EP2805098A1 - Speicherbehälter von kryogenem druckgas mit einem einlass - Google Patents

Speicherbehälter von kryogenem druckgas mit einem einlass

Info

Publication number
EP2805098A1
EP2805098A1 EP12810117.7A EP12810117A EP2805098A1 EP 2805098 A1 EP2805098 A1 EP 2805098A1 EP 12810117 A EP12810117 A EP 12810117A EP 2805098 A1 EP2805098 A1 EP 2805098A1
Authority
EP
European Patent Office
Prior art keywords
inlet
storage container
storage
inlet openings
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12810117.7A
Other languages
English (en)
French (fr)
Inventor
Markus Kampitsch
Bastian Landeck
Klaus Szoucsek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP2805098A1 publication Critical patent/EP2805098A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • F17C2225/044Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0372Localisation of heat exchange in or on a vessel in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a storage container of cryogenic compressed gas, in particular a Kryoyaktank for a motor vehicle, with a storage volume for receiving the stored gas and an inlet for introducing the gas to be stored in the storage volume.
  • cryogenic gas is stored under high pressure (13 bar to 350 bar) in gaseous form.
  • the storage tank requires a very good, usually double walled super insulation with a high vacuum.
  • a cryogenic pressurized gas storage tank in particular a cryopump for a motor vehicle, having a storage volume for receiving the stored gas and an inlet for introducing the gas to be stored into the storage volume, the inlet having a protruding into the storage volume tubular Inlet conduit is designed, are provided at the plurality of spaced from each other inlet openings.
  • the solution according to the invention is based on the finding that the gas introduced into the storage container has an at least slightly lower temperature than at least parts of the gas in the storage volume.
  • the stored gas is first cooled locally and only after refueling does a temperature equalization take place towards the remaining storage volume and its storage wall. This effect occurs especially in partially or completely emptied storage container.
  • the consequent subsequent heat input into the stored gas causes a further pressure build-up in the storage tank. This leads after complete refueling to a downstream overshoot of the tank pressure. This results in an overfilling of the storage container, which could possibly shorten the loss-free life of the storage container.
  • the deep-cryogenic cryoprotective gas to be stored is introduced into the storage volume along the inlet line, both axially and radially, in a particularly even distribution into the storage volume.
  • a purely local cooling, in particular the storage wall of the storage container is avoided.
  • the solution according to the invention avoids thus even with complete refueling a subsequent overshoot of the tank pressure.
  • the inlet pipe is designed as a pipe and the inlet openings are arranged in six, circumferentially spaced at an angular distance of 60 0 (degrees) rows on the pipe.
  • Such a design of the inlet duct as a pipe which projects into the storage volume contributes to an additional temperature equalization of the introduced gas as it flows through the inlet duct.
  • the sequence of inlet openings can be manufactured reliably and inexpensively getting produced.
  • the inlet openings are preferably arranged close to each other in the middle of the storage volume. Closely side by side here means that the inlet openings are positioned comparatively close to each other at a maximum distance of ten times their own diameter.
  • the selected arrangement in the center or the center of the storage volume helps that the gas introduced evenly distributed in the storage volume. Distances with this arrangement of the inlet openings a largely uniformly wide distance between the introduction region and the storage wall.
  • the inlet openings are arranged close to each other on one side of the storage volume.
  • the arrangement of this kind can be advantageous in that the introduced gas can be introduced into the storage volume in a targeted manner through the inlet openings in such a way that it distributes itself in the storage volume without coming close to the storage wall.
  • a particularly uniform distribution of the introduced gas into the storage container can be achieved by the inlet conduit designed as a tube and the inlet openings in three, spaced circumferentially at an angular distance of 120 0 rows arranged on the tube.
  • the inlet duct may advantageously be designed as a tube, on which the inlet openings are arranged in a row.
  • the solution of this type can be produced more cheaply.
  • the tube In order to obtain a uniform distribution, in particular in a cylindrical storage volume, it is preferred according to the invention for the tube to extend transversely through the storage volume and for the inlet openings to be arranged at a distance from one another over the longitudinal extent of the tube.
  • Particularly preferred 36 circular inlet openings, each with a diameter of 1 mm (millimeters) are provided.
  • the inlet openings are preferably aligned at the tube obliquely to its longitudinal extent, in particular at an angle of less than 45 °.
  • Fig. 1 is a longitudinal section of a first embodiment of a
  • Fig. 2 is a longitudinal section of a second embodiment of a
  • Fig. 3 is a side view of a portion of the inlet pipes of
  • FIG. 4 shows a cross section of the inlet lines according to FIG. 3, FIG.
  • Fig. 5 is a longitudinal section of a third embodiment of a
  • Fig. 6 is a longitudinal section of a fourth embodiment of a
  • Fig. 7 is a side view of a portion of the inlet pipes of
  • FIG. 8 shows a cross section of the inlet lines according to FIG. 7, FIG.
  • FIGS. 10 and 11 shows a cross section of the inlet line according to FIGS. 10 and
  • cryogenic gas is suitable for any type of H 2 -Energiewandlant and is preferably used to drive an internal combustion engine of a further not illustrated vehicle. For this purpose, the gas is removed from the storage container 10 and fed to the internal combustion engine.
  • the CcH 2 is stored at very low temperature at supercritical pressure.
  • the storage container 10 has an outer tank or a storage housing 12, which encloses a storage volume 14 for receiving the gas in a fluid-tight manner.
  • the storage housing 12 is formed with an outer shell 16, an insulation disposed therein 18 and an inner tank or an inner storage wall 20.
  • a heat exchanger 22 is guided, by means of which the stored gas can be heated.
  • an inlet 24 is provided, by means of which CcH 2 gas can be introduced into the storage volume 14.
  • the gas introduced in this way has an at least slightly lower temperature than the gas already in the storage volume 14.
  • the inlet 24 is designed in accordance with all embodiments with an inlet conduit designed as a tube 26, which projects into the storage volume 14 and serves both as a filling and as a discharge line.
  • the inlet conduit 26 extends transversely through the entire storage volume 14 and has at its end region a plurality of inlet openings 28 arranged at a distance from each other.
  • FIG. 2 shows an exemplary embodiment in which the inlet line 26 is guided in a tubular manner to the middle of the storage volume 14. Again, there are a plurality of inlet openings 28 at the end region of the inlet line 28.
  • the inlet openings 28 in six, circumferentially spaced at an angular distance a (alpha) of 60 0 (degrees) rows 30 are arranged on the inlet conduit 26 in the embodiments according to FIGS..
  • the inlet openings 26 are arranged close to each other over a length of 40 mm (millimeters) to 60 mm, preferably 50 mm, with respective distances a of 4 mm to 13 mm, preferably 9 mm, and each have a diameter of 0.8 mm to 1, 2 mm, preferably 1 mm, on.
  • FIGS. 5-8 illustrate two embodiments in which the tubular inlet conduit 26 is also routed across the entire storage volume 14.
  • the inlet openings 28 are distributed over substantially the entire longitudinal extent of the inlet line 26 distributed at equal intervals a of about 20 mm to 80 mm, preferably 50 mm, spaced apart from each other.
  • three rows 30 with inlet openings 28 are distributed on the circumference at an angular distance a of 120 ° each.
  • inlet openings 28 In the embodiment according to FIG. 6, only one row 30 of inlet openings 28 is provided, all of which are directed upwards.
  • the inlet openings 28 of these embodiments according to FIG. 5 to 8 have a diameter of 1, 5 mm to 1, 9 mm, preferably 1, 7 mm.
  • FIGS. 9 to 12 show an exemplary embodiment in which the inlet line 26 only projects into the storage volume 14 for a comparatively short distance.
  • Such the tubular inlet line 26 has, at its end portion on six rows 30, each with six inlet openings 28, each of ⁇ at an angle (Phi) of 30 0 to 60 °, preferably 45 ° are directed obliquely to the longitudinal extension of the inlet conduit 26th

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Speicherbehälter (12) für ein Kraftfahrzeug zur Speicherung von kryogenem Druckgas, eventuell im überkritischem Zustand, mit einem Einlass (26) zum Einleiten des zu speichernden Gases in das Speichervolumen, wobei der Einlass in dem Speichervolumen hineinragend und mehrere von einander beabstandet angeordnete Einlassöffnungen (28) aufweist. Dies dient eine lokale Abkühlung des Gases und meidet starke Thermospannungen an der Wandung des Speicherbehälters.

Description

Speicherbehälter von kryogenem Druckgas mit einem Einlass
Die Erfindung betrifft einen Speicherbehälter von kryogenem Druckgas, insbesondere einen Kryodrucktank für ein Kraftfahrzeug, mit einem Speichervolumen zum Aufnehmen des gespeicherten Gases und einem Einlass zum Einleiten des zu speichernden Gases in das Speichervolumen.
Zum Betreiben von Kraftfahrzeugen zum Beispiel mit Wasserstoff oder Erdgas als Treibstoff ist es bekannt, das Gas in unterkritischem Zustand in einem speziellen druckfesten Behälter zu speichern. Das tiefkalte Gas wird dabei unter hohem Druck (13 bar bis 350 bar) gasförmig gespeichert. Dazu muss vermieden werden, dass ein Wärmeeintrag aus der Umgebung in den Speicherbehälter erfolgen kann. Daher benötigt der Speicherbehälter eine sehr gute, in der Regel doppelwandige Superisolation mit einem Hochvakuum. Beim Befüllen bzw. Betanken des derartigen Speicherbehälters mit tiefkaltem Gas muss ebenfalls dessen Speicherinhalt gleichmäßig auf ausreichend niedriger Temperatur gehalten werden. Dies gelingt bei bestehenden Speicherbehältern nicht in jedem Fall. Gemäß der Erfindung ist ein Speicherbehälter von kryogenem Druckgas, insbesondere ein Kryodrucktank für ein Kraftfahrzeug, geschaffen, mit einem Speichervolumen zum Aufnehmen des gespeicherten Gases und einem Einlass zum Einleiten des zu speichernden Gases in das Speichervolumen, bei dem der Einlass mit einer in das Speichervolumen hineinragenden rohrförmigen Einlassleitung gestaltet ist, an der mehrere von einander beabstandet angeordnete Einlassöffnungen vorgesehen sind.
Die erfindungsgemäße Lösung basiert auf der Erkenntnis, dass das in den Speicherbehälter eingebrachte Gas eine zumindest geringfügig geringere Temperatur hat als zumindest Teile des Gases im Speichervolumen. Bei einer lokal begrenzten Einbringung von Gas in das Speichervolumen besteht daher die Problematik, dass das gespeicherte Gas zunächst lokal gekühlt wird und erst nach dem Betanken ein Temperaturausgleich hin zum restlichen Speichervolumen und dessen Speicherwandung erfolgt. Dieser Effekt tritt insbesondere bei teilweise oder vollständig entleertem Speicherbehälter auf. Der damit bedingte nachträgliche Wärmeeintrag in das gespeicherte Gas verursacht einen weiteren Druckaufbau im Speicherbehälter. Dies führt nach vollständiger Betankung zu einem nachgelagerten Überschwingen des Tankdrucks. Es ergibt sich also eine Überfüllung des Speicherbehälters, welche die verlustfreie Standzeit des Speicherbehälters gegebenenfalls verkürzen könnte. Darüber hinaus verursachen ungleichmäßige Abkühlungen des Speicherbehälters an dessen Speicherwandung starke Thermospannungen, die ebenfalls vermieden werden sollten. Mit der erfindungsgemäßen Lösung wird das zu speichernde, tiefkalte, Kryodruckgas in das Speichervolumen entlang der Einlassleitung sowohl axial als auch radial besonders gleichmäßig verteilt in das Speichervolumen eingeleitet. Dabei wird eine rein lokale Kühlung insbesondere der Speicherwandung des Speicherbehälters vermieden. Die Lösung gemäß der Erfindung vermeidet damit selbst bei Vollständiger Betankung ein nachträgliches Überschwingen des Tankdrucks.
Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung ist die Einlassleitung als Rohr gestaltet und die Einlassöffnungen sind in sechs, am Umfang im Winkelabstand von je 60 0 (Grad) beabstandeten Reihen am Rohr angeordnet. Die derartige Gestaltung der Einlassleitung als ein Rohr, welches in das Speichervolumen hineinragt, trägt zu einer zusätzlichen Temperaturangleichung des eingeleiteten Gases beim Durchströmen der Einlassleitung bei. Die Reihung von Einlassöffnungen kann fertigungstechnisch prozesssicher und kostengünstig hergestellt werden.
Die Einlassöffnungen sind vorzugsweise eng nebeneinander in der Mitte des Speichervolumens angeordnet. Eng nebeneinander bedeutet hier, dass die Einlassöffnungen vergleichsweise nah nebeneinander in einem Abstand von maximal dem zehnfachen ihres eigenen Durchmessers positioniert sind. Die gewählte Anordnung in der Mitte bzw. dem Zentrum des Speichervolumens trägt dazu bei, dass das eingebrachte Gas sich gleichmäßig im Speichervolumen verteilt. Fernen besteht mit dieser Anordnung der Einlassöffnungen ein weitgehend gleichmäßig weiter Abstand zwischen dem Einbringbereich und der Speicherwandung.
Alternativ sind die Einlassöffnungen eng nebeneinander an einer Seite des Speichervolumens angeordnet. Die derartige Anordnung kann insofern vorteilhaft sein, als durch die Einlassöffnungen das eingeleitete Gas gezielt in das Speichervolumen derart eingeleitet werden kann, dass es sich im Speichervolumen verteilt, ohne nahe an die Speicherwandung zu geraten.
Eine besonders gleichmäßige Verteilung des eingeleiteten Gases in den Speicherbehälter kann erzielt werden, indem die Einlassleitung als Rohr gestaltet und die Einlassöffnungen in drei, am Umfang im Winkelabstand von je 120 0 beabstandeten Reihen am Rohr angeordnet sind.
Alternativ kann die Einlassleitung vorteilhaft als Rohr gestaltet sein, an dem die Einlassöffnungen in einer Reihe angeordnet sind. Die derartige Lösung kann kostengünstiger hergestellt werden.
Um eine gleichmäßige Verteilung insbesondere in einem zylindrischen Speichervolumen zu erhalten, ist es erfindungsgemäß bevorzugt, dass sich das Rohr quer durch das Speichervolumen erstreckt und die Einlassöffnungen über die Längserstreckung des Rohres hinweg beabstandet angeordnet sind. Besonders bevorzugt sind 36 kreisrunde Einlassöffnungen mit je einem Durchmesser von 1 mm (Millimeter) vorgesehen. Alternativ sind vorzugsweise 12 kreisrunde Einlassöffnungen mit je einem Durchmesser von 1 ,7 mm vorgesehen.
Für eine gerichtete Einbringung von einzuleitendem Gas auch schräg zur Richtung der genutzten Einlassleitung, sind die Einlassöffnungen vorzugsweise am Rohr schräg zu dessen Längserstreckung ausgerichtet, insbesondere in einem Winkel von kleiner 45 °.
Nachfolgend werden Ausführungsbeispiele der erfindungsgemäßen Lösung anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
Fig. 1 einen Längsschnitt eines ersten Ausführungsbeispiels eines
Speicherbehälters gemäß der Erfindung,
Fig. 2 einen Längsschnitt eines zweiten Ausführungsbeispiels eines
Speicherbehälters gemäß der Erfindung,
Fig. 3 eine Seitenansicht eines Abschnitts der Einlassleitungen der
Speicherbehälter gemäß Fig. 1 und Fig. 2,
Fig. 4 einen Querschnitt der Einlassleitungen gemäß Fig. 3,
Fig. 5 einen Längsschnitt eines dritten Ausführungsbeispiels eines
Speicherbehälters gemäß der Erfindung,
Fig. 6 einen Längsschnitt eines vierten Ausführungsbeispiels eines
Speicherbehälters gemäß der Erfindung,
Fig. 7 eine Seitenansicht eines Abschnitts der Einlassleitungen der
Speicherbehälter gemäß Fig. 5 und Fig. 6,
Fig. 8 einen Querschnitt der Einlassleitungen gemäß Fig. 7,
Fig. 9 einen Längsschnitt eines fünften Ausführungsbeispiels eines
Speicherbehälters gemäß der Erfindung,
Fig. 10 eine Seitenansicht eines Abschnitts der Einlassleitung des
Speicherbehälters gemäß Fig. 9,
Fig. 11 einen Querschnitt der Einlassleitung gemäß Fig. 10 und
Fig. 12 einen Längsschnitt der Einlassleitung gemäß Fig. 10. Die Fig. veranschaulichen Ausführungsbeispiele von Speicherbehältem 10 für komprimiertes Wasserstoffgas (CcH2, cryocompressed H2), so genannten Kryodrucktanks. Das darin gelagerte, kryogene Gas eignet sich für jegliche Art von H2-Energiewandlern und dient bevorzugt zum Antreiben einer Brennkraftmaschine eines weiter nicht veranschaulichten Fahrzeugs. Dazu wird das Gas aus dem Speicherbehälter 10 entnommen und der Brennkraftmaschine zugeführt.
In dem Speicherbehälter 10 wird das CcH2 bei sehr tiefer Temperatur bei überkritischem Druck gelagert. Dazu weist der Speicherbehälter 10 einen Außentank bzw. ein Speichergehäuse 12 auf, das ein Speichervolumen 14 zum Aufnehmen des Gases fluiddicht umschließt. Das Speichergehäuse 12 ist mit einer Außenhülle 16, einer darin angeordneten Isolierung 18 und einem Innentank bzw. einer inneren Speicherwandung 20 gebildet. In das Speichervolumen 14 ist ein Wärmetauscher 22 hineingeführt, mittels dem das gespeicherte Gas beheizt werden kann.
Zum Betanken des Speicherbehälters 10 ist ein Einlass 24 vorgesehen, mittels dem CcH2-Gas in das Speichervolumen 14 eingeleitet werden kann. Das derart eingebrachte Gas hat eine zumindest geringfügig geringere Temperatur als jenes Gas, das sich bereits im Speichervolumen 14 befindet.
Um mit dem Einbringen von frischem Gas in das Speichervolumen 14 einen ungleichmäßigen Temperatureintrag insbesondere in die Speicherwandung 20 und damit möglicherweise verbundene Temperaturspannungen möglichst zu vermeiden, ist der Einlass 24 gemäß sämtlichen Ausführungsbeispielen mit einer als Rohr gestalteten Einlassleitung 26 gestaltet, welche in das Speichervolumen 14 hineinragt und sowohl als Befüllleitung als auch als Entnahmeleitung dient.
Bei dem Ausführungsbeispiel gemäß Fig. 1 erstreckt sich die Einlassleitung 26 quer durch das gesamte Speichervolumen 14 und weist an ihrem Endbereich mehrere von einander beabstandet angeordnete Einlassöffnungen 28 auf. Die Fig. 2 zeigt ein Ausführungsbeispiel, bei dem die Einlassleitung 26 rohrförmig bis zur Mitte des Speichervolumens 14 geführt ist. Dabei befinden sich wiederum am Endbereich der Einlassleitung 26 mehrere Einlassöffnungen 28. Wie in den Fig. 3 und 4 veranschaulicht ist, sind bei den Ausführungsbeispielen gemäß den Fig. 1 und 2 jeweils die Einlassöffnungen 28 in sechs, am Umfang im Winkelabstand a (Alpha) von je 60 0 (Grad) beabstandeten Reihen 30 an der Einlassleitung 26 angeordnet. Die Einlassöffnungen 26 sind dabei eng nebeneinander auf einer Länge von 40 mm (Millimeter) bis 60 mm, vorzugsweise 50 mm, mit jeweiligen Abständen a von 4 mm bis 13 mm, vorzugsweise 9 mm, angeordnet und weisen je einen Durchmesser von 0,8 mm bis 1 ,2 mm, vorzugsweise 1 mm, auf.
Die Fig. 5 bis 8 veranschaulichen zwei Ausführungsbeispiele, bei denen die rohrförmige Einlassleitung 26 ebenfalls quer durch das gesamte Speichervolumen 14 geführt ist. Die Einlassöffnungen 28 sind über weitgehend die gesamte Längserstreckung der Einlassleitung 26 verteilt in gleichen Abständen a von ca. 20 mm bis 80 mm, vorzugsweise 50 mm, beabstandet voneinander verteilt angeordnet. Dabei sind gemäß der Fig. 3 drei Reihen 30 mit Einlassöffnungen 28 am Umfang im Winkelabstand a von je 120 ° verteilt.
Bei dem Ausführungsbeispiel gemäß Fig. 6 ist nur eine Reihe 30 von Einlassöffnungen 28 vorgesehen, die sämtlich nach oben gerichtet sind. Die Einlassöffnungen 28 dieser Ausführungsbeispiele gemäß Fig. 5 bis 8 haben dabei einen Durchmesser von 1 ,5 mm bis 1 ,9 mm, vorzugsweise 1 ,7 mm.
Die Fig. 9 bis 12 zeigen schließlich ein Ausführungsbeispiel, bei dem die Einlassleitung 26 nur eine vergleichsweise kurze Strecke in das Speichervolumen 14 hineinragt. Die derartige rohrförmige Einlassleitung 26 weist an ihrem Endbereich sechs Reihen 30 mit jeweils sechs Einlassöffnungen 28 auf, die je in einem Winkel φ (Phi) von 30 0 bis 60 °, vorzugsweise 45 ° schräg zur Längserstreckung der Einlassleitung 26 gerichtet sind.
Mittels der derart ausgebildeten Einlassöffnungen 28 an den Einlassleitungen 26 wird das zu speichernde Gas sowohl axial als auch radial besonders gleichmäßig in das Speichervolumen 14 verteilt. Dabei kommt es insbesondere nicht zu einer örtlich begrenzten Erwärmung der Speicherwandung 20. Bezugszeichenliste
10 Speicherbehälter von kryogenem Druckgas, insbesondere Kryodrucktank
12 Speichergehäuse
14 Speichervolumen zum Aufnehmen des gespeicherten Gases
16 Außenhülle
18 Isolierung
20 Speicherwandung
22 Wärmetauscher
24 Einlass
26 Einlassleitung als Rohr gestaltet
28 Einlassöffnung
30 Reihe

Claims

Patentansprüche
1. Speicherbehälter (10) von kryogenem Druckgas, insbesondere Kryodrucktank für ein Kraftfahrzeug, mit einem Speichervolumen (14) zum Aufnehmen des gespeicherten Gases und einem Einlass (24) zum Einleiten des zu speichernden Gases in das Speichervolumen (14),
bei dem der Einlass (24) mit einer in das Speichervolumen (14) hineinragenden rohrförmigen Einlassleitung (26) gestaltet ist, an der mehrere von einander beabstandet angeordnete Einlassöffnungen (28) vorgesehen sind.
2. Speicherbehälter nach Anspruch 1 ,
bei dem die Einlassleitung (26) als Rohr gestaltet ist und die Einlassöffnungen (28) in sechs, am Umfang in Winkelabständen von je 60 0 beabstandeten Reihen (30) am Rohr angeordnet sind.
3. Speicherbehälter nach Anspruch 2,
bei dem die Einlassöffnungen (28) eng nebeneinander in der Mitte des Speichervolumens (14) angeordnet sind.
4. Speicherbehälter nach Anspruch 2,
bei dem die Einlassöffnungen (28) eng nebeneinander an einer Seite des Speichervolumens (14) angeordnet sind.
5. Speicherbehälter nach Anspruch 1 ,
bei dem die Einlassleitung (26) als Rohr gestaltet ist und die Einlassöffnungen (28) in drei, am Umfang in Winkelabständen von je 120 º beabstandeten Reihen (30) am Rohr angeordnet sind.
6. Speicherbehäiter nach Anspruch 1 ,
bei dem die Einlassleitung (26) als Rohr gestaltet ist und die Einlassöffnungen (28) in einer Reihe (30) am Rohr angeordnet sind.
7. Speicherbehälter nach Anspruch 5 oder 6,
bei dem das Rohr sich quer durch das Speichervolumen (14) erstreckt und die Einlassöffnungen (28) über die Längserstreckung des Rohres hinweg beabstandet angeordnet sind.
8. Speicherbehälter nach eine der Ansprüche 1 bis 7,
bei dem 36 kreisrunde Einlassöffnungen (28) mit je einem Durchmesser von 1 ,0 mm vorgesehen sind.
9. Speicherbehälter nach einem der Ansprüche 1 bis 7,
bei dem 12 kreisrunde Einlassöffnungen (28) mit je einem Durchmesser von 1 ,7 mm vorgesehen sind.
10. Speicherbehälter nach einem der Ansprüche 1 bis 9;
bei dem die Einlassöffnungen (28) am Rohr schräg zu dessen Längserstreckung ausgerichtet sind, insbesondere in einem Winkel von kleiner 45 °.
EP12810117.7A 2012-01-16 2012-11-27 Speicherbehälter von kryogenem druckgas mit einem einlass Withdrawn EP2805098A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200554A DE102012200554A1 (de) 2012-01-16 2012-01-16 Speicherbehälter von kryogenem Druckgas mit einem Einlass
PCT/EP2012/073759 WO2013107547A1 (de) 2012-01-16 2012-11-27 Speicherbehälter von kryogenem druckgas mit einem einlass

Publications (1)

Publication Number Publication Date
EP2805098A1 true EP2805098A1 (de) 2014-11-26

Family

ID=47504832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12810117.7A Withdrawn EP2805098A1 (de) 2012-01-16 2012-11-27 Speicherbehälter von kryogenem druckgas mit einem einlass

Country Status (4)

Country Link
US (1) US9494282B2 (de)
EP (1) EP2805098A1 (de)
DE (1) DE102012200554A1 (de)
WO (1) WO2013107547A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207300B4 (de) * 2014-04-16 2021-07-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Tanks, insbesondere eines Kraftfahrzeugtanks
US9954816B2 (en) * 2015-11-02 2018-04-24 Nominum, Inc. Delegation of content delivery to a local service
EP3581843B1 (de) 2018-06-12 2020-09-23 Nproxx B.V. Spülbarer druckbehälter
DE102019131405A1 (de) * 2019-11-21 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Befüllen eines Druckbehälters eines Kraftfahrzeugs
FR3118797B1 (fr) * 2021-01-12 2023-10-27 Air Liquide Dispositif de stockage de fluide cryogénique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE171709C (de)
GB1266147A (de) 1968-05-06 1972-03-08
US3703976A (en) * 1970-10-28 1972-11-28 Univ Oklahoma State High pressure storage vessel
US4611641A (en) 1985-04-08 1986-09-16 Mid-Florida Corporation Gas mixing device and method
US5022442A (en) * 1989-03-20 1991-06-11 Acetylene Gas Company Apparatus and method for high pressure gas mixing
US4987932A (en) 1989-10-02 1991-01-29 Pierson Robert M Process and apparatus for rapidly filling a pressure vessel with gas
DE10031155C2 (de) 2000-06-27 2003-11-20 Deutsch Zentr Luft & Raumfahrt Vorrichtung zum schnellen Einleiten von Gas in einen Behälter
US7600541B2 (en) * 2005-05-12 2009-10-13 Gm Global Technology Operations, Inc. Overfill protection for liquid hydrogen tank
FI122608B (fi) * 2007-11-12 2012-04-13 Waertsilae Finland Oy Menetelmä LNG-käyttöisen vesialuksen käyttämiseksi ja LNG-käyttöisen vesialuksen käyttöjärjestelmä
WO2010011189A1 (en) * 2008-07-25 2010-01-28 Keng Nye Kao Device for transferring material
FR2935774A1 (fr) 2008-09-05 2010-03-12 Air Liquide Dispositif de remplissage d'une bouteille de gaz
DE102009023320B3 (de) 2009-05-29 2010-12-09 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Vorrichtungen und Verfahren zur Zuführung eines verflüssigten Gases in ein Gefäß
DE202010012886U1 (de) * 2010-11-15 2011-01-05 Marine Service Gmbh Container zum Transport oder zur Lagerung von flüssigem Erdgas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013107547A1 *

Also Published As

Publication number Publication date
US20140326737A1 (en) 2014-11-06
DE102012200554A1 (de) 2013-07-18
WO2013107547A1 (de) 2013-07-25
US9494282B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
EP2805098A1 (de) Speicherbehälter von kryogenem druckgas mit einem einlass
EP2045110B1 (de) Kraftfahrzeug
DE102018000756A1 (de) Druckgasbehälter und Druckgasspeicher
DE102014209921B4 (de) Druckbehälter für ein Fahrzeug
DE102014206370B4 (de) Druckbehälter mit einem Innen- und einem Außenbehälter
EP2959208B1 (de) Druckbehälter mit wärmetauscher für kryogen gespeichertes medium
EP2151652A2 (de) Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
EP3382411B1 (de) Kryostatanordnung mit einem halsrohr mit einer tragenden struktur und ein die tragende struktur umgebendes aussenrohr zur verringerung des kryogenverbrauchs
WO2017186336A1 (de) Wasserstofftankstelle mit flüssigem wasserstoff
DE102019125184A1 (de) Druckbehälter sowie Kraftfahrzeug
DE10331540B4 (de) Kryotechnische Drehverbindungsanordnung
DE102008054090A1 (de) Behälter zum Aufnehmen und Speichern von Flüssigkeiten und viskosen Stoffen, insbesondere von kryogenen Fluiden, und dessen Verwendung
DE10348141B3 (de) Innerer Wärmeübertrager für Hochdruckkältemittel mit Akkumulator
DE4139739A1 (de) Doppelwandiger druckbehaelter und verfahren zu seiner herstellung
WO2021026581A1 (de) Rohrdurchführungsmodul für einen kryobehälter
DE102020117910A1 (de) Druckgastank für ein Kraftfahrzeug
EP3210890B1 (de) Kühlung von treibstoff für ein triebwerk
DE3823810C2 (de)
WO2022099336A1 (de) System umfassend einen kryobehälter und einen thermischen siphon
DE102014209916A1 (de) Hochdruckbehälter
WO2021052994A2 (de) Druckbehälter sowie kraftfahrzeug
DE102008027121A1 (de) Druckfester Behälter für kryogene Speicherung von Kraftstoff
DE102014209919A1 (de) Kryodruckbehälter
EP3708897A1 (de) Gas-tank-system, verfahren zum betreiben des gas-tank-systems und zug mit gas-tank-system
DE2107921B2 (de) Dichtringanordnung fuer schieber oder haehne, insbesondere kugelhaehne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171024