EP2825342A1 - Fil a scier, methode et installation de fabrication d'un tel fil et utilisation - Google Patents

Fil a scier, methode et installation de fabrication d'un tel fil et utilisation

Info

Publication number
EP2825342A1
EP2825342A1 EP13709918.0A EP13709918A EP2825342A1 EP 2825342 A1 EP2825342 A1 EP 2825342A1 EP 13709918 A EP13709918 A EP 13709918A EP 2825342 A1 EP2825342 A1 EP 2825342A1
Authority
EP
European Patent Office
Prior art keywords
wire
sawing
guide
diameter
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13709918.0A
Other languages
German (de)
English (en)
Inventor
Gunchul SONG
Serge OMS
Bernard SERRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodetal AWT
Original Assignee
Sodetal AWT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodetal AWT filed Critical Sodetal AWT
Publication of EP2825342A1 publication Critical patent/EP2825342A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Definitions

  • the present invention relates to a corrugated saw wire for cutting hard materials. It also relates to a method of manufacturing such a wire and an installation for implementing the manufacturing method. Finally, it relates to a sawing process using such a sawing wire.
  • references in brackets ([]) refer to the list of references at the end of the text.
  • this wire sawing technique is used.
  • the process starts with blocks of monocrystalline or polycrystalline silicon of square or round section which are cut into thin slices of thickness between 180 and 280 ⁇ m.
  • a single wire typically 120 ⁇ m in diameter and 600 to 900 km in length, comes from a coil and runs on a bench of four rollers rotatably mounted about axes parallel to each other and distributed at the vertices of a rectangle. .
  • the wire surrounds the rolls multiple times and thus forms strands of strands parallel to each other and regularly spaced.
  • Two of the layers are horizontal and receive during the cutting operations a block of silicon which rests on a sheet by its own weight or is pushed by mechanical means. The wire is received at its output by a receiver coil.
  • Each strand receives by a nozzle an abrasive paste which it drives towards the block.
  • Abrasive particles 3 are interposed between the wire 1 and the block 2, as shown in Figures 12 and 13, which performs an erosion cutting process. Grooves 4 of deeper and deeper parallel to each other are thus made through the block 2, until the grooves open and completely through the block.
  • the abrasive is generally silicon carbide (SiC) with particles 3 of diameter between 10 and 15 pm.
  • the abrasive paste is formed by a mixture of these particles and an oil or glycol.
  • This process requires a high quality wire, having a high resistance to voltage. A break in the wire during the cutting process renders the block unusable.
  • the wire to be sawn is usually a single filament made of straight and smooth steel. If is obtained by drawing on a wet drawing machine and is wound on a reel.
  • the efficiency of the sawing operation depends on many parameters such as the characteristics of the material to be cut, the speed of the wire, the nature of the abrasive and the abrasive paste and the properties of the wire.
  • a key parameter is the ability of the wire to drive the abrasive paste and to evacuate the abrasive paste mixture and particles removed from the material, so as to renew the abrasive on the work surface and to prevent the blockage of the wire in the groove .
  • the abrasive therefore damages the yarn at the same time as it abrades the material, which results in limiting the length over which it can be used before risking its breakage.
  • the speed of the abrasive is on average half that of the wire.
  • Figure 16 There is also another phenomenon at the beginning of the cut, illustrated in Figure 16. When the wire comes into contact with the surface to be sawed, it is just stretched without being guided laterally. The wire rolls on the abrasive and oscillates around its equilibrium position, so that an initial groove is dug with a width greater than that of the groove which is then made. This results in leave 40 input grooves. This phenomenon causes a significant increase in the total thickness variation for wafers, which is a significant loss of quality.
  • WO 90/12670 A1 proposes a monofilament sawing wire having a textured outer surface, so that the abrasive is better driven and is less easily detached from the wire.
  • the surface of the wire is provided with microcavities or circumferential grooves.
  • the methods of manufacturing such a wire are slow and lack productivity. The cost price of the wire is thus very high.
  • the yarn is weakened by the texture which creates stress concentrations and failure primers.
  • EP 1 827 745 A1 [2] and JP 12-89527 [3] show a yarn which has been imparted with crimps, i.e., zigzag shapes by a passage between pairs of embossing rolls.
  • crimps i.e., zigzag shapes by a passage between pairs of embossing rolls.
  • abrupt changes in wire curvature are weak points in the wire that limit the voltage that the wire can withstand.
  • the crimps decrease the longitudinal rigidity of the wire, which can cause blockages of the wire during the sawing process. To limit these risks, it is necessary to reduce the speed of the wire during sawing, which limits the productivity of the sawing process.
  • JP 2004-276207 A [4] also provides a wire for sawing.
  • the wire has spiral corrugations to reserve space between the wire and the groove for storing and removing material detached from the workpiece.
  • this thread is too soft longitudinally and presents the risk of being looped before entering the groove.
  • abrasive-coated wire so that it is not necessary to use abrasive paste.
  • the abrasive may be formed of various oxides, carbides, or diamond particles. The particles are held on the wire by a bonding layer.
  • a bonding layer such a wire remains difficult and expensive to produce.
  • the invention aims to provide a sawing wire that allows a good abrasive drive, a high speed of travel, which is resistant while remaining inexpensive to produce. It also aims to provide a method of manufacturing such a sawing wire and an installation implementing this method.
  • the subject of the invention is a monofilament wire sawing wire for a wire saw, said sawing wire consisting of a wire of diameter D and having helical corrugations of amplitude A and of wavelength B, characterized in that the wavelength B is less than 10,000 times the product A x D of the amplitude and the diameter and the amplitude A is between 0.010 and 0.400 times the diameter D , the amplitude being measured by profile projection, the values being expressed in millimeters.
  • the amplitude of the wire is measured by profile projection, so as to perform the measurement without influencing said amplitude.
  • the sawing wire makes it possible to obtain a good driving effect for the abrasive.
  • the sawing effect thus obtained is greatly improved compared to the smooth and rectilinear wire.
  • the elongation characteristics are little affected by the corrugations and the risk of looping during the sawing process is low.
  • Due to the helical shape a space is provided between the wire and the wire casing which is called a drive chamber.
  • the training chamber extends on a step of corrugation and on a height having as value the amplitude of the undulation.
  • the drive chamber serves as a reserve for the abrasive which is thus driven during the sawing operation.
  • the wire As the corrugations are uniform, the wire generally retains its straightness, so that the wire remains straight during the sawing process. There is also a better stability of the wire when coming into contact with the surface to be sawed, as will be seen better later, which reduces the variation in thickness of the wafers.
  • the amplitude A is between 0.07 and 0.40 times the diameter D.
  • This factor directly influences the elongation characteristics of the wire, while maintaining a low propensity for elongation. However, it is sufficient to drive the abrasive particles and abraded material.
  • These values may correspond to amplitude values of 0.01 to 0.15 when measurements are made with a micrometer. This type of measurement is carried out, for example, over diameters greater than or equal to 250 ⁇ m.
  • the amplitude of the corrugations is preferably between 4 and 25 ⁇ when measured with a micrometer, and between 21 and 100 ⁇ when measured with a profile projector.
  • the wavelength B is less than 2,800 times the product A x D of the amplitude and the diameter, the values being expressed in millimeters. These values showed a high efficiency of the sawing, the latter increasing with the decrease of B below this threshold.
  • the wavelength of the corrugations is less than 8 mm. Such a characteristic has a favorable influence on the risk of looping of the wire during the sawing operation.
  • the diameter D of the wire is between 0.08 mm and
  • the sawing wire comprises a coating of abrasive material.
  • abrasive material can be a diamond powder.
  • the section of the wire is non-circular. This provides additional means for forming a drive chamber. Indeed, the larger part of the section determines the position of the wire in the sawing groove, so that the smaller part is further away from the groove and provides a larger space for the drive chamber.
  • the ratio of a smaller dimension of the wire section and a section diameter of the section is between 0.9 and 0.995.
  • the invention also relates to a method of manufacturing a sawing wire as described above, characterized in that it scrolls the wire under tension from a first guide to a second guide, it applies vibrations to part of the wire between the two guides, the vibrations being rotatable relative to the section of the wire at the first guide, so that the vibrations induce permanent deformation to the wire in the form of substantially helical corrugations.
  • the vibrations are applied to the wire by blowing an air jet onto the wire.
  • a jet is effective enough to vibrate the wire stretched between the guides.
  • the oscillation frequency is close to the resonance frequency determined by the linear density of the wire, its voltage and the distance between the guides.
  • the air jet is preferably continuous, but it can also be modulated.
  • the vibrations are rotating, that is to say that the wire does not oscillate in a particular plane, but describes an elliptical or circular path centered on the axis defined by the guides.
  • the shape of the vibrations and their amplitude can be modulated in particular by the orientation and the position of the air jet relative to the wire.
  • the wire is rotated on itself by the rotation of the second guide, the first guide being fixed.
  • vibrations are applied to the wire by an excitation flange comprising at least one bump, the flange being rotatably mounted so that the bump engages with the wire each turn of the wire. flange.
  • the vibrations of the wire are created mechanically by the flange which pushes and releases the wire regularly.
  • the oscillation frequency is close to the resonance frequency determined by the linear density of the wire, its voltage and the distance between the guides.
  • the flange may comprise several bumps, for example being of polygonal shape, such as a triangular shape, square or hexagonal.
  • the vibrations are applied via a third guide placed between the first and the second guide and mounted oscillating in a plane perpendicular to the wire.
  • the wire is directly driven in its vibrations by the third guide.
  • the third guide is a drawing die.
  • the first guide is also a drawing die and the third guide is the last die of the drawing operation. The deformations of the wire are induced at the same time at the exit of the first and the third guide.
  • the drawing die is rotatable about its drawing axis. This movement involves a circular distribution of the undulations of the wire.
  • the corrugations of the wire are generated by a ring placed between the first and the second guide, the ring having a passage for the wire and being rotated about a parallel axis. and offset with respect to the passage.
  • the passage being eccentric with respect to the axis of rotation, rotating oscillations are imposed on the wire, which are reflected to the first guide. It can be seen that the deformations thus imposed on the wire give it a shape very close to a spiral.
  • the subject of the invention is also an apparatus for manufacturing a wire as described above, characterized in that it comprises a first guide and a second guide for guiding a wire under tension between them, wire drive means between the guides and excitation means for vibrating the wire between the two guides.
  • the first guide is a die adjusted to the diameter of the wire.
  • This die can be the last of a wire drawing plant.
  • the installation according to the invention is a simple additional station to a drawing plant.
  • the drive means comprise a capstan for pulling the wire after passing through the second guide. The wire is thus pulled through the guides.
  • the invention also relates to a method of sawing a material in which a sawing wire is moved under tension against the material, characterized in that the sawing wire is a sawing wire as defined above.
  • FIG. 1 shows a top view of a sawing wire according to one embodiment of the invention
  • FIG. 2 is a sectional view along the line ll-ll of Figure 1;
  • FIG. 3 is a schematic view of an installation for manufacturing the sawing wire according to the invention according to a first embodiment
  • FIG. 4 is a view of detail IV of FIG. 3;
  • FIG. 5 is a view similar to FIG. 3 of an installation according to a second embodiment
  • FIG. 8 is a view of detail VIII of FIG. 7;
  • FIG. 9 is a view similar to Figure 3 of an installation according to a fourth embodiment
  • FIG. 10 is a detail view X of FIG. 9;
  • FIG. 11 is a front view of a ring used in the installation of Figure 9;
  • FIG. 12 is a view illustrating a wire sawing method according to the prior art, in section perpendicular to the axis of the son;
  • FIG. 13 is a section along the line XIII-XIII of Figure 12;
  • Figure 14 a view similar to Figure 9 illustrating a sawing process with a sawing wire according to the invention.
  • FIG. 15 is a section along the line XV-XV of Figure 14;
  • FIG. 16 is a view illustrating the wire sawing method according to the prior art in a sawing start phase
  • Figure 17 is a view similar to Figure 16 illustrating the sawing process with the sawing wire according to the invention.
  • FIG. 18 is a diagram showing test results with sawing wires having different wavelengths of corrugations
  • FIG. 19 is a view of a profile projector used to measure the characteristics of a wire according to the invention.
  • FIG. 20 is a diagram of a series of measurements on a sample which represents the diameter of the wire and the diameter plus the amplitude as a function of the angular position, in a polar diagram;
  • FIG. 21 is a view of a wire according to an alternative embodiment
  • FIG. 22 is a section along the line XXII-XXII of Figure 21; - Figure 23 is a view similar to Figure 10 of an installation according to a fifth embodiment.
  • FIGS. 1 and 2 A sawing wire 10 according to one embodiment of the invention is shown in FIGS. 1 and 2.
  • Saw wire 10 has a constant circular section over its entire length which may extend for several kilometers.
  • the sawing wire 10 comprises helical corrugations 104 of small amplitude and regular.
  • Figure 1 shows the sawing wire 10 in section, in which the outer circle shows the virtual envelope 101 wherein the wire is inscribed, and the phantom circle 102 shows the location of the centers of the sections of the wire along its length.
  • the sawing wire 10 has a diameter called D.
  • the amplitude of the corrugations 104 is denoted by A while their wavelength is denoted B.
  • the diameter of the envelope is A + D. It is also noted that the amplitude of the corrugations 104 corresponding to the diameter of the circle in phantom also corresponds to a free space between the envelope 101 in which the wire is inscribed and the section of the wire. Subsequently, this space is called training room 103.
  • Sawing wire 10 is preferably made of high-strength steel.
  • the wire further comprises a coating including powder of an abrasive material.
  • an installation 20 comprises a first guide 201 and a second guide 202 for guiding a wire under tension between them, drive means 203 of FIG. wire between the guides 201, 202 and excitation means 30 for vibrating the wire between the two guides 201, 202.
  • the first guide 201 is a die adjusted to the diameter of the wire.
  • the drive means comprise a capstan 203 on which the wire passes after passing through the second guide 202.
  • the installation also comprises a reel 204 which receives a coil of smooth wire and a reel 205 for receiving the wire to be sawed 10 and Wrap it on a receiver coil.
  • the excitation means 30 make it possible to generate an air jet on the wire.
  • a source of pressurized air such as a compressor 301 sends air to a nozzle 302 which is placed in the path of the wire, between the two guides 201, 202.
  • a smooth wire is installed on the reel of the reel, it is introduced into the first then the second guide 202, passes on the capstan and finally is wound on the reel.
  • the wire receives a voltage imparted by the capstan and the first guide 201 which acts as a brake for the wire.
  • the air that is blown through the nozzle 302 on the wire creates vibrations that are substantially rotatable, i.e., the section of the wire viewed in a cutting plane at a predetermined distance from the guides 201, 202 travels substantially a circle.
  • the wire is considered embedded in the first guide 201 and the vibrations of the strand between the guides 201, 202 locally deform the wire permanently.
  • the deformation is imposed in directions that evolve during the vibrations of the strand between the guides 201, 202. It is found that the shape obtained is that described above, namely corrugations 104 of helical shape.
  • the frequency of the oscillations can be adjusted by adjusting the thread tension and changing the distance between the guides 201, 202, like the string of a musical instrument.
  • the wavelength of the corrugations 104 on the wire is a function of this frequency and the running speed of the wire.
  • FIGS. 5 and 6 An installation 20 'according to a second embodiment of the invention is shown in FIGS. 5 and 6.
  • This embodiment differs from the first embodiment in that the excitation means 30' are different and in that the second guide 202 'is rotated about the axis of the wire.
  • the excitation means 30 ' comprise a flange 303 rotatably mounted and having a plurality of bumps 3030.
  • the bumps are the vertices 3030 of the flange 303 of hexagonal shape.
  • the flange rotates and the vertices 3030 of the flange 303 engage with the wire so as to make it vibrate.
  • the second guide 202 imposes a rotation of the wire on itself. It is found that the vibrations imposed on the wire and the rotation of the wire on itself create the deformations of the wire out of the first guide 201 of the form as described above.
  • FIGS. 7 and 8 An installation 20 “according to a third embodiment of the invention is shown in FIGS. 7 and 8. This embodiment differs from the first embodiment in that the excitation means 30" are different and also that the second The guide 202 "is rotated about the axis of the wire, the excitation means 30" comprise a third guide 304 placed between the first and the second guide 201, 202 "and mounted oscillating in a plane perpendicular to the wire.
  • the third guide imposes vibrations on the strand between the first and the second guide 202".
  • the second guide 202 imposes a rotation of the wire on itself.It is found that the vibrations imposed on the wire and the rotation of the wire on itself create the deformations of the wire at the end of the first guide 201 of the form as described above.
  • the third guide is the last die of a drawing plant, the first guide being the penultimate die. This optimizes the drawing process by combining both the wire drawing and wire undulation steps.
  • the second guide 202 is fixed.
  • the excitation means 30 "' comprise a ring 305 placed between the first and the second guide 201, 202.
  • the ring 305 has a passage 3050 for passing the wire.
  • the ring is rotatably mounted about an axis "y" offset from the passage 3050, as shown in the front view of the ring in FIG. 11.
  • the rotation of the ring 305 imposes circular vibrations on the wire 10. , which cause helical deformations to the wire 10.
  • This embodiment is considered the preferred mode by the applicant.
  • the sawing wire 10 When using a sawing wire 10 according to the invention in a cutting operation of a block 12 of hard material, the sawing wire 10 is run in the same manner as in the prior art, with the abrasive paste supply, as shown in FIG. 14. As illustrated in FIG. 15, the abrasive grains 13 tend to be locked in the drive chamber 103, which substantially drives them to the speed of displacement of the sawing wire 10. The effectiveness of the erosion work, for the same wire speed, is greatly improved.
  • the coating is preferably deposited after the corrugations 104 have been made.
  • a sawing wire was made from a 0.120 mm diameter wire. Corrugations were obtained with an amplitude measured by profile projection ranging from 0.006 to 0.125 mm.
  • the waviness pitch was 6 mm.
  • the corrugation pitch B was 10 mm.
  • the ripple pitch B was 8 mm.
  • a profile projector 5 was used in the optical field from which saw wire 10 was mounted.
  • a mounting is used, as shown in Figure 19, having two mandrels 51, 52 facing each other and between the jaws of which the wire 10 is pinched.
  • One of the mandrels 52 is slidably mounted and the wire 10 is energized by a counterweight 53 of x g tending to move the mandrels 51, 52 away from each other.
  • the counterweight makes it possible to keep the wire 10 generally rectilinear without influencing the amplitude of the corrugations.
  • the mandrels 51, 52 are rotatably mounted so as to adjust the angular position of the wire about its axis X.
  • the amplitude A of a ripple on the projection screen 54 of the projector 5 by dividing the measured by the magnification factor which is for example 100. Furthermore, this amplitude A can be measured at different angular positions of the wire around its axis.
  • the set of mandrels 51, 52 is also movably mounted on a cross-table.
  • Figure 20 shows a graphical representation of a series of measurements on a sample which represents the diameter of the wire and the diameter plus the amplitude (D + A) as a function of the angular position, in a polar diagram. It can be seen that the variation of the amplitude A is small as a function of the angular position. It is concluded that the shape of the wire is very close to a helix.
  • the cross-motion table it is also possible to measure the wavelength, for example by moving the wire to shift the wire of a wave in the field of the lens 55 of the projector.
  • the tests were conducted for the cutting of a polycrystalline silicon block of 120 x 120 mm section having a length of 1000 mm. The results of the tests are shown in Figure 18.
  • the graph shows the cut surface as a function of a representative number of the length of wire that has passed through the groove. It is found that all the son to be sawn according to the invention are more effective than a smooth sawing wire. In addition, the efficiency increases with the decrease of the wavelength of the corrugations.
  • the time required to cut the block can be reduced by more than 60% compared to the reference time with a smooth wire.
  • the running speed of the smooth wire was limited to 800 m / min to avoid the risk of loopback, even if the limit commonly used is 600 m / min.
  • a speed of 1500 m / min was obtained with a stable unwinding.
  • the wavelength of the corrugations 104 of the wire to be sawed should preferably be less than 2,800 times the product A x D, the values being expressed in millimeters.
  • the A / D ratio is 1/5. This value is in the range 0.01 to 0.40, and also in the range 0.07 to 0.40.
  • the section of the wire 10' is not constant. It comprises in the example shown two flats 105 parallel and opposite to each other. Noting D the maximum dimension of the section of the wire 10 'and the distance between the flats 105, which also corresponds to the smallest dimension of the section, the dimensions are chosen in a ratio d / D of between 0.9 and 0.995.
  • FIG. 23 is a variant of the installation according to the fourth embodiment.
  • a rolling mill 4 is installed after the first guide 201.
  • the rolling mill 4 comprises two rollers 41, 42 with parallel axes of rotation and which clamp the wire 10 'between them so as to form the two flats 105 by deformation of the wire.
  • the invention is not limited to the embodiments which have just been described by way of example only.
  • the installation can be placed directly at the output of a drawing plant, so that the reel is not necessary and that the drive means are common to both facilities.
  • the first guide may even be in this case one of the dies of the drawing plant.
  • the capstan could play the role of the second guide if it is close enough to the means of excitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Un fil à scier (10) métallique monofilament pour une scie à fil est constitué d'un fil métallique d'un diamètre D et comportant des ondulations (104) hélicoïdales d'amplitude A et de longueur d'onde B, caractérisé en ce que la longueur d'onde B est inférieure à 10 000 fois le produit A x D de l'amplitude et du diamètre et l'amplitude A est comprise entre 0,010 et 0,400 fois le diamètre D, les valeurs étant exprimées en millimètres. Une installation et une méthode de fabrication d'un tel fil fait vibrer le fil entre deux guides (201, 202) en faisant passer le fil entre les guides. Utilisation d'un tel fil pour le sciage de bloc de matériau dur.

Description

FIL A SCIER, METHODE ET INSTALLATION DE FABRICATION D'UN TEL FIL ET UTILISATION
Domaine technique
La présente invention se rapporte à un fil à scier ondulé destiné à la coupe de matériaux durs. Elle concerne également un procédé de fabrication d'un tel fil et une installation pour mettre en œuvre le procédé de fabrication. Enfin, elle concerne un procédé de sciage utilisant un tel fil à scier.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée à la fin du texte.
Etat de la technique La technique de coupe des matériaux durs avec un fil est déjà utilisée pour le débit de blocs de silicium monocristallin ou polycristallin, de semiconducteurs, de cristaux de matériaux magnétiques, de céramiques de quartz ou d'autres matériaux cassants.
Dans le cas de la production de wafers, c'est-à-dire de tranches de silicium, pour la fabrication de cellules solaires photovoltaïques, on utilise cette technique de sciage par fil. Le procédé commence avec des blocs de silicium monocristallin ou polycristallin de section carrée ou ronde qui sont découpés en fines tranches d'épaisseur comprise entre 180 et 280 pm. Un simple fil, typiquement de diamètre 120 pm et d'une longueur de 600 à 900 km, provient d'une bobine et défile sur un banc de quatre rouleaux montés rotatifs autour d'axes parallèles entre eux et répartis aux sommets d'un rectangle. Le fil entoure de multiples fois les rouleaux et forme ainsi des nappes de brins parallèles entre eux et régulièrement espacés. Deux des nappes sont horizontales et reçoivent pendant les opérations de découpe un bloc de silicium qui repose sur une nappe par son poids propre ou est poussé par des moyens mécaniques. Le fil est reçu à sa sortie par une bobine réceptrice.
Chaque brin reçoit par une buse une pâte abrasive qu'il entraîne vers le bloc. Des particules d'abrasif 3 s'interposent entre le fil 1 et le bloc 2, comme le montre les figures 12 et 13, ce qui réalise un processus de coupe par érosion. Des rainures 4 de plus en plus profondes parallèles les unes aux autres sont ainsi réalisées à travers le bloc 2, jusqu'à ce que les rainures débouchent et traversent complètement le bloc. L'abrasif est en général en carbure de silicium (SiC) avec des particules 3 de diamètre compris entre 10 et 15 pm. La pâte abrasive est formée par un mélange de ces particules et une huile ou du glycol.
Ce procédé nécessite un fil de haute qualité, ayant une haute résistance à la tension. Une rupture du fil pendant le processus de découpe rend le bloc inutilisable.
Le fil à scier est en général un filament unique en acier rectiligne et lisse. If est obtenu par tréfilage sur une machine à tréfiler par voie humide et est enroulé sur une bobine.
L'efficacité de l'opération de sciage dépend de nombreux paramètres tels que les caractéristiques du matériau à découper, la vitesse du fil, la nature de l'abrasif et de la pâte abrasive et les propriétés du fil. Un paramètre déterminant est la capacité du fil à entraîner la pâte abrasive et à évacuer le mélange de pâte abrasive et de particules soustraites du matériau, de manière à renouveler l'abrasif sur la surface de travail et à éviter le blocage du fil dans la rainure.
Les capacités d'entraînement d'un fil lisse sont limitées. On constate que les particules d'abrasif ont tendance à rouler entre le fil et la surface du matériau à couper, comme symbolisé par des flèches sur la figure 13.
L'abrasif endommage donc le fil en même temps qu'il abrase le matériau, ce qui aboutit à la limitation de la longueur sur laquelle il peut être utilisé avant de risquer sa rupture. La vitesse de l'abrasif est en moyenne la moitié de celle du fil. On constate également un autre phénomène lors du début de la coupe, illustré par la figure 16. Lorsque le fil entre en contact avec la surface à scier, il est juste tendu sans être guidé latéralement. Le fil roule sur l'abrasif et oscille autour de sa position d'équilibre, de telle sorte qu'un sillon initial est creusé avec une largeur supérieure à celle de la rainure qui est ensuite réalisée. Il en résulte des congés 40 d'entrée des rainures. Ce phénomène entraîne une augmentation importante de la variation totale d'épaisseur pour les wafers, ce qui est une perte importante de qualité.
Le document WO 90/12670 A1 [1] propose un fil à scier monofilament comportant une surface extérieure texturée, de telle sorte que l'abrasif est mieux entraîné et se détache moins facilement du fil. Dans les formes proposées, la surface du fil est munie de microcavités ou de gorges circonférentielles. Cependant, les procédés de fabrication d'un tel fil sont lents et manquent de productivité. Le prix de revient du fil est ainsi très élevé. De plus, le fil est fragilisé par la texture qui crée des concentrations de contraintes et des amorces de rupture.
Les documents EP 1 827 745 A1 [2] et JP 12-89527 [3] montre un fil auquel on a conféré des frisures, c'est-à-dire des formes en zigzag par un passage entre des paires de rouleaux à gaufrer. Bien que ces solutions présentent un meilleur entraînement de l'abrasif, les changements brusques de courbure du fil sont des points de fragilisation du fil qui limitent la tension que peut supporter le fil. De plus, les frisures diminuent la rigidité longitudinale du fil, ce qui peut provoquer des blocages du fil lors du processus de sciage. Pour limiter ces risques, on est amené à réduire la vitesse du fil pendant le sciage, ce qui limite la productivité du procédé de sciage.
Le document JP 2004-276207 A [4] propose aussi un fil pour le sciage. Dans un mode de réalisation, le fil comporte des ondulations en spirale afin de réserver de l'espace entre le fil et la rainure pour stocker et évacuer la matière détachée de la pièce à couper. Cependant, ce fil est trop souple longitudinalement et présente le risque de se mettre en boucle avant d'entrer dans la rainure.
Par ailleurs, des développements récents ont abouti à un fil revêtu d'abrasif, de telle sorte qu'il n'est pas nécessaire d'utiliser de la pâte abrasive. L'abrasif peut être formé de divers oxydes, de carbures, ou de particules de diamant. Les particules sont maintenues sur le fil par une couche de liaison. Cependant, un tel fil reste difficile et onéreux à produire.
L'invention vise à fournir un fil à scier qui permette un bon entraînement de l'abrasif, une grande vitesse de défilement, qui soit résistant tout en restant peu onéreux à produire. Elle vise également à fournir un procédé de fabrication d'un tel fil à scier et une installation mettant en œuvre ce procédé.
Description de l'invention
Avec ces objectifs en vue, l'invention a pour objet un fil à scier métallique monofilament pour une scie à fil, ledit fil à scier étant constitué d'un fil métallique d'un diamètre D et comportant des ondulations hélicoïdales d'amplitude A et de longueur d'onde B, caractérisé en ce que la longueur d'onde B est inférieure à 10 000 fois le produit A x D de l'amplitude et du diamètre et l'amplitude A est comprise entre 0,010 et 0,400 fois le diamètre D, l'amplitude étant mesurée par projection de profil, les valeurs étant exprimées en millimètres.
L'amplitude du fil est mesurée par projection de profil, de manière à effectuer la mesure sans influencer ladite amplitude. Avec de telles caractéristiques le fil à scier permet d'obtenir un bon effet d'entraînement de l'abrasif. L'effet de sciage ainsi obtenu est largement amélioré par rapport au fil lisse et rectiligne. De plus, les caractéristiques d'élongation sont peu affectées par les ondulations et le risque de bouclage pendant le processus de sciage est faible. Du fait de la forme en hélice, un espace est ménagé entre le fil et l'enveloppe du fil qui est nommé une chambre d'entraînement. La chambre d'entraînement s'étend sur un pas d'ondulation et sur une hauteur ayant pour valeur l'amplitude de l'ondulation. La chambre d'entraînement sert de réserve pour l'abrasif qui est ainsi entraîné lors de l'opération de sciage. Elle permet également de recevoir la matière abrasée et de l'évacuer hors de la zone de sciage. On constate que l'abrasif roule moins entre le fil et la pièce et que sa vitesse de déplacement est plus proche de celle du fil, ce qui explique l'augmentation de l'efficacité du sciage. On a pu constater une augmentation de la vitesse de sciage de 70% par rapport au sciage avec un fil à scier lisse et droit. De plus, comme l'abrasif se déplace moins vite par rapport au fil, le fil s'use moins vite, ce qui lui permet de traiter une plus grande longueur de matériau à scier ou autorise plusieurs passages. Un autre effet avantageux du fil est qu'il permet de couper des pièces d'une plus grande largeur, car le matériau abrasé est mieux évacué et le risque de blocage du fil par ce matériau dans le bloc à scier est diminué. On a constaté également une diminution de la consommation de pâte abrasive, du fait que celle-ci est mieux entraînée et reste plus longtemps en contact avec les surfaces à couper.
Comme les ondulations sont uniformes, le fil conserve globalement sa rectitude, de telle sorte que le fil reste droit pendant le processus de sciage. On constate également une meilleure stabilité du fil lors de l'entrée en contact avec la surface à scier, comme on le verra mieux par la suite, ce qui diminue la variation d'épaisseur des wafers.
De manière particulière, l'amplitude A est comprise entre 0,07 et 0,40 fois le diamètre D. Ce facteur influe directement les caractéristiques d'allongement du fil, en maintenant une faible propension à l'allongement. Il est cependant suffisant pour permettre l'entraînement des particules d'abrasif et de matériau abrasé. Ces valeurs peuvent correspondre à des valeurs d'amplitude de 0,01 à 0,15 lorsque les mesures sont faites avec un micromètre. On réalise par exemple ce type de mesure sur des diamètres supérieurs ou égaux à 250 pm. Par exemple, pour un fil de diamètre 0,25 mm, l'amplitude des ondulations est comprise préférentiellement entre 4 et 25 μηη quand elle est mesurée avec un micromètre, et entre 21 et 100 μητι quand elle est mesurée avec un projecteur de profil.
Selon un choix particulier, la longueur d'onde B est inférieure à 2 800 fois le produit A x D de l'amplitude et du diamètre, les valeurs étant exprimées en millimètres. Ces valeurs ont montrés une grande efficacité du sciage, celle-ci augmentant avec la diminution de B en deçà de ce seuil.
Selon une caractéristique préférentielle, la longueur d'onde des ondulations est inférieure à 8 mm. Une telle caractéristique a une influence favorable sur le risque de bouclage du fil pendant l'opération de sciage.
A titre d'exemple, le diamètre D du fil est compris entre 0,08 mm et
0,50 mm. Ces valeurs sont adaptées à de nombreuses applications, en particulier au sciage de wafers en silicium. Les valeurs les plus fréquentes sont comprises entre 0,12 et 0,30 mm. Cependant, les fils d'autres diamètres peuvent présenter les caractéristiques de l'invention avec les mêmes avantages.
Selon une caractéristique complémentaire, le fil à scier comporte un revêtement de matériau abrasif. Un tel fil n'a pas d'abrasif à entraîner. Par contre, les chambres d'entraînement sont utiles pour évacuer la matière abrasée. Le matériau abrasif peut être une poudre de diamant.
Selon une caractéristique particulière du fil à scier, la section du fil est non circulaire. On dispose ainsi d'un moyen supplémentaire pour former une chambre d'entraînement. En effet, la partie la plus grande de la section détermine la position du fil dans la rainure de sciage, de telle sorte que la partie la plus petite est plus éloignée de la rainure et ménage un espace plus grand pour la chambre d'entraînement.
De manière particulière, le rapport d'une plus petite dimension de la section du fil et d'un diamètre d'enveloppe de la section est compris entre 0,9 et 0,995. Bien que l'écart entre les deux dimensions extrêmes de la section soit faible, on constate une amélioration de l'efficacité du sciage, tout en conservant une bonne résistance du fil, ce qui permet de maintenir les conditions de sciage, en particulier au niveau de la tension du fil. L'invention a aussi pour objet une méthode de fabrication d'un fil à scier tel que décrit précédemment, caractérisée en ce qu'on fait défiler le fil sous tension d'un premier guide vers un deuxième guide, on applique des vibrations à fa partie du fil entre les deux guides, les vibrations étant tournantes par rapport à la section du fil au niveau du premier guide, de telle sorte que les vibrations induisent des déformations permanentes au fil sous forme d'ondulations sensiblement hélicoïdales.
Ce procédé permet d'obtenir des ondulations avec l'amplitude et la longueur d'onde souhaitée. De plus, on constate que la cadence de production est plus intéressante que celle du fil ondulé par les méthodes exposées dans les documents [2] et [3]. La fabrication peut être faite sur une installation spécifique, en déroulant une bobine de fil lisse et rectiligne, ou directement en reprenant le fil à la sortie d'une filière de tréfilage, sans imposer de réduction de cadence.
Selon un premier mode de réalisation, on applique les vibrations sur le fil en soufflant un jet d'air sur le fil. Un tel jet est suffisamment efficace pour mettre en vibration le fil tendu entre les guides. La fréquence des oscillations est proche de la fréquence de résonance déterminée par la masse linéique du fil, sa tension et la distance entre les guides. Le jet d'air est de préférence continu, mais il peut aussi être modulé. De plus, les vibrations sont tournantes, c'est-à-dire que le fil n'oscille pas dans un plan particulier, mais décrit une trajectoire elliptique ou circulaire centrée sur l'axe défini par les guides. La forme des vibrations et leur amplitude peuvent être modulées en particulier par l'orientation et la position du jet d'air relativement au fil.
Selon d'autres modes de réalisation, détaillés ci-après, on entraîne le fil en rotation sur lui-même par la rotation du deuxième guide, le premier guide étant fixe. Ainsi, même si les vibrations sont dans un plan, l'effet des déformations s'applique de manière tournante sur le fil qui prend dès lors des ondulations hélicoïdales. Plus précisément, selon un deuxième mode de réalisation, on applique des vibrations au fil par un flasque d'excitation comportant au moins une bosse, le flasque étant monté rotatif de manière à ce que la bosse s'engage avec le fil à chaque tour du flasque. Les vibrations du fil sont créées mécaniquement par le flasque qui repousse et relâche régulièrement le fil. Dans ce cas également, la fréquence des oscillations est proche de la fréquence de résonance déterminée par la masse linéique du fil, sa tension et la distance entre les guides. Le flasque peut comporter plusieurs bosses, en étant par exemple de forme polygonale, telle qu'une forme triangulaire, carrée ou hexagonale.
Selon un troisième mode de réalisation, on applique les vibrations par l'intermédiaire d'un troisième guide placé entre le premier et le deuxième guide et monté oscillant dans un plan perpendiculaire au fil. Le fil est directement entraîné dans ses vibrations par le troisième guide.
Selon une option du troisième mode de réalisation, le troisième guide est une filière de tréfilage. Dans ce cas, le premier guide est aussi une filière de tréfilage et le troisième guide est la dernière filière de l'opération de tréfilage. Les déformations du fil sont induites à la fois à la sortie du premier et du troisième guide.
De manière complémentaire, la filière de tréfilage est rotative autour de son axe de tréfilage. Ce mouvement implique une répartition circulaire des ondulations du fil.
Selon un quatrième mode de réalisation, sans rotation du deuxième guide, les ondulations du fil sont générées par une bague placée entre le premier et le deuxième guide, la bague comportant un passage pour le fil et étant entraînée en rotation autour d'un axe parallèle et décalé par rapport au passage. Le passage étant excentré par rapport à l'axe de rotation, des oscillations tournantes sont imposées au fil, lesquelles se répercutent jusqu'au premier guide. On constate que les déformations imposées ainsi au fil lui confèrent une forme très proche d'une spirale. L'invention a aussi pour objet une installation de fabrication d'un fil tel que décrit précédemment, caractérisée en ce qu'elle comporte un premier guide et un deuxième guide pour guider un fil sous tension entre eux, des moyens d'entraînement du fil entre les guides et des moyens d'excitation pour faire vibrer le fil entre les deux guides.
D'une manière particulière, le premier guide est une filière ajustée au diamètre du fil. Cette filière peut être la dernière d'une installation de tréfilage. Ainsi, l'installation selon l'invention est une simple station supplémentaire à une installation de tréfilage.
Selon une disposition constructive, les moyens d'entraînement comportent un cabestan pour tirer le fil après son passage dans le deuxième guide. Le fil est ainsi tiré à travers les guides.
L'invention a aussi pour objet un procédé de sciage d'un matériau selon lequel on déplace un fil à scier sous tension contre le matériau, caractérisé en ce que le fil à scier est un fil à scier tel que défini précédemment.
Brève description des figures
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :
- la figure 1 représente une vue de dessus d'un fil à scier conforme à un mode de réalisation de l'invention ;
- la figure 2 est une vue en coupe selon la ligne ll-ll de la figure 1 ;
- la figure 3 est une vue schématique d'une installation pour fabriquer le fil à scier conforme à l'invention selon un premier mode de réalisation ;
- la figure 4 est une vue du détail IV de la figure 3 ;
- la figure 5 est une vue similaire à la figure 3 d'une installation selon un deuxième mode de réalisation ;
- la figure 6 est une vue du détail VI de la figure 5 ; - la figure 7 est une vue similaire à la figure 3 d'une installation selon un troisième mode de réalisation ;
- la figure 8 est une vue du détail VIII de la figure 7 ;
- la figure 9 est une vue similaire à la figure 3 d'une installation selon un quatrième mode de réalisation ;
- la figure 10 est une vue du détail X de la figure 9 ;
- la figure 11 est une vue de face d'une bague utilisée dans l'installation de la figure 9 ;
- la figure 12 est une vue illustrant un procédé de sciage à fil selon l'art antérieur, en section perpendiculaire à l'axe des fils ;
- la figure 13 est une coupe selon la ligne XIII-XIII de la figure 12 ;
- la figure 14 une vue similaire à la figure 9 illustrant un procédé de sciage avec un fil à scier selon l'invention ;
- la figure 15 est une coupe selon la ligne XV-XV de la figure 14 ;
- la figure 16 est une vue illustrant le procédé de sciage à fil selon l'art antérieur dans une phase de début de sciage ;
- la figure 17 est une vue similaire à la figure 16 illustrant le procédé de sciage avec le fil à scier selon l'invention ;
- la figure 18 est un diagramme montrant des résultats d'essais avec des fils à scier présentant différentes longueurs d'onde d'ondulations ;
- la figure 19 est une vue d'un projecteur de profil utilisé pour mesurer les caractéristiques d'un fil conforme à l'invention ;
- la figure 20 est un diagramme d'une série de mesures sur un échantillon qui représente le diamètre du fil et le diamètre plus l'amplitude en fonction de la position angulaire, dans un diagramme polaire ;
- la figure 21 est une vue d'un fil selon une variante de réalisation ;
- la figure 22 est une section selon la ligne XXII-XXII de la figure 21 ; - la figure 23 est une vue similaire à la figure 10 d'une installation selon un cinquième mode de réalisation. DESCRIPTION DETAILLEE
Un fii à scier 10 conforme à un mode de réalisation de l'invention est montré sur les figures 1 et 2. Le fil à scier 10 a une section circulaire constante sur toute sa longueur qui peut s'étendre sur plusieurs kilomètres. Le fil à scier 10 comporte des ondulations 104 hélicoïdales de faible amplitude et régulières. Sur la figure 1 , seule une petite partie du fil à scier 10 a été représentée, en exagérant l'amplitude des ondulations 104. La figure 2 montre le fil à scier 10 en section, dans laquelle le cercle extérieur montre l'enveloppe 101 virtuelle dans laquelle le fil s'inscrit, et le cercle en traits mixtes 102 montre le lieu des centres des sections du fil le long de sa longueur. Le fil à scier 10 a un diamètre nommé D. L'amplitude des ondulations 104 est notée A tandis que leur longueur d'onde est notée B. On constate que le diamètre de l'enveloppe vaut A+D. On constate également que l'amplitude des ondulations 104, correspondant au diamètre du cercle en traits mixtes correspond également à un espace libre entre l'enveloppe 101 dans laquelle le fil s'inscrit et la section du fil. Par la suite, cet espace est appelé chambre d'entraînement 103.
Le fil à scier 10 est réalisé de préférence en acier à haute résistance. Dans un mode de réalisation non représenté, le fil comporte en outre un revêtement incluant de la poudre d'un matériau d'abrasif.
Selon un premier mode de réalisation de l'invention, une installation 20, telle que montrée sur les figures 3 et 4 comporte un premier guide 201 et un deuxième guide 202 pour guider un fil sous tension entre eux, des moyens d'entraînement 203 du fil entre les guides 201 , 202 et des moyens d'excitation 30 pour faire vibrer le fil entre les deux guides 201 , 202. Le premier guide 201 est une filière ajustée au diamètre du fil. Les moyens d'entraînement comportent un cabestan 203 sur lequel le fil passe après son passage dans le deuxième guide 202. L'installation comporte également un dévidoir 204 qui reçoit une bobine de fil lisse et un enrouleur 205 pour recevoir le fil à scier 10 et l'enrouler sur une bobine réceptrice. Dans le premier mode de réalisation, les moyens d'excitation 30 permettent de générer un jet d'air sur le fil. Pour cela, une source d'air sous pression telle qu'un compresseur 301 envoie de l'air à une buse 302 qui est placée sur la trajectoire du fil, entre les deux guides 201 , 202.
Lors du fonctionnement de l'installation, un fil lisse est installé sur la bobine du dévidoir, il est introduit dans le premier puis le deuxième guide 202, passe sur le cabestan et finalement est enroulé sur la bobine réceptrice. Le fil reçoit une tension conférée par le cabestan et par le premier guide 201 qui agit comme un frein pour le fil. L'air qui est soufflé par la buse 302 sur le fil crée des vibrations qui sont sensiblement tournantes, c'est-à-dire que la section du fil vue dans un plan de coupe à une distance prédéterminée des guides 201 , 202 parcourt sensiblement un cercle. Le fil est considéré comme encastré dans le premier guide 201 et les vibrations du brin situé entre les guides 201 , 202 déforment localement le fil de manière permanente. Comme le fil avance continuellement, la déformation est imposée dans des directions qui évoluent lors des vibrations du brin entre les guides 201 , 202. On constate que la forme obtenue est celle décrite précédemment, à savoir des ondulations 104 de forme hélicoïdale. La fréquence des oscillations peut être réglée en ajustant la tension du fil et en modifiant la distance entre les guides 201 , 202, à la manière de la corde d'un instrument de musique. La longueur d'onde des ondulations 104 sur le fil est fonction de cette fréquence et de la vitesse de défilement du fil.
Une installation 20' selon un deuxième mode de réalisation de l'invention est montrée sur les figures 5 et 6. Ce mode de réalisation diffère du premier mode en ce que les moyens d'excitation 30' sont différents et en ce que le deuxième guide 202' est entraîné en rotation autour de l'axe du fil. Les moyens d'excitation 30' comportent un flasque 303 monté rotatif et comportant une pluralité de bosses 3030. En l'occurrence, les bosses sont les sommets 3030 du flasque 303 de forme hexagonale. En fonctionnement, lorsque le fil passe entre les guides 201 , 202', le flasque tourne et les sommets 3030 du flasque 303 s'engagent avec le fil de manière à le faire vibrer. Dans le même temps, le deuxième guide 202' impose une rotation du fil sur lui-même. On constate que les vibrations imposées au fil ainsi que la rotation du fil sur lui-même créent les déformations du fil au sortir du premier guide 201 de la forme telle que décrite précédemment.
Une installation 20" selon un troisième mode de réalisation de l'invention est montrée sur les figures 7 et 8. Ce mode de réalisation diffère du premier mode en ce que les moyens d'excitation 30" sont différents et aussi en ce que le deuxième guide 202" est entraîné en rotation autour de l'axe du fil. Les moyens d'excitation 30" comportent un troisième guide 304 placé entre le premier et le deuxième guide 201 , 202" et monté oscillant dans un plan perpendiculaire au fil.
En fonctionnement, lorsque le fil passe entre les guides 201 , 202", le troisième guide impose des vibrations au brin entre le premier et le deuxième guide 202". Dans le même temps, le deuxième guide 202" impose une rotation du fil sur lui-même. On constate que les vibrations imposées au fil ainsi que la rotation du fil sur lui-même créent les déformations du fil au sortir du premier guide 201 de la forme telle que décrite précédemment.
Dans une variante du troisième mode de réalisation, non représentée, le troisième guide est la dernière filère d'une installation de tréfilage, le premier guide étant l'avant-dernière filière. On optimise ainsi le procédé de tréfilage en combinant à la fois les étapes de tréfilage et celle d'ondulation du fil. En complément, on peut également entraîner le troisième guide 304 en rotation autour de son axe de filage, afin de s'assurer de la répartition circulaire des ondulations.
Selon un quatrième mode de réalisation d'une installation selon l'invention, représenté sur les figures 9 à 11 , le deuxième guide 202 est fixe. Les moyens d'excitation 30"' comportent une bague 305 placée entre le premier et le deuxième guide 201 , 202. La bague 305 comporte un passage 3050 pour passer le fil. La bague est montée rotative autour d'un axe « y » décalé par rapport au passage 3050, comme le montre la vue de face de la bague sur la figure 11. Ainsi, la rotation de la bague 305 impose des vibrations circulaires au fil 10, lesquelles entraînent des déformations hélicoïdales au fil 10. Ce mode de réalisation est considéré comme le mode préféré par la demanderesse.
Lors de l'utilisation d'un fil à scier 10 selon l'invention dans une opération de découpe d'un bloc 12 de matériau dur, on fait défiler le fil à scier 10 de la même manière que selon l'art antérieur, avec l'alimentation en pâte abrasive, comme le montre la figure 14. Comme l'illustre la figure 15, les grains d'abrasif 13 ont tendance à être bloqués dans la chambre d'entraînement 103, ce qui les entraîne sensiblement à la vitesse de déplacement du fil à scier 10. L'efficacité du travail d'érosion, pour une même vitesse de fil, est grandement améliorée.
On constate par ailleurs que l'entrée en contact entre le fil à scier 10 à la surface du bloc 12 à découper est plus stable et présente moins d'oscillations, de telle sorte qu'aucun congé n'est créé entre les rainures 14 et la surface du bloc, comme le montre la figure 17. La variation de l'épaisseur des wafers ainsi réalisés est diminuée.
Si on souhaite réaliser un fil avec un revêtement de matériau abrasif, le revêtement est déposé de préférence après la réalisation des ondulations 104.
Exemples :
Des essais de fabrication ont été réalisés. Un fil à scier a été réalisé à partir d'un fil de diamètre 0,120 mm. Des ondulations ont été obtenues avec une amplitude mesurée par projection de profil variant de 0,006 à 0,125 mm. Sur l'installation 20 selon le premier mode de réalisation, le pas d'ondulation était de 6 mm. Sur l'installation 20' selon le deuxième mode de réalisation, le pas d'ondulation B était de 10 mm. Sur l'installation 20" selon le troisième mode de réalisation, le pas d'ondulation B était de 8 mm.
Pour effectuer les mesures d'amplitude, on a utilisé un projecteur de profil 5 dans le champ optique duquel le fil à scier 10 a été monté. Pour monter le fil, on utilise un montage, comme montré sur la figure 19, comportant deux mandrins 51 , 52 se faisant face et entre les mors desquels le fil 10 est pincé. L'un des mandrins 52 est monté coulissant et le fil 10 est mis sous tension par un contrepoids 53 de x g tendant à éloigner les mandrins 51 , 52 l'un de l'autre. Le contrepoids permet de maintenir le fil 10 globalement rectiligne sans influencer sur l'amplitude des ondulations. Les mandrins 51 , 52 sont montés rotatifs de manière à régler la position angulaire du fil autour de son axe X. Ainsi, on peut mesurer directement l'amplitude A d'une ondulation sur l'écran de projection 54 du projecteur 5 en divisant la mesure par le facteur de grossissement qui est par exemple de 100. De plus, on peut mesurer cette amplitude A à différentes positions angulaires du fil autour de son axe. L'ensemble des mandrins 51 , 52 est également monté mobile sur une table à mouvements croisés. La figure 20 montre une représentation graphique d'une série de mesures sur un échantillon qui représente le diamètre du fil et le diamètre plus l'amplitude (D+A) en fonction de la position angulaire, dans un diagramme polaire. On constate que la variation de l'amplitude A est faible en fonction de la position angulaire. On en conclut que la forme du fil est très proche d'une hélice. Avec la table à mouvements croisés, on peut également mesurer la longueur d'onde, par exemple en déplaçant le fil pour décaler le fil d'une onde dans le champ de l'objectif 55 du projecteur.
D'autres méthodes de mesure de l'amplitude ont été essayées. Cependant, la méthode de projection du profil est préférée. En effet, on a essayé de mesurer l'amplitude à l'aide d'un micromètre (appelé aussi palmer). Cependant, on constate que la pression des touches modifie de manière très sensible la géométrie du fil, ce qui fausse la mesure. Des essais de découpe ont été conduits avec des fils de différentes caractéristiques. Les valeurs de ces caractéristiques sont rassemblées dans le tableau 1.
Tableau 1
Les essais ont été conduits pour la découpe d'un bloc de silicium polycristallin de section 120 x 120 mm ayant une longueur de 1000 mm. Les résultats des essais sont montrés sur la figure 18. Le graphique montre la surface coupée en fonction d'un nombre représentatif de la longueur de fil qui a passé dans la rainure. On constate que tous les fils à scier selon l'invention sont plus efficaces qu'un fil à scier lisse. De plus, l'efficacité augmente avec la diminution de la longueur d'onde des ondulations. Le temps requis pour couper le bloc peut être réduit de plus de 60% par rapport au temps de référence avec un fil lisse.
La vitesse de défilement du fil lisse était limitée à 800 m/min pour éviter le risque de bouclage, même si la limite couramment utilisée est de 600 m/min. Avec le fil selon l'invention, une vitesse de 1500 m/min a été obtenue avec un déroulement stable.
On considère donc que la longueur d'onde des ondulations 104 du fil à scier 10 doit être de préférence inférieure à 2 800 fois le produit A x D, les valeurs étant exprimées en millimètres. Dans ces exemples, le rapport A/D est de 1/5. Cette valeur comprise est dans la fourchette 0,01 à 0,40, et aussi dans la fourchette 0,07 à 0,40. Dans une variante de réalisation du fil à scier 10', montré sur les figures 21 et 22, la section du fil 10' n'est pas constante. Elle comporte dans l'exemple représenté deux méplats 105 parallèles et opposés l'un à l'autre. En notant D la dimension maximale de la section du fil 10' et d la distance entre les méplats 105, ce qui correspond également à la plus petite dimension de la section, on choisit les dimensions dans un rapport d/D compris entre 0,9 et 0,995.
Pour fabriquer un tel fil 10', on utilise une installation selon un cinquième mode de réalisation de l'invention, montrée sur la figure 23, qui est une variante de l'installation selon le quatrième mode de réalisation. Un laminoir 4 est installé après le premier guide 201. Le laminoir 4 comporte deux rouleaux 41 , 42 à axes de rotation parallèles et qui serrent le fil 10' entre eux de manière à former les deux méplats 105 par déformation du fil. Le fil 10' subit les vibrations à la sortie du laminoir 4, les vibrations étant imposées par la bague 305.
L'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits à titre d'exemple uniquement. L'installation peut être placée directement à la sortie d'une installation de tréfilage, de telle sorte que le dévidoir n'est pas nécessaire et que les moyens d'entraînement sont communs aux deux installations. Le premier guide peut même être dans ce cas l'une des filières de l'installation de tréfilage. Le cabestan pourrait jouer le rôle du deuxième guide s'il est suffisamment proche des moyens d'excitation.
Listes des références
[1] WO 90/12670 A1 , publié le 1/1 1/1990
[2] EP 1 827 745 A1 , publié le 5/09/2007
[3] JP 12-89527, publié le 21/11/1989
[4] JP 2004-276207 A, publié le 07/10/2004

Claims

REVENDICATIONS
1. Fil à scier métallique monofilament pour une scie à fil, ledit fil à scier (10) étant constitué d'un fil métallique d'un diamètre D et comportant des ondulations (104) hélicoïdales d'amplitude A et de longueur d'onde B, caractérisé en ce que la longueur d'onde B est inférieure à 10 000 fois le produit A x D de l'amplitude et du diamètre et l'amplitude A est comprise entre 0,010 et 0,400 fois le diamètre D, l'amplitude étant mesurée par projection de profil, les valeurs étant exprimées en millimètres.
2. Fil à scier selon la revendication 1 , dans lequel l'amplitude A est comprise entre 0,070 et 0,400 fois le diamètre D.
3. Fil à scier selon la revendication 1 , dans lequel l'amplitude A est comprise entre 0,010 et 0,150 fois le diamètre D.
4. Fil à scier selon l'une des revendications 1 à 3, dans lequel la longueur d'onde B est inférieure à 2 800 fois le produit A x D de l'amplitude et du diamètre.
5. Fil à scier selon l'une des revendications 1 à 4, dans lequel le diamètre D est compris entre 0,08 mm et 0,50 mm.
6. Fil à scier selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte un revêtement de matériau abrasif.
7. Fil à scier selon l'une des revendications 1 à 6, dans lequel la section du fil est non circulaire.
8. Fil à scier selon la revendication 7, dans lequel le rapport d'une plus petite dimension de la section du fil et d'un diamètre d'enveloppe de la section est compris entre 0,9 et 0,995.
9. Méthode de fabrication d'un fil à scier (10) selon l'une des revendications 1 à 8, caractérisée en ce qu'on fait défiler le fil sous tension d'un premier guide (201 ) vers un deuxième guide (202), on applique des vibrations à la partie du fil entre les deux guides (201 , 202), les vibrations étant tournantes par rapport à la section du fil au niveau du premier guide (201 ), de telle sorte que les vibrations induisent des déformations permanentes au fil sous forme d'ondulations (104) sensiblement hélicoïdales.
10. Méthode selon la revendication 9, selon laquelle on applique les vibrations sur le fil en soufflant un jet d'air sur le fil.
11. Méthode selon la revendication 9, selon laquelle on entraîne le fil en rotation sur lui-même par la rotation du deuxième guide (202', 202"), le premier guide (201 ) étant fixe.
12. Méthode selon la revendication 11 , selon laquelle on applique des vibrations au fil par un flasque (303) d'excitation comportant au moins une bosse (3030), le flasque (303) étant monté rotatif de manière à ce que la bosse (3030) s'engage avec le fil à chaque tour du flasque (303).
13. Méthode selon la revendication 11 , selon laquelle on applique les vibrations par l'intermédiaire d'un troisième guide (304) placé entre le premier et le deuxième guide (201 , 202") et monté oscillant dans un plan perpendiculaire au fil.
14. Méthode selon la revendication 13, selon laquelle le troisième guide (304) est une filière de tréfilage.
15. Méthode selon la revendication 14, selon laquelle la filière de tréfilage (304) est rotative autour de son axe de tréfilage.
16. Méthode selon la revendication 9, selon laquelle les vibrations du fil sont générées par une bague (305) placée entre le premier et le deuxième guide (201 , 202), la bague (305) comportant un passage (3050) pour le fil (10) et étant entraînée en rotation autour d'un axe (y) parallèle et décalé par rapport au passage (3050).
17. Installation de fabrication d'un fil selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comporte un premier guide (201 ) et un deuxième guide (202) pour guider un fil sous tension entre eux, des moyens d'entraînement (203) du fil entre les guides (201 , 202) et des moyens d'excitation (30) pour faire vibrer le fil entre les deux guides (20 , 202).
18. Installation selon la revendication 17, dans laquelle le premier guide (201 ) est une filière ajustée au diamètre du fil.
19. Installation selon la revendication 17, dans laquelle les moyens d'entraînement comportent un cabestan pour tirer le fil après son passage dans le deuxième guide (202).
20. Procédé de sciage d'un matériau selon lequel on déplace un fil à scier (10) sous tension contre le matériau, caractérisé en ce que le fil à scier (10) est un fil à scier (10) selon l'une des revendications 1 à 8.
EP13709918.0A 2012-03-16 2013-03-15 Fil a scier, methode et installation de fabrication d'un tel fil et utilisation Withdrawn EP2825342A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1252389A FR2988023A1 (fr) 2012-03-16 2012-03-16 Fil a scier, methode de fabrication d'un tel fil et utilisation
FR1256186A FR2988024B1 (fr) 2012-03-16 2012-06-28 Fil a scier, methode de fabrication d'un tel fil et utilisation.
PCT/EP2013/055479 WO2013135895A1 (fr) 2012-03-16 2013-03-15 Fil a scier, methode et installation de fabrication d'un tel fil et utilisation

Publications (1)

Publication Number Publication Date
EP2825342A1 true EP2825342A1 (fr) 2015-01-21

Family

ID=46963871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13709918.0A Withdrawn EP2825342A1 (fr) 2012-03-16 2013-03-15 Fil a scier, methode et installation de fabrication d'un tel fil et utilisation

Country Status (8)

Country Link
US (1) US9352404B2 (fr)
EP (1) EP2825342A1 (fr)
JP (1) JP2015513473A (fr)
CA (1) CA2867457A1 (fr)
EA (1) EA201491693A1 (fr)
FR (2) FR2988023A1 (fr)
SG (1) SG11201406460RA (fr)
WO (1) WO2013135895A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202743A (ja) * 2012-03-29 2013-10-07 Japan Fine Steel Co Ltd ウエーハスライス用ソーワイヤの製造方法およびウエーハスライス用ソーワイヤ
CN104589521A (zh) * 2013-10-31 2015-05-06 苏闽(张家港)新型金属材料科技有限公司 一种能提高切割效率的切割钢丝及其生产设备和制造方法
JP6281312B2 (ja) * 2014-02-20 2018-02-21 株式会社Sumco シリコンウェーハの製造方法
FR3018711B1 (fr) * 2014-03-24 2016-03-11 Thermocompact Sa Procede de fabrication d'une boucle fermee de fil de decoupe
DE102015200198B4 (de) * 2014-04-04 2020-01-16 Siltronic Ag Verfahren zum Abtrennen von Halbleiterscheiben von einem Werkstück mit einem Sägedraht
WO2016066336A1 (fr) * 2014-10-31 2016-05-06 Nv Bekaert Sa Fil de scie mis en forme à courbure commandée au niveau des coudes
KR20170050068A (ko) * 2015-10-29 2017-05-11 홍덕산업(주) 편평 형상의 크림프 소우 와이어
CN105459280A (zh) * 2015-12-30 2016-04-06 盛利维尔(中国)新材料技术有限公司 一种带有锯齿元素的切割钢丝
KR101736657B1 (ko) 2016-01-29 2017-05-16 주식회사 효성 절단용 파형 모노와이어
CN108145874A (zh) * 2017-12-28 2018-06-12 镇江耐丝新型材料有限公司 一种具有梯形波形的切割钢丝及其制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437630A (en) * 1945-07-17 1948-03-09 Crucible Steel Company Wire pay-off mechanism
GB611372A (en) * 1946-04-30 1948-10-28 Halifax Wiredrawing Die Compan An improvements in or relating to the supply of abrasive to machines for grinding wiredrawing dies
US2928528A (en) * 1954-06-02 1960-03-15 Canada Steel Co Wire-drawing die
US3525243A (en) * 1967-06-15 1970-08-25 Gulton Ind Inc Wire cleaning apparatus
US4055073A (en) * 1976-09-16 1977-10-25 Sigma Lutin, Narodni Podnik Drawing die for elongated twist bodies
US4317353A (en) * 1979-12-26 1982-03-02 Delta T Limited Tube twisting apparatus
US4872923A (en) * 1987-08-03 1989-10-10 U.S. Automation Co. Die-less drawing method and apparatus
JPH01289527A (ja) 1988-05-13 1989-11-21 Kanai Hiroyuki クリンプワイヤとその製造方法
CH680658A5 (fr) 1989-04-19 1992-10-15 Charles Hauser
JP2755909B2 (ja) * 1994-07-29 1998-05-25 信越半導体株式会社 ワイヤソー
CH691292A5 (fr) * 1995-10-03 2001-06-29 Hct Shaping Systems Sa Dispositif de sciage par fil équipé d'un système de gestion de fil permettant l'utilisation de bobines de fil de très grande longueur.
US6065462A (en) * 1997-11-28 2000-05-23 Laser Technology West Limited Continuous wire saw loop and method of manufacture thereof
DE19841492A1 (de) * 1998-09-10 2000-03-23 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Abtrennen einer Vielzahl von Scheiben von einem sprödharten Werkstück
DE19959414A1 (de) * 1999-12-09 2001-06-21 Wacker Chemie Gmbh Vorrichtung zum gleichzeitigen Abtrennen einer Vielzahl von Scheiben von einem Werkstück
WO2002022922A2 (fr) * 2000-09-11 2002-03-21 Pall Corporation Installation et procede de fabrication pour cable de fibres metalliques de haute qualite
DE10228843A1 (de) * 2002-06-27 2004-01-22 Wacker-Chemie Gmbh Verfahren zur chargenweisen Beschichtung von Sägedraht
JP2004276207A (ja) * 2003-03-18 2004-10-07 Kanai Hiroaki マルチワイヤソー用ソーワイヤ
CN1938136A (zh) * 2004-03-30 2007-03-28 索拉克斯有限公司 用于切割超薄硅片的方法和装置
JP4540437B2 (ja) 2004-09-22 2010-09-08 シャープ株式会社 画像処理装置
JP4643237B2 (ja) * 2004-12-02 2011-03-02 Ntn株式会社 車輪用軸受装置
LU91126B1 (en) 2004-12-23 2006-06-26 Trefilarbed Bettembourg S A Monofilament metal saw wire
US7544021B2 (en) * 2005-11-01 2009-06-09 Berkshire Precision Tool. Llc Rotary cutting tool with non-uniform distribution of chip-breaking features
JP5124155B2 (ja) * 2007-04-03 2013-01-23 株式会社ブリヂストン ワイヤの癖付け方法および癖付け装置
JP2008290121A (ja) * 2007-05-25 2008-12-04 Hitachi Cable Ltd 銅線の製造方法
JP2010167509A (ja) * 2009-01-20 2010-08-05 Kanai Hiroaki 固定砥粒ソーワイヤ及び切断方法
EP2501513B1 (fr) * 2009-11-17 2019-09-11 NV Bekaert SA Câble de sciage
US20110126813A1 (en) * 2009-12-01 2011-06-02 Diamond Wire Technology, Inc. Multi-wire wafer cutting apparatus and method
WO2012069314A1 (fr) * 2010-11-22 2012-05-31 Nv Bekaert Sa Fil de sciage structuré

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013135895A1 *

Also Published As

Publication number Publication date
US9352404B2 (en) 2016-05-31
CA2867457A1 (fr) 2013-09-19
SG11201406460RA (en) 2014-11-27
WO2013135895A1 (fr) 2013-09-19
FR2988023A1 (fr) 2013-09-20
FR2988024B1 (fr) 2014-06-13
US20150158098A1 (en) 2015-06-11
JP2015513473A (ja) 2015-05-14
FR2988024A1 (fr) 2013-09-20
EA201491693A1 (ru) 2014-12-30

Similar Documents

Publication Publication Date Title
WO2013135895A1 (fr) Fil a scier, methode et installation de fabrication d'un tel fil et utilisation
EP1726679B1 (fr) Procédé de fabrication d'une nappe liée constituée de fils céramiques à matrice métallique et nappe liée obtenue par le procédé
CH698130B1 (fr) Dispositif et procédé de sciage par fil.
EP0707941B1 (fr) Procédé et machine pour l'élaboration de tubes en matériau composite à caractéristiques mécaniques et tribologiques élevées, et tubes obtenus par ledit procédé
FR2735456A1 (fr) Procedes et appareil pour la fabrication de pieces annulaires en materiau composite et de preformes pour ces pieces
CH696806A5 (fr) Scie à fil à mouvement alternatif.
FR2781815A1 (fr) Procede et dispositif de fabrication de fils de matiere thermoplastique coupes
EP3310516A1 (fr) Fil abrasif pour la découpe de tranches dans un lingot en matériau dur
WO2017158290A1 (fr) Procede et dispositif de decoupe d'une plaque ou d'un panneau de materiau de construction poreux
WO2020120777A1 (fr) Procedés de suivi de la coupe en fonction de la flêche d'au moins un fil de coupe et dispositif associé
FR2954202A1 (fr) Procede de polissage d'au moins une eprouvette avec renouvellement de bande abrasive et machine a polir
EP3684565A1 (fr) Procede et dispositif de decoupe d'un matelas ou d'un panneau en laine minerale ou d'une plaque ou d'un panneau en materiau de construction poreux
CH694182A5 (fr) Dispositif de sciage par fil.
FR3115485A1 (fr) Procédé de découpe en tranches d’un bloc
CH696757A5 (fr) Procédé et dispositif de sciage par fil.
EP3463711B1 (fr) Dispositif et procédé de traction et de dressage d'un monofilament métallique
EP2656953B1 (fr) Scie à fil et fil pour découper un matériau
EP3429791B1 (fr) Procede de decoupe d'un matelas, d'un panneau ou d'une plaque en laine minerale ou materiau de construction poreux
FR3096603A1 (fr) Dispositif de découpe à fil de découpe adoptant la forme d’une boucle fermée
FR3085880A1 (fr) Procede de frettage d’une piece cylindrique par enroulement de fibres sous tension
JP2024522523A (ja) ワークピースから複数のディスクを同時に切り出すための方法
WO2023089289A1 (fr) Procede d'obtention d'une piece en materiau composite a matrice ceramique
CH604944A5 (en) Continuous extrusion of fine wire
FR3020001A1 (fr) Dispositif de decoupe par fil comportant un organe rotatif prevu pour l'entrainement du fil en mouvement d'oscillation
BE437169A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003