EP2807654A1 - Isolierstoff für rotierende maschinen - Google Patents
Isolierstoff für rotierende maschinenInfo
- Publication number
- EP2807654A1 EP2807654A1 EP13713811.1A EP13713811A EP2807654A1 EP 2807654 A1 EP2807654 A1 EP 2807654A1 EP 13713811 A EP13713811 A EP 13713811A EP 2807654 A1 EP2807654 A1 EP 2807654A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating material
- filler
- resin
- material according
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011810 insulating material Substances 0.000 title claims abstract description 24
- 239000000945 filler Substances 0.000 claims abstract description 24
- 238000009826 distribution Methods 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 230000002902 bimodal effect Effects 0.000 claims description 3
- 238000004627 transmission electron microscopy Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 23
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 239000011241 protective layer Substances 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 25
- 238000009413 insulation Methods 0.000 description 21
- 239000010410 layer Substances 0.000 description 14
- 230000036961 partial effect Effects 0.000 description 14
- 239000010445 mica Substances 0.000 description 12
- 229910052618 mica group Inorganic materials 0.000 description 12
- 238000002161 passivation Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- 230000003628 erosive effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/12—Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/30—Windings characterised by the insulating material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
Definitions
- the invention relates to an insulating material and the use of the insulating material for rotating machines such as motors and generators.
- Electric machines such as e.g. Motors and generators, have electrical conductors, electrical insulation and a
- the reliability of the insulation system is significantly responsible for their operational safety.
- the insulating system has the task of electrical conductors (wires, coils, rods) permanently against each other and against the stator core or the environment to isolate.
- electrical conductors wires, coils, rods
- partial conductor insulation partial conductor insulation
- conductors or windings conductor or winding insulation
- main insulation main insulation
- the thickness of the main insulation is adapted to both the rated voltage of the machine and the operating and manufacturing conditions.
- the competitiveness of future power plants, their distribution and use depends to a large extent on the materials used and the technologies used for isolation.
- High-voltage and medium-voltage motors and generators today use stratified mica insulation.
- VPI vacuum pressure impregnation
- mica is used in the form of mica paper, wherein in the course of impregnation, the cavities located in the mica paper between the individual particles are filled with resin.
- the combination of impregnating resin and carrier material of the mica provides the mechanical strength of the insulation.
- the electrical strength results from the large number of solid-solid interfaces of the mica used.
- the resulting stratification of organic and inorganic materials forms microscopic interfaces whose resistance to partial discharges and thermal stresses is determined by the properties of the mica platelets. Due to the complex VPI process even the smallest voids in the insulation must be filled with resin in order to minimize the number of internal gas-solid interfaces.
- nanoparticulate fillers To further improve the durability, the use of nanoparticulate fillers is described. It is known from the literature (and from experience with the use of mica) that inorganic particles, in contrast to the polymeric insulating material, are not damaged or destroyed to a very limited extent under partial discharge action. The resulting erosion-inhibiting effect is dependent, inter alia, on the particle diameter and the particle surface that results from this. It shows that the larger the specific surface area of the particles, the greater the erosion-inhibiting effect on the particles. Inorganic nanoparticles have very large specific surface areas of 50 m 2 / g or more. For this purpose, the following technologies are used:
- the main difference between the two technologies is the design and manufacture of the actual coil insulation system. While the VPI system is finished only after impregnation and after curing of the winding in a convection oven, the separately cured under temperature and pressure legs of the resin-Resin-coil already before installation in the stator is a functioning and testable insulation system.
- the VPI process works with porous belts, which form under vacuum and subsequent pressurization of the impregnation tank with overpressure after curing in a convection oven to form a solid and continuous insulation system.
- the production of resin-rich coils is more complex because each coil leg or coil bar must be manufactured individually in special baking presses, resulting in a specific increase in the cost of each coil.
- EP 1366112 Bl describes a system which describes the preparation and properties of a nanoparticulate polymer. Therein a polymer with nanoparticulate filler based on silica with a maximum half-width of the distribution curve of 1.5 d max is described.
- a disadvantage of the solution proposed there is that the insulation proposed there is not optimal in terms of the formation of a passivation layer.
- a passivation layer is formed by application of an insulating material when a polymer filled with nanoparticles is exposed to partial discharges. Under partial discharge stress, the polymeric matrix degrades and releases the filler, for example, the nanoparticles, which then form a firmly adherent layer on the surface and thereby passivate the insulating coated body.
- the formation of the passivation layer takes a long time and the agglomeration is incomplete.
- the object and object of the present invention is an insulating material comprising a formulation comprising a resin and a nanoparticulate filler embedded therein, characterized in that the filler is present in at least a bimodal size distribution.
- the subject matter of the invention is the use of an insulating material according to the invention for impregnating coil windings in rotating electrical machines, preferably in generators. It is preferably an insulating material comprising a thermally and / or UV-polymerizable formulation having a nanoparticulate filler dispersed therein in which the half-width of the distribution curve, characterized by transmission electron microscopy, is greater than 1.5 d max .
- the formation of the passivation layer in this case depends to a particular extent on the size and the percentage of the dispersed nanoparticles, since the interparticle distance is decisive for the degradation of the polymer matrix between the nanoparticles and thus for the temporal formation of the passivation layer.
- the nanoparticles are dispersed monodisperse in the filler.
- the nanoparticles in the filler are based on a metal oxide, a semimetal oxide and particularly preferably on silicon dioxide and / or aluminum oxide.
- the polymeric matrix in which the filler is dispersed is an epoxy resin, for example a diglycidyl ether based on bisphenols, for example bisphenol-A and / or bisphenol-F.
- the filler is present in the insulating material in an amount of 1 to 80% by weight, in particular 1 to 60% by weight and more preferably in the range of 1 to 50% by weight of the total formulation.
- FIG. 4 shows a comparable representation to that of FIG. 3, however, of another embodiment of the invention, in which a system with aluminum oxide particles and silicon dioxide particles is shown.
- the size distribution shown in FIG. 4 shows a local d max at 9 nm. This results in a half-width of the distribution curve of likewise 1.7 d max .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Die Erfindung betrifft einen Isolierstoff und die Verwendung des Isolierstoffs für rotierende Maschinen wie Motoren und Generatoren. Dabei offenbart die Erfindung erstmals einen Isolierstoff mit einem Füllstoff, der nicht nur auf einer monomodalen Nanopartikelgroßenverteilung basiert. Dadurch wird die Ausbildung von in-situ-Schutzschichten auf dem zu isolierenden Körper stark begünstigt.
Description
Beschreibung
Isolierstoff für rotierende Maschinen Die Erfindung betrifft einen Isolierstoff und die Verwendung des Isolierstoffs für rotierende Maschinen wie Motoren und Generatoren .
Elektrische Maschinen, wie z.B. Motoren und Generatoren, wei- sen elektrische Leiter, eine elektrische Isolation und ein
Ständerblechpaket auf. Dabei ist die Zuverlässigkeit des Isoliersystems maßgeblich für deren Betriebssicherheit verantwortlich. Das Isoliersystem hat die Aufgabe, elektrische Leiter (Drähte, Spulen, Stäbe) dauerhaft gegeneinander und gegen das Ständerblechpaket oder die Umgebung zu isolieren. Innerhalb einer Hochspannungsisolierung unterscheidet man die Isolierung zwischen Teilleitern (Teilleiterisolierung) , zwischen den Leitern bzw. Windungen (Leiter- bzw. Windungsisolierung) und zwischen Leiter und Massepotenzial im Nut- und Wickel - kopfbereich (Hauptisolierung) . Die Dicke der Hauptisolierung ist sowohl der Nennspannung der Maschine, als auch den Betriebs- und Fertigungsbedingungen angepasst. Die Wettbewerbsfähigkeit zukünftiger Anlagen zur Energieerzeugung, deren Verteilung und Nutzung hängt in entscheidendem Maße von den eingesetzten Materialien und angewandten Technologien zur Isolation ab.
Das grundlegende Problem bei derartig elektrisch belasteten Isolatoren liegt in der sog. teilentladungsinduzierten Erosi- on. Bei mechanischer oder thermischer Belastung im Betrieb der Maschine können sich Hohlräume an den Grenzflächen zwischen der Isolation und dem Leiter oder zwischen Isolation und dem Ständerbleckpaket bilden, in denen sich durch elektrische Teilentladungen Funken bilden können. Durch die Funken können sich sog. „Treeing" -Kanäle in der Isolation ausbilden. Die sich ausbildenden Treeing-Kanälen können letztendlich zum elektrischen Durchschlag des Isolators führen. Vor diesem Hintergrund ist es Stand der Technik, dass zur dauerhaften
Isolierung der spannungsführenden Leiter der Statoren in rotierenden Maschinen (Motoren, Generatoren, Turbogeneratoren, Wasserkraftgeneratoren, Windkraftgeneratoren) glimmerbasierte Isolierungen zum Einsatz kommen.
Bei Hoch- und Mittelspannungsmotoren und -generatoren werden heute geschichtete Glimmerisolierungen eingesetzt. Dabei werden die aus den isolierten Teilleitern hergestellten Formspulen mit Glimmerbändern umwickelt und vorrangig in einem Vaku- um-Druck-Prozess (VPI = vacuum pressure impregnation) mit Kunstharz imprägniert. Dabei wird Glimmer in Form von Glimmerpapier eingesetzt, wobei im Rahmen der Imprägnierung die im Glimmerpapier zwischen den einzelnen Partikeln befindlichen Hohlräume mit Harz gefüllt werden. Der Verbund von Im- prägnierharz und Trägermaterial des Glimmers liefert die mechanische Festigkeit der Isolierung. Die elektrische Festigkeit ergibt sich aus der Vielzahl der Feststoff-Feststoff- Grenzflächen des verwendeten Glimmers. Die so entstandene Schichtung aus organischen und anorganischen Materialien bil- det mikroskopische Grenzflächen, deren Beständigkeit gegen Teilentladungen und thermische Beanspruchungen von den Eigenschaften der Glimmerplättchen bestimmt wird. Durch den aufwendigen VPI-Prozess müssen auch kleinste Hohlräume in der Isolierung mit Harz ausgefüllt werden, um die Anzahl innerer Gas-Feststoff-Grenzflächen zu minimieren.
Zur zusätzlichen Verbesserung der Beständigkeit wird der Einsatz von nanopartikulären Füllstoffen beschrieben. Es ist aus der Literatur (und durch die Erfahrung beim Einsatz von Glimmer) bekannt, dass anorganische Partikel, im Gegensatz zum polymeren Isolierstoff, nicht oder in nur sehr eingeschränktem Umfang unter Teilentladungseinwirkung geschädigt oder zerstört werden. Dabei ist die resultierende erosionsinhibie- rende Wirkung unter anderem vom Partikeldurchmesser und der sich daraus generierenden Partikeloberfläche abhängig. Dabei zeigt sich, dass je größer die spezifische Oberfläche der Partikel ist, desto größer ist die erosionsinhibierende Wirkung auf die Partikel. Anorganische Nanopartikel weisen sehr große spezifische Oberflächen mit 50 m2/g oder mehr auf.
Dazu werden im Wesentlichen folgende Technologien eingesetzt:
• Vakuum-Druck- Imprägnier-Technologie (VPI-Prozess)
• Resin Rieh Technologie
Der Hauptunterschied zwischen beiden Technologien ist der Aufbau und die Herstellung des eigentlichen Isoliersystems der Spulen. Während das VPI System erst nach der Tränkung und nach dem Aushärten der Wicklung im Umluftofen fertig ist, stellt der separat unter Temperatur und Druck ausgehärtete Schenkel der Resin-Rich Spule bereits vor dem Einbau in den Stator ein funktionierendes und prüfbares Isolationssystem dar . Der VPI-Prozess arbeitet mit porösen Bändern, welche sich unter Vakuum und anschließender Beaufschlagung des Tränkbehälters mit Überdruck nach dem Aushärten im Umluftofen zu einem festen und kontinuierlichem Isoliersystem ausbildet. Im Gegensatz dazu ist die Herstellung von Resin-Rich Spulen aufwändiger, da jeder Spulenschenkel oder Wicklungsstab einzeln in speziellen Backpressen hergestellt werden muss, was zu einer spezifischen Erhöhung der Kosten der einzelnen Spule führt. Hierbei kommen Glimmerbänder zum Einsatz, die mit ei- nem polymeren Isolierstoff imprägniert sind, der sich in einem sog. B-Zustand befindet. Dies bedeutet, dass das Polymer, zumeist aromatische Epoxidharze (BADGE, BFDGE, epoxidierte Phenolnovolake , epoxidierte Kresolnovolake und Anhydride oder Amine als Härter) , teilweise vernetzt ist und somit einen klebfreien Zustand aufweist, aber bei nochmaliger Erwärmung erneut aufschmelzen und abschließend ausgehärtet werden kann um somit in die endgültige Form gebracht zu werden. Da das Harz in einem Überschuss eingebracht wird, kann es bei der abschließenden Verpressung in alle Hohlräume und Kavitäten fließen, um die entsprechende Isolationsqualität zu erreichen. Überschüssiges Harz wird durch den Pressvorgang aus der Vorlage gepresst. Aus der Literatur ist bekannt, dass der Einsatz nanopartikulärer Füllstoffe in polymeren Isolierstof-
fen zu signifikanten Verbesserungen der Isolierung bzgl . der elektrischen Lebensdauer führt.
Die EP 1366112 Bl beschreibt ein System, welches die Herstel- lung und Eigenschaften eines nanopartikulären Polymers beschreibt. Darin wird ein Polymer mit nanopartikulärem Füllstoff auf Basis von Siliciumdioxid mit einer maximalen Halbwertsbreite der Verteilungskurve von 1,5 dmax beschrieben. Nachteilig an der dort vorgeschlagenen Lösung ist, dass die dort vorgeschlagene Isolierung noch nicht optimal im Hinblick auf die Ausbildung einer Passivierungsschicht ist. Eine Passivierungsschicht bildet sich durch Applikation eines Isolierstoffs aus, wenn ein mit Nanopartikeln gefülltes Polymer Teilentladungen ausgesetzt wird. Unter Teilentladungsbeanspruchung degradiert die polymere Matrix und setzt den Füllstoff, also beispielsweise die Nanopartikel , frei, die dann eine fest anhaftende Schicht auf der Oberfläche bilden und damit den mit der Isolierung überzogenen Körper passivieren. Im Fall der oben genannten EP 1366112 Bl dauert die Ausbildung der Passivierungsschicht lange und die Agglomeration ist unvollständig .
Aufgabe der vorliegenden Erfindung ist es daher, einen Füll- Stoff für einen Isolierstoff anzugeben, der bei Teilentladungsbeanspruchung und Abbau der polymeren Matrix die Ausbildung einer Erosions-Passivierungsschutzschicht begünstigt.
Lösung der Aufgabe und Gegenstand der vorliegenden Erfindung ist ein Isolierstoff, eine Formulierung mit einem Harz und einem darin eingebetteten nanopartikulären Füllstoff umfassend, dadurch gekennzeichnet, dass der Füllstoff in zumindest bimodaler Größenverteilung vorliegt. Außerdem ist Gegenstand der Erfindung die Verwendung eines Isolierstoffs nach der Er- findung zum Imprägnieren von Spulenwicklungen in rotierenden elektrischen Maschinen, vorzugsweise in Generatoren.
Bevorzugt handelt es sich um einen Isolierstoff, umfassend eine thermisch und/oder durch UV-Licht polymerisierbare Formulierung mit einem darin dispergierten, nanopartikulären Füllstoff, bei dem die Halbwertsbreite der Verteilungskurve, charakterisiert anhand von Transmissionselektronenmikroskopie, größer 1,5 dmax ist.
Allgemeine Erkenntnis der Erfindung ist, dass ein ungefüllter oder glimmerbasierter Isolierstoff auf Basis von polymeren Harzen unter Teilentladungsbeanspruchung einen schnellen Abbau der polymeren Matrix zeigt. Durch den Einsatz von erosionsbeständigen Nanopartikeln, wie beispielsweise Aluoxid und Siliziumoxid, kommt es zu deren Freilegung, hervorgerufen durch Polymerdegradation. Mit zunehmender Erosionsdauer er- folgt allmählich die Ausbildung einer fest anhaftenden, flächigen Schicht an der beschichteten Körperoberfläche, bestehend aus einer Schicht freigelegter Nanopartikel . Durch diese in-situ-Passivierung der Oberfläche wird das Polymer unter der Passivierungsschicht vor weiterer Teilentladungserosion geschützt. Die Ausbildung der Passivierungsschicht hängt hierbei in besonderem Maße von der Größe und dem prozentualen Anteil der eindispergierten Nanopartikel ab, da der interpartikuläre Abstand maßgeblich für die Degradation der Polymermatrix zwischen den Nanopartikeln und somit für die zeitliche Ausbildung der Passivierungsschicht ist.
Figur 1 zeigt eine schematische Ausbildung der Passivierungsschicht durch Degradation der polymeren Matrix auf einer mit Isolierstoff überzogenen Körperoberfläche.
Figur 2 zeigt die Abhängigkeit der Erosionstiefe von dem Füllstoffgehalt
Figur 3 zeigt die Partikelgrößenverteilung nach einer bei- spielhaften Ausführungsform der Erfindung
Figur 4 zeigt eine weitere Partikelgrößenverteilung einer beispielhaften Ausführungsform der Erfindung
In Figur 1 sieht man, dass das Modell der Passivierungs- schicht mehrere Stadien bis zur Entstehung einer Schutzschicht durchläuft. In den ersten Prozessen wird das reine Polymer zwischen den Nanopartikel erodiert, was zu einer Konzentration der Nanopartikel führt. Eine weitere Absorption der Energie in Form von Teilentladungen resultiert in einem lokalen Sintervorgang der Nanopartikel . Durch diesen Mechanismus entsteht eine keramische Schicht welche das darunter unerodierte nanopartikuläre Polymer vor weiterer Erosion schützt .
Es konnte gezeigt werden, dass der Einsatz von mindestens zwei verschiedenen Arten und/oder Größen von Nanopartikeln, die sich signifikant in ihrem Partikeldurchmesser unterscheiden, zu Nanocompositen führt, die eine besonders ausgeprägte Erosionsbeständigkeit aufweisen. Eine bimodale Verteilung ist dabei bereits von Vorteil, in anderen Ausführungsformen werden multimodale Partikelfraktionen bevorzugt.
Dies ist in der oben vereinfachten Darstellung der Figur 1 und der Figur 2 zur Ausbildung von Passivierungsschichten schematisch nachvollziehbar. Unter dem Einfluss von Teilentladungen kommt es zu einer Agglomeration der Nanopartikel durch chemische oder physikalische Prozesse, die in einer passivierenden Schutzschicht endet. Durch die Kombination zumindest zweier verschieden dimensionierter Nanopartikel wird dieser Prozess unterstützt, da die Nanopartikel mit geringerem Durchmesser und dementsprechend vergrößerter aktiver Oberfläche unter TE-Einfluss die Agglomeration bzw. die lokalen Sinterprozesse unterstützen und somit schneller zur Ausbildung einer erosionsresistenten Schicht führen. Dies hat den Vorteil, dass
die Konzentration an Nanopartikeln mit geringem Durchmesser niedrig gehalten werden kann, was sowohl wirtschaftlich als auch aus chemischer Sicht wertvoll ist, da Eigenschaften wie Viskosität, Reaktivität und Lager- Stabilität besser kontrolliert werden können gleichzeitig die positiven Eigenschaften, wie zum Beispiel große spezifische Oberfläche, kleinerer Nanoparti- kel genutzt werden kann.
Gemäß der Erfindung werden Nanopartikel in einem Harz, beispielsweise einem Epoxidharz dispergiert, die eine minimale Halbwertsbreite der Verteilungskurve von 1,5 dmax enthält. Nach einer Ausführungsform der Erfindung liegt daher die mi- nimale Halbwertsbreite der Verteilungskurve bei 1,55 dmax, insbesondere bei 1,6 dmax oder noch höheren Werten.
Dies beschreibt eine Partikelverteilung die nicht nur eine Größe von Nanopartikel umfasst, sondern mehrere Partikelgrö- ßenfraktionen .
Nach einer vorteilhaften Ausführungsform der Erfindung sind im Füllstoff die Nanopartikel monodispers dispergiert. Nach einer weiteren vorteilhaften Ausführungsform der Erfindung basieren die Nanopartikel im Füllstoff auf einem Metalloxid, einem Halbmetalloxid und insbesondere bevorzugt auf Siliziumdioxid und/oder Aluminiumoxid. Nach einer weiteren vorteilhaften Ausführungsform der Erfindung ist die polymere Matrix, in der der Füllstoff dispergiert ist, ein Epoxidharz, beispielsweise ein Diglycidylether auf Basis von Bisphenolen, zum Beispiel Bisphenol -A und/oder Bisphenol-F .
Nach einer Ausführungsform der Erfindung umfasst das Harz noch einen Härter, beispielsweise einen Säureanhydrid-Härter
wie Methyltetrahydrophthalsäureanhydrid und/oder Methylhexa- hydrophthalsäureanhydrid .
Nach einer weiteren vorteilhaften Ausführungsform der Erfin- dung umfasst das Harz noch einen Beschleuniger, beispielsweise ein Aminderivat und/oder ein Naphthenat .
Nach einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst der Füllstoff Nanopartikelfraktionen mit Parti- keldurchmesser im Bereich von 1 bis 200 nm, insbesondere von 1 bis 150nm und ganz bevorzugt im Bereich von 1 bis 80 nm.
Nach einer vorteilhaften Ausführungsform der Erfindung liegt der Füllstoff mit einem mittleren Durchmesser von D50 von 1 bis 500 nm, bevorzugt von 1 bis 300, insbesondere bevorzugt von 1 bis lOOnm vor.
Nach einer weiteren vorteilhaften Ausführungsform der Erfindung liegt der Füllstoff im Isolierstoff in einer Menge von 1 bis 80 Gew%, insbesondere 1 bis 60 Gew% und besonders bevorzugt im Bereich von 1 bis 50Gew% der Gesamtformulierung vor.
Durch die Verwendung einer Partikelfraktion mit einer Halbwertsbreite der Verteilungskurve größer 1,5 dmax ergeben sich wesentliche Vorteile sowohl bei der Auswahl und Herstellung der Nanocomposite als auch bei der Qualitätssicherung der Composite. Die Partikeldispersionen werden vorzugsweise durch einen Sol-Gel-Prozess hergestellt. Zur Einstellung der gewünschten Partikelgrößenverteilung kann auch eine Kombination verschiedener Partikeldispersionen erfolgen. Die Charakterisierung der Partikelgröße erfolgt nach dem Stand der Technik, vorzugsweise eine manuelle oder automatische Auswertung des Partikeldurchmessers anhand von Aufnahmen mittels Transmissionselektronenmikroskopie, kurz TEM.
In Figur 3 ist exemplarisch eine Partikelgrößenverteilung eines Ausführungsbeispiels der Erfindung gezeigt. Das dargestellte Partikelsystem für den Füllstoff wird grafisch wie-
dergegeben, indem der prozentuale Anteil der jeweiligen Pul- verfraktion in Intervallen von 1 nm über den Partikeldurchmesser dargestellt wird. Die Partikelmischung zeigt ihr dmax, also den Peak der Verteilungskurve mit dem größten Anteil der entsprechenden Partikelgröße, bei 9 nm. Die Halbwertsbreite der Verteilungskurve ergibt sich aus der Breite der Verteilungskurve in nm bei auf halber Höhe relativ zu dmax . In dieser Partikelzusammensetzung ergibt sich eine Halbwertsbreite der Verteilungskurve von 1,6 dmax .
Figur 4 schließlich zeigt eine vergleichbare Darstellung wie Figur 3, allerdings ein anderes Ausführungsbeispiel der Erfindung, bei dem ein System mit Aluminiumoxidpartikel und Siliziumdioxidpartikel dargestellt wird. Die in Figur 4 darge- stellte Größenverteilung zeigt ein lokales dmax bei 9 nm. Daraus ergibt sich eine Halbwertsbreite der Verteilungskurve von ebenfalls 1,7 dmax .
Die Erfindung offenbart erstmals einen Isolierstoff mit einem Füllstoff, der nicht nur auf einer monomodalen Nanoparti- kelgrößenverteilung basiert. Dadurch wird die Ausbildung von in- situ-Schutzschichten auf dem zu isolierenden Körper stark begünstigt .
Claims
Isolierstoff, eine Formulierung mit einem Harz und einem darin eingebetteten nanopartikularen Füllstoff umfassend, dadurch gekennzeichnet, dass der Füllstoff in zumindest bimodaler Größenverteilung vorliegt.
Isolierstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Formulierung auf einem Harz, wie einem Epoxid harz, basiert, dadurch gekennzeichnet, dass das Harz thermisch und/oder durch UV-Licht polymerisierbar ist.
3. Isolierstoff nach einem der vorstehenden Ansprüche, da- durch gekennzeichnet, dass der darin dispergierte , na- nopartikuläre Füllstoff in einer Halbwertsbreite der Verteilungskurve, charakterisiert anhand von Transmissionselektronenmikroskopie, von größer 1,5 dmax vorliegt .
4. Isolierstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Füllstoff mit einem mittleren Durchmesser von D50 von 1 bis 500nm vorliegt.
5. Isolierstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Füllstoff auf Basis eines Metalloxids und/oder eines Halbmetalloxids vorliegt .
6. Isolierstoff nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Füllstoff in einer Menge von 1 bis 80 Gew% der Formulierung vorliegt.
7. Verwendung eines Isolierstoffs nach einem der Ansprüche 1 bis 6 zum Imprägnieren von Spulenwicklungen in rotierenden elektrischen Maschinen, vorzugsweise in Generatoren .
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012205650A DE102012205650A1 (de) | 2012-04-05 | 2012-04-05 | Isolierstoff für rotierende Maschinen |
| PCT/EP2013/056017 WO2013149850A1 (de) | 2012-04-05 | 2013-03-22 | Isolierstoff für rotierende maschinen |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2807654A1 true EP2807654A1 (de) | 2014-12-03 |
Family
ID=48045463
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13713811.1A Withdrawn EP2807654A1 (de) | 2012-04-05 | 2013-03-22 | Isolierstoff für rotierende maschinen |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9771464B2 (de) |
| EP (1) | EP2807654A1 (de) |
| JP (1) | JP5940210B2 (de) |
| KR (1) | KR20150003791A (de) |
| CN (1) | CN104185876B (de) |
| DE (1) | DE102012205650A1 (de) |
| WO (1) | WO2013149850A1 (de) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SG11201607716PA (en) * | 2014-03-24 | 2016-11-29 | Lintec Corp | Protection membrane forming film, protection membrane forming utilization sheet, production method and inspection method for workpiece or processed product, workpiece determined as adequate product, and processed product determined as adequate product |
| EP3565090A1 (de) * | 2018-05-04 | 2019-11-06 | Siemens Aktiengesellschaft | Elektrisches isolationssystem eines elektromotors und herstellungsverfahren dazu |
| EP3565089A1 (de) * | 2018-05-04 | 2019-11-06 | Siemens Aktiengesellschaft | Elektrisches isolationssystem eines elektromotors und herstellungsverfahren dazu |
| US11916448B2 (en) | 2021-02-01 | 2024-02-27 | The Timken Company | Small-fraction nanoparticle resin for electric machine insulation systems |
| TWI830505B (zh) * | 2022-11-21 | 2024-01-21 | 遠東科技大學 | 內凹曲面上具有陶瓷絕緣層的絕緣套件及其抗電壓擊穿之用途 |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002118991A (ja) | 2000-10-02 | 2002-04-19 | Fuji Electric Co Ltd | 回転電機のコアワニスおよびこのワニスを塗布した積層コア |
| EP1236765A1 (de) | 2001-02-28 | 2002-09-04 | hanse chemie GmbH | Siliciumdioxiddispersion |
| AU2002331604B2 (en) * | 2001-08-15 | 2007-07-26 | 3M Innovative Properties Company | Hardenable self-supporting structures and methods |
| US20030187117A1 (en) * | 2002-03-29 | 2003-10-02 | Starkovich John A. | Materials and method for improving dimensional stability of precision electronic optical photonic and spacecraft components and structures |
| EP1457509B1 (de) * | 2003-03-11 | 2006-06-28 | hanse chemie AG | Polymere Epoxidharz-Zusammensetzung |
| EP1518890B1 (de) | 2003-09-29 | 2008-05-14 | Robert Bosch Gmbh | Härtbares Reaktionsharzsystem |
| DE10345139A1 (de) | 2003-09-29 | 2005-04-21 | Bosch Gmbh Robert | Härtbares Reaktionsharzsystem |
| JP2005126700A (ja) | 2003-09-30 | 2005-05-19 | Tdk Corp | 複合誘電体基板 |
| US7803457B2 (en) * | 2003-12-29 | 2010-09-28 | General Electric Company | Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom |
| JP2005206664A (ja) | 2004-01-21 | 2005-08-04 | Nitto Denko Corp | 半導体封止用樹脂組成物 |
| JP4417122B2 (ja) | 2004-01-21 | 2010-02-17 | 日東電工株式会社 | シート状半導体封止用樹脂組成物 |
| EP1557880A1 (de) | 2004-01-21 | 2005-07-27 | Nitto Denko Corporation | Harzzusammensetzung um Halbleiter zu verkapseln |
| JP4434854B2 (ja) | 2004-06-25 | 2010-03-17 | 株式会社東芝 | 回転電機 |
| DE502005005966D1 (de) * | 2004-07-16 | 2008-12-24 | Alberdingk Boley Gmbh | Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung |
| JP5176290B2 (ja) | 2005-06-15 | 2013-04-03 | 東レ株式会社 | ペースト組成物、誘電体組成物、誘電体シート、およびこれらを用いたキャパシタ内蔵回路基板 |
| JP2006351409A (ja) | 2005-06-17 | 2006-12-28 | Nippon Steel Corp | 抜熱性の優れる絶縁被膜剤とその処理方法 |
| JP2007217623A (ja) | 2006-02-20 | 2007-08-30 | Toray Ind Inc | ペースト組成物および誘電体組成物、ならびに誘電体組成物を用いたキャパシタ |
| US7829188B2 (en) * | 2006-04-03 | 2010-11-09 | E.I. Du Pont De Nemours And Company | Filled epoxy compositions |
| JP2008075069A (ja) | 2006-08-23 | 2008-04-03 | Toshiba Corp | 注型樹脂組成物およびそれを用いた絶縁材料、絶縁構造体 |
| CN101506301A (zh) | 2006-08-23 | 2009-08-12 | 株式会社东芝 | 浇铸型树脂组合物及采用它的绝缘材料、绝缘结构体 |
| WO2008129032A1 (en) | 2007-04-20 | 2008-10-30 | Abb Research Ltd | An impregnation medium |
| US20090170998A1 (en) * | 2007-12-28 | 2009-07-02 | Deval Gupta | Silicon carbide containing thermoplastic compositions, method of preparing, and articles comprising the same |
| DE102008030904A1 (de) | 2008-06-30 | 2009-12-31 | Siemens Aktiengesellschaft | Verbundmaterial mit Nano-Pulver und Verwendung des Verbundmaterials |
| DE102009053253A1 (de) | 2009-11-09 | 2011-05-12 | Siemens Aktiengesellschaft | Tränkharz für Verbundisolatoren |
| US8871853B2 (en) * | 2010-02-11 | 2014-10-28 | 3M Innovative Properties Company | Resin system comprising dispersed multimodal surface-modified nanoparticles |
| DE102010019721A1 (de) | 2010-05-07 | 2011-11-10 | Siemens Aktiengesellschaft | Elektrisches Isoliermaterial, Isolationspapier und Isolationsband für eine Hochspannungsrotationsmaschine |
| PL2616504T3 (pl) * | 2010-09-17 | 2015-01-30 | 3M Innovative Properties Co | Wsparcie procesowe pultruzji nanocząstek |
| DE102011083409A1 (de) | 2011-09-26 | 2013-03-28 | Siemens Aktiengesellschaft | Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu |
-
2012
- 2012-04-05 DE DE102012205650A patent/DE102012205650A1/de not_active Ceased
-
2013
- 2013-03-22 WO PCT/EP2013/056017 patent/WO2013149850A1/de not_active Ceased
- 2013-03-22 JP JP2015503814A patent/JP5940210B2/ja not_active Expired - Fee Related
- 2013-03-22 US US14/390,820 patent/US9771464B2/en not_active Expired - Fee Related
- 2013-03-22 EP EP13713811.1A patent/EP2807654A1/de not_active Withdrawn
- 2013-03-22 KR KR1020147031054A patent/KR20150003791A/ko not_active Ceased
- 2013-03-22 CN CN201380017741.4A patent/CN104185876B/zh not_active Expired - Fee Related
Non-Patent Citations (2)
| Title |
|---|
| None * |
| See also references of WO2013149850A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2015518242A (ja) | 2015-06-25 |
| CN104185876B (zh) | 2017-10-03 |
| CN104185876A (zh) | 2014-12-03 |
| US9771464B2 (en) | 2017-09-26 |
| US20150093499A1 (en) | 2015-04-02 |
| JP5940210B2 (ja) | 2016-06-29 |
| KR20150003791A (ko) | 2015-01-09 |
| WO2013149850A1 (de) | 2013-10-10 |
| DE102012205650A1 (de) | 2013-10-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2721616B1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
| WO2013041363A1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
| DE102010032555A1 (de) | Isolierung für rotierende elektrische Maschinen | |
| WO2011138173A1 (de) | Elektrisches isoliermaterial, isolationspapier und isolationsband für eine hochspannungsrotationsmaschine | |
| EP2807654A1 (de) | Isolierstoff für rotierende maschinen | |
| EP3278423B1 (de) | Widerstandsbelag für einen glimmschutz einer elektrischen maschine | |
| WO2014118081A1 (de) | Imprägnierharz für einen elektroisolationskörper, elektroisolationskörper und verfahren zum herstellen des elektroisolationskörpers | |
| WO2011138413A2 (de) | Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung | |
| WO2013011047A1 (de) | Verfahren zum herstellen eines bandes für ein elektrisches isolationssystem | |
| WO2012093052A1 (de) | Schirmring für eine hgü-transformatorspule oder eine hgü-drosselspule | |
| WO2016050557A1 (de) | Formulierung für ein isoliersystem und isoliersystem | |
| DE102010032949A1 (de) | Isoliersysteme mit verbesserter Teilentladungsbeständigkeit | |
| EP2402958B1 (de) | Elektroisolationssystem für eine elektrische Hochspannungsrotationsmaschine | |
| WO2015128432A1 (de) | Leitfähiges glimmschutzpapier, insbesondere für den aussenglimmschutz | |
| DE102013201054A1 (de) | Zusammensetzung für ein Isolationssystem | |
| WO2021089271A1 (de) | Vorrichtung zum spannungsausgleich bei rechteckspannungen für ein elektromotor | |
| WO2019211465A1 (de) | Elektrisches isolationssystem eines elektromotors und herstellungsverfahren dazu | |
| EP2915170A1 (de) | Isolationsanordnung für eine hochspannungsmaschine | |
| DE102014204416A1 (de) | Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes | |
| DE102012211762A1 (de) | Formulierung, Verwendung der Formulierung und Isoliersystem für rotierende elektrische Maschinen | |
| WO2012076103A2 (de) | Isolationssystem für einen leiter einer hochspannungsmaschine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140829 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
| 17Q | First examination report despatched |
Effective date: 20171219 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20200826 |