EP2812418A1 - Imidazoliumsalze als additive für kraft- und brennstoffe - Google Patents

Imidazoliumsalze als additive für kraft- und brennstoffe

Info

Publication number
EP2812418A1
EP2812418A1 EP13702810.6A EP13702810A EP2812418A1 EP 2812418 A1 EP2812418 A1 EP 2812418A1 EP 13702810 A EP13702810 A EP 13702810A EP 2812418 A1 EP2812418 A1 EP 2812418A1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
variables
alkyl
fuels
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13702810.6A
Other languages
English (en)
French (fr)
Other versions
EP2812418B1 (de
Inventor
Maxim Peretolchin
Ludwig Völkel
Harald BÖHNKE
Markus Hansch
Boris GASPAR
Christian Seitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP13702810.6A priority Critical patent/EP2812418B1/de
Publication of EP2812418A1 publication Critical patent/EP2812418A1/de
Application granted granted Critical
Publication of EP2812418B1 publication Critical patent/EP2812418B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2641Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen bonds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel

Definitions

  • the present invention relates to the use of imidazolium salts as additives for fuels, in particular as detergent additives for diesel fuels, especially for diesel fuels used in direct-injection diesel engines, in particular in common-rail injection systems, to be burned. Furthermore, the present invention relates to an additive concentrate as well as a fuel or fuel composition containing such imidazolium salts. Furthermore, the present invention relates to novel imidazolium salts and their use in industrial fluids.
  • direct-injection diesel engines the fuel is injected through a multi-hole injection nozzle of the engine directly into the combustion chamber and finely distributed (nebulized) instead of being introduced into a pre- or swirl chamber as in the classic (chamber) diesel engine.
  • the advantage of direct-injection diesel engines lies in their high performance for diesel engines and yet low consumption. In addition, these engines achieve a very high torque even at low speeds.
  • the diesel fuel is pumped by a pump with pressures up to 2000 bar into a high-pressure line, the common rail.
  • spur lines run to the various injectors, which inject the fuel directly into the combustion chamber.
  • the full pressure is always applied to the common rail, which allows a multiple injection or a special injection form. In the other injection systems, however, only a smaller variation of the injection is possible.
  • Injection in the common rail is essentially subdivided into three groups: (1) pre-injection, which substantially achieves softer combustion, so that hard combustion noise ("nailing") is reduced and engine running appears quiet; (2.) main injection, which is responsible in particular for a good torque curve; and (3.) post-injection, which provides in particular for a low NCv value.
  • pre-injection which substantially achieves softer combustion, so that hard combustion noise ("nailing") is reduced and engine running appears quiet
  • main injection which is responsible in particular for a good torque curve
  • post-injection which provides in particular for a low NCv value.
  • the fuel is not burned in the rule, but evaporated by residual heat in the cylinder.
  • the resulting exhaust gas / fuel mixture is transported to the exhaust system, where the fuel in the presence of suitable catalysts acts as a reducing agent for the nitrogen oxides NO x .
  • the pollutant emissions of the engine eg the emission of nitrogen oxides (NO x ), carbon monoxide (CO) and particulate matter (soot) can be positively influenced in the common-rail injection system.
  • NO x nitrogen oxides
  • CO carbon monoxide
  • the international application WO 2012/004300 (1) describes acid-free quaternized nitrogen compounds as fuel additives which are obtained by addition of a compound containing at least one anhydride-reactive oxygen or nitrogen-containing group and additionally at least one quaternizable amino group to a polycarboxylic anhydride compound and subsequent quaternization with an epoxide in the absence of free acid.
  • Polyamines having at least one primary or secondary amino group and at least one tertiary amino group are particularly suitable as compounds with an anhydride-reactive oxygen or nitrogen-containing group and additionally a quaternizable amino group.
  • Particularly suitable polycarboxylic acid anhydrides are dicarboxylic acids such as succinic acid with a longer-chain hydrocarbyl substituent.
  • Such a quaternized nitrogen compound is, for example, the reaction product of polyisobutenyl succinic anhydride obtained at 40 ° C with 3- (dimethylamino) propylamine, which is a polyisobutenylsuccinic acid hemiamide and which is then quaternized with styrene oxide in the absence of free acid at 70 ° C.
  • acid-free quaternized nitrogen compounds are particularly suitable as fuel additive for reducing or preventing deposits in injection systems of direct-injection diesel engines, especially in common-rail injection systems, to reduce the fuel consumption of direct-injection diesel engines, especially diesel engines with common-rail injection systems, and / or to minimize the power loss in direct injection diesel engines, especially in diesel engines with common rail injection systems.
  • the international application PCT / EP201 1/071683 (2) describes polytetrahydrobenzoxazines and bistetrahydrobenzoxazines as fuel additives which are obtainable by successively adding in a first reaction step a C 1 to C 20 -alkylenediamine having two primary amino functions, eg 1, 2 Ethylenediamine, with a Cr to Ci2-aldehyde, z. B.
  • the bis-tetrahydrobenzoxazine thus obtained is heated to a temperature of from 125 to 280 ° C. for at least 10 minutes.
  • Such polytetrahydrobenzoxazines and bisty-hexane-benzoxazines are particularly suitable as fuel additives for reducing or preventing deposits in injection systems of direct-injection diesel engines, in particular in common-rail injection systems, for reducing the fuel consumption of direct-injection diesel engines, in particular diesel engines with common rail engines.
  • variables R 1 and R 3 independently of one another are an organic radical having 1 to 3000 carbon atoms
  • the variables R 2, R 4 and R 5, independently of one another denote hydrogen or an organic radical having 1 to 3000 carbon atoms
  • X denotes an anion and n represents the number 1, 2 or 3, found as additives for fuels.
  • Imidazolium salts of type (I) include - in addition to, for example, open-chain quaternary ammonium salts, pyridinium salts, pyridazinium salts, pyrimidinium salts, pyrazinium salts, pyrazolium salts, pyrazolinium salts, imidazolinium salts, thiazolium salts, Triazolium salts, pyrrolidinium salts and imidazolidinium salts - to the so-called ionic liquids, which are understood as meaning salts (ie compounds of cations and anions) which at normal pressure has a melting point of less than 200 ° C, usually even less than 80 ° C, Lonic liquids often contain an organic compound as a cation (organic cation). Depending on the valency of the anion, the ionic liquid may contain other cations, such as metal cations, in addition to the organic cation.
  • Imidazolium salts of type (I) are known in their use as detergents or dispersants in lubricant formulations.
  • WO 2010/101801 A1 (3) describes oil-soluble ionic detergents as additive components in lubricating oils for internal combustion engines; Examples include, in addition to open-chain ionic systems and quaternized pyridinium detergents, quaternized imidazolium phenates, imidazolium chlorides, and imidazolium salicylates.
  • WO 2010/096168 A1 (4) describes ionic liquids such as pyridinium salts as additives for controlling the formation of deposits on the internal combustion engine internal surfaces. However, unlike the present invention, such additives are added to the lubricating oil rather than the fuel used to operate these engines. In addition, WO 2010/096168 A1 explicitly does not disclose imidazolium salts as such additives.
  • US Pat. No. 4,108,858 (5) discloses high molecular weight N-hydrocarbyl-substituted quaternized ammonium salts having a molecular weight of from 350 to 3,000 carbon atoms for the hydrocarbyl group as detergents and dispersants for fuels such as gasoline fuels and diesel fuels and for lubricating oils.
  • high molecular weight N-hydrocarbyl-substituted quaternized ammonium salts in addition to open-chain systems, salts of piperidines, piperazines, morpholines and pyridines are mentioned.
  • longer-chain hydrocarbyl radicals are, for example, polybutene or polypropylene radicals.
  • the imidazolium salts (I) are used as detergent additives for diesel fuels.
  • the imidazolium salts (I) are used as a wax anti-settling additive (WASA) for middle distillate fuels, in particular diesel fuels.
  • WASA wax anti-settling additive
  • the imidazolium salts (I) are used as lubricity improvers for fuels and fuels, in particular as friction modifiers for gasoline fuels and as lubricity additives for middle distillate fuels or diesel fuels.
  • the organic radicals for the variables R1 to R5 in the imidazolium salts of the general formula (I) preferably contain 1 to 1000, in particular 1 to 500, especially 1 to 250 carbon atoms.
  • these organic radicals are low molecular weight radicals, for example alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or heteroaryl radicals, or polymeric radicals, for example polypropyl radicals or, in particular, polyisobutyl radicals.
  • Low molecular weight radicals preferably contain 1 to 20 carbon atoms.
  • organic radicals having 1 to 3000 carbon atoms for the variables R 1 to R 5 in the imidazolium salts of the general formula (I) are preferably C 1 to C 20 alkyl radicals, in particular C 1 to C 12 alkyl radicals, especially C 1 to C 7 alkyl radicals, and aryl thereof -, heteroaryl, cycloalkyl, halogeno, hydroxy, amino, carboxy, formyl, -O-, -CO-, -CO-O- or -CO-N ⁇ substituted components, for example methyl, Ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl (isobutyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2-pentyl , 3-pentyl, 2-methyl-1-butyl, 3-methyl-1-butyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2,2-
  • Suitable organic radicals having 1 to 20 carbon atoms for the variables R1 to R5 in the imidazolium salts of the general formula (I) are furthermore also C3 to C12 cycloalkyl radicals, in particular C5 to Cz cycloalkyl radicals, and their aryl, heteroaryl -, cycloalkyl, halogen, hydroxy, amino, carboxy, formyl, -O-, -CO- or -CO-O- substituted components, for example cyclopentyl, 2-methyl-1-cyclopentyl, 3-methyl 1 -cyclopentyl, cyclohexyl, 2-methyl-1-cyclohexyl, 3-methyl-1-cyclohexyl, 4-methyl-1-cyclohexyl and also fluorocyclohexyl radicals such as perfluorocyclohexyl.
  • Suitable organic radicals having 1 to 20 carbon atoms for the variables R1 to R5 in the imidazolium salts of the general formula (I) are also also C2 to C2o alkenyl radicals, in particular C3 to Cs alkenyl radicals, and their aryl, heteroaryl, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO- or -CO-O- substituted components, for example vinyl, 2-propenyl (allyl), 3-butenyl, cis- 2-butenyl, trans-2-butenyl and also fluoroalkenyl radicals such as perfluoro-2-propenyl, perfluoro-3-butenyl or perfluoro-2-butenyls.
  • Suitable organic radicals having 1 to 20 carbon atoms for the variables R 1 to R 5 in the imidazolium salts of the general formula (I) are furthermore also C 3 - to C 12 -cycloalkenyl radicals, in particular C 5 - to C 2 -cyclocoalkenyl radicals, and their aryl-, heteroaryl-, cycloalkyl, halo, hydroxy, amino, carboxy, formyl, -O-, -CO- or -CO-O-substituted components, for example 3-cyclopentenyl, 2-cyclohexenyl, 3-cyclohexenyl, 2.5 Cyclohexadienyl and also Fluorcycloalkenylreste such as fluorocyclohexenyl.
  • Suitable organic radicals having 1 to 20 carbon atoms for the variables R1 to R5 in the imidazolium salts of the general formula (I) are also also aryl or heteroaryl radicals having 3 to 20, in particular 5 to 10 carbon atoms and their alkyl, aryl, heteroaryl , cycloalkyl, halo, hydroxy, amino, carboxy, formyl, -O-, -CO- or -CO-O-substituted components, for example phenyl, 2-methyl-phenyl (2-tolyl), 3-methylphenyl (3-tolyl), 4-methylphenyl (4-tolyl), 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2,3-dimethylphenyl, 2, 4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 4-phenylphen
  • two adjacent radicals of the variables R 1 to R 5 may be an unsaturated, saturated or aromatic, optionally substituted by functional groups, aryl, alkyl, aryloxy, alkyloxy, halogen, heteroatoms and / or heterocycles and optionally substituted by one or more oxygen and / or Form sulfur atoms and / or one or more substituted or unsubstituted imino groups interrupted ring.
  • the organic radicals having 1 to 3000 carbon atoms for the variables R 1 to R 5 may be synthetically produced radicals or-especially in the case of alkyl and alkenyl radicals-radicals based on naturally occurring compounds.
  • the latter are derived, in particular, from naturally occurring glycerides or fatty acids, for example from stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid or tallow fatty acid.
  • Such radicals based on naturally occurring compounds often represent mixtures of different, mostly homologous alkyl or alkenyl radicals.
  • organic radicals having from 1 to 3000 carbon atoms for the variables R 1 to R 5 in the imidazolium salts of the general formula (I) preference is furthermore given to polyisobutyl radicals having from 16 to 3000, in particular from 20 to 1000, especially from 25 to 500, very particularly preferably from 30 up to 250 carbon atoms, into consideration.
  • polyisobutyl radicals have a number-average molecular weight M n of from 200 to 40,000, preferably from 500 to 15,000, in particular from 700 to 7000, especially from 900 to 3000, very particularly preferably from 900 to 110, by gel permeation chromatography.
  • the polyisobutyl radicals may be attached directly or through a methylene group (-CH 2 -) to the imidazolium ring.
  • the organic radicals having 1 to 3000 carbon atoms for the variables R 1 to R 5, in particular the alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl and heteroaryl radicals mentioned, and also the polymeric radicals mentioned, may have one or more in their skeleton Heteroatoms such as oxygen atoms, sulfur atoms or optionally substituted by further usually low molecular weight organic radicals containing nitrogen atoms or one or more substituents or one or more functional groups, for example hydroxyl groups, halogen atoms such as fluorine, chlorine or bromine, pseudohalide groups such as thiocyanato or Dicyanamido, cyano groups, nitro groups , Sulfo groups, sulfonic acid groups, sulfonic acid ester groups, sulfonic acid amide groups, amino groups, carboxylic acid groups, carboxylic acid ester groups or carboxamide groups.
  • Heteroatoms such as oxygen atoms, sulfur
  • imidazolium salts of the general formula (I) are used, in which the variables R 1 and R 3 have the abovementioned meanings of an organic radical having 1 to 3000 carbon atoms and the variables R 2, R 4 and R 5 are hydrogen.
  • imidazolium salts of the general formula (I) are used in which the variables R 1 and R 3 independently of one another are C 1 - to C 20 -alkyl groups, C 2 - to C 20 -alkenyl groups and / or polyisobutyl radicals having a number-average molecular weight ( M n ) are from 200 to 40,000 and the variables R 2, R 4 and R 5 are each hydrogen.
  • C to C 20 -alkyl groups are preferably pure hydrocarbon radicals. Typical examples of such pure C to C 20 hydrocarbons are 2-ethylhexyl and tallow fatty alkyl.
  • anions X in the imidazolium salts of the general formula (I) come z. B.
  • chloride bromide, iodide; thiocyanate; hexafluorophosphate; Trifluoromethanesulfonate; methane; Carboxylates, in particular formate, acetate, propionate, butyrate or benzoate; mandelate; Nitrate; Nitrite; trifluoroacetate; Sulfate; Bisulfate; Methyl sulfate; ethyl sulfate; 1-propyl sulfate; 1-butyl sulfate; 1 -hexyl sulfate; 1-octyl sulfate; Phosphate; dihydrogen phosphate; Hydrogen phosphate; Ci-C4-dialkyl; propionate; Tetrachloroaluminate; AI2CI7 " ; chlorozincate; chloroferrate; bis (trifluoromethylsulfonyl) imide; bis (pentafluoroe
  • the anions X are selected from the following group:
  • Alkyl sulfates of the formula R a OSO 3 " where R a is a C 1 to C 12 alkyl group, preferably a C 1 to C 6 alkyl group;
  • alkyl sulfonates of the formula R a SC "3 " wherein R a is a C 1 to C 12 alkyl group, preferably a C 1 to C 8 alkyl group;
  • Halgenides especially chloride and bromide
  • Pseudohalides in particular thiocyanate and dicyanamide
  • Carboxylates of the formula R a COO " where R a is a C 1 to C 6 alkyl group, a C 2 to C 6 alkenyl group, a C 6 to C 6 o aryl group or a C 7 to C 6 alkyl-aryl or arylalkyl group, preferably a C 1 to C 20 alkyl group, a C 2 to C 20 alkenyl group, a C 6 to C 20 aryl group or a C 7 to C 20 alkylaryl or arylalkyl group, especially a C 2 to C 8 alkenyl group, a C 6 - to C12 aryl group or a C7 to C alkylaryl or -Arylalkyl distr, in particular for Acetate, but also formate, propionate, butyrate, acrylate, methacrylate, benzoate, phenyl acetate or o-, m- or p-methylbenzoate;
  • Polycarboxylates of the formula R b (COO " ) n where n is the number 1, 2 or 3 and R n is an n-bonded hydrocarbon radical having 1 to 60, in particular 1 to 20, especially 1 to 14 carbon atoms; such radicals are malonate, succinate, glutarate, adipate, phthalate or terephthalate; further adapted as polycarboxylic boxylat anion also the oxalate anion OC-COO ".
  • Phosphates in particular dialkyl phosphates of the formula R a R b P0 4 -, wherein R a and R b independently of one another represent a C 1 to C 6 alkyl group; in particular, R a and R b are the same alkyl group as in dimethyl phosphate and diethyl phosphate; Phosphonates, in particular monoalkylphosphonic acid esters of the formula R a R b P03 " , where R a and R b independently of one another represent a C 1 to C 6 alkyl group;
  • TFSI anion of the formula N (S0 2 CF 3 ) 2 -; Tricyanomethamide of the formula (CN) 3 C " .
  • Frequently selected anions X are chloride, bromide, hydrogen sulfate, tetrachloroaluminate, thiocyanate, dicyanamide, methylsulfate, ethylsulfate, methanesulfonate, formate, acetate, dimethyl phosphate, diethyl phosphate, p-tolylsulfonate, tetrafluoroborate, hexafluorophosphate, methylmethylphosphonate, methylphosphonate, the TFSI- Anion, tricyanomethamide and trifluoromethanesulfonate.
  • imidazolium salts of the general formula (I) are used in which the anion X sulfate, an alkyl sulfate, an alkyl sulfonate, an alkyl carbonate, a halide, a pseudohalide, a carboxylate, a phosphate, a Phosphonate, nitrate, nitrite, the TFSI anion of formula N (SC “2CF3) 2 " or the tricyanomethamide anion.
  • Anion X is very particularly preferably an alkyl carbonate, a pseudohalide, a carboxylate or the tricyanomethamide anion. It is also often advantageous if the anion X contains no phosphorus atom, no sulfur atom, no halogen atom and / or no boron atom.
  • n of the anion X depends on its nature and may be 1, 2 or 3. Most often, n is 1 or 2, especially 1.
  • imidazolium salts (I) are 1, 3-dimethylimidazolium acetate, 1, 3-diethylimidazolium acetate, 1-ethyl-3-methylimidazolium acetate, 1-propyl-3-methylimidazolium acetate, 1-butyl-3-yl methylimidazolium acetate, 1-pentyl-3-yl methylimidazolium acetate, 1-hexyl-3-methylimidazolium acetate, 1-octyl-3-methylimidazolium acetate, 1- (2-ethylhexyl) -3-methylimidazolium acetate, 1,3-di (2-ethylhexyl) imidazolium acetate acetate, 1-decyl-3-methylimidazolium acetate, 1- (2-propylheptyl) -3-methylimidazolium acetate, 1, 3,4,5-tetramethylimid
  • Typical individual examples of imidazolium salts (I) with polyisobutenyl radicals are 1-polyisobutyl-3-methylimidazolium acetate, 1-polyisobutyl-3-ethylimidazolium acetate, 1-polyisobutyl-3-propylimidazolium acetate, 1-polyisobutyl-3-butylimidazolium acetate, 1 - Polyisobutyl-3- (2-ethylhexyl) imidazolium acetate, 1,3-di (polyisobutyl) imidazolium acetate, 1-polyisobutyl-3-methylimidazolium methyl carbonate, 1-polyisobutyl-3-ethylimidazolium methyl carbonate, 1-polyisobutyl 3-propylimidazolium methyl carbonate, 1-polyisobutyl-3-butylimidazolium methyl
  • Imidazolium salts of type (I) with low molecular weight radicals are marketed commercially under the name Basionics TM by BASF SE.
  • imidazolium salts of type (I) is familiar to the person skilled in the art.
  • a typical synthetic route is based on imidazole formation from 1 mole of a 1,2-dicarbonyl compound, 1 mole of an appropriately substituted primary amine, 1 mole of ammonia and 1 mole of an aldehyde, affording N-alkylation with a suitable alkylie and thereafter, if desired, exchange the anion.
  • a low molecular weight primary alkylamine or alkenylamine e.g. B.
  • a d- to Ci3-alkylamine or a polyisobutylamine, ammonia and formaldehyde, an N-alkyl-4,5-diphenylimidazole or an N-alkylimidazole or an N-polyisobutyl-4,5-diphenylimidazole or an N- Polyisobutylimidazole forth and alkylates the unsubstituted second nitrogen atom with an epoxide such as ethylene oxide, propylene oxide, butylene oxide or styrene oxide in the presence of acetic acid or with a dialkylcarbonat, wherein the imidazolium salt then having an acetate anion or an alkyl carbonate anion.
  • an epoxide such as ethylene oxide, propylene oxide, butylene oxide or styrene oxide
  • the imidazolium salt then having an acetate anion or an alkyl carbonate anion.
  • imidazolium salts of type (I) having the same variables R1 and R3, advantageously 1 mole of a 1, 2-dicarbonyl compound is used together with 2 moles of an appropriately substituted primary amine and 1 mole of an aldehyde, optionally in the presence of a suitable solvent (e.g. It- acetic acid and water if an imidazolium acetate is to be obtained) in a one-step synthesis, usually at 20 to 120 ° C, in particular at 25 to 80 ° C to.
  • a suitable solvent e.g. It- acetic acid and water if an imidazolium acetate is to be obtained
  • the fuel or fuel additized with one or more imidazolium salts (I) is a gasoline or, in particular, a middle distillate fuel, especially a diesel fuel.
  • the fuel or fuel may contain other conventional additives ("co-additives") to improve the effectiveness and / or wear suppression.
  • Corrosion inhibitors demulsifiers, dehazers, antifoam agents, cetane number improvers, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or solvents.
  • these are mainly friction modifiers, corrosion inhibitors, demulsifiers, dehazers, antifoams, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators, dyes and / or solvents.
  • suitable co-additives are listed in the following sections.
  • the usual detergent additives are preferably amphiphilic substances which have at least one hydrophobic hydrocarbon radical with a number-average molecular weight (M n ) of from 85 to 20 000 and at least one polar group selected from:
  • the hydrophobic hydrocarbon radical in the above detergent additives which provides sufficient solubility in the fuel, has a number average molecular weight (M n ) of from 85 to 20,000, preferably from 1 13 to 10,000, more preferably from 300 to 5,000 preferably from 300 to 3,000, even more preferably from 500 to 2,500 and in particular from 700 to 2,500, especially from 800 to 1500.
  • M n number average molecular weight
  • typical hydrophobic hydrocarbon radicals are in particular poly propenyl, polybutenyl and polyisobutenyl radicals having a number average molecular weight M n of preferably in each case 300 to 5,000, particularly preferably 300 to 3,000, more preferably 500 to 2,500, even more preferably 700 to 2,500 and in particular 800 to 1,500 into consideration.
  • the above groups of detergent additives the following are mentioned:
  • monoamino (Da) -containing additives are the compounds obtained from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A 196 20 262.
  • these reaction products are mixtures of pure nitropolyisobutenes (for example ⁇ , ⁇ -dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (for example ⁇ -nitro- ⁇ -hydroxy-polyisobutene).
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Dd) containing additives are preferably copolymers of C2 to C4o-olefins with maleic anhydride having a total molecular weight of 500 to 20,000, their carboxyl groups wholly or partly to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are known in particular from EP-A 307 815.
  • Such additives are primarily used to prevent valve seat wear and, as described in WO-A 87/01 126, can be advantageously used in combination with conventional fuel detergents such as poly (iso) buteneamines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (De) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobern- steinklaklalesters, as described in particular in EP-A 639 632.
  • Such additives are mainly used to prevent valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) butenines or polyetheramines.
  • Polyoxy-C2-C4-alkylene (Df) containing additives are preferably lyether or polyetheramines, which by reaction of C2 to C6o-alkanols, C6 to C3o-alkanediols, mono- or D1-C2 to C3o-alkylamines, C 1 -C 30 -alkylcyclohexanols or C 1 -C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene lenoxid and / or butylene oxide per hydroxyl group or amino group and, in the case of polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, isononylphenol butoxylates and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (Dg) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 ° C, as described in particular in DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, iso-decanol and of isotridecanol. Such products also meet carrier oil properties.
  • the groupings having hydroxyl and / or amino and / or amido and / or imido groups are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of di- or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives with an acid and an amide function, carboximides with monoamines, carboximides with di- or polyamines which, in addition to the imide function, still have free amine groups, or diimides which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are described in particular in US Pat. No. 4,849,572.
  • reaction products of alkyl- or alkenyl-substituted succinic acids or derivatives thereof with amines and particularly preferably to the reaction products of polyisobutenyl-substituted succinic acids or derivatives thereof with amines.
  • reaction products with aliphatic polyamines polyalkyleneimines
  • ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and hexaethyleneheptamine which have an imide structure.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated moieties containing (di) additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine ,
  • Such "polyisobutene-Mannich bases" are described in particular in EP-A 831 141.
  • one or more of the above-mentioned detergent additives of the group (Da) to (Di) may be added in such an amount that the dosage rate of these detergent additives is preferably 25 to 2500 ppm by weight, especially 75 to 1500% by weight . ppm, especially 150 to 1000 ppm by weight.
  • Carrier oils used as co-additives may be mineral or synthetic.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils having viscosities such as from class SN 500 to 2000, but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. It is also useful as a "hydrocrack oil” known and obtained in the refining of mineral oil fraction (Vakuumdestillatites with a boiling range of about 360 to 500 ° C, available from high pressure catalytically hydrogenated and isomerized and dewaxed natural mineral oil). Also suitable are mixtures of the abovementioned mineral carrier oils.
  • suitable synthetic carrier oils are polyolefins (polyalphaolefins or polyinternalolefins), (poly) esters, poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 - to C 4 -alkylene groups which are prepared by reacting C 2 - to C 6 -alkanols, C 6 - to C 3 -oxanediols, mono- or C 1 - to C 20 -alkylamines, C 1 -C 30 -alkylcyclohexanols or C 1 -C 30 -alkylphenols with 1 to 30 mol of ethylenoxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of the polyetheramines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • Such products are described in particular in EP-A 310 875, EP-A 356 725, EP-A 700 985 and US-A 4,877,416.
  • polyether amines P0IV-C2 to C6 Alkylenoxidamine or functional derivatives thereof may be used. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A 38 38 918.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • suitable representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and of isotridecanol, eg. B.
  • di- (n- or isotridecyl) phthalate di- (n- or isotridecyl) phthalate.
  • suitable carrier oil systems are described, for example, in DE-A 38 26 608, DE-A 41 42 241, DE-A 43 09 074, EP-A 452 328 and EP-A 548 617.
  • particularly suitable synthetic carrier oils are alcohol-started polyethers having from about 5 to 35, preferably about 5 to 30, particularly preferably 10 to 30 and in particular 15 to 30 C3 to C6 alkylene oxide units, for. Propylene oxide, n-
  • Nonlimiting examples of suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, where the long-chain alkyl radical is, in particular, a straight-chain or branched C 6 - to C 18 -alkyl radical. Specific examples include tridecanol and nonylphenol.
  • Particularly preferred alcohol-started polyethers are the reaction products (polyetherification products) of monohydric C6- to Cis-aliphatic alcohols with C3- to C6-alkylene oxides.
  • Examples of monohydric C6-C18 aliphatic alcohols are hexanol, heptanol, octanol, 2-ethylhexanol, nonyl alcohol, decanol, 2-propylheptanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, octadecanol and their constitution and position isomers.
  • the alcohols can be used both in the form of pure isomers and in the form of technical mixtures.
  • a particularly preferred alcohol is tridecanol.
  • C 3 - to C 6 -alkylene oxides are propylene oxide, such as 1, 2-propylene oxide, butylene oxide, such as 1, 2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran, pentylene oxide and hexylene oxide.
  • propylene oxide such as 1, 2-propylene oxide
  • butylene oxide such as 1, 2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran
  • pentylene oxide and hexylene oxide particularly preferred are C 3 -C 4 -alkylene oxides, ie, propylene oxide such as 1, 2-propylene oxide and butylene oxide such as 1, 2-butylene oxide, 2,3-butylene oxide and isobutylene oxide.
  • butylene oxide is used.
  • suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A 10 102 913.
  • carrier oils are synthetic carrier oils, the alcohol-initiated polyethers described above being particularly preferred.
  • the carrier oil or the mixture of different carrier oils is added to the fuel in an amount of preferably from 1 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight and in particular from 20 to 100 ppm by weight.
  • Suitable cold flow improvers as co-additives are in principle all organic compounds which are able to improve the flow behavior of middle distillate fuels or diesel fuels in the cold. Conveniently, they must have sufficient oil solubility. In particular, these are usually the middle distillates of fossil origin, so in conventional mineral diesel fuels used, cold flow improvers used ("middle distillate flow improvers", "MDFI") into consideration. However, it is also possible to use organic compounds which, when used in conventional diesel fuels, have in part or predominantly the properties of a wax anti-settling additive (“WASA").
  • WASA wax anti-settling additive
  • co-additives used as cold flow improvers can act partly or predominantly as nucleators. However, it is also possible to use mixtures of organic compounds which are active as MDFI and / or which act as WASA and / or as nucleators.
  • the cold flow improver is selected from:
  • Suitable C2 to C4o-olefin monomers for the copolymers of class (K1) are for example those having 2 to 20, in particular 2 to 10 carbon atoms and having 1 to 3, preferably 1 or 2, in particular having a carbon-carbon double bond.
  • the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and, above all, ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from carboxylic alkenyl esters, (meth) acrylic esters and further olefins. If further olefins are polymerized in, these are preferably higher molecular weight than the abovementioned C 2 - to C 4 -olefin base monomers. If, for example, ethylene or propene is used as the olefin base monomer, suitable further olefins are, in particular, C 10 - to C 40 -alpha-olefins. Other olefins are polymerized in most cases only when monomers with carboxylic acid ester functions are used.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with Cr to C 2 alkanols, in particular C 1 to C 1 alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert Butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol and structural isomers thereof.
  • Suitable carboxylic alkenyl esters are, for example, C2 to C-u-alkenyl esters, e.g. the vinyl and propenyl esters of carboxylic acids having from 2 to 21 carbon atoms, the hydrocarbon radical of which may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids having a branched hydrocarbon radical preferred are those whose branch is in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie. H. the carboxylic acid is a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • carboxylic alkenyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, the vinyl esters being preferred.
  • a particularly preferred carboxylic acid alkenyl ester is vinyl acetate; typical resulting copolymers of group (K1) are the most commonly used ethylene-vinyl acetate copolymers ("EVA"). Particularly advantageous ethylene-vinyl acetate copolymers and their preparation are described in WO 99/29748.
  • copolymers of class (K1) are those which contain two or more different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • Terpolymers of a C2 to C4o- ⁇ -olefin, a C to C2o-alkyl ester of an ethylenically unsaturated monocarboxylic acid having 3 to 15 carbon atoms and a C2 to C4 alkenyl ester of a saturated monocarboxylic acid having 2 to 21 carbon atoms are also copolymers of the class ( K1) suitable.
  • Such terpolymers are described in WO 2005/054314.
  • a typical such terpolymer is composed of ethylene, 2-ethylhexyl acrylate and vinyl acetate.
  • the at least one or the other ethylenically unsaturated monomers are present in the copolymers of class (K1) in an amount of preferably from 1 to 50% by weight, in particular from 10 to 45% by weight and especially from 20 to 40% by weight. %, based on the total copolymer, copolymerized.
  • the majority by weight of the monomer units in the copolymers of class (K1) thus usually comes from the C2 to C4o-based olefins.
  • the copolymers of class (K1) preferably have a number average molecular weight M n of from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 8000.
  • Typical comb polymers of component (K2) are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester, such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol available with at least 10 carbon atoms.
  • Further suitable comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • Suitable comb polymers may also be polyfumarates or polymaleinates.
  • homopolymers and copolymers of vinyl ethers are suitable comb polymers.
  • Comb polymers suitable as component of class (K2) are also, for example, those described in WO 2004/035715 and in "Comb-Like Polymers, Structure and Properties", N.A. Plate and V.P. Shibaev, J.
  • Polyoxyalkylenes suitable as a component of class (K3) are, for example, polyalkylene esters, polyoxyalkylene ethers, mixed polyoxyalkylene ester ethers and mixtures thereof. These polyoxyalkylene compounds preferably comprise at least one, preferably at least two, linear alkyl groups each having from 10 to 30 carbon atoms and a polyoxyalkylene group having a number average molecular weight of up to 5,000. Such polyoxyalkylene compounds are described, for example, in EP-A 061 895 and in US Pat. No. 4,491,455. Particular polyoxyalkylene compounds are based on polyethylene glycols and polypropylene glycols having a number average molecular weight of 100 to 5000. Furthermore, polyoxyalkylene mono- and diesters of fatty acids having 10 to 30 carbon atoms such as stearic acid or behenic acid suitable.
  • Polar nitrogen compounds suitable as a component of the class (K4) may be of ionic or nonionic nature and preferably have at least one, in particular at least two, substituents in the form of a tertiary nitrogen atom of the general formula> NR 7 , where R 7 is a to C4o hydrocarbon residue.
  • the nitrogen substituents may also be quaternized, that is in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides obtainable by reacting at least one amine substituted with at least one hydrocarbon radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines contain at least one linear Cs to C4o-alkyl radical.
  • Primary amines which are suitable for the preparation of said polar nitrogen compounds are, for example, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologs; secondary amines suitable for this purpose are, for example, dioctadecylamine and methylbehenylamine. Also suitable for this purpose are amine mixtures, in particular industrially available amine mixtures such as fatty amines or hydrogenated tallamines, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1, 2-dicarboxylic acid, cyclohexene-1, 2-dicarboxylic acid, cyclopentane-1, 2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • the component of class (K4) is an oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the poly (C 2 - to C 20 -carboxylic acids) which have at least one tertiary amino group and are based on this reaction product preferably contain at least 3 carboxyl groups, in particular 3 to 12, especially 3 to 5, carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, usually via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which are connected in the case of several nitrogen atoms via hydrocarbon chains.
  • the component of the class (K4) is preferably an oil-soluble reaction product based on poly (C 2 - to C 20 -carboxylic acids) having the general formula IIa or IIb and having at least one tertiary amino group (Ib) in which the variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula II I
  • (I I I) and the variable B denotes a C to Cig alkylene group.
  • the compounds of the general formula I Ia and Ib I have in particular the properties of a WASA.
  • the preferred oil-soluble reaction product of component (K4) in particular that of general formula I Ia or IIb, is an amide, an amide ammonium salt or an ammonium salt in which none, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 - to C 6 -alkylene groups of the variable A are, for example, 1, 1-ethylene, 1, 2-propylene, 1, 3-propylene, 1, 2-butylene, 1, 3-butylene, 1, 4- Butylene, 2-methyl-1,3-propylene, 1,5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene (hexamethylene) and especially 1, 2-ethylene.
  • the variable A comprises 2 to 4, in particular 2 or 3 carbon atoms.
  • Cr to Ci9-alkylene groups of the variable B are, for example, 1, 2-ethylene, 1, 3-propylene, 1, 4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, Nonadecamethylen and especially methylene.
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form the component (K4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • amines which are the oil-soluble reaction products of component (K4) are secondary amines and have the general formula HN (R 8 ) 2, in which the two variables R 8 are each independently straight-chain or branched C 10 to C 30 -alkyl radicals, in particular C 1 to C 24 -alkyl radicals.
  • R 8 are each independently straight-chain or branched C 10 to C 30 -alkyl radicals, in particular C 1 to C 24 -alkyl radicals.
  • These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived with regard to their longer-chain alkyl radicals from naturally occurring fatty acid or from its derivatives.
  • the two radicals R 8 are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, only a few or no free acid groups are present. Preferably, the oil-soluble reaction products of component (K4) are completely in the form of the amide structures.
  • Typical examples of such components (K4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group, dioleylamine, dipalmitinamine, dicoco fatty amine, distearylamine, dibehenylamine or, in particular, Ditaigfettamin.
  • a particularly preferred component (K4) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated dieth fatamine.
  • component (K4) include the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mole of phthalic anhydride and 2 moles of Ditaigfettamin, the latter may be hydrogenated or unhydrogenated , and the reaction product of 1 mole of an alkenyl spiro-bis-lactone with 2 moles of a dialkylamine, for example, dinig fatty amine and / or tallow fatty amine, the latter two of which may be hydrogenated or unhydrogenated.
  • N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates for example the reaction product of 1 mole of phthalic anhydride and 2 moles of Ditaigfettamin, the latter may be hydrogenated or unhydrogenated
  • Sulfocarboxylic acids, sulfonic acids or their derivatives which are suitable as cold flow improvers of the component of class (K5) are, for example, the oil-soluble carboxylic acid amides and carboxylic acid esters of ortho-sulfobenzoic acid in which the sulfonic acid function is present as sulfonate with alkyl-substituted ammonium cations, as described in EP -A 261 957.
  • suitable poly (meth) acrylic esters are both homo- and copolymers of acrylic and methacrylic esters.
  • Preferred are copolymers of at least two different from each other (Meth) acrylic acid esters, which differ with respect to the condensed alcohol.
  • the copolymer contains a further, different of which olefinically unsaturated monomer copolymerized.
  • the weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated Cu and Cis alcohols wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic esters are described, for example, in WO 00/44857.
  • the middle distillate fuel or diesel fuel is the cold flow improver or the mixture of various cold flow improvers in a total amount of preferably 10 to 5000 ppm by weight, more preferably from 20 to 2000 ppm by weight, more preferably from 50 to 1000 ppm by weight and in particular from 100 to 700 ppm by weight, for example from 200 to 500 ppm by weight.
  • Lubricity improvers or friction modifiers which are suitable as coadditives are usually based on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, as described for example in WO 98/004656, and glycerol monooleate.
  • the reaction products of natural or synthetic oils, for example triglycerides, and alkanolamines described in US Pat. No. 6,743,266 B2 are also suitable as such lubricity improvers.
  • suitable corrosion inhibitors are z.
  • succinic acid esters especially with polyols, fatty acid derivatives, eg.
  • fatty acid derivatives eg.
  • oleic acid esters oligomerized fatty acids, substituted ethanolamines, N-acylated sarcosine
  • imidazoline derivatives e.g. B. those which in the 2-position an alkyl group and the trivalent nitrogen atom, a functional organic radical (a typical imidazoline derivative is the reaction product of excess oleic acid with diethylenetriamine), and products sold under the trade name RC 4801 (Rhein Chemie Mannheim , Germany) or Hi-TEC 536 (Ethyl Corporation).
  • the imidazoline derivatives mentioned are particularly effective as corrosion inhibitors when, in this application, they contain one or more carboxylic acid amides having one or more carboxylic acid amide functions in the molecule and longer-chain amide nitrogen radicals, for example the reaction product of maleic anhydride with a long-chain amine in an equimolar ratio, combined.
  • suitable demulsifiers z As co-additives suitable demulsifiers z.
  • Suitable co-additives Dehazer are z.
  • alkoxylated phenol-formaldehyde condensates such as the available under the trade name NALCO 7D07 products (Nalco) and TOLAD 2683 (Petrolite).
  • suitable antifoams are for.
  • polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the trade name.
  • aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide.
  • suitable antioxidants are, for. Substituted, d. H. sterically hindered phenols such as 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-3-methylphenol or products sold under the trade name IRGANOX® (BASF SE), e.g. B. 2,6-di-tert-butyl-4-alkoxycarbonylethyl-phenol (IRGANOX L135), and phenylenediamines such as N, N'-di-sec-butyl-p-phenylenediamine.
  • IRGANOX® 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-3-methylphenol or products sold under the trade name IRGANOX® (BASF SE)
  • IRGANOX L1305 2,6-di-tert-butyl-4-alkoxycarbonylethyl-phenol
  • phenylenediamines such
  • suitable metal deactivators z As co-additives suitable metal deactivators z.
  • salicylic acid derivatives such as ⁇ , ⁇ '-disalicylidene-1, 2-propanediamine or under the trade name IRGAMET® (BASF SE) marketed products based on N-substituted triazoles and tolutriazoles.
  • non-polar organic solvents such as aromatic and aliphatic hydrocarbons, for example toluene, xylenes, "white spirit" and products sold under the trade name SHELLSOL (Royal Dutch / Shell Group) and EXXSOL (ExxonMobil), as well as polar organic solvents, for example alcohols such as 2-ethylhexanol, decanol and isotridecanol and carboxylic acid esters with longer-chain alkyl groups such as C12 to C2o fatty acid methyl ester suitable.
  • Such solvents usually get together with the imidazolium salts (I) and the abovementioned co-additives, which they are intended to dissolve or dilute for better handling, into the fuel or fuel, in particular the diesel fuel.
  • the imidazolium salts (I) to be used according to the invention are outstandingly suitable as a fuel or fuel additive and can, in principle, be used in all fuels and fuels. They bring about a whole series of advantageous effects in the operation of internal combustion engines with fuels.
  • the imidazolium salts (I) to be used according to the invention are preferably used in middle distillate fuels, in particular diesel fuels.
  • the subject matter of the present invention is therefore also a fuel and fuel composition, in particular a middle distillate fuel composition, with an additive used to achieve advantageous effects in the operation of internal combustion engines, for example of diesel engines, in particular of direct-injection diesel engines, especially of diesel engines with common-rail injection systems, effective content of the present invention to be used Imidazoli- umsalzen (I) in addition to the main amount of a conventional Grundkraft- or Grundbrennstof- fes.
  • This effective content (metering rate) is generally from 10 to 5000 ppm by weight, preferably from 20 to 1500 ppm by weight, in particular from 25 to 1000 ppm by weight, especially from 30 to 750 ppm by weight, in each case based on the total amount of fuel or fuel.
  • Middle distillate fuels such as diesel fuels or fuel oils
  • mineral middle distillate mineral fuels or diesel fuels available through refining
  • those produced by coal gasification or gas liquefaction [GTL] or by biomass to liquid (BTL) fuels are also included. are available, suitable. Also suitable are mixtures of the abovementioned middle distillate fuels or diesel fuels with regenerative fuels, such as biodiesel or bioethanol.
  • the imidazolium salts (I) to be used according to the invention can be used not only for their use in the abovementioned middle distillate fuels of fossil, vegetable or animal origin, which are essentially hydrocarbon mixtures, but also in mixtures of such middle distillates with biofuel oils (biodiesel).
  • middle distillate fuel such mixtures are also encompassed by the term "middle distillate fuel”.
  • biofuel oils typically in amounts of 1 to 30 wt .-%, in particular from 3 to 10 wt .-%, based on the total amount of middle distillate of fossil, vegetable or animal origin and biofuel.
  • Biofuel oils are generally based on fatty acid esters, usually substantially on alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, in particular C 1 to C 4 alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, especially triglycerides, by means of lower alcohols, for example ethanol or especially methanol (“FAME").
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biofuel oil or components thereof include, for example, sunflower methyl ester, palm oil methyl ester (“PME”), soybean oil methyl ester (“SME”) and in particular rapeseed oil methyl ester (“RME”).
  • PME palm oil methyl ester
  • SME soybean oil methyl ester
  • RME rapeseed oil methyl ester
  • the middle distillate fuels or diesel fuels are particularly preferably those with a low sulfur content, ie with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular of less than 0.005% by weight and especially less than 0.001% by weight of sulfur.
  • gasoline fuels are all commercially available gasoline fuel compositions into consideration.
  • a typical representative here is the market-standard basic fuel of Eurosuper according to EN 228.
  • gasoline compositions of the specification according to WO 00/47698 are also possible fields of use for the present invention.
  • the present invention also provides an additive concentrate which, in combination with at least one further fuel and fuel additive, in particular with at least one further diesel fuel additive, contains at least one imidazolium salt (I) to be used according to the invention.
  • an additive concentrate contains 10 to 60% by weight of at least one solvent or diluent, which may be an abovementioned solvent or the fuel or fuel itself.
  • the additive concentrate according to the invention preferably also comprises at least one detergent additive from the above-mentioned group (Da) to (Di), in particular at least one detergent additive of the type (Dh), and in US Pat
  • at least one lubricity improver and / or a corrosion inhibitor and / or a demulsifier and / or a dehazer and / or an antifoam agent and / or a cetane number improver and / or an antioxidant and / or a metal deactivator in each case for this purpose contain usual quantity relations.
  • the imidazolium salts (I) to be used according to the invention are particularly suitable as an additive in fuel and fuel compositions, in particular in diesel fuels, to overcome the initially described problems in direct injection diesel engines, especially in those with common rail injection systems.
  • variables R1 or R3 or both variables R1 and R3 independently of one another represent a linear alkyl or alkenyl radical having 14 to 3000 carbon atoms or a branched alkyl or alkenyl radical having 4 to 3000 carbon atoms
  • the variable R1 or R3 which is not a linear alkyl or alkenyl radical having 14 to 3000 carbon atoms or a branched alkyl or alkenyl radical having 4 to 3000 carbon atoms
  • the variables R 2 R4 and R5 independently of one another denote hydrogen, an alkyl radical having 1 to 20 carbon atoms or an alkenyl radical having 2 to 20 carbon atoms
  • X denotes an anion and n represents the number 1, 2 or 3, wherein said variables R1 to R5, X and n have the abovementioned relevant individual meanings and preferred ranges.
  • Particularly preferred imidazolium salts of the general formula (Ia) are those in which one of the variables R 1 or R 3 or both variables R 1 and R 3 are independently of one another a linear alkyl or alkenyl radical having 14 to 20 carbon atoms or a branched alkyl or Alkenyl radical having 4 to 13 carbon atoms and the variables R2, R4 and R5 independently of one another are hydrogen, an alkyl radical having 1 to 20 carbon atoms or an alkenyl radical having 2 to 20 carbon atoms.
  • Particularly preferred imidazolium salts of the general formula (Ia) are furthermore those in which the variables R 1 or R 3 or both variables R 1 and R 3 independently of one another are a polyisobutyl radical having a number average molecular weight of from 200 to 40 000 and the variables R 2, R 4 and R5 independently of one another are hydrogen, an alkyl radical having 1 to 20 carbon atoms or an alkenyl radical having 2 to 20 carbon atoms.
  • the new imidazolium salts of the general formula (Ia) are suitable not only for their use as additives for fuels and fuels, in particular as detergent additives for diesel fuels, but also for improving the service properties of mineral and synthetic non-aqueous industrial fluids.
  • non-aqueous industrial fluids which may contain water in individual cases, but whose essential effect is based on non-aqueous components, lubricants, lubricants and lubricating oils in the broadest sense, especially motor oils, gear oils, axle oils, hydraulic fluids, hydraulic oils, compressor fluids, compressor oils, Circulation oils, turbine oils, transformer oils, gas engine oils, wind turbine oils, runway oils, lubricating greases, coolants, wear protection oils for chains and conveyor systems, metalworking fluids, food grade lubricants for industrial processing of food, and cooker oils for cookers, sterilizers and steam peelers.
  • motor oils gear oils, axle oils, hydraulic fluids, hydraulic oils, compressor fluids, compressor oils, Circulation oils, turbine oils, transformer oils, gas engine oils, wind turbine oils, runway oils, lubricating greases, coolants, wear protection oils for chains and conveyor systems, metalworking fluids, food grade lubricants for industrial processing of food, and cooker oils for cookers, sterilizers and steam peelers.
  • Performance properties which are improved by the imidazolium salts (Ia) are, in particular, the lubricating effect, the frictional wear, the service life, the corrosion protection, the antimicrobial protection, the demulsibility for easier separation of water and impurities and the filterability.
  • the test method used was the DW10 engine test, in which power loss is determined by injector deposits in the common rail diesel engine based on the official test method CEC F-098-08 becomes.
  • the power loss is a direct measure of the formation of deposits in the injectors.
  • a direct injection diesel engine with common rail system was used according to test methods CEC F-098-08.
  • the fuel used was a commercial diesel fuel from Craigrmann (DF-79-07 / 5). To this was added 1 wt ppm zinc in the form of a zinc didodecanoate solution to artificially stimulate the formation of deposits on the injectors.
  • the results illustrate the relative power loss measured at 4000 rpm during a 12-hour continuous operation. The value "to” indicates the power ("power") in kW at the start of the test and the value "t12" the power in kW at the end of the test.
  • the compounds (1.1) and (I.2) are commercially available products; the compound (I.3) was prepared from N-octylimidazole by quaternization with dimethyl carbonate as a 30 wt% solution in methanol by a usual synthesis method; the compound (I.4) was prepared in accordance with the synthesis instructions given above.
  • the additives (1.1) and (I.2) were used as pure substances and the additives (I.3) and (I.4) as solutions.
  • the indicated dosage refers to the active ingredient.
  • the additives (I.2) and (I.4) were additionally used to carry out a soiling and cleaning process in accordance with the DW10 test.
  • the used common rail direct injection diesel engine used with the same commercial diesel fuel containing 1 ppm by weight of zinc in the form of a zinc didodecanoate
  • additive (I.4) was also a "keep clean" motor test according to the test method CEC F-23-01 with the PSA engine XUD-9 A driven.
  • the additive was used at a dosage of 50 ppm in a commercial diesel fuel from Craigrmann (DF-79-07 / 5).
  • the engine was operated in a separate test run with the same diesel fuel without additive.
  • the "flow restriction” at 0.1 mm “Needle elevation” in the fuel was 63% without additive and with 50 ppm by weight of additive (I.4) -32%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Lubricants (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Verwendung von Imidazoliumsalzen (I) wobei R1 und R3 unabhängig voneinander für einen organischen Rest mit 1 bis 3000 Kohlenstoffatomen stehen, R2, R4 und R5 unabhängig voneinander Wasserstoff oder einen organischen Rest mit 1 bis 3000 Kohlenstoffatomen bedeuten, X ein Anion bezeichnet und n für die Zahl 1, 2 oder 3 steht, als Additive für Kraft-und Brennstoffe, insbesondere als Detergenzadditive für Dieselkraftstoffe, als Wachs-Anti-Settling Additiv für Mitteldestillatbrennstoffe und als Schmierfähigkeitsverbesserer, sowie zur Verbesserung der Gebrauchseigenschaften von mineralischen und synthetischen nicht-wässrigen Industrieflüssigkeiten.

Description

Imidazoliumsalze als Additive für Kraft- und Brennstoffe Beschreibung Die vorliegende Erfindung betrifft die Verwendung von Imidazoliumsalzen als Additive für Kraft- und Brennstoffe, insbesondere als Detergenzadditive für Dieselkraftstoffe, vor allem für solche Dieselkraftstoffe, die in direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen, verbrannt werden. Weiterhin betrifft die vorliegende Erfindung ein Additivkonzentrat sowie eine Kraft- oder Brennstoffzusammen- setzung, die solche Imidazoliumsalze enthalten. Weiterhin betrifft die vorliegende Erfindung neue Imidazoliumsalze und der Verwendung in Industrieflüssigkeiten.
Bei direkteinspritzenden Dieselmotoren wird der Kraftstoff durch eine direkt in den Brennraum reichende Mehrloch-Einspritzdüse des Motors eingespritzt und feinst ver- teilt (vernebelt), anstatt wie beim klassischen (Kammer-)Dieselmotor in eine Vor- oder Wirbelkammer eingeführt zu werden. Der Vorteil der direkteinspritzenden Dieselmotoren liegt in ihrer für Dieselmotoren hohen Leistung und einem dennoch geringen Verbrauch. Außerdem erreichen diese Motoren ein sehr hohes Drehmoment schon bei niedrigen Drehzahlen.
Zur Zeit werden im Wesentlichen drei Verfahren eingesetzt, um den Kraftstoff direkt in den Brennraum des Dieselmotores einzuspritzen: die konventionelle Verteilereinspritzpumpe, das Pumpe-Düse-System (Unit-Injector-System bzw. Unit-Pump-System) und das Common-Rail-System.
Beim Common-Rail-System wird der Dieselkraftstoff von einer Pumpe mit Drücken bis zu 2000 bar in eine Hochdruckleitung, die Common-Rail, gefördert. Ausgehend von der Common-Rail laufen Stichleitungen zu den verschiedenen Injektoren, die den Kraftstoff direkt in den Brennraum injizieren. Dabei liegt auf der Common-Rail stets der volle Druck an, was eine Mehrfacheinspritzung oder eine spezielle Einspritzform ermöglicht. Bei den anderen Injektionssystemen ist dagegen nur eine geringere Variation der Einspritzung möglich. Die Einspritzung beim Common-Rail wird im Wesentlichen in drei Gruppen unterteilt: (1 .) Voreinspritzung, durch die im Wesentlichen eine weichere Verbrennung erreicht wird, so dass harte Verbrennungsgeräusche ("Nageln") vermindert werden und der Motorlauf ruhig erscheint; (2.) Haupteinspritzung, die insbesondere für einen guten Drehmomentverlauf verantwortlich ist; und (3.) Nacheinspritzung, die insbesondere für einen geringen NCv-Wert sorgt. Bei dieser Nacheinspritzung wird der Kraftstoff in der Regel nicht verbrannt, sondern durch Restwärme im Zylinder verdampft. Das dabei gebildete Abgas-/Kraftstoffgemisch wird zur Abgasanlage transpor- tiert, wo der Kraftstoff in Gegenwart geeigneter Katalysatoren als Reduktionsmittel für die Stickoxide NOx wirkt. Durch die variable, zylinderindividuelle Einspritzung kann beim Common-Rail-Einspritz- system der Schadstoffausstoß des Motors, z.B. der Ausstoß von Stickoxiden (NOx), Kohlenmonoxid (CO) und insbesondere von Partikeln (Ruß), positiv beeinflusst werden. Dies ermöglicht beispielsweise, dass mit Common-Rail-Einspritzsystemen ausge- rüstete Motoren der Euro 4-Norm theoretisch auch ohne zusätzlichen Partikelfilter genügen können.
In modernen Common-Rail-Dieselmotoren können sich unter bestimmten Bedingungen, beispielsweise bei Verwendung von biodieselhaltigen Kraftstoffen oder von Kraft- Stoffen mit Metall-Verunreinigungen wie Zink-Verbindungen, Kupfer-Verbindungen,
Blei-Verbindungen und weiteren Metallverbindungen, an den Injektoröffnungen Ablagerungen bilden, die das Einspritzverhalten des Kraftstoffs negativ beeinflussen und dadurch die Performance des Motors beeinträchtigen, d.h. insbesondere die Leistung verringern, aber zum Teil auch die Verbrennung verschlechtern. Die Bildung von Abla- gerungen wird durch bauliche Weiterentwicklungen der Injektoren, insbesondere durch die Veränderung der Geometrie der Düsen (engere, konische Öffnungen mit abgerundetem Auslass) noch verstärkt. Für eine dauerhaft optimale Funktionsweise von Motor und Injektoren müssen solche Ablagerungen in den Düsenöffnungen durch geeignete Kraftstoffadditive verhindert oder reduziert werden.
Die internationale Anmeldung WO 2012/004300 (1 ) beschreibt säurefreie quaternisier- te Stickstoffverbindungen als Kraftstoffadditive, welche durch Addition einer Verbindung, die wenigstens eine mit einem Anhydrid reaktive Sauerstoff- oder Stickstoffhaltige Gruppe und zusätzlich wenigstens eine quaternisierbare Aminogruppe enthält, an eine Polycarbonsäureanhydrid-Verbindung und nachfolgende Quaternisierung mit einem Epoxid in Abwesenheit von freier Säure erhältlich sind. Als Verbindungen mit einer mit einem Anhydrid reaktiven Sauerstoff- oder Stickstoff-haltigen Gruppe und zusätzlich einer quaternisierbaren Aminogruppe eignen sich insbesondere Polyamine mit mindestens einer primären oder sekundären Aminogruppe und mindestens einer tertiären Aminogruppe. Als Polycarbonsäureanhydride kommen insbesondere Dicar- bonsäuren wie Bernsteinsäure mit einem längerkettigen Hydrocarbylsubstituenten in Betracht. Eine solche quaternisierte Stickstoffverbindung ist beispielsweise das bei 40°C erhaltene Umsetzungsprodukt von Polyisobutenylsuccinanhydrid mit 3-(Dimethyl- amino)-propylamin, welches ein Polyisobutenylbernsteinsäurehalbamid darstellt und das anschließend mit Styroloxid in Abwesenheit von freier Säure bei 70°C quaternisiert wird. Derartige säurefreie quaternisierte Stickstoffverbindungen eignen sich insbesondere als Kraftstoffzusatz zur Verringerung oder Verhinderung von Ablagerungen in Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common- Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinsprit- zenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail- Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail- Einspritzsystemen. Die internationale Anmeldung PCT/EP201 1/071683 (2) beschreibt Polytetrahydroben- zoxazine und Bistetrahydrobenzoxazine als Kraftstoffadditive, welche dadurch erhältlich sind, dass man sukzessive in einem ersten Reaktionsschritt ein d- bis C20- Alkylendiamin mit zwei primären Aminofunktionen, z.B. 1 ,2-Ethylendiamin, mit einem Cr bis Ci2-Aldehyd, z. B. Formaldehyd, und einem Cr bis Cs-Alkanol bei einer Temperatur von 20 bis 80°C unter Abspaltung und Entfernung von Wasser umsetzt, wobei sowohl der Aldehyd als auch der Alkohol jeweils in mehr als der doppelten molaren Menge gegenüber dem Diamin eingesetzt werden, in einem zweiten Reaktionsschritt das so erhaltene Kondensationsprodukt mit einem Phenol, welches mindestens einen langkettigen Substituenten, z. B. einen tert.-Octyl-, n-Nonyl-, n-Dodecyl- oder Poly- isobutylrest trägt, im stöchiometrischen Verhältnis zum ursprünglich eingesetzten Alkylendiamin von 1 ,2 : 1 bis 3 : 1 bei einer Temperatur von 30 bis 120°C umsetzt und gegebenenfalls in einem dritten Reaktionsschritt das so erhaltene Bistetrahydrobenzo- xazin auf eine Temperatur von 125 bis 280°C für mindestens 10 Minuten erhitzt. Derartige Polytetrahydrobenzoxazine und Bistetrahy-drobenzoxazine eignen sich insbesondere als Kraftstoffzusatz zur Verringerung oder Verhinderung von Ablagerungen in Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common- Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinsprit- zenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-
Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail- Einspritzsystemen. Die genannten säurefreien quaternisierten Stickstoffverbindungen und Polytetrahydrobenzoxazine bzw. Bistetrahydrobenzoxazine sind jedoch in ihren Eigenschaften als Detergenzadditive für Kraft- und Brennstoffe noch verbesserungsbedürftig. Weiterhin sollen sie auch eine verbesserte Korrosionsschutzwirkung, eine verbesserte Motorenölverträglichkeit und verbesserte Tieftemperatureigenschaften aufweisen.
Es bestand daher die Aufgabe, verbesserte Kraft- und Brennstoffadditive bereitzustellen, welche die aufgeführten Nachteile des Standes der Technik nicht mehr aufweisen.
Demgemäß wurde die Verwendung von Imidazoliumsalzen der allgemeinen Formel (I)
in der die Variablen R1 und R3 unabhängig voneinander für einen organischen Rest mit 1 bis 3000 Kohlenstoffatomen stehen, die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff oder einen organi- sehen Rest mit 1 bis 3000 Kohlenstoffatomen bedeuten,
X ein Anion bezeichnet und n für die Zahl 1 , 2 oder 3 steht, als Additive für Kraft- und Brennstoffe gefunden.
Imidazoliumsalze des Typs (I) gehören - neben beispielsweise offenkettigen quaternä- ren Ammonium-Salzen, Pyridinium-Salzen, Pyridazinium-Salzen, Pyrimidinium-Salzen, Pyrazinium-Salzen, Pyrazolium-Salzen, Pyrazolinium-Salzen, Imidazolinium-Salzen, Thiazolium-Salzen, Triazolium-Salzen, Pyrrolidinium-Salzen und Imidazolidinium- Salzen - zu den sogenannten ionischen Flüssigkeiten, worunter Salze (also Verbindungen aus Kationen und Anionen) verstanden werden, die bei Normaldruck einen Schmelzpunkt von kleiner als 200°C, meist sogar von kleiner als 80°C, aufweisen, lo- nische Flüssigkeiten enthalten oftmals eine organische Verbindung als Kation (organisches Kation). Je nach Wertigkeit des Anions kann die ionische Flüssigkeit neben dem organischen Kation weitere Kationen wie Metallkationen enthalten.
Imidazoliumsalze des Typs (I) sind in ihrer Anwendung als Detergentien oder Disper- gatoren in Schmierstoffformulierungen bekannt. So beschreibt die WO 2010/101801 A1 (3) öllösliche ionische Detergentien als Additivkomponenten in Schmierölen für Verbrennungsmotoren; als Beispiele werden neben offenkettigen ionischen Systemen und quaternisierten Pyridinium-Detergentien quaternisierte Imidazoliumphenolate, Imidazoliumchloride und Imidazoliumsalicylate genannt.
In der WO 2010/096168 A1 (4) werden ionische Flüssigkeiten wie Pyridiniumsalze als Additive zur Kontrolle der Ablagerungsbildung auf den inneren Oberflächen von Verbrennungsmotoren beschrieben. Im Gegensatz zur vorliegenden Erfindung werden solche Additive jedoch dem Schmieröl und nicht dem Kraftstoff, der zum Betreiben dieser Motoren eingesetzt wird, zugesetzt. Außerdem offenbart die WO 2010/096168 A1 explizit keine Imidazoliumsalze als derartige Additive.
Die US 4 108 858 (5) offenbart hochmolekulare N-hydrocarbylsubstituierte quaternisierte Ammoniumsalze mit einem Molekulargewicht von 350 bis 3000 Kohlenstoffato- men für die Hydrocarbylgruppe als Detergentien und Dispergatoren für Kraftstoffe wie Ottokraftstoffe und Dieselkraftstoffe und für Schmieröle. Als derartige hochmolekulare N-hydrocarbylsubstituierte quaternisierte Ammoniumsalze werden neben offenkettigen Systemen Salze von Piperidinen, Piperazinen, Morpholinen und Pyridinen genannt. Als längerkettige Hydrocarbylreste kommen beispielsweise Polybuten- oder Polypropylenreste in Betracht.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Imida- zoliumsalze (I) als Detergenzadditive für Dieselkraftstoffe verwendet. In dieser Ausführungsform werden die Einzelverwendungen der Imidazoliumsalze (I) als Additiv zur Verringerung oder Vermeidung von Ablagerungen in Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbe- sondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen, besonders bevorzugt. In einer weiteren bevorzugten Ausführungsform werden die Imidazoliumsalze (I) als Wachs-Anti-Settling Additiv (WASA) für Mitteldestillatbrennstoffe, insbesondere Dieselkraftstoffe, verwendet.
In einer weiteren bevorzugten Ausführungsform werden die Imidazoliumsalze (I) als Schmierfähigkeitsverbesserer für Kraft- und Brennstoffe, insbesondere als Friction Mo- difier für Ottokraftstoffe sowie als Lubricity Additive für Mitteldestillatbrennstoffe bzw. Dieselkraftstoffe, verwendet.
Die organischen Reste für die Variablen R1 bis R5 in den Imidazoliumsalzen der all- gemeinen Formel (I) enthalten vorzugsweise 1 bis 1000, insbesondere 1 bis 500, vor allem 1 bis 250 Kohlenstoffatome. In der Regel handelt es sich bei diesen organischen Resten um niedermolekulare Reste, beispielsweise Alkyl-, Cycloalkyl-, Alkenyl-, Cyclo- alkenyl-, Aryl- oder Heteroarylreste, oder um polymere Reste, beispielsweise Polypro- pylreste oder insbesondere Polyisobutylreste. Niedermolekularen Reste enthalten vor- zugsweise 1 bis 20 Kohlenstoffatome.
Als organische Reste mit 1 bis 3000 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) kommen vorzugsweise d- bis C20- Alkylreste, insbesondere Cr bis Ci2-Alkylreste, vor allem Cr bis Cs-Alkylreste, und deren aryl-, heteroaryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO-, -CO-O- oder -CO-N< substituierte Komponenten in Betracht, beispielsweise Methyl, Ethyl, 1 -Propyl, 2-Propyl, 1 -Butyl, 2-Butyl, 2-Methyl-1 -propyl (Isobutyl), 2-Methyl-2- propyl (tert.-Butyl), 1 -Pentyl, 2-Pentyl, 3-Pentyl, 2-Methyl-1 -butyl, 3-Methyl-1 -butyl, 2- Methyl-2-butyl, 3-Methyl-2-butyl, 2,2-Dimethyl-1 -propyl, 1 -Hexyl, 2-Hexyl, 3-Hexyl, 2- Methyl-1 -pentyl, 3-Methyl-1 -pentyl, 4-Methyl-1 -pentyl, 2-Methyl-2-pentyl, 3-Methyl-2- pentyl, 4-Methyl-2-pentyl, 2-Methyl-3-pentyl, 3-Methyl-3-pentyl, 2,2-Dimethyl-1 -butyl, 2,3-Dimethyl-1 -butyl, 3,3-Dimethyl-1 -butyl, 2-Ethyl-1 -butyl, 2,3-Dimethyl-2-butyl, 3,3- Dimethyl-2-butyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, 2-Propylheptyl, n- Undecyl, n-Dodecyl, n-Tridecyl, Isotridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl, n-lcosyl, Phenylmethyl (Benzyl), Diphenylme- thyl, Triphenylmethyl, 2-Phenylethyl, 3-Phenylpropyl, Cyclopentylmethyl, 2-Cyclopentyl- ethyl, 3-Cyclopentylpropyl, Cyclohexylmethyl, 2-Cyclohexylethyl, 3-Cyclohexylpropyl, Methoxy, Ethoxy, Formyl, Acetyl sowie auch Fluoralkylreste wie Monofluormethyl, Difluormethyl, Trifluormethyl, Pentafluorethyl, 3,3,3-Trifluorpropyl, Perfluorhexyl, Per- fluoroctyl, Perfluordecyl oder Perfluordodecyl.
Als organische Reste mit 1 bis 20 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) eignen sich weiterhin auch C3- bis Ci2-Cycloalkylreste, insbesondere C5- bis Cz-Cycloalkylreste, und deren aryl-, hetero- aryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO- oder -CO-O- substituierte Komponenten, beispielsweise Cyclopentyl, 2-Methyl-1 -cyclopentyl, 3- Methyl-1 -cyclopentyl, Cyclohexyl, 2-Methyl-1 -cyclohexyl, 3-Methyl-1 -cyclohexyl, 4- Methyl-1 -cyclohexyl sowie auch Fluorcyclohexylreste wie Perfluorcyclohexyl.
Als organische Reste mit 1 bis 20 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) eignen sich weiterhin auch C2- bis C2o-Alkenylreste, insbesondere C3- bis Cs-Alkenylreste, und deren aryl-, heteroaryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO- oder -CO-O- substituierte Komponenten, beispielsweise Vinyl, 2-Propenyl (Allyl), 3-Butenyl, cis-2- Butenyl, trans-2-Butenyl sowie auch Fluoralkenylreste wie Perfluor-2-propenyl, Perflu- or-3-butenyl oder Perfluor-2-butenyle. Als organische Reste mit 1 bis 20 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) eignen sich weiterhin auch C3- bis Ci2-Cycloalkenylrest, insbesondere C5- bis Cz-Cylcoalkenylreste, und deren aryl-, heteroaryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO- oder -CO- O-substituierte Komponenten, beispielsweise 3-Cyclopentenyl, 2-Cyclohexenyl, 3- Cyclohexenyl, 2,5-Cyclohexadienyl sowie auch Fluorcycloalkenylreste wie Fluorcyclo- hexenylreste.
Als organische Reste mit 1 bis 20 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) eignen sich weiterhin auch Aryl- oder Heteroarylreste mit 3 bis 20, insbesondere 5 bis 10 Kohlenstoffatomen und deren alkyl-, aryl-, heteroaryl-, cycloalkyl-, halogen-, hydroxy-, amino-, carboxy-, formyl-, -O-, -CO- oder -CO-O-substituierte Komponenten, beispielsweise Phenyl, 2-Methyl-phenyl (2-Tolyl), 3-Methyl-phenyl (3-Tolyl), 4-Methyl-phenyl (4-Tolyl), 2-Ethyl-phenyl, 3-Ethyl- phenyl, 4-Ethyl-phenyl, 2,3-Dimethyl-phenyl, 2,4-Dimethyl-phenyl, 2,5-Dimethyl-phenyl, 2,6-Dimethyl-phenyl, 3,4-Dimethyl-phenyl, 3,5-Dimethyl-phenyl, 4-Phenyl-phenyl, 1 - Naphthyl, 2-Naphthyl, 1 -Pyrrolyl, 2-Pyrrolyl, 3-Pyrrolyl, 2-Pyridinyl, 3-Pyridinyl, 4-Pyridi- nyl sowie auch Fluoraryl- oder Fluorheteroarylreste wie Mono-, Di-, Tri-, Tetra- oder Pentafluorphenyl. Es können auch zwei benachbarte Reste der Variablen R1 bis R5 einen ungesättigten, gesättigten oder aromatischen, gegebenenfalls durch funktionelle Gruppen, Aryl, Alkyl, Aryloxy, Alkyloxy, Halogen, Heteroatome und/oder Heterocyclen substituierten und gegebenenfalls durch ein oder mehrere Sauerstoff- und/oder Schwefelatome und/oder ein oder mehrere substituierte oder unsubstituierte Iminogruppen unterbrochenen Ring ausbilden.
Die organischen Resten mit 1 bis 3000 Kohlenstoffatomen für die Variablen R1 bis R5 können synthetisch erzeugte Reste oder - insbesondere bei Alkyl- und Alkenylresten - Reste auf Basis von natürlich vorkommenden Verbindungen sein. Letztere leiten sich vor allem von natürlich vorkommenden Glyceriden oder Fettsäuren ab, beispielsweise von Stearinsäure, Palmitinsäure, Ölsäure, Linolsäure, Linolensäure oder Talgfettsäure. Derartige Reste auf Basis natürlich vorkommender Verbindungen stellen oft Gemische verschiedener, meist homologer Alkyl- bzw. Alkenylreste dar.
Als organische Reste mit 1 bis 3000 Kohlenstoffatomen für die Variablen R1 bis R5 in den Imidazoliumsalzen der allgemeinen Formel (I) kommen weiterhin vorzugsweise Polyisobutylreste mit 16 bis 3000, insbesondere mit 20 bis 1000, vor allem mit 25 bis 500, ganz besonders bevorzugt mit 30 bis 250 Kohlenstoffatomen, in Betracht. Derartige Polyisobutylreste weisen durch Gelpermeationschromatographie bestimmte zahlenmittlere Molekulargewichte Mn von 200 bis 40.000, vorzugsweise von 500 bis 15.000, insbesondere von 700 bis 7000, vor allem von 900 bis 3000, ganz besonders bevorzugt von 900 bis 1 100 auf. Die Polyisobutylreste können direkt oder durch eine Methylengruppe (-CH2-) an den Imidazoliumring angeknüpft sein.
Die organischen Reste mit 1 bis 3000 Kohlenstoffatomen für die Variablen R1 bis R5, insbesondere die genannten Alkyl-, Cycloalkyl-, Alkenyl-, Cycloalkenyl-, Aryl- und Hete- roarylreste sowie auch die genannten polymeren Reste, können in ihrem Gerüst ein oder mehrere Heteroatome wie Sauerstoffatome, Schwefelatome oder gegebenenfalls durch weitere meist niedermolekulare organischen Reste substituierte Stickstoffatome enthalten oder einen oder mehrere Substituenten oder eine oder mehrere funktionelle Gruppen, beispielsweise Hydroxylgruppen, Halogenatome wie Fluor, Chlor oder Brom, Pseudohalogenidgruppen wie Thiocyanato oder Dicyanamido, Cyanogruppen, Nitro- gruppen, Sulfogruppen, Sulfonsäuregruppen, Sulfonsäureestergruppen, Sulfonsäure- amidgruppen, Aminogruppen, Carbonsäuregruppen, Carbonsäureestergruppen oder Carbonsäureamidgruppen tragen.
In der Regel verwendet man Imidazoliumsalze der allgemeinen Formel (I), in der die Variablen R1 und R3 die vorstehend aufgeführten Bedeutungen eines organischen Restes mit 1 bis 3000 Kohlenstoffatomen haben und die Variablen R2, R4 und R5 Wasserstoff bedeuten. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden Imidazoli- umsalze der allgemeinen Formel (I) verwendet, in der die Variablen R1 und R3 unabhängig voneinander für Cr bis C2o-Alkylgruppen, C2- bis C2o-Alkenylgruppen und/oder Polyisobutylreste mit einem zahlenmittleren Molekulargewicht (Mn) von 200 bis 40.000 stehen und die Variablen R2, R4 und R5 jeweils Wasserstoff bedeuten. Dabei sind diese C bis C2o-Alkylgruppen vorzugsweise reine Kohlenwasserstoffreste. Typische Beispiele für derartige reine C bis C2o-Kohlenwassserstoffreste sind der 2-Ethylhexyl- und der Talgfettalkylrest. Als Anionen X in den Imidazoliumsalzen der allgemeinen Formel (I) kommen z. B. in Betracht: Chlorid; Bromid, lodid; Thiocyanat; Hexafluorophosphat; Trifluormethansulfo- nat; Methansulfonat; Carboxylate, insbesondere Formiat, Acetat, Propionat, Butyrat oder Benzoat; Mandelat; Nitrat; Nitrit; Trifluoracetat; Sulfat; Hydrogensulfat; Methylsulfat; Ethylsulfat; 1 -Propylsulfat; 1 -Butylsulfat; 1 -Hexylsulfat; 1 -Octylsulfat; Phosphat; Dihydrogenphosphat; Hydrogenphosphat; Ci-C4-Dialkylphosphate; Propionat; Tetra- chloroaluminat; AI2CI7"; Chlorozinkat; Chloroferrat; Bis(trifluoromethylsulfonyl)-imid; Bis(pentafluoroethylsulfonyl)-imid; Bis(methylsulfonyl)-imid; Bis(p-Tolylsulfonyl)-imid; Tris(trifluoromethylsulfonyl)-methid; Bis(pentafluoroethylsulfonyl)-methid; p-Tolylsulfo- nat; Tetracarbonylcobaltat; Dimethylenglykolmonomethylethersulfat; Oleat; Stearat; Acrylat; Methacrylat; Maleinat; Hydrogencitrat; Vinylphosphonat; Bis(pentafluoroethyl)- phosphinat; Borate wie Bis[Salicylato(2-)]-borat, Bis[oxalato(2-)]-borat, Bis[1 ,2-benzol- diolato(2-)-0,0']-borat, Tetracyanoborat oder Tetrafluoroborat; Dicyanamid; Tris(penta- fluoroethyl)-trifluorophosphat; Tris(heptafluoropropyl)-trifluorophosphat, cyclische Aryl- phosphate wie Brenzcatechol-phosphat der Formel (C6H402)P(0)0-; Chlorocobaltat.
In der Regel sind die Anionen X aus der nachfolgenden Gruppe ausgewählt:
• Alkylsulfate der Formel RaOS03", wobei Rafür eine Cr bis Ci2-Alkylgruppe, vorzugsweise für eine Cr bis Cs-Alkylgruppe steht;
• der Alkylsulfonate der Formel RaSC"3"; wobei Rafür eine Cr bis Ci2-Alkylgruppe, vorzugsweise für eine C bis Cs-Alkylgruppe steht;
• Halgenide, insbesondere Chlorid und Bromid;
• Pseudohalogenide, insbesondere Thiocyanat und Dicyanamid;
• Carboxylate der Formel RaCOO", wobei Rafür eine Cr bis C6o-Alkylgruppe, eine C2- bis C6o-Alkenylgruppe, eine C6- bis C6o-Arylgruppe oder eine C7- bis C6o-Alkyl-aryl- oder -Arylalkylgruppe, vorzugsweise für eine Cr bis C2o-Alkylgruppe, eine C2- bis C2o-Alkenylgruppe, eine C6- bis C2o-Arylgruppe oder eine C7- bis C2o-Alkylaryl- oder -Arylalkylgruppe, vor allem für eine C2- bis Cs-Alkenylgruppe, eine C6- bis C12- Arylgruppe oder eine C7- bis C -Alkylaryl- oder -Arylalkylgruppe, insbesondere für Acetat, jedoch auch für Formiat, Propionat, Butyrat, Acrylat, Methacrylat, Benzoat, Phenylacetat oder o-, m- oder p-Methylbenzoat, steht;
• Polycarboxylate der Formel Rb(COO")n, wobei n für die Zahl 1 , 2 oder 3 steht und Rn einen n-bindigen Kohlenwasserstoffrest mit 1 bis 60, insbesondere 1 bis 20, vor allem 1 bis 14 Kohlenstoffatomen bedeutet; typische derartige Reste sind Malonat, Succinat, Glutarat, Adipat, Phthalat oder Terephthalat; weiterhin ist als Polycar- boxylat-Anion auch das Oxalat-Anion OC-COO" geeignet. · Phosphate, insbesondere Dialkylphosphate der Formel RaRbP04-, wobei Ra und Rb unabhängig voneinander für eine d- bis C6-Alkylgruppe stehen; insbesondere stehen Ra und Rb für die gleiche Alkylgruppe wie in Dimethylphosphat und Diethyl- phosphat; · Phosphonate, insbesondere Monoalkylphosphonsäureester der Formel RaRbP03" , wobei Ra und Rb unabhängig voneinander für eine d- bis C6-Alkylgruppe stehen;
• das TFSI-Anion der Formel N(S02CF3)2-; · Tricyanomethamid der Formel (CN)3 C".
Häufig ausgewählte Anionen X sind Chlorid, Bromid, Hydrogensulfat, Tetrachloroalu- minat, Thiocyanat, Dicyanamid, Methylsulfat, Ethylsulfat, Methansulfonat, Formiat, Acetat, Dimethylphosphat, Diethylphosphat, p-Tolylsulfonat, Tetrafluoroborat, Hexa- fluorophosphat, Methylmethylphosphonat, Methylphosphonat, das TFSI-Anion, Tricyanomethamid und Trifluormethansulfonat.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden Imidazoliumsalze der allgemeinen Formel (I) verwendet, in der das Anion X Sulfat, ein Alkylsul- fat, ein Alkylsulfonat, ein Alkylcarbonat, ein Halogenid, ein Pseudohalogenid, ein Car- boxylat, ein Phosphat, ein Phosphonat, Nitrat, Nitrit, das TFSI-Anion der Formel N(SC"2CF3)2" oder das Tricyanomethamid-Anion bezeichnet. Ganz besonders bevorzugt verwendet man als Anion X ein Alkylcarbonat, ein Pseudohalogenid, ein Car- boxylat oder das Tricyanomethamid-Anion. Es ist häufig auch von Vorteil, wenn das Anion X kein Phosphoratom, kein Schwefelatom, kein Halogenatom und/oder kein Boratom enthält.
Die Ladung n des Anions X hängt von dessen Beschaffenheit ab und kann den Wert 1 , 2 oder 3 annehmen. Am häufigsten steht n für 1 oder 2, insbesondere für 1.
Typische Einzelbeispiele für Imidazoliumsalze (I) sind 1 ,3-Dimethylimidazolium-acetat, 1 ,3-Diethylimidazolium-acetat, 1 -Ethyl-3-methylimidazolium-acetat, 1 -Propyl-3- methylimidazolium-acetat, 1 -Butyl-3-methylimidazolium-acetat, 1 -Pentyl-3- methylimidazolium-acetat, 1 -Hexyl-3-methylimidazolium-acetat, 1 -Octyl-3- methylimidazolium-acetat, 1 -(2-Ethylhexyl)-3-methylimidazolium-acetat, 1 ,3-Di(2- ethylhexyl)imidazolium-acetat, 1 -Decyl-3-methylimidazolium-acetat, 1 -(2-Propylheptyl)- 3-methylimidazolium-acetat, 1 ,3,4,5-Tetramethylimidazolium-acetat, 1 ,3-Dimethyl-4,5- diphenylimidazolium-acetat, 1 ,4,5-Trimethyl-3-ethylimidazolium-acetat, 1 -Methyl-3- ethyl-4,5-diphenylimidazolium-acetat, 1 ,3-Dimethylimidazolium-methylcarbonat, 1 ,3- Diethylimidazolium-methylcarbonat, 1 -Ethyl-3-methylimidazolium-methylcarbonat, 1 - Propyl-3-methylimidazolium-methylcarbonat, 1 -Butyl-3-methylimidazolium- methylcarbonat, 1 -Pentyl-3-methylimidazolium-methylcarbonat, 1 -Hexyl-3- methylimidazolium-methylcarbonat, 1 -Octyl-3-methylimidazolium-methylcarbonat, 1 -(2- Ethylhexyl)-3-methylimidazolium-methylcarbonat, 1 ,3-Di(2-ethylhexyl)imidazolium- methylcarbonat, 1 -Decyl-3-methylimidazolium-methylcarbonat, 1 -(2-Propylheptyl)-3- methylimidazolium-methylcarbonat, 1 ,3,4,5-Tetramethylimidazolium-methylcarbonat, 1 ,3-Dimethyl-4,5-diphenylimidazolium-methylcarbonat, 1 ,4,5-Trimethyl-3- ethylimidazolium-methylcarbonat, 1 -Methyl-3-ethyl-4,5-diphenylimidazolium- methylcarbonat, 1 ,3-Dimethylimidazolium-methylsulfat, 1 ,3-Diethylimidazolium- methylsulfat, 1 -Ethyl-3-methylimidazolium-methylsulfat, 1 -Propyl-3-methylimidazolium- methylsulfat, 1 -Butyl-3-methylimidazolium-methylsulfat, 1 -Pentyl-3-methylimidazolium- methylsulfat, 1 -Hexyl-3-methylimidazolium-methylsulfat, 1 -Octyl-3-methylimidazolium- methylsulfat, 1 -(2-Ethylhexyl)-3-methylimidazolium-methylsulfat, 1 ,3-Di(2- ethylhexyl)imidazolium-methylsulfat, 1 -Decyl-3-methylimidazolium-methylsulfat, 1 -(2- Propylheptyl)-3-methylimidazolium-methylsulfat, 1 ,3,4,5-Tetramethylimidazolium- methylsulfat, 1 ,3-Dimethyl-4,5-diphenylimidazolium-methylsulfat, 1 ,4,5-Trimethyl-3- ethylimidazolium-methylsulfat, 1 -Methyl-3-ethyl-4,5-diphenylimidazolium-methylsulfat, 1 ,3-Dimethylimidazolium-methylsulfonat, 1 ,3-Diethylimidazolium-methylsulfonat, 1 - Ethyl-3-methylimidazolium-methylsulfonat, 1 -Propyl-3-methylimidazolium- methylsulfonat, 1 -Butyl-3-methylimidazolium-methylsulfonat, 1 -Pentyl-3- methylimidazolium-methylsulfonat, 1 -Hexyl-3-methylimidazolium-methylsulfonat, 1 - Octyl-3-methylimidazolium-methylsulfonat, 1 -(2-Ethylhexyl)-3-methylimidazolium- methylsulfonat, 1 ,3-Di(2-ethylhexyl)imidazolium-methylsulfonat, 1 -Decyl-3- methylimidazolium-methylsulfonat, 1 -(2-Propylheptyl)-3-methylimidazolium- methylsulfonat, 1 ,3,4,5-Tetramethylimidazolium-methylsulfonat, 1 ,3-Dimethyl-4,5- diphenylimidazolium-methylsulfonat, 1 ,4,5-Trimethyl-3-ethylimidazolium- methylsulfonat, 1 -Methyl-3-ethyl-4,5-diphenylimidazolium-methylsulfonat, 1 ,3- Dimethylimidazolium-diethylphosphat, 1 ,3-Diethylimidazolium-diethylphosphat, 1 -Ethyl- 3-methylimidazolium-diethylphosphat, 1 -Propyl-3-methylimidazolium-diethylphosphat, 1 -Butyl-3-methylimidazolium-diethylphosphat, 1 -Pentyl-3-methylimidazolium- diethylphosphat, 1 -Hexyl-3-methylimidazolium-diethylphosphat, 1 -Octyl-3- methylimidazolium-diethylphosphat, 1 -(2-Ethylhexyl)-3-methylimidazolium- diethylphosphat, 1 ,3-Di(2-ethylhexyl)imidazolium-diethylphosphat, 1 -Decyl-3- methylimidazolium-diethylphosphat, 1 -(2-Propylheptyl)-3-methylimidazolium- diethylphosphat, 1 ,3,4,5-Tetramethylimidazolium-diethylphosphat, 1 ,3-Dimethyl-4,5- diphenylimidazolium-diethylphosphat, 1 ,4,5-Trimethyl-3-ethylimidazolium- diethylphosphat und 1 -Methyl-3-ethyl-4,5-diphenylimidazolium-diethylphosphat.
Typische Einzelbeispiele für Imidazoliumsalze (I) mit Polyisobutenylresten sind 1 - Polyisobutyl-3-methylimidazolium-acetat, 1 -Polyisobutyl-3-ethylimidazolium-acetat, 1 - Polyisobutyl-3-propylimidazolium-acetat, 1 -Polyisobutyl-3-butylimidazolium-acetat, 1 - Polyisobutyl-3-(2-ethylhexyl)imidazolium-acetat, 1 ,3-Di(polyisobutyl)imidazolium-acetat, 1 -Polyisobutyl-3-methylimidazolium-methylcarbonat, 1 -Polyisobutyl-3-ethylimidazolium- methylcarbonat, 1 -Polyisobutyl-3-propylimidazolium-methylcarbonat, 1 -Polyisobutyl-3- butylimidazolium-methylcarbonat, 1 -Polyisobutyl-3-(2-ethylhexyl)imidazolium- methylcarbonat, 1 ,3-Di(polyisobutyl)imidazolium-methylcarbonat, 1 -Polyisobutyl-3- methylimidazolium-thiocyanat, 1 -Polyisobutyl-3-ethylimidazolium-thiocyanat, 1 - Polyisobutyl-3-propylimidazolium-thiocyanat, 1 -Polyisobutyl-3-butylimidazolium- thiocyanat, 1 -Polyisobutyl-3-(2-ethylhexyl)imidazolium-thiocyanat, 1 ,3-Di(polyisobutyl)- imidazolium-thiocyanat, 1 -Polyisobutyl-3-methylimidazolium-tricyanomethamid, 1 -
Polyisobutyl-3-ethylimidazolium-tricyanomethamid, 1 -Polyisobutyl-3-propylimidazolium- tricyanomethamid, 1 -Polyisobutyl-3-butylimidazolium-tricyanomethamid, 1 -Polyisobutyl- 3-(2-ethylhexyl)imidazolium-tricyanomethamid und 1 ,3-Di(polyisobutyl)imidazolium- tricyanomethamid.
Imidazoliumsalze des Typs (I) mit niedermolekularen Resten werden im Handel unter der Bezeichnung Basionics™ von BASF SE vertrieben.
Die Herstellung der Imidazoliumsalze des Typs (I) ist dem Fachmann geläufig. Ein ty- pischer Syntheseweg geht von der Imidazol-Bildung aus 1 Mol einer 1 ,2-Dicarbonyl- verbindung, 1 Mol eines entsprechend substituierten primären Amins, 1 Mol Ammoniak und 1 Mol eines Aldehyds aus, führt eine N-Alkylierung mit einem geeigneten Alkylie- rungsmittel durch und tauscht danach gewünschtenfalls das Anion aus. Beispielsweise stellt man aus Glyoxal oder Benzil, einem niedermolekularen primären Alkylamin oder Alkenylamin, z. B. einem d- bis Ci3-Alkylamin, oder einem Polyisobutylamin, Ammoniak und Formaldehyd ein N-Alkyl-4,5-diphenylimidazol bzw. ein N-Alkylimidazol bzw. ein N-Polyisobutyl-4,5-diphenylimidazol bzw. ein N-Polyisobutylimidazol her und alkyliert das unsubstituierte zweite Stickstoffatom mit einem Epoxid wie Ethylenoxid, Propylen- oxid, Butylenoxid oder Styroloxid in Gegenwart von Essigsäure oder mit einem Dial- kylcarbonat, wobei das Imidazoliumsalz dann ein Acetat-Anion bzw. ein Alkylcarbonat- Anion aufweist. Zur Einführung eines Polyisobutylrestes am unsubstituierten zweiten Stickstoffatom kann mit ein Polyisobutenepoxid als Alkylierungsmittel einsetzen.
Bei der Herstellung von Imidazoliumsalzen des Typs (I) mit gleichen Variablen R1 und R3 setzt man vorteilhafterweise 1 Mol einer 1 ,2-Dicarbonylverbindung zusammen mit 2 Mol eines entsprechend substituierten primären Amins und 1 Mol eines Aldehyds gegebenenfalls in Gegenwart eines geeigneten Lösungsmittels (beispielsweise von Es- sigsäure und Wasser, wenn ein Imidazoliumacetat erhalten werden soll) in einer Einstufensynthese, meist bei 20 bis 120°C, insbesondere bei 25 bis 80°C, um.
Der mit einem oder mehreren Imidazoliumsalzen (I) additivierte Kraft- oder Brennstoff ist ein Ottokraftstoff oder insbesondere ein Mitteldestillat-Kraftstoff, vor allem ein Dieselkraftstoff. Der Kraft- oder Brennstoff kann weitere übliche Additive ("Co-Additive") zur Wirksamkeitsverbesserung und/oder Verschleißunterdrückung enthalten.
Im Falle von Dieselkraftstoffen sind dies in erster Linie übliche Detergens-Additive, Trägeröle, Kaltfließverbesserer, Schmierfahigkeitsverbesserer (Lubricity Improver),
Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Cetanzahlverbesse- rer, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallo- cene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel. Im Falle von Ottokraftstoffen sind dies vor allem Schmierfahigkeitsverbesserer (Friction Modifier), Korrosionsinhibitoren, Demulgatoren, Dehazer, Antischaummittel, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel. Typische Beispiele geeigneter Co-Additive sind in den nachfolgenden Abschnitten aufgeführt.
Bei den üblichen Detergens-Additiven handelt es sich vorzugsweise um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zah- lengemittelten Molekulargewicht (Mn) von 85 bis 20.000 und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter:
(Da) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(Db) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;
(De) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(Dd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(De) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(Df) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind; (Dg) Carbonsäureestergruppen;
(Dh) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder
(Di) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugten Gruppierungen.
Der hydrophobe Kohlenwasserstoffrest in den obigen Detergens-Additiven, welcher für die ausreichende Löslichkeit im Kraft- oder Brennstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, vorzugsweise von 1 13 bis 10.000, besonders bevorzugt von 300 bis 5.000, stärker bevorzugt von 300 bis 3.000, noch stärker bevorzugt von 500 bis 2.500 und insbesondere von 700 bis 2.500, vor allem von 800 bis 1500. Als typische hydrophobe Kohlenwasserstoffreste kommen insbesondere Poly- propenyl-, Polybutenyl- und Polyisobutenylreste mit einem zahlenmittleren Molekulargewicht Mn von vorzugsweise jeweils 300 bis 5.000, besonders bevorzugt 300 bis 3.000, stärker bevorzugt 500 bis 2.500, noch stärker bevorzugt 700 bis 2.500 und insbesondere 800 bis 1.500 in Betracht. Als Beispiele für obige Gruppen von Detergens-Additiven seien die folgenden genannt:
Mono- oder Polyaminogruppen (Da) enthaltende Additive sind vorzugsweise Polyal- kenmono- oder Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000, besonders bevorzugt 500 bis 2500 und insbesondere 700 bis 2500. Derartige Additive auf Basis von hochreaktivem Polyisobuten, welche aus dem Polyisobuten, das bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethyl- aminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethy- lenpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 bekannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der ß- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxyl- verbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine wie Ammoniak, Monoamine oder die oben genannten Polyamine eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.
Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Poly- merisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A 97/03946 beschrieben sind.
Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die aus Poly- isobutenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in der DE-A 196 20 262 beschrieben sind.
Nitrogruppen (Db), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A96/03367 und in der WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α,β-Dinitropolyisobuten) und ge- mischten Hydroxynitropolyisobutenen (z. B. α-Nitro-ß-hydroxypolyisobuten) dar.
Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (De) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Poly- isobuten mit Mn = 300 bis 5000 mit Ammoniak, Mono- oder Polyaminen, wie sie insbesondere in der EP-A 476 485 beschrieben sind.
Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Dd) enthaltende Additive sind vorzugsweise Copolymere von C2- bis C4o-Olefinen mit Maleinsäurean- hydrid mit einer Gesamt-Molmasse von 500 bis 20.000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01 126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)-butenaminen oder Polyetheraminen eingesetzt werden.
Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (De) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobern- steinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)buten- aminen oder Polyetheraminen eingesetzt werden. Polyoxy-C2-C4-alkylengruppierungen (Df) enthaltende Additive sind vorzugsweise Po- lyether oder Polyetheramine, welche durch Umsetzung von C2- bis C6o-Alkanolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkylcyclo- hexanolen oder Cr bis C3o-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propy- lenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoami- nen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenol- butoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak. Carbonsäureestergruppen (Dg) enthaltende Additive sind vorzugsweise Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 100 °C, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Tri- mellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften. Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder insbesondere Imidogruppen (Dh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobute- nylbernsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hoch- reaktivem Polyisobuten mit Mn = vorzugsweise 300 bis 5000, besonders bevorzugt 300 bis 3000, stärker bevorzugt 500 bis 2500, noch stärker bevorzugt 700 bis 2500 und insbesondere 800 bis 1500, mit Maleinsäureanhydrid auf thermischem Weg in einer En-Reaktion oder über das chlorierte Polyisobuten erhältlich sind. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säure- amide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Um- setzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Derartige Kraftstoffadditive sind insbesondere in der US-A 4 849 572 beschrieben. Bevorzugt handelt es sich um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substitu- ierten Bernsteinsäuren oder Derivaten davon mit Aminen und besonders bevorzugt um die Umsetzungsprodukte von Polyisobutenyl-substituierten Bernsteinsäuren oder Deri- vaten davon mit Aminen. Von besonderem Interesse sind hierbei Umsetzungsprodukte mit aliphatischen Polyaminen (Polyalkylenimine) wie insbesondere Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Hexaethylenheptamin, welche eine Imidstruktur aufweisen. Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- o- der Polyaminen erzeugte Gruppierungen (Di) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra- ethylenpentamin oder Dimethylaminopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben.
Dem Kraftstoff können ein oder mehrere der genannten Detergens-Additive aus der Grupppe (Da) bis (Di) in solch einer Menge zugegeben werden, dass die Dosierrate an diesen Detergens-Additiven vorzugsweise 25 bis 2500 Gew.-ppm, insbesondere 75 bis 1500 Gew.-ppm, vor allem 150 bis 1000 Gew.-ppm, beträgt.
Als Co-Additive mitverwendete Trägeröle können mineralischer oder synthetischer Natur sein. Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 bis 2000, aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 500 °C, erhältlich aus unter Hochdruck katalytisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Träger- öle.
Beispiele für geeignete synthetische Trägeröle sind Polyolefine (Polyalphaolefine oder Polyinternalolefine), (Poly)ester, Poly)alkoxylate, Polyether, aliphatische Polyetherami- ne, alkylphenolgestartete Polyether, alkylphenolgestartete Polyetheramine und Car- bonsäureester langkettiger Alkanole.
Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert). Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- bis C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- bis C6o-Alkanolen, C6- bis C3o-Alkandiolen, Mono- oder D1-C2- bis C3o-alkylaminen, Cr bis C3o-Alkyl-cyclohexanolen oder Cr bis C3o-Alkylphenolen mit 1 bis 30 mol Ethyl- enoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Amino- gruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875, EP-A 356 725, EP-A 700 985 und der US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine P0IV-C2- bis C6- Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 Kohlenstoffatomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Iso- tridecanols, z. B. Di-(n- oder lsotridecyl)phthalat. Weitere geeignete Trägerölsysteme sind beispielsweise in der DE-A 38 26 608, DE-A 41 42 241 , DE-A 43 09 074, EP-A 452 328 und der EP-A 548 617 beschrieben.
Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Po- lyether mit etwa 5 bis 35, vorzugsweise etwa 5 bis 30, besonders bevorzugt 10 bis 30 und insbesondere 15 bis 30 C3- bis C6-Alkylenoxideinheiten, z. B. Propylenoxid-, n-
Butylenoxid- und Isobutylenoxid-Einheiten oder Gemischen davon, pro Alkoholmolekül. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6- bis Cis-Alkylrest steht. Als besonde- re Beispiele sind zu nennen Tridecanol und Nonylphenol. Besonders bevorzugte alkoholgestartete Polyether sind die Umsetzungsprodukte (Polyveretherungsprodukte) von einwertigen aliphatischen C6- bis Cis-Alkoholen mit C3- bis C6-Alkylenoxiden. Beispiele für einwertige aliphatische C6-Ci8-Alkohole sind Hexanol, Heptanol, Octanol, 2-Ethyl- hexanol, Nonylalkohol, Decanol, 2-Propylheptanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Octadecanol und deren Konstitutions- und Stellungsisomere. Die Alkohole können sowohl in Form der reinen Isomere als auch in Form technischer Gemische eingesetzt werden. Ein besonders bevorzugter Alkohol ist Tridecanol. Beispiele für C3- bis C6-Alkylenoxide sind Propylenoxid, wie 1 ,2-Propylen- oxid, Butylenoxid, wie 1 ,2-Butylenoxid, 2,3-Butylenoxid, Isobutylenoxid oder Tetrahyd- rofuran, Pentylenoxid und Hexylenoxid. Besonders bevorzugt sind hierunter C3- bis C4- Alkylenoxide, d.h. Propylenoxid wie 1 ,2-Propylenoxid und Butylenoxid wie 1 ,2-Butylenoxid, 2,3-Butylenoxid und Isobutylenoxid. Speziell verwendet man Butylenoxid.
Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind.
Besondere Trägeröle sind synthetische Trägeröle, wobei die zuvor beschriebenen alkoholgestarteten Polyether besonders bevorzugt sind. Das Trägeröl bzw. das Gemisch verschiedener Trägeröle wird dem Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm zugesetzt.
Geeignete Kaltfließverbesserer als Co-Additive sind im Prinzip alle organischen Verbindungen, welche in der Lage sind, das Fließverhalten von Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen in der Kälte zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür die üblicher- weise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen mineralischen Dieselkraftstoffen, eingesetzten Kaltfließverbesserer ("middle distillate flow improvers", "MDFI") in Betracht. Jedoch können auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs ("WASA") aufweisen. Die erfindungs- gemäß verwendeten Imidazoliumsalze (I) weisen in Mitteldestillatbrennstoffen, insbesondere in Dieselkraftstoffen, selbst Eigenschaften als WASA auf, was ja auch Gegenstand der vorliegenden Erfindung ist. Auch können als Kaltfließverbesserer eingesetzte Co-Additive zum Teil oder überwiegend als Nukleatoren wirken. Es können aber auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen eingesetzt werden.
Typischerweise wird der Kaltfließverbesserer ausgewählt aus:
(K1 ) Copolymeren eines C2- bis C4o-Olefins mit wenigstens einem weiteren ethyle- nisch ungesättigten Monomer;
(K2) Kammpolymeren;
(K3) Polyoxyalkylenen;
(K4) polaren Stickstoffverbindungen;
(K5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
(K6) Poly(meth)acrylsäureestern.
Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (K1 ) bis (K6) als auch Mischungen von Vertretern aus verschiedenen Klassen (K1 ) bis (K6) eingesetzt werden.
Geeignete C2- bis C4o-Olefin-Monomere für die Copolymeren der Klasse (K1 ) sind beispielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (a-Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch a-Olefine, besonders bevorzugt α-Olefine mit 2 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1 -Buten, 1 -Penten, 1 -Hexen und vor allem Ethylen. Bei den Copolymeren der Klasse (K1 ) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen. Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C4o-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismonomer Ethylen oder Propen ein, eignen sich als weitere Olefine insbesondere C10- bis C4o-a-Olefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.
Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit Cr bis C2o-Alkanolen, insbesondere Cr bis Cio-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pen- tanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Strukturisomeren hiervon.
Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis C-u-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vi- nylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Prope- nyl-ester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäurealkenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (K1 ) sind die mit am häufigsten eingesetzten Ethylen-Vinylacetat-Copolymere ("EVA"). Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.
Als Copolymere der Klasse (K1 ) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten. Auch Terpolymere aus einem C2- bis C4o-a-Olefin, einem C bis C2o-Alkylester einer ethylenisch ungesättigten Monocarbonsaure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis Ci4-Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen sind als Copolymere der Klasse (K1 ) geeignet. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethyl- en, Acrylsäure-2-ethylhexylester und Vinylacetat aufgebaut.
Das wenigstens eine oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copolymeren der Klasse (K1 ) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (K1 ) stammt somit in der Regel aus den C2- bis C4o-Basis-Olefinen. Die Copolymere der Klasse (K1 ) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 8000 auf.
Typische Kammpolymere der Komponente (K2) sind beispielsweise durch die Copoly- merisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem a-Olefin oder einem ungesättigten Ester wie Vinylacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere geeignete Kammpolymere sind Copolymere von a-Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder ver- esterte Copolymere von Styrol und Fumarsäure. Geeignete Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere. Als Komponente der Klasse (K2) geeignete Kammpolymere sind beispielsweise auch solche, die in der WO 2004/035715 und in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J.
Poly. Sei. Macromolecular Revs. 8, Seiten 1 17 bis 253 (1974)" beschrieben sind. Auch Gemische von Kammpolymeren sind geeignet.
Als Komponente der Klasse (K3) geeignete Polyoxyalkylene sind beispielsweise Poly- oxyalkylenester, Polyoxyalkylenether, gemischte Polyoxyalkylenesterether und Gemische davon. Bevorzugt enthalten diese Polyoxyalkylenverbindungen wenigstens eine, vorzugsweise wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem zahlenmittleren Molekulargewicht von bis zu 5000. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP- A 061 895 sowie in der US 4 491 455 beschrieben. Besondere Polyoxyalkylenverbindungen basieren auf Polyethylenglykolen und Polypropylenglykolen mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Weiterhin sind Polyoxyalkylenmono- und -diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behen- säure geeignet.
Als Komponente der Klasse (K4) geeignete polare Stickstoffverbindungen können so- wohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens zwei Substituenten in Form eines tertiären Stickstoffatoms der allgemeinen Formel >NR7, worin R7 für einen Cs- bis C4o-Kohlenwas- serstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammo- niumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen Cs- bis C4o-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind bei- spielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetrade- cylamin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbonsäure, Cyclo- hexen-1 ,2-dicarbonsäure, Cyclopentan-1 ,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
Insbesondere ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbon-säu- ren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Car- bonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den Polycar- bonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, meist über ein oder mehrere Kohlenstoff- und/oder Stick- stoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
Vorzugsweise ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly-(C2- bis C20- Carbonsäuren) der allgemeinen Formel IIa oder IIb (I Ib) in denen die Variable A eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe oder die Gruppierung der Formel II I
^B^ ^ΟΗ2-ΟΗ2-
HOOC
i
CH2-CH2-
(I I I) darstellt und die Variable B eine C bis Cig-Alkylengruppe bezeichnet. Die Verbindungen der allgemeinen Formel I Ia und I Ib weisen insbesondere die Eigenschaften eines WASA auf.
Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (K4), ins- besondere das der allgemeinen Formel I Ia oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
Geradkettige oder verzweigte C2- bis C6-Alkylengruppen der Variablen A sind bei- spielsweise 1 , 1 -Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Butylen, 2-Methyl-1 ,3-propylen, 1 ,5-Pentylen, 2-Methyl-1 ,4-butylen, 2,2-Dimethyl-1 ,3-pro- pylen, 1 ,6-Hexylen (Hexamethylen) und insbesondere 1 ,2-Ethylen. Vorzugsweise umfasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome. Cr bis Ci9-Alkylengruppen der Variablen B sind vor beispielsweise 1 ,2-Ethylen, 1 ,3- Propylen, 1 ,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.
Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (K4) sind üblicherweise Monoamine, insbesondere aliphatische Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
Meist sind diese den öllöslichen Umsetzungsprodukten der Komponente (K4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel H N(R8)2 auf, in der die beiden Variablen R8 unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste, insbesondere Cu- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäure bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R8 gleich.
Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. Vorzugsweise liegen die öllöslichen Umsetzungsprodukte der Komponente (K4) vollständig in Form der Amidstrukturen vor. Typische Beispiele für derartige Komponenten (K4) sind Umsetzungsprodukte der Nitri- lotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1 ,2-diamintetra- essigsäure mit jeweils 0,5 bis 1 ,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1 ,2 Mol pro Carboxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditaigfettamin. Eine besonders bevorzugte Kompo- nente (K4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditaigfettamin.
Als weitere typische Beispiele für die Komponente (K4) seien die N,N-Dialkylammoni- umsalze von 2-N',N'-Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäureanhydrid und 2 Mol Ditaigfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditaigfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt. Weitere typische Strukturtypen für die Komponente der Klasse (K4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/181 15 beschrieben sind. Als Kaltfließverbesserer der Komponente der Klasse (K5) geeignete Sulfocarbonsäu- ren, Sulfonsäuren oder deren Derivate sind beispielsweise die öllöslichen Carbonsäu- reamide und Carbonsäureester von ortho-Sulfobenzoesäure, in denen die Sulfonsäure- funktion als Sulfonat mit alkylsubstituierten Ammoniumkationen vorliegt, wie sie in der EP-A 261 957 beschrieben werden.
Als Kaltfließverbesserer der Komponente der Klasse (K6) geeignete Poly(meth)acryl- säureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäure- estern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevor- zugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten Cu- und Cis-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben. Dem Mitteldestillat-Kraftstoff bzw. Dieselkraftstoff wird der Kaltfließverbesserer bzw. das Gemisch verschiedener Kaltfließverbesserer in einer Gesamtmenge von vorzugsweise 10 bis 5000 Gew.-ppm, besonders bevorzugt von 20 bis 2000 Gew.-ppm, stärker bevorzugt von 50 bis 1000 Gew.-ppm und insbesondere von 100 bis 700 Gew.-ppm, z.B. von 200 bis 500 Gew.-ppm, zugegeben.
Als Co-Additive geeignete Schmierfähigkeitsverbesserer (Lubricity Improver bzw. Fric- tion Modifier) basieren üblicherweise auf Fettsäuren oder Fettsäureestern. Typische Beispiele sind Tallölfettsäure, wie beispielsweise in der WO 98/004656 beschrieben, und Glycerinmonooleat. Auch die in der US 6 743 266 B2 beschriebenen Reaktions- produkte aus natürlichen oder synthetischen Ölen, beispielsweise Triglyceriden, und Alkanolaminen sind als solche Schmierfähigkeitsverbesserer geeignet.
Als Co-Additive geeignete Korrosionsinhibitoren sind z. B. Bernsteinsäureester, vor allem mit Polyolen, Fettsäurederivate, z. B. Ölsäureester, oligomerisierte Fettsäuren, substituierte Ethanolamine, N-acyliertes Sarkosin, Imidazolin-Derivate, z. B. solche welche in der 2-Position eine Alkylgruppe und am trivalenten Stickstoffatom einen funktionellen organischen Rest tragen (ein hierfür typisches Imidazolin-Derivat ist das Umsetzungsprodukt von überschüssiger Ölsäure mit Diethylentriamin), und Produkte, die unter dem Handelsnamen RC 4801 (Rhein Chemie Mannheim, Deutschland) oder Hi- TEC 536 (Ethyl Corporation) vertrieben werden. Die genannten Imidazolin-Derivate sind als Korrosionsinhibitoren besonders wirksam, wenn sie in dieser Anwendung mit einem oder mehreren Carbonsäureamiden mit einer oder mehreren Carbonsäureamid- Funktionen im Molekül und mit längerkettigen Resten an den Amidstickstoffen, beispielsweise mit dem Umsetzungsprodukt von Maleinsäureanhydrid mit einem langket- tigen Amin in äquimolarem Verhältnis, kombiniert werden.
Als Co-Additive geeignete Demulgatoren sind z. B. die Alkali- oder Erdalkalisalze von Alkyl-substituierten Phenol- und Naphthalinsulfonaten und die Alkali- oder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen wie Alkoholalkoxylate, z.B. Alko- holethoxylate, Phenolalkoxylate, z.B. tert-Butylphenolethoxylat oder teil. -Pentylphenol- ethoxylat, Fettsäuren, Alkylphenole, Kondensationsprodunkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockcopolymeren, Polyethy- lenimine oder auch Polysiloxane. Als Co-Additive geeignete Dehazer sind z. B. alkoxylierte Phenol-Formaldehyd- Kondensate, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte NALCO 7D07 (Nalco) und TOLAD 2683 (Petrolite).
Als Co-Additive geeignete Antischaummittel sind z. B. Polyether-modifizierte Polysilo- xane, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte TEGOP- REN 5851 (Goldschmidt), Q 25907 (Dow Corning) und RHODOSIL (Rhone Poulenc). Als Co-Additive geeignete Cetanzahlverbesserer sind z. B. aliphatische Nitrate wie 2- Ethylhexylnitrat und Cyclohexylnitrat sowie Peroxide wie Di-tert-butylperoxid.
Als Co-Additive geeignete Antioxidantien sind z. B. substituierte, d. h. sterisch gehinderte Phenole, wie 2,6-Di-tert.-butylphenol, 2,6-Di-tert.-butyl-3-methylphenol oder unter dem Handelsnamen IRGANOX® (BASF SE) vertriebene Produkte, z. B. 2,6-Di-tert- butyl-4-alkoxycarbonylethyl-phenol (IRGANOX L135), sowie Phenylendiamine wie N,N'-Di-sec.-butyl-p-phenylendiamin.
Als Co-Additive geeignete Metalldeaktivatoren sind z. B. Salicylsäurederivate wie Ν,Ν'- Disalicyliden-1 ,2-propandiamin oder unter dem Handelsnamen IRGAMET® (BASF SE) vertriebene Produkte auf Basis von N-substituierten Triazolen und Tolutriazolen.
Als mitzuverwendende Lösungsmittel sind z. B. unpolare organische Lösungsmittel wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylole, "white spirit" und Produkte, die unter dem Handelsnamen SHELLSOL (Royal Dutch/Shell Group) und EXXSOL (ExxonMobil) vertrieben werden, sowie polare organische Lösungsmittel, beispielsweise Alkohole wie 2-Ethylhexanol, Decanol und Isotridecanol sowie Carbonsäureester mit längerkettigen Alkylgruppen wie C12- bis C2o-Fettsäure- methylester, geeignet. Derartige Lösungsmittel gelangen meist zusammen mit den Imidazoliumsalzen (I) und den vorgenannten Co-Additiven, die sie zur besseren Handhabung lösen oder verdünnen sollen, in den Kraft- oder Brennstoff, insbesondere den Dieselkraftstoff.
Die erfindungsgemäß zu verwendenden Imidazoliumsalze (I) eignen sich in hervorra- gender Weise als Kraft- oder Brennstoffzusatz und können im Prinzip in jeglichen Kraft- und Brennstoffen eingesetzt werden. Sie bewirken eine ganze Reihe von vorteilhaften Effekten beim Betrieb von Verbrennungsmotoren mit Kraft- bzw. Brennstoffen. Bevorzugt wird die erfindungsgemäß zu verwendenden Imidazoliumsalze (I) in Mitteldestillat- Kraftstoffen, insbesondere Dieselkraftstoffen, eingesetzt.
Gegenstand der vorliegenden Erfindung ist daher auch eine Kraft- und Brennstoffzusammensetzung, insbesondere eine Mitteldestillat-Kraftstoffzusammensetzung, mit einem als Zusatzstoff zur Erzielung von vorteilhaften Effekten beim Betrieb von Ver- brennungsmotoren, beispielsweise von Dieselmotoren, insbesondere von direkteinspritzenden Dieselmotoren, vor allem von Dieselmotoren mit Common-Rail-Einspritz- systemen, wirksamen Gehalt an den erfindungsgemäß zu verwendenden Imidazoli- umsalzen (I) neben der Hauptmenge eines üblichen Grundkraft- oder Grundbrennstof- fes. Dieser wirksame Gehalt (Dosierrate) liegt in der Regel bei 10 bis 5000 Gew.-ppm, vorzugsweise bei 20 bis 1500 Gew.-ppm, insbesondere bei 25 bis 1000 Gew.-ppm, vor allem bei 30 bis 750 Gew.-ppm, jeweils bezogen auf die Gesamtmenge an Kraft- bzw. Brennstoff. Bei Mitteldestillat-Kraftstoffen wie Dieselkraftstoffen oder Heizölen handelt es sich vorzugsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch darüber hinaus. Dies können aber auch so genannte "Ultra Low Sulfur Diesel" oder "City Diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%- Punkt von beispielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.- %. Neben den durch Raffination erhältlichen mineralischen Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen sind auch solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL)-Kraftstoffe] oder durch Biomasse-Verflüssigung ["biomass to liquid" (BTL)-Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Mitteldestillat-Kraftstoffe bzw. Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel oder Bioethanol.
Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff.).
Die erfindungsgemäß zu verwendenden Imidazoliumsalze (I) können neben ihrer Verwendung in den oben genannten Mitteldestillat-Kraftstoffen aus fossilem, pflanzlichem oder tierischem Ursprung, die im wesentlichen Kohlenwasserstoffmischungen darstellen, auch in Mischungen aus solchen Mitteldestillaten mit Biobrennstoffölen (Biodiesel) eingesetzt werden. Derartige Mischungen werden im Sinne der vorliegenden Erfindung auch von dem Begriff "Mitteldestillat-Kraftstoff" umfasst. Sie sind handelsüblich und enthalten meist die Biobrennstofföle in untergeordneten Mengen, typischerweise in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 10 Gew.-%, bezogen auf die Gesamtmenge aus Mitteldestillat fossilen, pflanzlichem oder tierischen Ursprungs und Biobrennstofföl.
Biobrennstofföle basieren in der Regel auf Fettsäureestern, meist im Wesentlichen auf Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere Cr bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol oder vor allem Methanol ("FAME"), erhältlich sind. Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biobrennstofföl oder Komponenten hierfür Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester ("RME").
Besonders bevorzugt handelt es sich bei den Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen um solche mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, ins- besondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel.
Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegende Erfindung.
Gegenstand der vorliegenden Erfindung ist auch ein Additivkonzentrat, welches in Kombination mit mindestens einem weiteren Kraft- und Brennstoffadditiv, insbesondere mit mindestens einem weiterem Dieselkraftstoffadditiv, wenigstens ein erfindungsgemäß zu verwendendes Imidazoliumsalz (I) enthält. Üblicherweise enthält ein solches Additivkonzentrat 10 bis 60 Gew.-% mindestens eines Lösungs- oder Verdünnungsmittels, welches ein oben genanntes Lösungsmittel oder der Kraft- oder Brennstoff selbst sein kann. Vorzugsweise enthält das erfindungsgemäße Additivkonzentrat neben dem wenigstens einen erfindungsgemäß zu verwendendem Imidazoliumsalz (I) noch mindestens ein Detergens-Additiv aus der oben genannten Gruppe (Da) bis (Di), insbesondere mindestens ein Detergens-Additiv des Typs (Dh), sowie in der Regel zusätzlich auch noch mindestens einen Schmierfähigkeitsverbesserer und/oder eine Korrosi- onsinhibitor und/oder einen Demulgator und/oder einen Dehazer und/oder ein Anti- schaummittel und/oder einen Cetanzahlverbesserer und/oder ein Antioxidans und/oder eine Metalldeaktivator in dem jeweils hierfür üblichen Mengenrelationen enthalten.
Die erfindungsgemäß zu verwendenden Imidazoliumsalze (I) eignen sich insbesondere als Zusatz in Kraft- und Brennstoffzusammensetzungen, insbesondere in Dieselkraftstoffen, zur Überwindung der eingangs geschilderten Probleme bei direkteinspritzenden Dieselmotoren, vor allem bei solchen mit Common-Rail-Einspritzsystemen.
Da einige der beschriebenen Imidazoliumsalze neue Stoffe darstellen, sind ebenfalls Gegenstand der vorliegenden Erfindung Imidazoliumsalze der allgemeinen Formel (la)
in der eine der Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinan- der für einen linearen Alkyl- oder Alkenylrest mit 14 bis 3000 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 3000 Kohlenstoffatomen stehen, die Variable R1 oder R3, die nicht für einen linearen Alkyl- oder Alkenylrest mit 14 bis 3000 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 3000 Kohlenstoffatomen steht, einen Alkylrest mit 1 bis 13 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 13 Kohlenstoffatomen bedeutet, die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlenstoffatomen be- deuten,
X ein Anion bezeichnet und n für die Zahl 1 , 2 oder 3 steht, wobei die genannten Variablen R1 bis R5, X und n die oben genannten zutreffenden Einzelbedeutungen und Vorzugsbereiche aufweisen.
Besonders bevorzugte Imidazoliumsalze der allgemeinen Formel (la) sind dabei sol- che, in der eine der Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinander für einen linearen Alkyl- oder Alkenylrest mit 14 bis 20 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 13 Kohlenstoffatomen stehen und die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlen- stoffatomen bedeuten.
Besonders bevorzugte Imidazoliumsalze der allgemeinen Formel (la) sind weiterhin dabei solche, in der die Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinander für einen Polyisobutylrest mit einem zahlenmittleren Molekularge- wicht von 200 bis 40.000 stehen und die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlenstoffatomen bedeuten. Die neuen Imidazoliumsalze der allgemeinen Formel (la) eignen sich neben ihrer Verwendungsmöglichkeit als Additive für Kraft- und Brennstoffe, insbesondere als Deter- genzadditive für Dieselkraftstoffe, auch zur Verbesserung der Gebrauchseigenschaften von mineralischen und synthetischen nicht-wässrigen Industrieflüssigkeiten. Unter nicht-wässrigen Industrieflüssigkeiten, die im Einzelfall Wasseranteile enthalten können, deren wesentliche Wirkung jedoch auf nicht-wässrigen Komponenten beruht, sollen hier Schmierstoffe, Schmiermittel und Schmieröle im weitesten Sinne, insbesondere Motorenöle, Getriebeöle, Achsöle, Hydraulikflüssigkeiten, Hydrauliköle, Kompressorenflüssigkeiten, Kompressorenöle, Umlauföle, Turbinenöle, Transformatorenöle, Gas- motorenöle, Windturbinenöle, Bettbahnöle, Schmierfette, Kühlschmierstoffe, Verschleißschutzöle für Ketten und Fördersysteme, Metallbearbeitungsflüssigkeiten, lebensmittelverträgliche Schmierstoffe für die industrielle Verarbeitung von Lebensmitteln sowie Kocheröle für Dauerkocher, Sterilisatoren und Dampfschäler, verstanden werden. Gebrauchseigenschaften, die durch die Imidazoliumsalze (la) verbessert werden, sind insbesondere die Schmierwirkung, der Reibungsverschleiss, die Lebensdauer, der Korrosionsschutz, der antimikrobielle Schutz, das Demulgiervermögen hinsichlich eines erleichterten Abtrennens von Wasser und Verunreinigungen sowie die Filtrierbar- keit. Die Erfindung wird nun anhand der folgenden Ausführungsbeispiele näher beschrieben:
Beispiele Herstellung von 1 ,3-Di(2-ethylhexyl)imidazolium-acetat
300,3 g (3,0 mol) einer 30 gew.-%igen wässrigen Formaldehyd-Lösung, 435,3 g (3,0 mol) Glyoxal und 180,2 g (3,0 mol) wasserfreie Essigsäure wurden im Kolben vorgelegt und unter Rühren bei Raumtemperatur langsam mit 791 ,3 g (6,0 mol) 98 gew.-%igem 2-Ethylhexylamin versetzt. Dabei stieg die Temperatur der Reaktionsmischung rasch auf 38°C an und wurde durch Eisbadkühlung bis zum Zugabeende des Amins dort gehalten. Anschließend wurde 5 Stunden bei 80°C nachgerührt. Nach Abtrennung der oberen wässrigen Phase wurden 1038,4 g 1 ,3-(2-Ethylhexyl)imidazolium-acetat erhalten.
Herstellung von 1 ,3-Di(polyisobutyl)imidazolium-acetat
Analog zur oben beschriebenen Herstellung von 1 ,3-Di(2-ethylhexyl)imidazolium-acetat wurde aus 3,0 mol 30 gew.-%iger wässrigen Formaldehyd-Lösung, 3,0 mol Glyoxal, 3,0 mol wasserfreie Essigsäure und 6,0 mol Polyisobutylamin C4H9-(C4He)x-CH2NH2 mit x = 17-18 (Handelsprodukt Kerocom® PIBA der BASF SE) 1 ,3-Di(polyisobutyl)imida- zolium-acetat erhalten. Anwendungsbeispiele
Zur Untersuchung des Einflusses der Additive auf die Performance von direkteinspritzenden Dieselmotoren wurde als Testmethode der DW10-Motorentest verwendet, bei dem der Leistungsverlust ("powerloss") durch Injektorablagerungen im Common Rail- Dieselmotor in Anlehnung an die offizielle Testmethode CEC F-098-08 bestimmt wird. Der Leistungsverlust ist ein direktes Maß für Bildung von Ablagerungen in den Injektoren. Verwendet wurde ein direkteinspritzender Dieselmotor mit Common-Rail-System gemäß Testmethoden CEC F-098-08. Als Kraftstoff wurde ein handelsüblicher Dieselkraftstoff der Fa. Haltermann (DF-79-07/5) eingesetzt. Diesem wurden zur künstlichen Anregung der Bildung von Ablagerungen an den Injektoren 1 Gew.-ppm Zink in Form einer Zink-Didodecanoatlösung zugesetzt. Die Ergebnisse veranschaulichen den rela- tiven Leistungsverlust bei 4000 rpm gemessen während eines 12-stündigen Dauerbetriebs. Der Wert "tO" gibt dabei die Leistung ("power") in kW bei Testbeginn und der Wert "t12" die Leistung in kW bei Testende an.
Als erfindungsgemäß zu verwendende Additive wurden folgende Imidazoliumsalze eingesetzt:
(1.1 ) 1 -Ethyl-3-methylimidazolium-acetat
(1.2) 1 -Butyl-3-methylimidazolium-acetat
(1.3) 1 -Octyl-3-methylimidazolium-methylcarbonat
(I.4) 1 ,3-Di(2eEthylhexyl)imidazolium-acetat
Die Verbindungen (1.1 ) und (I.2) sind handelsübliche Produkte; die Verbindung (I.3) wurde aus N-Octylimidazol durch Quaternisierung mit Dimethylcarbonat als 30 gew.- %ige Lösung in Methanol nach einer üblichen Synthesemethode hergestellt; die Ver- bindung (I.4) wurde gemäß oben angegebener Synthesevorschrift hergestellt.
In den durchgeführten Testläufen wurden die Additive (1.1 ) und (I.2) als Reinsubstanzen und die Additive (I.3) und (I.4) als Lösungen eingesetzt. Die angegebenen Dosierung beziehen sich auf den aktiven Wirkstoff.
Die Ergebnisse der Power- bzw. Powerloss-Bestimmungen der DW10-Motorentest- läufe sind in der folgenden Tabelle zusammengefasst: Additiv Dosierung [Gew.- tO [kW] t12 [kW] powerloss [%] ppm]
ohne 0 93,9 88,8 -5,4
(1.1 ) 100 98,9 98,0 -0,9
(I.2) 100 97,1 97,0 -0,1
(I.2) 30 95,2 94,4 -0,8
(I.3) ..33 96,9 97,2 +0,3
(I.4) 50 95,8 95,1 -0,7
Mit den Additiven (I.2) und (I.4) wurde zusätzlich ein Verschmutzungs- und Reinigungs- lauf gemäß DW10-Test durchgeführt. Dazu wurde zuerst der verwendete direkteinspritzende Dieselmotor mit Common-Rail-System mit dem gleichen handelsüblichen Dieselkraftstoff (mit einem Gehalt an 1 Gew.-ppm Zink in Form einer Zink- Didodecanoatlösung) für 12 Stunden ohne Detergens-Additiv betrieben, wobei der Wert t für die Leistung im Experiment mit (I.2) zuerst sukzessive von 96,2 kW auf 89,8 kW fiel. Nach Zugabe von 30 Gew.-ppm des Additivs (I.2) und weiterem Betrieb für 5 Stunden stieg der Wert t für die Leistung wieder auf 95,7 kW an, wobei der größte Sprung für t innerhalb der ersten beiden Stunden nach Zugabe von (I.2) erfolgte (nach 1 Stunde t = 91 ,4 kW, nach 2 Stunden t = 94,5 kW). In Experiment mit Additive (I.4) fiel die Leistung von 98,4 kW auf 93,9 kW in den ersten 13 Stunden Betrieb ohne Additive. Nach Zugabe von 50 Gew.-ppm des Additivs (I.4) und weiterem Betrieb für 12 Stunden stieg der Wert t für die Leistung wieder auf 96,3 kW an, wobei der größte Sprung in Leistung innerhalb der ersten beiden Stunden nach Zugabe von (I.4) erfolgte (nach weiterer Absenkung des Wertes nach Kraftstoffwechsel zu 92,8kW stieg Leistung nach eine Stunde wieder auf t = 94,5 kW, nach 2 Stunden dann auf t = 95,5 kW).
Mit dem Additiv (I.4) wurde auch ein "keep clean"-Motortest gemäß der Testmethode CEC F-23-01 mit dem PSA-Motor XUD-9 A gefahren. Das Additiv wurde mit einer Do- sierung von 50 ppm in einem handelsüblichen Dieselkraftstoff der Fa. Haltermann (DF- 79-07/5) eingesetzt. Zum Vergleich wurde der Motor in einem separaten Prüflauf mit dem gleichen Dieselkraftstoff ohne Additiv betrieben. Die "Flow restriction" bei 0,1 mm "Needle elevation" im Kraftstoff betrug ohne Additiv 63% und mit 50 Gew.-ppm Additiv (I.4) -32%.

Claims

Patentansprüche
1 . Verwendung von Imidazoliumsalzen der allgemeinen Formel (I)
in der die Variablen R1 und R3 unabhängig voneinander für einen organischen Rest mit 1 bis 3000 Kohlenstoffatomen stehen, die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff oder einen organischen Rest mit 1 bis 3000 Kohlenstoffatomen bedeuten,
X ein Anion bezeichnet und n für die Zahl 1 , 2 oder 3 steht, als Additive für Kraft- und Brennstoffe.
Verwendung von Imidazoliumsalzen (I) nach Anspruch 1 als Detergenzadditive für Dieselkraftstoffe.
Verwendung von Imidazoliumsalzen (I) nach Anspruch 2 als Additiv zur Verringerung oder Vermeidung von Ablagerungen in Einspritzsystemen von direkteinspritzenden Dieselmotoren, insbesondere in Common-Rail-Einspritzsystemen, zur Verringerung des Kraftstoffverbrauches von direkteinspritzenden Dieselmotoren, insbesondere von Dieselmotoren mit Common-Rail-Einspritzsystemen, und/oder zur Minimierung des Leistungsverlustes (powerloss) in direkteinspritzenden Dieselmotoren, insbesondere in Dieselmotoren mit Common-Rail-Einspritzsystemen.
Verwendung von Imidazoliumsalzen (I) nach Anspruch 1 als Wachs-Anti-Settling Additiv (WASA) für Mitteldestillatbrennstoffe, insbesondere Dieselkraftstoffe.
Verwendung von Imidazoliumsalzen (I) nach Anspruch 1 als Schmierfähigkeits- verbesserer für Kraft- und Brennstoffe. Verwendung von Imidazoliumsalzen (I) nach den Ansprüchen 1 bis 5, bei denen das Anion X Sulfat, ein Alkylsulfat, ein Alkylsulfonat, ein Alkylcarbonat, ein Halo- genid, ein Pseudohalogenid, ein Carboxylat, ein Phosphat, ein Phosphonat, Nitrat, Nitrit, das TFSI-Anion der Formel N(S02CFs)2" oder das Tricyanomethamid-Anion bezeichnet.
Verwendung von Imidazoliumsalzen (I) nach den Ansprüchen 1 bis 6, bei denen die Variablen R1 und R3 unabhängig voneinander für d- bis C2o-Alkylgruppen, C2- bis C2o-Alkenylgruppen und/oder Polyisobutylreste mit einem zahlenmittleren Molekulargewicht von 200 bis 40.000 stehen und die Variablen R2, R4 und R5 jeweils Wasserstoff bedeuten.
8. Additivkonzentrat, enthaltend in Kombination mit mindestens einem weiteren Kraft- und Brennstoffadditiv, insbesondere mit mindestens einem weiterem Dieselkraftstoffadditiv, wenigstens ein Imidazoliumsalz (I) gemäß Anspruch 1 , 6 oder 7.
9. Kraft- oder Brennstoffzusammensetzung, enthaltend in der Hauptmenge eines üblichen Grundkraft- oder Grundbrennstoffes eine wirksame Menge wenigstens eines Imidazoliumsalzes (I) gemäß Anspruch 1 , 6 oder 7.
10. Imidazoliumsalze der allgemeinen Formel (la)
(la)
in der eine der Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinander für einen linearen Alkyl- oder Alkenylrest mit 14 bis 3000 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 3000 Kohlenstoffatomen stehen, die Variable R1 oder R3, die nicht für einen linearen Alkyl- oder Alkenylrest mit 14 bis 3000 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 3000 Kohlenstoffatomen steht, einen Alkylrest mit 1 bis 13 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 13 Kohlenstoffatomen bedeutet, die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlenstoffatomen bedeuten,
X ein Anion bezeichnet und n für die Zahl 1 , 2 oder 3 steht.
1 1 . Imidazoliumsalze der allgemeinen Formel (la) nach Anspruch 10, in der eine der Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinander für einen linearen Alkyl- oder Alkenylrest mit 14 bis 20 Kohlenstoffatomen oder für einen verzweigten Alkyl- oder Alkenylrest mit 4 bis 13 Kohlenstoffatomen stehen und die Variablen R2, R4 und R5 unabhängig voneinander Wasserstoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlenstoffatomen bedeuten.
12. Imidazoliumsalze der allgemeinen Formel (la) nach Anspruch 10, in der eine der Variablen R1 oder R3 oder beide Variablen R1 und R3 unabhängig voneinander für einen Polyisobutylrest mit einem zahlenmittleren Molekulargewicht von 200 bis 40.000 stehen und die Variablen R2, R4 und R5 unabhängig voneinander Wasser- stoff, einen Alkylrest mit 1 bis 20 Kohlenstoffatomen oder einen Alkenylrest mit 2 bis 20 Kohlenstoffatomen bedeuten.
13. Verwendung von Imidazoliumsalzen der allgemeinen Formel (la) gemäß den Ansprüchen 10 bis 12 zur Verbesserung der Gebrauchseigenschaften von minerali- sehen und synthetischen nicht-wässrigen Industrieflüssigkeiten.
EP13702810.6A 2012-02-10 2013-02-07 Imidazoliumsalze als additive für kraft- und brennstoffe Not-in-force EP2812418B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13702810.6A EP2812418B1 (de) 2012-02-10 2013-02-07 Imidazoliumsalze als additive für kraft- und brennstoffe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12154837 2012-02-10
EP13702810.6A EP2812418B1 (de) 2012-02-10 2013-02-07 Imidazoliumsalze als additive für kraft- und brennstoffe
PCT/EP2013/052373 WO2013117616A1 (de) 2012-02-10 2013-02-07 Imidazoliumsalze als additive für kraft- und brennstoffe

Publications (2)

Publication Number Publication Date
EP2812418A1 true EP2812418A1 (de) 2014-12-17
EP2812418B1 EP2812418B1 (de) 2018-11-21

Family

ID=47666145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13702810.6A Not-in-force EP2812418B1 (de) 2012-02-10 2013-02-07 Imidazoliumsalze als additive für kraft- und brennstoffe

Country Status (11)

Country Link
EP (1) EP2812418B1 (de)
JP (1) JP2015507052A (de)
KR (1) KR20140133566A (de)
CN (1) CN104136585A (de)
AU (1) AU2013218073A1 (de)
BR (1) BR112014018653A8 (de)
CA (1) CA2863698A1 (de)
ES (1) ES2711361T3 (de)
MX (1) MX2014008980A (de)
TR (1) TR201901211T4 (de)
WO (1) WO2013117616A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150079782A (ko) 2012-10-23 2015-07-08 바스프 에스이 히드로카르빌 에폭시드의 4차화 암모늄 염 및 연료 및 윤활제 내의 첨가제로서의 이의 용도
EP2970812B1 (de) 2013-03-11 2019-07-03 Basf Se Verwendung von polyalkoxylaten in schmiermittelzusammensetzungen
KR20150126365A (ko) 2013-03-13 2015-11-11 빈터샬 홀딩 게엠베하 치환 트리스(2-히드록시페닐)메탄의 제조 방법
CN105102594A (zh) 2013-03-21 2015-11-25 巴斯夫欧洲公司 烃基取代的二羧酸用于改善或促进水从包含净化添加剂的燃料油中的分离的用途
CA2917934A1 (en) 2013-07-12 2015-01-15 Basf Se Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels
WO2017202735A1 (en) * 2016-05-23 2017-11-30 Shell Internationale Research Maatschappij B.V. Use of a wax anti-settling additive in automotive fuel compositions
CA3197368A1 (en) 2020-11-04 2022-05-12 Jochen Wagner Aqueous emulsifier package with anionic surfactant for fuel emulsion
US12091618B2 (en) 2020-11-20 2024-09-17 Basf Se Mixtures for improving or boosting the separation of water from fuels
EP4263766B1 (de) 2020-12-16 2024-10-09 Basf Se Mischungen zur verbesserung der stabilität von additivpaketen
EP4284902A1 (de) 2021-01-27 2023-12-06 Basf Se Verzweigte primäre alkylamine als additive für benzinkraftstoffe
EP4074810B1 (de) 2021-04-15 2023-11-15 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
BR112023021769A2 (pt) 2021-04-22 2023-12-26 Basf Se Uso de derivados de poli-isobuteno, e, composição
EP4105301A1 (de) 2021-06-15 2022-12-21 Basf Se Neue benzinadditivpaket
WO2022263244A1 (en) 2021-06-16 2022-12-22 Basf Se Quaternized betaines as additives in fuels
EP4163353A1 (de) 2021-10-06 2023-04-12 Basf Se Verfahren zur verringerung von ablagerungen auf einlassventilen
EP4166630A1 (de) 2021-10-15 2023-04-19 Basf Se Verfahren zur reduktion von asphaltenen aus schiffstreibstoffen
EP4166631A1 (de) 2021-10-15 2023-04-19 Basf Se Verfahren zur reduktion von asphaltenen aus schiffstreibstoffen
CN113845892B (zh) * 2021-10-18 2022-04-26 西南石油大学 一种长效保护储层和提高储层渗透率的方法
WO2023117895A1 (en) 2021-12-21 2023-06-29 Basf Se Chemical product passport for production data
EP4269541A1 (de) 2022-04-29 2023-11-01 Basf Se Neue mischungen zur verbesserung oder verstärkung der wasserabscheidung aus brennstoffen
GB202212201D0 (en) * 2022-08-22 2022-10-05 Innospec Fuel Specialties Llc Improvements in fuels
WO2024061760A1 (de) 2022-09-23 2024-03-28 Basf Se Verminderung der kristallisation von paraffinen in kraftstoffen
EP4382588A1 (de) 2022-12-06 2024-06-12 Basf Se Additive zur verbesserung der thermischen stabilität von kraftstoffen
WO2024149635A1 (en) 2023-01-12 2024-07-18 Basf Se Branched amines as additives for gasoline fuels

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121091A (en) * 1960-03-03 1964-02-11 Nalco Chemical Co Quaternary imidazolium and imidazolinium bisulfites
US3506712A (en) * 1964-08-31 1970-04-14 Mobil Oil Corp Quaternary amine salts useful as fuel stabilizers
US4108858A (en) 1975-09-15 1978-08-22 Ethyl Corporation Polyolefin quaternary pyridinium salts
US4464182A (en) 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
JPS58138791A (ja) 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
IN184481B (de) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
EP0307815B1 (de) 1987-09-15 1992-04-08 BASF Aktiengesellschaft Kraftstoffe für Ottomotoren
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
US4849572A (en) 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
DE19754039A1 (de) 1997-12-05 1999-06-24 Basf Ag Verfahren zur Herstellung von Ethylencopolymeren in segmentierten Rohrreaktoren und Verwendung der Copolymere als Fließverbesserer
GB9827366D0 (en) 1998-12-11 1999-02-03 Exxon Chemical Patents Inc Macromolecular materials
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
WO2001072930A2 (en) 2000-03-31 2001-10-04 Texaco Development Corporation Fuel additive composition for improving delivery of friction modifier
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
DE10247795A1 (de) 2002-10-14 2004-04-22 Basf Ag Verwendung von Hydrocarbylvinyletherhomopolymeren zur Verbesserung der Wirkung von Kaltfliessverbesserern
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
JPWO2006090819A1 (ja) * 2005-02-24 2008-07-24 国立大学法人 東京大学 ポリロタキサン及びポリマー並びにイオン性液体を有する材料、及びその製造方法
WO2008152005A1 (de) * 2007-06-12 2008-12-18 Basf Se Katalysator für die härtung von epoxiden
US8263536B2 (en) 2009-02-20 2012-09-11 Exxonmobil Research And Engineering Company Method for the control of deposit formation in formulated lubricating oil by use of ionic liquids as additives
US8765650B2 (en) 2009-03-03 2014-07-01 The Lubrizol Corporation Ashless or reduced ash quaternary detergents
KR101886453B1 (ko) 2010-07-06 2018-08-07 바스프 에스이 산 무함유 사차화된 질소 화합물, 및 연료 및 윤활제의 첨가제로서의 이의 용도

Also Published As

Publication number Publication date
JP2015507052A (ja) 2015-03-05
CA2863698A1 (en) 2013-08-15
EP2812418B1 (de) 2018-11-21
WO2013117616A1 (de) 2013-08-15
AU2013218073A1 (en) 2014-09-04
BR112014018653A2 (de) 2017-06-20
ES2711361T3 (es) 2019-05-03
CN104136585A (zh) 2014-11-05
BR112014018653A8 (pt) 2017-07-11
MX2014008980A (es) 2014-08-27
KR20140133566A (ko) 2014-11-19
TR201901211T4 (tr) 2019-02-21

Similar Documents

Publication Publication Date Title
EP2812418B1 (de) Imidazoliumsalze als additive für kraft- und brennstoffe
US9062266B2 (en) Imidazolium salts as additives for fuels
EP2912149B1 (de) Verwendung von quaternisierten ammoniumsalze von hydrocarbylepoxiden als additive in kraft- und schmierstoffen
US10150927B2 (en) Polymers as additives for fuels and lubricants
EP2585498B1 (de) Quaternisiertes copolymerisat
EP2791291B1 (de) Verwendung quaternisierter alkylamine als additive in kraft- und schmierstoffen
US20160108331A1 (en) Betaine compounds as additives for fuels
WO2013000997A1 (de) Quaternisierte stickstoffverbindungen und deren verwendung als additive in kraft- und schmierstoffen
WO2011134923A1 (de) Quaternisiertes terpolymerisat
EP3149129B1 (de) Use of imidazol mit quaternären ammoniumsalzen
WO2018007375A1 (de) Copolymere als additive für kraft- und schmierstoffe
EP3322780A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
EP3322775B1 (de) Verwendung von copolymeren in direkteinspritzenden verbrennungsmotoren
EP3149130B1 (de) Verwendung epoxidquaternierter quaternärer ammoniumsalze
EP2811007A1 (de) Verwendung mit Alkylenoxid und Hydrocarbyl-substituierter Polycarbonsäure quaternisierter Alkylamine als Additive in Kraft- und Schmierstoffen
WO2018007486A1 (de) Polymere als additive für kraft und schmierstoffe
WO2018114348A1 (de) Additive zur verbesserung der thermischen stabilität von kraftstoffen
WO2016083090A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
EP3609990A1 (de) Polymere als additive für kraft und schmierstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160915

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/188 20060101ALI20180615BHEP

Ipc: C10L 1/232 20060101ALI20180615BHEP

Ipc: C10L 1/24 20060101ALI20180615BHEP

Ipc: C10L 10/08 20060101ALI20180615BHEP

Ipc: C10L 10/14 20060101ALI20180615BHEP

Ipc: C10L 10/18 20060101ALI20180615BHEP

Ipc: C10L 10/06 20060101ALI20180615BHEP

Ipc: C10L 1/26 20060101ALI20180615BHEP

Ipc: C10L 10/04 20060101AFI20180615BHEP

INTG Intention to grant announced

Effective date: 20180702

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011652

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1067521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2711361

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011652

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190207

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1067521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210223

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210316

Year of fee payment: 9

Ref country code: TR

Payment date: 20210121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210329

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013011652

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220207