EP2817666A2 - Tête de projection pour un projecteur laser - Google Patents

Tête de projection pour un projecteur laser

Info

Publication number
EP2817666A2
EP2817666A2 EP13706463.0A EP13706463A EP2817666A2 EP 2817666 A2 EP2817666 A2 EP 2817666A2 EP 13706463 A EP13706463 A EP 13706463A EP 2817666 A2 EP2817666 A2 EP 2817666A2
Authority
EP
European Patent Office
Prior art keywords
fiber
projection head
lens
head according
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13706463.0A
Other languages
German (de)
English (en)
Inventor
Wolfram Biehlig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LDT Laser Display Technology GmbH
Original Assignee
LDT Laser Display Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LDT Laser Display Technology GmbH filed Critical LDT Laser Display Technology GmbH
Publication of EP2817666A2 publication Critical patent/EP2817666A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres

Definitions

  • the invention is concerned with a fiber extraction with small fiber spacings, ie with a new concept, improving the optical properties of the projection head with scanning laser projection.
  • a fiber decoupling is presented, with which there are advantages over previous solutions with fiber duo. It represents a possibility to be able to adjust the position of the crossing point between the light beams. So it is possible to place the crossing point on the polygon facets. As a result, lower light losses occur and edge discoloration when projecting is reduced.
  • the distance between the fibers is small (about 25 - 125 ⁇ ). This now makes it possible to integrate more than two fibers so that several lines can be scanned simultaneously. This allows a higher image resolution than can be realized with a fiber duo.
  • the light is transported from a laser source to the projection channel via an optical fiber.
  • the image quality is determined decisively by the optical design in the area between the end of the fiber duo and a biaxial scanner.
  • the divergent bundles of rays emerging from both light fibers are collimated by a collimation lens.
  • This beam offset leads to deterioration of the image quality.
  • the inhomogeneity of the brightness distribution in the image increases.
  • it can lead to edge discoloration.
  • the aperture eliminates much of the scattered light.
  • Fig. 1 such a known arrangement of the embodiment of the fiber outcoupling for a fiber duo is shown according to the prior art.
  • the light is transported from the laser source to the projection channel via optical fibers 100, 101.
  • a Collimating lens 102 By a Collimating lens 102, the light emerging from the two optical fibers 100, 101, divergent beam bundles are collimated.
  • different impact points occur on the polygonal facet mirror 104.
  • DE 10 2004 001 389 A1 discloses an arrangement and a device for minimizing edge discoloration in video projectors.
  • an image is projected onto a projection surface, which is composed of pixels.
  • the arrangement comprises at least one light beam emitting, variable in intensity light source and a Jus- day device after a fiber, containing an optical delay for symmetrizing the light beam, and a subsequent deflection.
  • the method and device for projecting an image onto a projection surface from DE 10 2008 063 222 A1 builds on a fiber of DE 10 2004 001 389 A1 and proposes to construct the deflection device with a scanner unit and suitable deflection mirrors. Furthermore, the deflection unit comprises fixed or movably arranged dichroic mirrors, etc., as well as optionally a diaphragm system.
  • DE 10 2007 019 017 A1 discloses a further method and a further apparatus for projecting an image on a projection surface, which is constructed from pixels, with at least one, an intensity changeable light source emitting a light beam and a coupling device after the fiber and a subsequent deflection device which directs the light beam onto the projection surface.
  • DE 601 24 565 T2 presents a raster laser projection system in which narrow neighboring light-conducting bundles are used in order to be able to scan several lines simultaneously on the projection screen.
  • the fiber ends are imaged by an optic on the projection screen.
  • the different primary color components red, green, blue
  • the colored points of light red, green, blue
  • three or more optical fibers are used.
  • One or more points on the projection surface must be irradiated sequentially or simultaneously by different scans within an image in order to superimpose on the projection surface the points of light emerging from the different optical fibers of the fiber bundle.
  • the possible structure of the optics after the fiber is not explained in detail.
  • the invention has the object to improve the structure of a projection head with a simple structure, so that the image quality is improved.
  • the invention is therefore based on the idea to cross the collimated rays at the location of the polygon facet mirror (crossing point), wherein the aperture is brought to a better position, without the functionality is impaired in any way.
  • the known collimating lens is replaced by a new decoupling system or decoupling device.
  • the system is formed by two converging lenses.
  • the first converging lens produces a focal point of the two beams near the focal plane of the second condenser lens which collimates them.
  • This crossing point is imaged by the second converging lens in the plane of the polygon facet, where then a second crossing point lies.
  • the aperture is at the first crossing point.
  • the system must be dimensioned so that there is a crossing point of both beams at the location of the polygon facet mirror.
  • the angle that both beams form with each other and the beam diameter on the projection screen preferably remain unchanged. Since the system is not limited to one fiber duo, more than two fibers can be used.
  • the advantage of this decoupling device is that the distance between the fibers low, ie, close to each other, can be selected (about 25 - 125 ⁇ ), so that now more than two fibers can now be integrated, resulting in multiple lines simultaneously scan.
  • the system can be constructed of collecting and diverging lenses.
  • Each fiber has a converging lens that creates a virtual focal spot in the focus of a diverging lens.
  • the collimation is realized in the second step by the diverging lens.
  • In front of the diverging lens there is preferably a slight inclination of the rays coming from the (two) fibers with respect to the optical axis.
  • a third variant results from adding a telescope. As a result, even the length can be reduced.
  • the collimation is carried out by the diverging lens, the beam diameter immediately thereafter now smaller and the inclination angle is greater.
  • the telescope then expands the beam and reduces the inclination angle to the required values. As a result, several optical fibers can be integrated.
  • FIG. 2 is a schematic representation of the coupling device according to the invention with two fibers
  • Fig. 6 shows an implementation possibility of the arrangement in the form of a fiber array.
  • FIG. 2 shows a coupling-out optical system 1 (decoupling system or decoupling device) for two fibers 2, 3.
  • 4 designates a first converging lens, here a focusing lens and 5 an aperture.
  • Downstream of the diaphragm 5 is a second converging lens 6, here a Collimating lens which is spaced from a polygon facet mirror 7 followed by a projection screen 20.
  • From the fibers 2, 3 are light beams 2.1 and 3.1 of a light source not shown in detail (which is variable in intensity) coupled via the converging lens 4 and through the aperture 5 and the second convergent lens 6.
  • the first converging lens 4 generates a focal point of the two beams in the focal plane or in the vicinity of the second converging lens 6, which collimates them.
  • the two beams intersect. This crossing point is imaged by the second converging lens 6 in the plane of the polygonal facet mirror 7, where a second crossing point is located.
  • the scattered light aperture 5 is located in the first crossing point.
  • the beams 2.2, 3.2 crossed by the polygonal facet mirror 7 are imaged on the projection screen 20.
  • FIG. 3 shows the use of a fiber group 10 consisting of four fibers 2, 3, 8, 9.
  • Each lens 2, 3, 8, 9 is in practice representative of a lens group. As already shown in Fig. 2, the fibers 2, 3, 8, 9 can be aligned parallel to each other, which allows a small distance of the fibers 2, 3, 8, 9 to each other and thus a small space.
  • Fig. 4 (ac) shows various arrangements of the fiber group 10 in the direction of the optical axis.
  • the optical axis lies at the intersection of the two lines Ln, L 12 .
  • the fiber end faces of the mutually parallel aligned fibers are shown in each case.
  • the fiber arrangement must be realized so that each fiber in the scanned image results in a line Z. Lines Z 11-19 are written equidistantly, the line spacing gives a defined value.
  • the arrangement 4c is formed in an analogous manner.
  • Fiber arrays 21 can be realized with high precision, for example silicon plates 22 (or glass) with parallel V-grooves 23, as shown in FIG. In each groove then an optical fiber can be introduced with great precision.
  • the coupling-out 1 is to be dimensioned so that a crossing point of the beam is located at the location of the polygonal facet mirror 7, the beam diameter on the projection screen 20 or on the polygon facets 7 remaining unchangeable with respect to the prior art. That is, the output should have the same beam diameter as in the prior art when using the same optical fiber on the projection screen and on the facets of the polygon mirror.
  • the distance of the converging lenses 4, 6 itself can be determined by means of the Newtonian mapping equations etc.
  • the total length depends on the relationship
  • each fiber Based on the basic functionality of converging lenses and a diverging lens, each fiber has a converging lens that creates a virtual focal point in the focus of the adjoining diverging lens. The collimation is then realized in the second step by the diverging lens and this projected onto the polygon facet mirror. The fibers are inclined towards each other such that the rays coming from the fibers are slightly inclined with respect to the optical axis and intersect at the virtual crossing point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

La présente invention concerne un nouveau concept améliorant les propriétés optiques de la tête de projection lors de la projection laser à balayage. Elle concerne une extraction à partir de fibres (1) qui présente des avantages par rapport aux solutions actuelles avec deux fibres. Ce concept offre la possibilité de pouvoir régler la position du point d'intersection des faisceaux lumineux. Il est ainsi possible de situer le point d'intersection sur les facettes du polygone (7). A cet effet, la lentille de collimation connue est remplacée par un nouveau système d'extraction (1). Ce système réduit les pertes de lumière, ainsi que les altérations marginales de la couleur lors de la projection. L'écart entre les fibres (2, 3, 8, 9) peut être minime (environ 25 à 125 μm). Il est dès lors également possible d'intégrer plus de deux fibres (2, 3, 8, 9), ce qui permet le balayage simultané de plusieurs lignes (Z11-19). Il en résulte une meilleure résolution de l'image que celle qui peut être obtenue à l'aide de deux fibres.
EP13706463.0A 2012-02-21 2013-02-19 Tête de projection pour un projecteur laser Withdrawn EP2817666A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202636A DE102012202636A1 (de) 2012-02-21 2012-02-21 Projektionskopf für einen Laserprojektor
PCT/EP2013/053241 WO2013124256A2 (fr) 2012-02-21 2013-02-19 Tête de projection pour un projecteur laser

Publications (1)

Publication Number Publication Date
EP2817666A2 true EP2817666A2 (fr) 2014-12-31

Family

ID=47754455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13706463.0A Withdrawn EP2817666A2 (fr) 2012-02-21 2013-02-19 Tête de projection pour un projecteur laser

Country Status (4)

Country Link
US (1) US20140362427A1 (fr)
EP (1) EP2817666A2 (fr)
DE (1) DE102012202636A1 (fr)
WO (1) WO2013124256A2 (fr)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185891A (en) * 1977-11-30 1980-01-29 Grumman Aerospace Corporation Laser diode collimation optics
US4911526A (en) * 1988-10-07 1990-03-27 Eastman Kodak Company Fiber optic array
US5002348A (en) * 1989-05-24 1991-03-26 E. I. Du Pont De Nemours And Company Scanning beam optical signal processor
US5136675A (en) * 1990-12-20 1992-08-04 General Electric Company Slewable projection system with fiber-optic elements
GB9218482D0 (en) * 1992-09-01 1992-10-14 Dixon Arthur E Apparatus and method for scanning laser imaging of macroscopic samples
JPH09211357A (ja) * 1996-01-31 1997-08-15 Asahi Optical Co Ltd 走査光学装置における点光源列の角度調節機構及び調節方法
JPH09211352A (ja) * 1996-01-31 1997-08-15 Asahi Optical Co Ltd 走査光学装置
JPH09211277A (ja) * 1996-01-31 1997-08-15 Asahi Optical Co Ltd 光結像装置
DE19726860C1 (de) * 1997-06-24 1999-01-28 Ldt Gmbh & Co Verfahren und Vorrichtung zur Darstellung eines Videobildes sowie ein Herstellungsverfahren für die Vorrichtung
US20020021881A1 (en) * 2000-04-05 2002-02-21 Steinberg Dan A. Single-piece alignment frame for optical fiber arrays
US6726372B1 (en) * 2000-04-06 2004-04-27 Shipley±Company, L.L.C. 2-Dimensional optical fiber array made from etched sticks having notches
US7102700B1 (en) * 2000-09-02 2006-09-05 Magic Lantern Llc Laser projection system
JP4316829B2 (ja) * 2001-09-20 2009-08-19 富士フイルム株式会社 露光装置及び結像倍率調整方法
DE60239817D1 (de) * 2001-10-01 2011-06-01 Panasonic Corp Anzeigeeinheit des projektionstyps, rückprojektor und mehrfachsichtsystem
KR100446505B1 (ko) * 2002-02-02 2004-09-04 삼성전자주식회사 트리 구조의 홈들을 구비한 블록과 이를 이용한 다심광섬유 블록 및 그 정렬 방법
US6644864B2 (en) * 2002-03-14 2003-11-11 International Business Machines Corporation Stacked optical coupler
US20040001256A1 (en) * 2002-06-27 2004-01-01 Fuji Photo Film Co., Ltd Array refracting element, array diffracting element and exposure apparatus
US6874950B2 (en) * 2002-12-17 2005-04-05 International Business Machines Corporation Devices and methods for side-coupling optical fibers to optoelectronic components
US6816292B2 (en) * 2002-12-26 2004-11-09 Pentax Corporation Scanning optical system
DE102004001389B4 (de) 2004-01-09 2006-01-26 Jenoptik Ldt Gmbh Anordnung und Vorrichtung zur Minimierung von Randverfärbungen bei Videoprojektionen
US8089425B2 (en) * 2006-03-03 2012-01-03 Prysm, Inc. Optical designs for scanning beam display systems using fluorescent screens
DE102007019017A1 (de) 2007-04-19 2009-01-22 Ldt Laser Display Technology Gmbh Verfahren und Vorrichtung zum Projizieren eines Bildes auf eine Projektionsfläche
US7667727B2 (en) * 2007-12-20 2010-02-23 Palo Alto Research Center Incorporated Multiple-beam raster output scanner with a compensating filter
WO2009082998A1 (fr) 2007-12-28 2009-07-09 Ldt Laser Display Technology Gmbh Procédé et dispositif de projection d'une image sur une surface de projection
JP5135513B2 (ja) * 2008-02-20 2013-02-06 並木精密宝石株式会社 光ファイバアレイ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013124256A2 *

Also Published As

Publication number Publication date
WO2013124256A3 (fr) 2013-12-05
WO2013124256A2 (fr) 2013-08-29
DE102012202636A1 (de) 2013-08-22
US20140362427A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
DE3137031C2 (de) Mehrfachstrahlenbündel-Abtastoptiksystem
DE4324848C1 (de) Videoprojektionssystem
EP3332168B1 (fr) Dispositif d'éclairage laser pour phares de véhicule
DE102007027615A1 (de) Vorrichtung zur Einkopplung von Licht in einen faseroptischen Lichtleiter
WO2014139835A1 (fr) Dispositif d'homogénéisation d'un faisceau laser
EP1122574B1 (fr) Arrangement de microscope
EP2817967A1 (fr) Tête de projection pour un projecteur laser
EP2309309A2 (fr) Dispositif destiné à la formation de rayons laser
DE102007019017A1 (de) Verfahren und Vorrichtung zum Projizieren eines Bildes auf eine Projektionsfläche
WO2008037346A1 (fr) Microscope à balayage laser muni d'un élément de manipulation de pupille
DE102013114083A1 (de) Vorrichtung zur Formung von Laserstrahlung
DE102017212926A1 (de) LIDAR-Vorrichtung und Verfahren mit einer verbesserten Ablenkvorrichtung
EP3011393B1 (fr) Dispositif de balayage
EP0839333A1 (fr) Procede et dispositif pour transmettre un faisceau lumineux de faible divergence injecte dans un guide de lumiere et destine a eclairer les points d'image d'une image video
DE4221067C2 (de) Optisches Abtastsystem
WO2013068168A1 (fr) Dispositif laser à substance luminescente muni d'un réseau laser
EP2817666A2 (fr) Tête de projection pour un projecteur laser
WO2016116424A2 (fr) Dispositif optique pour un système laser-scanner
EP3355097A1 (fr) Procédé pour la collimation d'un rayonnement lumineux, laser haute puissance et optique de focalisation et procédé de collimation d'un rayonnement lumineux
DE102011114754A1 (de) "Laser-Scanning-Mikroskop"
DE10062453A1 (de) Verfahren und Vorrichtung zur Überlagerung von Strahlenbündeln
DE102016108384B3 (de) Vorrichtung und Verfahren zur lichtblattartigen Beleuchtung einer Probe
EP2880485B1 (fr) Dispositif de balayage achromatique avec objectif f-thêta monochromatique
DE19546977A1 (de) Abtastobjektiv
DE102008063222A1 (de) Verfahren und Vorrichtung zum Projizieren eines Bildes auf eine Projektionsfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140702

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170707

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180118