gas
  • thermocouples Recover thermocouples. However, this is currently limited to low power, so that only about 1 kW in passenger cars is achieved. This recovery can be thermal, i. the energy of the exhaust gas is used to heat the passenger compartment or to heat the engine and / or transmission.
  • thermal energy is also extracted from the exhaust gas, the energy is returned to the engine in mechanical form.
  • the method is based on a
  • the evaporation of the medium takes place by means of a heating via the hot exhaust gas.
  • the medium can be brought to a higher pressure. In the case of water as the medium, about 40-50 bar can be achieved. When using organic refrigerants pressures up to about 30 bar are advantageous.
  • the medium to be evaporated is heated in a so-called evaporator in a first step to boiling temperature, then evaporated and then superheated. This can happen in a vehicle in two different locations.
  • a so-called evaporator instead of the Exhaust gas cooler is used or in addition to this, heat can be removed from the exhaust gas to evaporate the fluid to be evaporated.
  • the main exhaust gas flow can also be used as a heat source in order to evaporate a fluid in a so-called main exhaust gas evaporator.
  • a preferred embodiment discloses a heat exchanger, such as in particular exhaust gas evaporator, with a housing having a fluid inlet and a fluid outlet for a first medium, in particular exhaust gas, arranged in the housing transversely to the flow direction of the first fluid Tubes which can be traversed by a second medium and the inlet side and outlet side are arranged in a tube bottom with their ends and fluid-tightly connected, wherein each structure is connected to the respective tubesheet, by means of soft groups of tubes so
  • an outlet of at least one tube is fluidly connected to an inlet of at least one other tube. It is particularly advantageous if the respective outlet from a group of tubes is connected to a respective inlet of a group of tubes.
  • the structure consists of a deflecting plate and a cover plate, wherein the deflecting plate has openings which connect the outlets of one tube with the inlets of the other tubes, and wherein the cover plate covers the deflecting plate in a fluid-tight manner.
  • the baffle plate is connected to the tubesheet and has openings within which inlets and outlets of a predeterminable number of tubes are in fluid communication.
  • Tube bottom is formed in one piece, wherein the cover plate is placed on the respective baffle plate and connected thereto.
  • baffle plate is integrally formed with the respective cover plate, wherein the baffle plate and the cover plate are placed on the respective tube sheet and connected thereto. It is particularly advantageous when the tubes are arranged in rows, wherein the baffle deflects fluid between tubes of different rows, This means that the baffle fluid from a first tube or a group of first tubes in a second tube or in a group of deflects second tubes, wherein the first tubes and the second tubes are preferably arranged in a different series of tubes.
  • the baffle deflects fluid between tubes of a series is particularly advantageous.
  • the baffle deflects fluid from a first tube or from a group of first tubes into a second tube or into a group of second tubes, wherein the first tubes and the second tubes are preferably arranged in a same row of tubes. It is also advantageous if the rows of tubes are arranged in segments, wherein the baffle fluid from one segment to another
  • Fig. 1 shows a first embodiment of an inventive
  • 3 is a partial view of a collecting area
  • FIG. 5 is a partial view of a collecting area
  • FIG. 6 is a view of the heat transfer core
  • FIG. 8 is a view of a rear deflection of the
  • Fig. 1 another embodiment in a view of a front deflection
  • Fig. 12 shows another embodiment in a view of a front deflection region.
  • FIGS 1 and 2 show a heat exchanger 1, the in
  • Embodiment of Figure 1 is designed as an exhaust gas evaporator.
  • the exhaust gas evaporator is flowed through by a first fluid, here preferably exhaust gas, and by a second fluid, here a fluid to be vaporized.
  • the exhaust gas transfers heat to the fluid to be evaporated and evaporates it.
  • the heat exchanger 1 has a housing 2 with a
  • Fluid inlet 3 and a fluid outlet 4 for a first fluid The exhaust gas flows through the housing from the inlet 3 to the outlet 4, wherein between inlet 3 and outlet 4 a series of tubes 5 preferably transversely to
  • Flow direction 7 of the first fluid are arranged, which are traversed by a second fluid.
  • ribs 6 conveying the heat transfer are provided on the outside around the tubes 5 and / or between the tubes 5. These can be provided as corrugated ribs or as plane ribs or turbulence generators.
  • the tubes 5 for the flow through the second fluid are preferably round tubes or flat tubes. These are preferably fluid-tightly received on both sides with their ends in tube sheets.
  • the tubes 5 are preferably inlet side and
  • outlet side are arranged in a tube sheet 8 with their ends 9 and connected fluid-tight.
  • the heat exchanger is to the inlet of the second fluid with a
  • Inlet port 10 and connected to the outlet with an outlet 1 1. Starting from the inlet, the fluid distributes to a first number of times
  • a respective structure 12 is connected to the respective tubesheet 8 " by means of which groups of tubes 5 are connected to each other such that an outlet 15 of at least one tube 5 is fluidly connected to an inlet 16 of at least one other tube 5.
  • the structure 12 consists of at least one baffle plate 13 and a Abdeckpiatte 14, which are formed and arranged one above the other.
  • the Abdeckpiatte 14 covers the baffle 13 fluid-tight.
  • the Abdeckpiatte 14 is welded to the baffle plate 3 or soldered or glued or even formed in one piece.
  • the baffle plate 13 has openings which connect the outlets 15 of one tube 5 with the inlets 16 of the other tubes 5.
  • the tubes 5 are inserted on at least one side in the tube sheet 8 in openings 17, where the tubes soldered to the ground
  • the material for the tubes and tube sheets aluminum but most preferably stainless steel can be used. Also, the whole can
  • Heat exchanger made of aluminum or stainless steel.
  • baffle 3 has openings or channel structures which are adapted to connect outlets of pipes with the admission of other pipes.
  • baffle plate 13 and cover plate 14 it may also be advantageous if the baffle plate is formed with the tube sheet to a part or the baffle plate is formed with the cover plate as a part.
  • FIG. 4 shows that the
  • FIG. 5 shows that the deflecting plate with the cover plate is formed into a part 19.
  • the tubesheet can also be designed such as milled, for example, that the so multifunctional modified tube sheet also takes on the task of fluid distribution and acts as a combination of bottom plate and baffle. Then only a cover plate is placed and connected to the ground.
  • the part 19 can also function as a milled component, which integrates deflecting piatia and cover plate.
  • tubesheet and / or the baffle plate and / or the cover plate may also be formed as a casting, which has a corresponding structure with recessed integrated openings for distribution of the medium.
  • connection of the two or three elements tube plate, baffle and Abdeckplatzte advantageously takes place via a welding, soldering or screwing, whereby a combination of the connection options can be used.
  • the top plate can also have holes to distribute at certain points over the surface to connect by welding the plates together.
  • the 3 plates can be fixed to each other by means of rivets or tack welds and pressed together, alternatively on welds » embossing or screwing.
  • the baffle contains openings as structures to collect the medium from at least one tube and redistribute it to at least one other tube.
  • the fluid to be vaporized is collected in the ports and then re-divided into up to four or more other tubes. With each collection and distribution of the fluid, thermal instabilities become uneven
  • Mass flow distribution in the pipes lead, and thus to different temperatures and or vapor levels, largely balanced. This can compensate for instability effects that lead to significant performance losses.
  • FIG. 6 schematically shows a core 20 of the heat exchanger 1, in which a multiplicity of tubes 5 are arranged. These tubes 5 are arranged between the distributor plates 21, 22 formed as deflection regions and received there in tube plates and deflecting and cover plates.
  • the distributor plates 21, 22 are viewed in the exhaust gas flow direction 23 divided into individual segments 24, 25, 26, 27, 28 and 29.
  • Pipe rows 30, 31 are provided.
  • two rows of tubes are provided per segment.
  • a segment consists of only a few Tube rows, for example, of two rows of tubes in the exhaust gas flow direction, so that the temperature gradient over a segment is possible as small as possible and thus all tubes are subjected to almost the same exhaust gas temperature.
  • a segment Depending on the working medium but can also form up to 6 rows of pipes a segment, or several segments are interconnected in parallel.
  • the fluid flows through these tubes to the ends of these tubes on the opposite side and flows there in the area 33 from.
  • the deflection region 35 directs the fluid into the inlet of the region 34, from where the fluid flows back to the region 36 through the respective tubes. Subsequently, the fluid is deflected by the deflection region 37 to the region 38 of the tube ends and distributed, so that the fluid now flows back through tubes that lie below the first passage.
  • the first segment flows through in alternating flows and the fluid finally exits the region 39 from the segment and is diverted at the transition 40 from the first segment 29 into the second segment 28. Connecting the corresponding flow through the second segment 28 takes place until the fluid flows over the passage 41 into the third segment 27.
  • Figures 7 and 8 show once again the connection configuration of the tubes at the front and at the rear deflection region. It can be seen that in each case four tubes are connected in parallel and a diversion of fluid from four tubes into four other tubes takes place. The fluid occurs on the
  • FIG. 7 Front in accordance with Figure 7 in tubes 5, from which it exits at the rear side. Therefore, the tubes 5 in the front deflection region according to FIG. 7 are also marked with the complementary inlets or outlets as in FIG. Figure 9 shows a corresponding view of six segments 50 to 55, each having two rows of tubes.
  • three tubes are combined to form a passage 56 and connected in parallel.
  • the fluid flows in and flows through the tubes to the rear deflection region. There, the fluid is deflected from one row of tubes to the adjacent row of tubes. Subsequently, the fluid flows through the next three tubes and is deflected in the front deflection in the same row of tubes in three more tubes. Thereafter, the fluid flows through the tubes to the rear deflection region.
  • the fluid is redirected from one row of tubes to the adjacent row of tubes. Subsequently, the fluid flows through the next three tubes and is deflected in the front deflection in the same row of tubes in three more tubes. This takes place until the fluid in the region 57 flows out of the tubes and is transferred through the passage 58 into the next segment.
  • the passage may preferably be integrated in the baffle or carried out by an external transfer via pipe.
  • FIG. 10 shows a further exemplary embodiment in a further view, with six segments 70 to 75 each having two rows 76, 77 of tubes. As can be seen, the segments 71 and 72 are combined to form a common segment connected in parallel. The same applies to the segments 73 and 74. Furthermore, in each case three tubes are combined to form a passage 78 and connected in parallel. At passage 78, the fluid flows in and
  • the fluid flows through the tubes to the rear deflection area. There, the fluid is deflected from one row of tubes to the adjacent row of tubes through openings 79 in the baffle plate. Subsequently, the fluid flows through the next three tubes and is deflected in the front deflection region in the same row of tubes in three more tubes through the opening 80 of the front baffle plate. Thereafter, the fluid flows through the tubes to the rear
  • the fluid is redirected from one row of tubes to the adjacent row of tubes. Subsequently, the fluid flows through the next three tubes and is deflected in the front deflection in the same row of tubes in three more tubes. This takes place until the fluid in the region 81 flows out of the tubes and is transferred through the passage 82 into the next segment 71, 72.
  • the passage 82 may preferably be integrated in the baffle or carried out by an external transfer via pipe. In the segments 71, 72, the flow through takes place as in the segment 70, but these are shadowed in parallel and the fluid enters the regions 83 and 84 in parallel.
  • the tubes of the segments 71 and 72 are flowed through like the tubes of the segment 70, before the fluid is again discharged from the segment at the regions 85 and 86 and transferred into the parallel segments 73 and 74 by means of the transition 87.
  • the flow through as in the segments 71 and 72 the fluid from the
  • Segments 73 and 74 collected and introduced into the final segment 75 where it flows through the segment 75 as in the input-side segment 70 before it is discharged from the heat exchanger.
  • FIG. 1 shows a further exemplary embodiment in a further view, wherein six segments 90 to 95 each have two rows 96, 97 of tubes.
  • the segments 90 and 91 are grouped into a common segment connected in parallel.
  • the segments 92, 93 and 94 which are combined to form a common segment.
  • only one tube 98 in each case becomes parallel to a tube 99 of the other segment
  • the tubes 98 are only flowed through serially. This is done until the middle of the segment. There, the fluid flows out of the tubes 101, 102 of the two segments. There is a mixing zone 100, so that the fluid from the first segment 90 can mix with the fluid of the second segment 91 before it again distributed to the tubes 103, 04 of the segments.
  • the fluid flows in and flows through a tube to the rear deflection region. There, the fluid is deflected from one row of tubes to the adjacent row of tubes through an opening 105 in the baffle plate. Subsequently, the fluid flows through the next tube and is deflected in the front deflection region in the same row of tubes in another tube through the opening 106 of the front baffle plate. Thereafter, the fluid flows through the tubes to the rear deflection region. There, the fluid is redirected from one row of tubes to the adjacent row of tubes. Subsequently, the fluid flows through the next tube and is deflected in the front deflection in the same row of tubes in another tube. This takes place until the fluid flows out in the mixing zone 100. In the second area after the mixing zone, the corresponding flow through the pipes takes place. Subsequently, the fluid is transferred through the passage 107 into the next segment 92, 93, 94.
  • the passage 107 may preferably be in the
  • Baffle be integrated or done by an external transfer via pipe.
  • the flow takes place as in the segment 90, 91, although these are all connected in parallel. Subsequently, the tubes of the segments 92 to 94 are flowed through, before the fluid is again discharged from the segment and transferred to the segment 95 by means of the transfer 108.
  • the flow takes place as in the segment 70 of Figure 10, in which three tubes are connected in parallel. Subsequently, the fluid is discharged from the heat exchanger.
  • FIG. 12 shows a further exemplary embodiment in a further view, wherein six segments 1 10 to 15 each have two rows 16, 17 of tubes.
  • the segments 1 10 to 1 12 and 1 13 to 1 15 are combined to form a common parallel-connected segment.
  • the segments 1 10 to 1 12 and in the segments 1 13 to 15 only one pipe 1 16 is parallel to a pipe 1 17, 1 18 of the other Segments flows through.
  • the tubes 1 16, 1 17 or 1 18 are only flowed through serially. This takes place up to the middle of the segment, where the fluid flows out of the tubes 1 19, 120, 121 of the three segments.
  • the fluid flows in and flows through a tube to the rear deflection region. There, the fluid is deflected from one row of tubes to the adjacent row of tubes through an opening in the baffle plate. Subsequently, the fluid flows through the next tube and is deflected in the front deflection in the same row of tubes in another tube through the opening of the front baffle plate. Thereafter, the fluid flows through the tubes to the rear deflection region. There, the fluid is redirected from one row of tubes to the adjacent row of tubes. Subsequently
  • the fluid flows through the next tube and is deflected in the front deflection region in the same row of tubes in another tube. This takes place until the fluid flows out in the mixing zone 122. In the second area after the mixing zone, the corresponding flow through the pipes takes place. Subsequently, the fluid is transferred through the passage 26 in the next segment 1 13, 1 14, 1 15.
  • the passage 126 may preferably be integrated in the deflection plate or be made by an external passage via pipe.
  • the design of the baffle is provided rectangular in the figures. It can also be round, so that it can be installed in a round, cylindrical recess in a housing or in a silencer.
  • gas-side ribs can be threaded onto the tubes, see the ribs 6 of FIG. 2.
  • the gas-side ribs form the so-called secondary surface of the heat transfer and the tubes represent the primary surface of the heat transfer.
  • the ribs 6 can be soldered to the tubes 3 or it a thermally conductive connection is achieved without the addition of solder during the soldering process of the entire evaporator. This can be achieved by a very tightly tolerated pipe run, which leads to a very small gap between the rib and pipe.
  • a thermally conductive connection between the ribs and the tubes is made, even if no solder should be present.
  • Ferrites have a lower expansion at high temperatures than austenite, so that the tubes are pressed against the ribs at soldering temperature.
  • the rib may have small slots around the tubes.
  • the ribs have pipe passages with so-called collar, through which the distance between the ribs is ensured.
  • Rib spacing can also be ensured by exhibiting spacers in the rib.
  • the rib density can be between 30 Ri / dm and 80 Ri / dm.
  • the ribs can be punched and have cut and erect gills or even embossed structures, such as
  • Winglets dimples or bulges, to increase performance. Especially It is useful to memorize such structures in the ribs that the
  • the rib thickness is 0.1 mm to 0.5 mm or preferably between 0.25 and 0.4 mm, which is advantageous for stainless steel as a ribbed material.
  • slots can be introduced in the composite of the plates above and / or below, so that a different thermal expansion due to different temperatures from the gas inlet to the gas outlet is made possible and does not lead to damage.
  • the pipe diameter of the pipes is preferably in the range of 3 to 20 mm, ideally in the range of 5 to 15 mm and preferably in the range of 6 to 10 mm.
  • Turbulence generating structures can be incorporated into the tubes, e.g. Swirl generator to promote heat transfer especially in the area where the fluid overheats.
  • the tube can also be carried out as a twist raw r, but then preferably without outer ribs.
  • pipes are also very deep

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft eine Wärmeübertrager, wie insbesondere Abgasverdampfer, mit einem Gehäuse mit einem Fluideintritt und einem Fluidaustritt für ein erstes Medium, wie insbesondere Abgas, mit in dem Gehäuse quer zur Strömungsrichtung des ersten Fluids angeordneten Rohren, die von einem zweiten Medium durchströmbar sind und einlassseitig und auslassseitig in einem Rohrboden mit ihren Enden angeordnet und fluiddicht verbunden sind, wobei mit dem jeweiligen Rohrboden jeweils eine Struktur verbunden ist, mittels welcher Gruppen von Rohren derart miteinander verbunden sind, dass ein Auslass zumindest eines Rohrs mit einem Einlass zumindest eines anderen Rohrs fluidverbunden ist.

Description

Wärmeübertrager
Beschreibung
Technisches Gebiet
Die Erfindung betrifft einen Wärmeübertrager, wie insbesondere einen Abgasverdampfer, mit einem Gehäuse mit einem Fluideintritt und einem Fluidaustritt für ein erstes Medium, wie insbesondere Abgas, mit in dem Gehäuse quer zur Strömungsrichtung des ersten Fluids angeordneten Rohren, die von einem zweiten Medium durchströmbar sind und einlassseitig und auslassseitig in einem Rohrboden mit ihren Enden angeordnet und fluiddicht verbunden sind.
Stand der Technik
Bei Kraftfahrzeugen ist ein allgemeiner Trend, den Kraftstoffverbrauch zu reduzieren. Ein nicht unerheblicher Anteil des Energieinhalts des Kraftstoffs wird bei der Verbrennung im Verbrennungsmotor in das heiße Abgas übertragen, welches oftmals ungenutzt das Fahrzeug verlässt und somit wird ein nicht unerheblicher Anteil des Energieinhalts nicht genutzt. Zur weiteren Absenkung des Kraftstoffverbrauchs von Fahrzeugen, wie bei
Nutzfahrzeugen oder Personenkraftwagen, ist es daher zweckmäßig, einen Teil des Energieinhalts des heißen Abgases für den Antrieb des
Kraftfahrzeugs wieder zurückzugewinnen.
Zu dieser Energierückgewinnung sind derzeit verschiedenen Methoden in der Erprobung. So gibt es Ansätze, den Energieinhalt elektrisch mittels
Thermoelementen zurückzugewinnen. Dies ist derzeit jedoch noch auf geringe Leistungen beschränkt, so dass nur etwa 1 kW bei Personenkraftwagen damit erzielt wird. Diese Rückgewinnung kann thermisch erfolgen, d.h. die Energie des Abgases wird zur Beheizung des Fahrgastinnenraumes oder zur Beheizung des Motors und/oder Getriebes verwendet.
In einer seit einiger Zeit diskutierten Variante wird dem Abgas zwar auch thermische Energie entnommen, aber die Energie wird in mechanischer Form dem Motor zurückgeführt. Das Verfahren basiert auf einem
Dampfkraftprozeß, bei dem ein bestimmtes geeignetes Medium in einem Verdampfer verdampft und überhitzt wird und ein einem Expander oder in einer Turbine entspannt wird, so dass mechanische Energie erzeugt wird.
Die Verdampfung des Mediums erfolgt mittels einer Beheizung über das heiße Abgas. Zur Erreichung eines möglichst hoher Wirkungsgrade ist es dabei zweckmäßig, wenn das Medium auf einen höheren Druck gebracht werden kann. Bei Wasser als Medium können dabei etwa 40 - 50 bar erreichbar sein. Bei der Verwendung von organischen Kältemitteln sind Drücke bis etwa 30 bar vorteilhaft.
Das zu verdampfende Medium wird in einem so genannten Verdampfer in einem ersten Schritt auf Siedetemperatur aufgeheizt, dann verdampft und anschließend überhitzt. Dies kann in einem Fahrzeug an zwei verschiedenen Orten passieren. Zum Ersten kann in einem Verdampfer, der anstelle des Abgaskühlers oder zusätzlich zu diesem eingesetzt wird, Wärme aus dem Abgas entzogen werden, um das zu verdampfende Fluid zu verdampfen. Zum Zweiten kann auch der Hauptabgasstrom als Wärmequelle genutzt werden, um in einem sogenannten Hauptabgasverdampfer ebenfalls ein Fluid zu verdampfen.
Aus der Klimatechnik für Fahrzeuge sind sogenannte Scheibenverdampfer gemäß der WO 201 1/051163 A2 bekannt geworden, bei denen Rippen zwischen Scheibenpaaren eingelötet werden und bei welchen eine Reihe solcher Scheibenpaare parallel zueinander verschaltet werden. Dabei durchströmt ein Fluid die Scheibenpaare und ein anderes Fluid umströmt diese üblicher eise. In den Scheiben verdampft dann das durchströmende Fluid, wenn das Abgas die Scheiben umströmt Verdampfer, die aus Scheiben und Rippen bestehen, habe eine hohe
Leistungsdichte, die es ermöglicht, auch für Fahrzeuge sehr kompakte Hochleistungsverdampfer bereitzustellen. Nachteilig ist aber, dass solche Verdampfer relativ teuer sind in der Herstellung. Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Es ist die Aufgabe der Erfindung, einen Wärmeübertrager zu schaffen, welcher gegenüber dem Stand der Technik einfach und dennoch
kostengünstig herzustellen ist und eine gute Leistungsdichte aufweist.
Diese Aufgabe wird erreicht mit den Merkmalen von Anspruch 1 ,
Ein bevorzugtes Ausführungsbeispiel offenbart einen Wärmeübertrager, wie insbesondere Abgasverdampfer, mit einem Gehäuse mit einem Fluideintritt und einem Fluidaustritt für ein erstes Medium, wie insbesondere Abgas, mit in dem Gehäuse quer zur Strömungsrichtung des ersten Fluids angeordneten Rohren, die von einem zweiten Medium durchströmbar sind und einlassseitig und auslassseitig in einem Rohrboden mit ihren Enden angeordnet und fluiddicht verbunden sind, wobei mit dem jeweiligen Rohrboden jeweils eine Struktur verbunden ist, mittels weicher Gruppen von Rohren derart
miteinander verbunden sind, dass ein Auslass zumindest eines Rohrs mit einem Einlass zumindest eines anderen Rohrs fluidverbunden ist. Dabei ist es besonders vorteilhaft, wenn der jeweilige Auslass von einer Gruppe von Rohren mit einem jeweiligen Einlass von einer Gruppe von Rohren verbunden ist.
Besonders vorteilhaft ist es, wenn die Struktur aus einer Umlenkplatte und einer Abdeckplatte besteht, wobei die Umlenkplatte Öffnungen aufweist, die die Auslässe der einen Rohre mit den Einlassen des anderen Rohre verbindet, und wobei die Abdeckplatte die Umlenkplatte fluiddicht abdeckt. So ist die Umlenkplatte mit dem Rohrboden verbunden und weist Öffnungen auf, innerhalb welcher ein- und Auslässe einer vorgebbaren Anzahl von Rohren in Fluidverbindung sind.
Besonders vorteilhaft ist es, wenn die Umlenkplatte auf den jeweiligen Rohrboden aufgesetzt und mit diesem verbunden ist, wobei die Abdeckplatte auf die jeweilige Umlenkplatte aufgesetzt und mit dieser verbunden ist.
Auch ist es zweckmäßig, wenn die Umlenkplatte mit dem jeweiligen
Rohrboden einteilig ausgebildet ist, wobei die Abdeckplatte auf die jeweilige Umlenkplatte aufgesetzt und mit dieser verbunden ist.
Auch ist es bei einem weiteren Ausführungsbeispiel vorteilhaft, wenn die Umlenkplatte mit der jeweiligen Abdeckplatte einteilig ausgebildet ist, wobei die Umlenkplatte und die Abdeckplatte auf den jeweiligen Rohrboden aufgesetzt und mit diesem verbunden sind. Besonders vorteilhai ist es, wenn die Rohre in Reihen angeordnet sind, wobei die Umlenkplatte Fluid zwischen Rohren unterschiedlicher Reihen umlenkt, Dies bedeutet, dass die Umlenkplatte Fluid aus einem ersten Rohr oder aus einer Gruppe von ersten Rohren in ein zweites Rohr oder in eine Gruppe von zweiten Rohren umlenkt, wobei die ersten Rohre und die zweiten Rohre bevorzugt in einer unterschiedlichen Reihe von Rohren angeordnet sind.
Besonders vorteilhaft ist es, wenn die Rohre in Reihen angeordnet sind, wobei die Umlenkplatte Fluid zwischen Rohren einer Reihen umlenkt. Dies bedeutet, dass die Umlenkplatte Fluid aus einem ersten Rohr oder aus einer Gruppe von ersten Rohren in ein zweites Rohr oder in eine Gruppe von zweiten Rohren umlenkt, wobei die ersten Rohre und die zweiten Rohre bevorzugt in einer gleichen Reihe von Rohren angeordnet sind. Auch ist es vorteilhaft, wenn die Reihen von Rohren in Segmenten angeordnet sind, wobei die Umlenkplatte Fluid von einem Segment in ein anderes
Segment umlenkt,
Weiterhin ist es zweckmäßig, wenn zumindest in einem Segment eine
Mehrzahl von Rohren parallel geschaltet sind.
Auch ist es vorteilhaft, wenn zumindest in einem Segment eine Mehrzahl von parallel geschalteten Rohren in Serie miteinander verschaltet sind . Weitere vorteilhafte Ausgestaltungen sind durch die nachfolgende
Figurenbeschreibung und durch die Unteransprüche beschrieben.
Kurze Beschreibung der Zeichnungen Nachstehend wird die Erfindung auf der Grundlage zumindest eines
Ausführungsbeispiels anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen
Wärmeübertragers in dreidimensionaler Ansicht,
Fig. 2 eine Ansicht des Wärmeübertragers von der Seite,
Fig. 3 eine Teilansicht eines Sammelbereichs,
Fig. 4 eine Teilansicht eines Sammelbereichs,
Fig. 5 eine Teilansicht eines Sammelbereichs, Fig. 6 eine Ansicht des Wärmeübertragerkerns,
Fig. 7 eine Ansicht eines vorderen Umlenkbereichs des
Wärmeübertragers, Fig. 8 eine Ansicht eines hinteres Umlenkbereichs des
Wärmeübertragers,
Fig. 9 ein weiteres Ausführungsbeispiel in einer Ansicht eines vorderen Umlenkbereichs,
Fig. 10 ein weiteres Ausführungsbeispiel in einer Ansicht eines vorderen Umlenkbereichs,
Fig. 1 1 ein weiteres Ausführungsbeispiel in einer Ansicht eines vorderen Umlenkbereichs, und Fig. 12 ein weiteres Ausführungsbeispiel in einer Ansicht eines vorderen Umlenkbereichs.
Bevorzugte Ausführung der Erfindung
Die Figuren 1 und 2 zeigen einen Wärmeübertrager 1 , der im
Ausführungsbeispiel der Figur 1 als Abgasverdampfer ausgeführt ist. Dabei wird der Abgasverdampfer von einem ersten Fluid, hier vorzugsweise Abgas, und von ein zweiten Fluid, hier einem zu verdampfenden Fluid durchströmt. Das Abgas übertragt Wärme auf das zu verdampfende Fluid und verdampft dieses. Der Wärmeübertrager 1 weist dabei ein Gehäuse 2 mit einem
Fluideintritt 3 und einem Fluidaustritt 4 für ein erstes Fluid auf. Das Abgas durchströmt das Gehäuse von dem Eintritt 3 zum Austritt 4, wobei zwischen Eintritt 3 und Austritt 4 eine Reihe von Rohren 5 bevorzugt quer zur
Strömungsrichtung 7 des ersten Fluids angeordnet sind, die von einem zweiten Fluid durchströmbar sind. Zur Verbesserung des Wärmeübertrags zwischen dem ersten Fluid und dem zweiten Fluid sind außen um die Rohre 5 bzw. zwischen den Rohren 5 den Wärmeübergang fördernde Rippen 6 vorgesehen. Diese können dabei als Wellrippen oder als plane Rippen oder Turbulenzerzeuger vorgesehen sein. Die Rohre 5 für die Durchströmung des zweiten Fluids sind vorzugsweise Rundrohre oder Flachrohre. Diese sind vorzugsweise auch auf beiden Seiten mit ihren Enden in Rohrböden fluiddicht aufgenommen. Die Rohre 5 sind dabei bevorzugt einlassseitig und
auslassseitig in einem Rohrboden 8 mit ihren Enden 9 angeordnet und fluiddicht verbunden sind.
Der Wärmeübertrager ist zum Einlass des zweiten Fluid mit einem
Einlassstutzen 10 und zum Auslass mit einem Auslassstutzen 1 1 verbunden. Vom Einlass ausgehend verteilt sich das Fluid auf eine erste Anzahl von
Rohren. Diese werden von dem zweiten Fluid bevorzugt parallel durchströmt. Anschließend wird das Fluid an den gegenüberliegenden Enden dieser Rohre in eine weitere Anzahl anderer Rohre umgelenkt. Diese werden von dem zweiten Fluid wiederum durchströmt. Zur Umleitung des Fluids ist mit dem jeweiligen Rohrboden 8 jeweils eine Struktur 12 verbunden» mittels welcher Gruppen von Rohren 5 derart miteinander verbunden sind, dass ein Auslass 15 zumindest eines Rohrs 5 mit einem Einlass 16 zumindest eines anderen Rohrs 5 fluidverbunden ist. Die Struktur 12 besteht dabei aus zumindest einer Umlenkplatte 13 und einer Abdeckpiatte 14, die aufeinanderliegend ausgebildet und angeordnet sind. Die Abdeckpiatte 14 deckt dabei die Umlenkplatte 13 fluiddicht ab. Bevorzugt ist die Abdeckpiatte 14 mit der Umlenkplatte 3 verschweißt oder verlötet oder verklebt oder gar einteilig ausgebildet.
Die Umlenkplatte 13 weist dabei Öffnungen auf, die die Auslässe 15 der einen Rohre 5 mit den Einlassen 16 des anderen Rohre 5 verbinden.
Die Rohre 5 sind dabei auf mindestens einer Seite in dem Rohrboden 8 in Öffnungen 17 eingesteckt, wo die Rohre mit dem Boden verlötet
oder verschweißt sind.
Als Material für die Rohre und Rohrböden kann Aluminium aber besonders bevorzugt Edelstahl eingesetzt werden. Auch kann der gesamte
Wärmeübertrager aus Aluminium oder Edelstahl bestehen.
Die Umlenkplatte 3 weist Öffnungen ode Kanalstrukturen auf, die dazu geeignet sind, Auslässe von Rohren mit Einlassen anderer Rohre zu verbinden. Alternativ zu der getrennten Ausbildung von Rohrboden 8, Umlenkplatte 13 und Abdeckplatte 14 kann es auch vorteilhaft sein, wenn die Umlenkplatte mit dem Rohrboden zu einem Teil ausgebildet ist oder die Umlenkplatte mit der Abdeckplatte als ein Teil ausgebildet ist. In Figur 4 ist gezeigt, dass die
Umlenkplatte mit dem Rohrboden zu einem Teil 18 ausgebildet ist. in Figur 5 ist gezeigt, dass die Umlenkplatte mit der Abdeckplatte zu einem Teil 19 ausgebildet ist.
Dabei ist das gemeinsame Teil 18 bzw. 19 jeweils auf das andere Teil 14 bzw. 8 aufgesetzt und mit diesem fluiddicht verbunden.
Dabei kann der Rohrboden auch so gestaltet, wie beispielsweise gefräst sein, dass der so multifunktional abgeänderte Rohrboden auch zusätzlich die Aufgabe der Fluidverteilung übernimmt und als Kombination von Bodenplatte und Umlenkplatte fungiert. Dann wird nur eine Abdeckplatte aufgesetzt und mit dem Boden verbunden. Entsprechend kann das Teil 19 ebenfalls als gefrästes Bauteil fungieren, welches Umlenkpiatie und Abdeckplatte integriert.
Weiterhin können der Rohrboden und/oder die Umlenkplatte und/oder die Abdeckplatte auch als ein Gußteil ausgebildet sein, das eine entsprechende Struktur mit vertieften integrierten Öffnungen zur Verteilung des Mediums aufweist.
Die Verbindung der zwei bzw, drei Elemente Rohrboden, Umlenkplatte und Abdeckplatzte erfolgt vorteilhaft über eine Verschweißung, Verlötung oder Verschraubung, wobei auch eine Kombination der Verbindungsmöglichkeiten eingesetzt werden kann. Dazu kann die obere Platte auch Löcher besitzen, um an bestimmten Punkten über die Fläche verteilt, per Schweißverfahren die Platten miteinander zu verbinden. Insbesondere um eine gute Lötverbindung zu erzielen, können die 3 Platten mittels Nieten oder Heftschweißpunkten zueinander fixiert und aneinander gepresst werden, alternativ über Schweißpunkte» Prägungen oder auch Verschraubungen.
Die Umlenkplatte enthält Öffnungen als Strukturen, um von mindestens einem Rohr das Medium zu sammeln und auf mindestens ein anderes Rohr wieder zu verteilen. Vorzugsweise wird aus bis zu 4 oder mehr Rohren das zu verdampfende Fluid in der Öffnungen gesammelt und dann auf bis zu 4 oder mehr andere Rohre wieder aufgeteilt. Bei jeder Sammlung und Verteilung des Fluides werden thermische Instabilitäten die zur ungleichmäßigen
Massenstromverteilung in den Rohren führen, und damit zu unterschiedlichen Temperaturen und oder Dampfgehalten, weitestgehend ausgeglichen. Damit können Instabilitätseffekte, die zu erheblichen Leistungseinbußen führen, kompensiert werden.
Das ist auch ein wesentlicher Vorteil der 2 Sandwichböden gegenüber der Lösung mit Rohrbögen und nur einem Sandwichboden. Damit finden die Vermischungsprozesse in beiden Böden statt.
Die Figur 6 zeigt schematisch einen Kern 20 des Wärmeübertragers 1 , bei welchem eine Vielzahl von Rohren 5 angeordnet ist. Diese Rohre 5 sind zwischen den als Umlenkbereichen ausgebildeten Verteilerplatten 21 , 22 angeordnet und dort in Rohrböden und Umlenk- und Abdeckplatten aufgenommen.
Die Verteilerplatten 21 ,22 sind dabei in Abgasströmungsrichtung 23 betrachtet in einzelne Segmente 24, 25, 26, 27, 28 und 29 unterteilt.
Innerhalb eines Segmentes 24 bis 29 sind wiederum eine Anzahl von
Rohrreihen 30, 31 vorgesehen. Im Beispiel der Figur 6 sind je Segment zwei Rohrreihen vorgesehen. Idealerweise besteht ein Segment nur aus wenigen Rohrreihen, beispielsweise aus zwei Rohrreihen in Abgasströmungsrichtung, so dass der Temperaturgradient über ein Segment mögiichst klein ist und damit alle Rohre nahezu mit der gleichen Abgastemperatur beaufschlagt werden. In Abhängigkeit des Arbeitsmediums können aber auch bis zu 6- Rohrreihen ein Segment bilden, bzw. mehrere Segmente miteinander parallel verschaltet werden.
Im Ausführungsbeispiel der Figur 6 werden weiterhin je Rohrreihe 30, 31 bis zu 4 Rohre senkrecht zur Abgasströmungsrichtung parallel geschalten.
Wie in Figur 6 zu erkennen ist, strömt das zweite Fluid im Bereich der
Rohrenden 32 ein und verteilt sich auf vier Rohre 5. Das Fluid strömt durch diese Rohre zu den Enden dieser Rohre auf der gegenüberliegenden Seite und strömt dort in den Bereich 33 aus. Der Umlenkbereich 35 lenkt das Fluid in die Einlasse des Bereichs 34, von wo das Fluid durch die diesbezüglichen Rohre wieder zurück zum Bereich 36 strömt. Anschließend wird das Fluid durch den Umlenkbereich 37 auf den Bereich 38 der Rohrenden umgelenkt und verteilt, so dass das Fluid nun durch Rohre zurückströmt, die unterhalb des ersten Durchgangs liegen.
So wird das erste Segment in alternierenden Durchströmungen durchströmt und das Fluid tritt vom Bereich 39 schließlich aus dem Segment aus und wird am Übertritt 40 vom ersten Segment 29 in das zweite Segment 28 umgeleitet. Anschließen erfolgt die entsprechende Durchströmung des zweiten Segments 28 bis das Fluid am Übertritt 41 in das dritte Segment 27 überströmt.
Anschließen erfolgt die entsprechende Durchströmung des dritten Segments 27 bis das Fluid am Übertritt 42 in das vierte Segment 26 überströmt.
Anschließen erfolgt die entsprechende Durchströmung des vierten Segments 26 bis das Fluid am Übertritt 43 in das fünfte Segment 25 überströmt.
Anschließen erfolgt die entsprechende Durchströmung des fünften Segments 25 bis das Fluid am Übertritt 44 in das sechste Segment 24 überströmt.
Anschließen erfolgt die entsprechende Durchströmung des sechsten
Segments 24 bis das Fluid am Austritt 4 aus dem sechsten Segment 24 ausströmt.
Die Figuren 7 und 8 zeigen noch einmal die Anschlusskonfiguration der Rohre am vorderen bzw. am hinteren Umlenkbereich. Es ist zu erkennen, dass jeweils vier Rohre parallel geschaltet sind und eine Umlenkung von Fluid aus vier Rohren in vier andere Rohre erfolgt. Dabei tritt das Fluid auf der
Vorderseite gemäß Figur 7 in Rohre 5 ein, aus welchen es an der hinteren Seite austritt. Daher sind die Rohre 5 im vorderen Umlenkbereich gemäß Figur 7 auch mit den komplementären Eintritten bzw. Austritten als in Figur 8 gekennzeichnet. Die Figur 9 zeigt eine entsprechende Ansicht von sechs Segmenten 50 bis 55, die jeweils zwei Reihen von Rohren aufweisen. Dabei sind jeweils drei Rohre zu einem Durchgang 56 zusammengefasst und parallel geschaltet. Bei Durchgang 56 strömt das Fluid ein und durchströmt die Rohre zum hinteren Umlenkbereich. Dort wird das Fluid von einer Rohrreihe zu der benachbarten Rohrreihe umgelenkt. Anschließend durchströmt das Fluid die nächsten drei Rohre und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in drei weitere Rohre umgelenkt. Danach durchströmt das Fluid die Rohre zum hinteren Umlenkbereich. Dort wird das Fluid wieder von einer Rohrreihe zu der benachbarten Rohrreihe umgelenkt. Anschließend durchströmt das Fluid die nächsten drei Rohre und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in drei weitere Rohre umgelenkt. Dies erfolgt so lange, bis das Fluid im Bereich 57 aus den Rohren ausströmt und durch den Übertritt 58 in das nächste Segment übergeleitet wird. Der Übertritt kann vorzugsweise in der Umlenkplatte integriert sein oder durch einen externen Übertritt per Rohr erfolgen. Die Durchströmung des Wärmeübertragers der Figur 9 zeigt einen
Unterschied zum vorhergehenden Ausführungsbeispiel. In Figur 9 erfolgt die Umlenkung des Fluids in der vorderen Umlenkplatte von Rohren einer in Rohre der gleichen Reihe gemäß Öffnung 60, während in der hinteren
Umlenkplatte eine Umlenkung von Rohren einer Reihe in Rohre einer anderen Reihe gemäß Öffnung bzw. Öffnungen 59 erfolgt.
Die Figur 10 zeigt ein weiteres Ausführungsbeispiel in einer weiteren Ansicht, wobei sechs Segmente 70 bis 75 jeweils zwei Reihen 76,77 von Rohren aufweisen. Wie zu erkennen ist, sind die Segmente 71 und 72 zu einer gemeinsamen parallel geschalteten Segment zusammen gefasst. Gleiches gilt für die Segmente 73 und 74. Weiterhin sind jeweils drei Rohre zu einem Durchgang 78 zusammengefasst und parallel geschaltet. Bei Durchgang 78 strömt das Fluid ein und
durchströmt die Rohre zum hinteren Umlenkbereich. Dort wird das Fluid von einer Rohrreihe zu der benachbarten Rohrreihe durch Öffnungen 79 in der Umlenkplatte umgelenkt. Anschließend durchströmt das Fluid die nächsten drei Rohre und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in drei weitere Rohre durch die Öffnung 80 der vorderen Umlenkplatte umgelenkt. Danach durchströmt das Fluid die Rohre zum hinteren
Umlenkbereich. Dort wird das Fluid wieder von einer Rohrreihe zu der benachbarten Rohrreihe umgelenkt. Anschließend durchströmt das Fluid die nächsten drei Rohre und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in drei weitere Rohre umgelenkt. Dies erfolgt so lange, bis das Fluid im Bereich 81 aus den Rohren ausströmt und durch den Übertritt 82 in das nächste Segment 71 , 72 übergeleitet wird. Der Übertritt 82 kann vorzugsweise in der Umlenkplatte integriert sein oder durch einen externen Übertritt per Rohr erfolgen. In den Segmenten 71 , 72 erfolgt die Durchströmung wie in dem Segment 70, wobei diese allerdings parallel geschattet sind und der Fluideintritt in die Bereiche 83 und 84 parallel erfolgt. Anschließend werden die Rohre der Segmente 71 und 72 wie die Rohre des Segments 70 durchströmt, bevor das Fluid bei den Bereichen 85 und 86 wieder aus dem Segment ausgeleitet und in die parallel geschalteten Segmente 73 und 74 mittels des Übertritts 87 übergeleitet wird. In den Segmenten 73 und 74 erfolgt die Durchströmung wie in den Segmenten 71 und 72. Anschließend wird das Fluid aus den
Segmenten 73 und 74 gesammelt und in des abschließende Segment 75 eingeleitet, wo es wie im eingangsseitigen Segment 70 das Segment 75 durchströmt, bevor es aus dem Wärmeübertrager ausgelassen wird.
Die Figur 1 zeigt ein weiteres Ausführungsbeispiel in einer weiteren Ansicht, wobei sechs Segmente 90 bis 95 jeweils zwei Reihen 96,97 von Rohren aufweisen. Wie zu erkennen ist, sind die Segmente 90 und 91 zu einer gemeinsamen parallel geschalteten Segment zusammen gefasst. Gleiches gilt für die Segmente 92, 93 und 94, die zu einem gemeinsamen Segment zusammen gefasst sind. In den Segmenten 90 und 91 bzw. in den Segmenten 92 bis 94 wird jeweils nur ein Rohr 98 parallel zu einem Rohr 99 des anderen Segments
durchströmt. Innerhalb des Segments werden die Rohre 98 nur seriell durchströmt. Dies erfolgt bis zum Mitte des Segments. Dort strömt das Fluid aus den Rohren 101 , 102 der beiden Segmente aus. Dort liegt eine Mischzone 100 vor, so dass das Fluid aus dem ersten Segment 90 sich mit dem Fluid des zweiten Segments 91 mischen kann, bevor es wieder auf die Rohre 103, 04 der Segmente verteilt.
Bei Durchgang 98 strömt das Fluid ein und durchströmt ein Rohr zum hinteren Umlenkbereich. Dort wird das Fluid von einer Rohrreihe zu der benachbarten Rohrreihe durch eine Öffnung 105 in der Umlenkplatte umgelenkt. Anschließend durchströmt das Fluid das nächste Rohr und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in ein weiteres Rohr durch die Öffnung 106 der vorderen Umlenkplatte umgelenkt. Danach durchströmt das Fluid die Rohre zum hinteren Umlenkbereich. Dort wird das Fluid wieder von einer Rohrreihe zu der benachbarten Rohrreihe umgelenkt. Anschließend durchströmt das Fluid das nächste Rohr und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in ein weiteres Rohr umgelenkt. Dies erfolgt so lange, bis das Fluid in der Mischzone 100 ausströmt. Im zweiten Bereich nach der Mischzone erfolgt die entsprechende Durchströmung der Rohre. Anschließend wird das Fluid durch den Übertritt 107 in das nächste Segment 92, 93, 94 übergeleitet. Der Übertritt 107 kann vorzugsweise in der
Umlenkplatte integriert sein oder durch einen externen Übertritt per Rohr erfolgen. In den Segmenten 92, 93, 94 erfolgt die Durchströmung wie in dem Segment 90, 91 , wobei diese allerdings alle drei parallel geschaltet sind. Anschließend werden die Rohre der Segmente 92 bis 94 durchströmt, bevor das Fluid wieder aus dem Segment ausgeleitet und in das Segment 95 mittels des Übertritts 108 übergeleitet wird. In dem Segment 95 erfolgt die Durchströmung wie in dem Segment 70 der Figur 10, bei welchem drei Rohre jeweils parallel geschaltet sind. Anschließend wird das Fluid aus dem Wärmeübertrager ausgelassen.
Die Figur 12 zeigt ein weiteres Ausführungsbeispiel in einer weiteren Ansicht, wobei sechs Segmente 1 10 bis 1 5 jeweils zwei Reihen 1 16, 1 17 von Rohren aufweisen. Wie zu erkennen ist, sind die Segmente 1 10 bis 1 12 und 1 13 bis 1 15 zu einem gemeinsamen parallel geschalteten Segment zusammen gefasst. In den Segmenten 1 10 bis 1 12 bzw. in den Segmenten 1 13 bis 15 wird jeweils nur ein Rohr 1 16 parallel zu einem Rohr 1 17, 1 18 des anderen Segments durchströmt. Innerhalb des Segments werden die Rohre 1 16, 1 17 oder 1 18 nur seriell durchströmt. Dies erfolgt bis zur Mitte des Segments, Dort strömt das Fluid aus den Rohren 1 19, 120, 121 der drei Segmente aus. Dort liegt eine Mischzone 122 vor, so dass das Fluid aus dem ersten Segment 1 10 sich mit dem Fluid des zweiten bzw. dritten Segments 1 11 , 1 12 mischen kann, bevor es wieder auf die Rohre 123, 124 und 125 der Segmente 1 10, 1 1 1 , 1 12 verteilt wird.
Bei Durchgang 1 16 strömt das Fluid ein und durchströmt ein Rohr zum hinteren Umlenkbereich. Dort wird das Fluid von einer Rohrreihe zu der benachbarten Rohrreihe durch eine Öffnung in der Umlenkplatte umgelenkt. Anschließend durchströmt das Fluid das nächste Rohr und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in ein weiteres Rohr durch die Öffnung der vorderen Umlenkplatte umgelenkt. Danach durchströmt das Fluid die Rohre zum hinteren Umlenkbereich. Dort wird das Fluid wieder von einer Rohrreihe zu der benachbarten Rohrreihe umgelenkt. Anschließend
durchströmt das Fluid das nächste Rohr und wird im vorderen Umlenkbereich in der gleichen Reihe der Rohre in ein weiteres Rohr umgelenkt. Dies erfolgt so lange, bis das Fluid in der Mischzone 122 ausströmt. Im zweiten Bereich nach der Mischzone erfolgt die entsprechende Durchströmung der Rohre. Anschließend wird das Fluid durch den Übertritt 26 in das nächste Segment 1 13, 1 14, 1 15 übergeleitet. Der Übertritt 126 kann vorzugsweise in der Umlenkplatte integriert sein oder durch einen externen Übertritt per Rohr erfolgen.
In den Segmenten 1 13, 1 14 und 1 15 erfolgt die Durchströmung wie in den Segmenten 1 10, 1 1 1 und 1 2. Anschließend wird das Fluid aus dem
Wärmeübertrager ausgelassen. Die Gestaltung der Umlenkplatte ist in den Figuren rechteckig vorgesehen. Sie kann auch rund sein, so dass sie in eine runde, zylindrische Aussparung in einem Gehäuse oder in einem Schalldämpfer eingebaut werden kann. Zur Leistungssteigerung können auf die Rohre gasseitige Rippen aufgefädelt Sein, siehe die Rippen 6 der Figur 2. Die gasseitigen Rippen bilden die sogenannte Sekundärfläche der Wärmeübertagung und die Rohre stellen die Primärfläche der Wärmeübertragung dar. Die Rippen 6 können mit den Rohren 3 verlötet werden oder es wird eine thermisch leitfähige Verbindung ohne Lotzugabe während dem Lötprozess des gesamten Verdampfers erreicht. Dies kann durch einen sehr eng tolerierten Rohrdurchzug erreicht werden, der zu einem sehr geringen Spalt zwischen Rippe und Rohr führt. Damit wird beim Hochtemperaturlötprozess mittels Diffusionsprozesse eine thermisch leitfähige Verbindung zwischen den Rippen und den Rohre hergestellt, auch wenn keine Lot vorliegen sollte.
Eine bessere Anbindung der Rippen mit den Rohren, ob mit oder ohne Lot, kann durch eine Kombination aus austenitischen Rohren und ferritischen Rippen
erreicht werden. Ferrite besitzen eine geringere Ausdehnung bei hohen Temperaturen als Austenite, so dass die Rohre bei Löttemperatur an die Rippen angepresst werden. Um bei Abkühlen das Abreißen der Rippen von den Rohren zu vermeiden, kann die Rippe um die Rohre herum kleine Schlitze aufweisen. Die Rippen weisen Rohrdurchzüge mit sogenannten Kragen auf, durch die der Abstand zwischen den Rippen sichergestellt wird. Alternativ kann der
Rippenabstand auch durch Ausstellen von Abstandshaltern in der Rippe sichergestellt werden. Die Rippendichte kann dabei zwischen 30 Ri/dm und 80 Ri/dm liegen. Die Rippen können gestanzt sein und aufgeschnittene und aufgestellte Kiemen besitzen oder auch nur eingeprägte Strukturen, wie
Winglets, Dimpel oder Ausbeulungen, zur Leistungssteigerung. Insbesondere ist es zielführend solche Strukturen in die Rippen einzuprägen, die die
Strömung gezielt auf die Rohre leitet und damit eine höhere
Wärmeübertragung auf der Primärfläche erzielt werden kann. Die Rippendicke beträgt dabei 0.1 mm bis 0.5 mm bzw. vorzugsweise zwischen 0.25 und 0.4 mm, was für Edelstahl als Rippenmaterial vorteilhaft ist.
Weiterhin können in dem Verbund der Platten oben und/oder unten Schlitze eingebracht werden, so dass eine unterschiedliche thermische Ausdehnung aufgrund unterschiedlicher Temperaturen vom Gaseintritt bis zum Gasaustritt ermöglicht wird und nicht zu Schäden führt.
Bevorzugt liegt der Rohrdurchmesser der Rohre im Bereich von 3 - 20 mm, idealerweise im Bereich von 5 - 15 mm und vorzugsweise im Bereich von 6 - 10 mm.
In die Rohre können turbulenzerzeugende Strukturen eingebacht werden, z.B. Drallerzeuger, um den Wärmeübergang besonders im Bereich, wo das Fluid Überhitzt zu fördern. Das Rohr kann auch als Drall roh r ausgeführt werden, dann aber bevorzugt ohne äußere Rippen. Insbesondere sind auch Rohre mit sehr tief
ausgeprägten Rillen verwendbar, die ähnlich einem Faltenbalg bei größeren Rohrleitungsdurchmessern ausgebildet sind , um den Wärmeübergang auf der Gasseite zu erhöhen und gleichzeitig die thermische Differenzdehnung zwischen den Rohren aufnehmen können. Grundsätzlich können
unterschiedliche Leistungsklassen erreicht werden,
wenn ein Verdampfer in Abgasströmungsrichtung aus einzelnen Modulen besteht.

Claims

Patentansprüche
1 . Wärmeübertrager, wie insbesondere Abgasverdampfer, mit einem
Gehäuse mit einem Fluideintritt und einem Fluidaustritt für ein erstes Medium, wie insbesondere Abgas, mit in dem Gehäuse quer zur Strömungsrichtung des ersten Fluids angeordneten Rohren, die von einem zweiten Medium durchströmbar sind und einlassseitig und auslassseitig in einem Rohrboden mit ihren Enden angeordnet und fluiddicht verbunden sind, wobei mit dem jeweiligen Rohrboden jeweils eine Struktur verbunden ist, mittels welcher Gruppen von Rohren derart miteinander verbunden sind, dass ein Auslass zumindest eines Rohrs mit einem Einlass zumindest eines anderen Rohrs fluidverbunden ist.
2. Wärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass die Struktur aus einer Umlenkplatte und einer Abdeckplatte besteht, wobei die Umlenkplatte Öffnungen aufweist, die die Auslässe der einen Rohre mit den Einlassen des anderen Rohre verbindet, und wobei die
Abdeckplatte die Umlenkplatte fluiddicht abdeckt.
3. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Umlenkplatte auf den jeweiligen Rohrboden aufgesetzt und mit diesem verbunden ist, wobei die Abdeckplatte auf die jeweilige
Umlenkplatte aufgesetzt und mit dieser verbunden ist.
4. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Umlenkplatte mit dem jeweiligen Rohrboden einteilig ausgebildet ist, wobei die Abdeckplatte auf die jeweilige Umlenkplatte aufgesetzt und mit dieser verbunden ist.
5. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Umlenkplatte mit der jeweiligen Abdeckplatte einteilig ausgebildet ist, wobei die Umlenkplatte und die Abdeckplatte auf den jeweiligen Rohrboden aufgesetzt und mit diesem verbunden ist.
6. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre in Reihen angeordnet sind, wobei die Umlenkplatte Fluid zwischen Rohren unterschiedlicher Reihen umlenkt.
7. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre in Reihen angeordnet sind, wobei die Umlenkplatte Fluid zwischen Rohren einer gleichen Reihe umlenkt.
8. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reihen von Rohren in Segmenten
angeordnet sind, wobei die Umlenkplatte Fluid von einem Segment in ein anderes Segment umlenkt.
9. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest in einem Segment eine Mehrzahl von Rohren parallel geschaltet sind.
10. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet» dass zumindest in einem Segment eine Mehrzahl von parallel geschalteten Rohren in Serie miteinander verschaltet sind.
EP13710830.4A 2012-03-16 2013-03-14 Wärmeübertrager Not-in-force EP2825832B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204151A DE102012204151A1 (de) 2012-03-16 2012-03-16 Wärmeübertrager
PCT/EP2013/055226 WO2013135808A2 (de) 2012-03-16 2013-03-14 Wärmeübertrager

Publications (2)

Publication Number Publication Date
EP2825832A2 true EP2825832A2 (de) 2015-01-21
EP2825832B1 EP2825832B1 (de) 2019-01-09

Family

ID=47901977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13710830.4A Not-in-force EP2825832B1 (de) 2012-03-16 2013-03-14 Wärmeübertrager

Country Status (4)

Country Link
US (1) US20150060028A1 (de)
EP (1) EP2825832B1 (de)
DE (1) DE102012204151A1 (de)
WO (1) WO2013135808A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220212A1 (de) * 2013-10-07 2015-04-09 Behr Gmbh & Co. Kg Wärmeübertrager
EP3163244B1 (de) * 2015-10-28 2019-08-14 Borgwarner Emissions Systems Spain, S.L.U. Verdampfer
EP3163243B1 (de) * 2015-10-28 2019-08-14 Borgwarner Emissions Systems Spain, S.L.U. Verdampfer
DE102016215265A1 (de) * 2016-08-16 2018-02-22 Mahle International Gmbh Herstellungsverfahren eines Wärmeübertragerrohres
JP6696537B2 (ja) * 2018-08-09 2020-05-20 ダイキン工業株式会社 圧縮機、および、圧縮機の製造方法
DE102019108213A1 (de) * 2019-03-29 2020-10-01 Mahle International Gmbh Wärmeübertrager
DE102019204640A1 (de) * 2019-04-02 2020-10-08 Mahle International Gmbh Wärmeübertrager

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542613A (en) * 1921-10-31 1925-06-16 Edwin R Cox Heat exchanger
US1799471A (en) * 1926-10-26 1931-04-07 Leach Charles Harold Heat-exchange apparatus
US1979975A (en) * 1933-04-19 1934-11-06 Maniscalco Pietro Heat exchanging device
US2064036A (en) * 1935-08-12 1936-12-15 Oakes Prod Corp Method of making a condenser
US2950092A (en) * 1957-11-01 1960-08-23 Carrier Corp Heat exchange construction
DE1905048U (de) * 1964-09-17 1964-11-26 Bertrams Ag Hch Heisswasserbeheizter waermeaustauscher.
US3430692A (en) * 1967-06-16 1969-03-04 John Karmazin Return bend construction for heat exchangers
DE2013958A1 (en) * 1970-03-24 1971-10-14 Alfa Laval Bergedorfer Eisen Tube heat exchanger end plate
DE3921531A1 (de) * 1988-07-05 1990-01-11 Vaillant Joh Gmbh & Co Waermetauscher mit gegenlaeufig durchstroemten rohren oder dergleichen
IT1245799B (it) * 1991-03-19 1994-10-18 Piero Pasqualini Scambiatore di calore per fluidi
NL9101227A (nl) * 1991-07-11 1993-02-01 Vomatec B V Inrichting voor het in doorstroom verwarmen van een stof.
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
JP4180935B2 (ja) * 2003-02-04 2008-11-12 リンナイ株式会社 熱交換器及び温水加熱器
JP2005326135A (ja) * 2004-04-12 2005-11-24 Showa Denko Kk 熱交換器
ES2322728B1 (es) * 2005-11-22 2010-04-23 Dayco Ensa, S.L. Intercambiador de calor de tres pasos para un sistema "egr".
EP2131131A1 (de) * 2008-06-06 2009-12-09 Scambia Industrial Developments AG Wärmetauscher
DE102009050889A1 (de) 2009-10-27 2011-04-28 Behr Gmbh & Co. Kg Abgasverdampfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013135808A3 *

Also Published As

Publication number Publication date
DE102012204151A1 (de) 2013-09-19
WO2013135808A2 (de) 2013-09-19
EP2825832B1 (de) 2019-01-09
US20150060028A1 (en) 2015-03-05
WO2013135808A3 (de) 2013-11-07

Similar Documents

Publication Publication Date Title
EP2825832B1 (de) Wärmeübertrager
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP2161525B1 (de) Wärmetauscher in Modulbauweise
EP2228615B1 (de) Vorrichtung zum Austausch von Wärme, insbesondere zur Wärmerückgewinnung aus Abgasen eines Kraftfahrzeugs
EP2230701A2 (de) Thermoelektrische Vorrichtung
WO2011138246A1 (de) Kühleinrichtung
EP2798297B1 (de) Verfahren zur Herstellung von mehr als zwei unterschiedlichen Wärmeübertragern
DE202019105909U1 (de) Modulare Wärmetauscher für Batterietemperaturmodulation
EP2232186A1 (de) Vorrichtung zum austausch von wärme und kraftfahrzeug
EP2664886A2 (de) Wärmetauscher
DE102017127005A1 (de) Einfachdurchgang-Kreuzstromwärmetauscher
WO2010057603A2 (de) Wärmetauscher und verfahren für dessen herstellung
EP2972011A1 (de) Wärmeübertrager
DE102017210276A1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher, für ein Kraftfahrzeug
DE102015107472B3 (de) Kraftfahrzeug-Wärmeübertragersystem
EP2798298B1 (de) Wärmeübertrager
DE102009012493A1 (de) Vorrichtung zum Austausch von Wärme und Kraftfahrzeug
EP2757336B1 (de) Wärmetauscher mit optimierter Wärmeübertragung und Heizeinrichtung mit einem solchen Wärmetauscher
DE102016223703A1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher, für ein Kraftfahrzeug
EP3239641A1 (de) Flachrohr für einen wärmeübertrager
EP3097379B1 (de) Wärmeübertrager
WO2017167872A1 (de) Stapelscheibenwärmetauscher
EP3009780B2 (de) Wärmeübertrager
WO2013120996A1 (de) Verdampfer, insbesondere für eine abgaswärmenutzungseinrichtung
DE202016008276U1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher, für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141016

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180705

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20181123

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1087841

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012007

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012007

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190314

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

26N No opposition filed

Effective date: 20191010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190409

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190314

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200514

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1087841

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013012007

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109