EP2805072A1 - Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse - Google Patents

Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse

Info

Publication number
EP2805072A1
EP2805072A1 EP12716393.9A EP12716393A EP2805072A1 EP 2805072 A1 EP2805072 A1 EP 2805072A1 EP 12716393 A EP12716393 A EP 12716393A EP 2805072 A1 EP2805072 A1 EP 2805072A1
Authority
EP
European Patent Office
Prior art keywords
measured values
sliding bearing
characteristic value
measuring arrangement
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12716393.9A
Other languages
German (de)
English (en)
Inventor
Hans-Henning Klos
Michael STECKENBORN
Klaus-Dieter Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2805072A1 publication Critical patent/EP2805072A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a method for Studentswa ⁇ Chen an operating condition of a sliding bearing. Moreover be ⁇ , the present invention applies to a measuring arrangement for monitoring an operating condition of a plain bearing. Finally, the present invention relates to a sliding bearing assembly.
  • Lubricant are detected. Moreover, the load torque can also be examined to monitor the operating state. Oscillations of the wave can be detected by analyzing vibrations in the low-frequency range.
  • the friction bearing condition can not be detected with the above-described methods ⁇ nen however directly. Also, particles that are generated in the bearing and remain there can not be detected.
  • the monitoring of the temperature of the sliding bearing is linked to many dependencies that prevent a reliable diagnosis of the sliding bearing. In addition, the damage to the plain bearing and particles in bearings are not directly detectable. Furthermore, that sinks Load moment under circumstances with increasing friction in the camp and thus can not be regarded as a reliable measuring means for Di ⁇ agnose the sliding bearing.
  • sinks Load moment under circumstances with increasing friction in the camp and thus can not be regarded as a reliable measuring means for Di ⁇ agnose the sliding bearing.
  • the inventive method for monitoring an operating condition of a plain bearing includes acquiring reco ⁇ th, characterize the acoustic emissions in the sliding bearing, with a sensor element which is mechanically coupled to the slide bearing, calculating a characteristic value on the basis of measured values acquired and the Classifying the operating condition of the sliding bearing as a function of the characteristic value.
  • the sensor element which is connected to the slide bearing or a Ge ⁇ housing of the sliding bearing so that the Schallemis ⁇ ions transmitted via structure-borne noise to the sensor element who ⁇ can, the sound emissions can be detected.
  • the sensor element can be designed as an acceleration sensor, pressure sensor or in the manner of a strain gauge. Ins ⁇ particular, the sensor element is designed as a micromechanical sensor.
  • a characteristic value can be calculated with the aid of a computing device from the time profile of the measured values, which is detected by the sensor element.
  • the classification of the Gleitla ⁇ gers can be performed automatically with the computing device.
  • predetermined operating states and the associated characteristic values can be stored in the computing device or a corresponding memory device of the computing device.
  • the operating conditions can be associated with a ⁇ from utilization, damage or wear of the bearing.
  • the operating conditions may relate to a state of the lubricant in the sliding bearing or contamination of the lubricant by particles. In this case, the extent of contamination or the size, number or the material of the particles can be considered.
  • ⁇ NEN the operating states of different friction conditions of sliding bearing such as a wear-rich mixed friction or low wear viscous be associated Kgs.
  • the characteristic value is calculated as a function of a maximum value and / or an effective value of the measured values.
  • the characteristic value can be calculated as a function of the maximum value and / or the effective value of the measured values for a predetermined time range or a time window.
  • the characteristic value can also be calculated as a logarithmic measure. It is also conceivable to use a reciprocal characteristic value.
  • the product of the maximum value and the effective value can also be used as the characteristic value.
  • Measured values are calculated.
  • the reference values can be determined in a simple manner, since these values are only very slightly dependent on the rotational speed, the temperature of the lubricant and the bearing load in the desired operation in fluid friction.
  • the characteristic value is calculated on the basis of an envelope signal determined from the measured values.
  • an envelope signal can be determined, for example, by rectification and low-pass filtering of the measured values.
  • the envelope signal can be determined by calculating a moving effective value or a moving average of the measured values.
  • Another possibility is to determine the envelope signal by a Hilbert transform.
  • the characteristic value is preferably calculated on the basis of a frequency spectrum of the envelope signal.
  • a frequency analysis for example by a Fast Fourier Transformation (FFT) of the envelope signal, the perio ⁇ disch recurring signals and pulses in the measured values or the acoustic emission signals can be determined.
  • FFT Fast Fourier Transformation
  • the characteristic value is calculated from a correlation of the measured values.
  • the characteristic value can be calculated from the correlation or autocorrelation of the measured values.
  • By varying the time window different frequency ranges of the measured values can be investigated .
  • a similar correlation methods can also be used for frequency analysis of the measured values, the special ⁇ when the frequencies to be tested are known. This results in a simple and fast algorithm and the signal-to-noise ratio, in particular when averaging over several shaft revolutions, can thereby be significantly improved.
  • the measuring arrangement according to the invention for monitoring a Be ⁇ operating condition of a plain bearing includes a sensor element for detecting measured values which characterize the acoustic emissions in the slide bearing, wherein mechanical coupling with the sliding bearing and a computing device which is designed to use the detected with the sensor unit measuring values a characteristic value to calculate and the operating state of
  • the measuring arrangement comprises an amplifier element for amplifying the detected measured values, a filter element for filtering the measured values amplified by the amplifier element and an analog-to-digital converter which is coupled to an input of the computing device.
  • the sensor element can detect the noise emissions in the sliding bearing.
  • the output signal of the sensor element which is present for example as electrical voltage or electric current, can be raised or amplified by the amplifier element.
  • the ver ⁇ amplified signal is adjusted with an analog filter element of troublefree ⁇ leaders or non-relevant frequency bands before being fed to the analog-digital converter. Through this Order, the signal-to-noise ratio can be improved.
  • the filter element can also be used to determine an envelope curve ⁇ signal from the measured values.
  • the computing device can be designed as a PC or microprocessor. With the computing device, the information compression can be performed by feature extraction and characteristic value formation.
  • the sensor element, the amplifier element, the filter element, the analog-to-digital converter and the computing device are arranged in a common housing.
  • the susceptibility can be reduced.
  • the plain bearing arrangement according to the invention comprises a sliding bearing and a previously described measuring arrangement, which is connected to the
  • Plain bearing is mechanically coupled. With Gleitlageranord ⁇ tion wear phenomena of the plain bearing can be detected early.
  • the operating conditions of mixed friction and fluid friction can be distinguished in a simple manner. The identification of the operating state can take place independently of the bearing load and the shaft speed.
  • the condition of the lubricant and impurities or particles can be detected in the Schmiermit ⁇ tel. For new hydrodynamic bearings or solid friction bearings, it is possible to monitor the run-in process and to assess the extent to which it has been completed.
  • 1 shows a slide bearing arrangement in a perspective view
  • 2 shows a schematic representation of steps one
  • FIG. 3 shows a measuring arrangement in a first embodiment
  • 4 shows a measuring arrangement in a second embodiment
  • FIG. 5 shows a measuring arrangement in a third embodiment
  • the slide bearing assembly 10 includes a slide bearing 12 which carries a shaft 14.
  • the sliding bearing 12 is arranged in a housing 16.
  • the Gleitla ⁇ geran Aunt 10 includes a port 18 through which the sliding bearing 12, a lubricant, in particular an oil, is supplied.
  • a measuring arrangement 20 is arranged on the housing 16 of the sliding bearing 12.
  • the measuring arrangement 20 is arranged directly on the housing 16. Thus, acoustic emissions generated in the slide bearing 12, are transmitted via acoustic emission to an in FIG 1 is not notified Darge ⁇ sensor element 22nd
  • the sensor element 22, which is located within the measuring arrangement 20, is designed to detect sound emissions with frequencies in the ultrasonic range, which are also referred to as acoustic emission.
  • the sensor element 22 is designed to detect sound emissions in the range from 50 kHz to 150 kHz.
  • the sensor element 22 may be formed as Accelerat ⁇ n Trentssensor or as a pressure sensor.
  • the sensor device may be designed in the manner of a strain gauge.
  • the sensor element 22 is designed as mik ⁇ romechanischer sensor, which may include, for example, a seismic mass.
  • the sensor element 22 may comprise a piezoelectric sensor element.
  • 2 shows a schematic representation of a method for monitoring of operating conditions of a plain bearing 12.
  • an external DEMANDS ⁇ monitoring of the sliding bearing is made in step S10 12. This can be provided for example by the ingress of particles or impurities in the sliding bearing 12th
  • the external stress on the sliding bearing 12 S12 mechanical stresses occur in one step in the material of the sliding bearing 12. This mechanical ⁇ rule voltages stimulate Acoustic emission sources
  • Step S14 high-frequency sound emissions or structure-borne noise are generated in the material of the sliding bearing 12 and propagate in the sliding bearing 12 in step S16.
  • the frequencies of the sound emissions are dependent on the material and are usually in the range of 50 to 150 kHz.
  • step S18 the sound emissions are detected with the sensor element of the measuring arrangement 20. He then be ⁇ follows in a step S20, an information compression by feature extraction and characteristic value calculation. In step S22, an evaluation of the data takes place. Finally, in a step S24, a classification of the operating state of the sliding bearing 12 is performed.
  • FIGS. 3, 4 and 5 each show a measuring arrangement 20 in various embodiments.
  • Each of the measuring arrangements 20 comprises a sensor element 22, with which sound emissions in the sliding bearing 12 are detected as a time course of measured values in the case of mechanical coupling with the sliding bearing 12.
  • the output signal is amplified by the Verstär ⁇ kerelement 24th
  • the amplified signal is corrected with an analog filter element 26 of interfering or irrelevant frequency bands before it is sent to the analog-digital converter.
  • the filter element can also be used to determine an envelope signal from the measured values by rectification and low-pass filtering.
  • the digitized measured values are transmitted to a computing device 30, which may be designed as a PC or microprocessor.
  • a characteristic value is calculated from the time profile of the measured values. Based on this characteristic, the operating state of the plain bearing 12 can be classi ⁇ fied.
  • the classification of the sliding bearing 12 can also be carried out automatically with the computing device 30.
  • the wear of the sliding bearing 12 can be determined.
  • the condition of the lubricant in the sliding bearing 12 or contamination of the lubricant by particulates may be detected.
  • the different ⁇ friction states of the friction bearing 12, such as a wear-rich mixed friction or a wear ⁇ schl constitutionarme fluid friction can be determined.
  • the sensor element 22 is arranged separately, for example in a housing. This is illustrated by the bracket 32.
  • the signal processing is carried out (illustrated by the bracket 34).
  • the processing of the signal represented by the bracket 36 is performed in the computing device 30.
  • the amplifier element 24 is integrated in the sensor element 22.
  • an integrated sensor (bracket 38) is realized, which has the advantage of lower susceptibility.
  • the further signal processing by the filter element 26 and the analog-to-digital converter 28 can be done in a further module, which is indicated by the bracket 34.
  • the acquisition of the measured values, the amplification, the filtering, digitalization are carried out. tion and processing in a diagnostic module, which is indicated by the bracket 40.
  • the sensor element 22, the amplifier element 24, the filter element 26, the analog-digital converter 28 and the computing device 30 are arranged in a common housing. This variant has a ⁇ be Sonder low susceptibility to interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé pour contrôler un état de fonctionnement d'un palier lisse (12) par détection de valeurs de mesure (S18) caractérisant des émissions sonores dans le palier lisse (12), au moyen d'un élément de détection (22) couplé mécaniquement au palier lisse (12), calcul d'une valeur caractéristique sur la base de la valeur de mesure (S20) détectée et classification de l'état de fonctionnement (12) en fonction de la valeur caractéristique (S24).
EP12716393.9A 2012-04-19 2012-04-19 Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse Withdrawn EP2805072A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/057177 WO2013156068A1 (fr) 2012-04-19 2012-04-19 Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse

Publications (1)

Publication Number Publication Date
EP2805072A1 true EP2805072A1 (fr) 2014-11-26

Family

ID=45999829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12716393.9A Withdrawn EP2805072A1 (fr) 2012-04-19 2012-04-19 Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse

Country Status (4)

Country Link
US (1) US20150059478A1 (fr)
EP (1) EP2805072A1 (fr)
CN (1) CN104246247B (fr)
WO (1) WO2013156068A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533090A (en) 2014-12-08 2016-06-15 Skf Ab Sensor device with mounting means
US10309516B2 (en) 2015-03-03 2019-06-04 Flender Gmbh Measuring system and measuring method for detecting variables on planetary carriers of a planetary gear train
CN105465190B (zh) * 2015-12-16 2017-12-22 上海大学 静压半主动控制径向滑动轴承
GB201613312D0 (en) * 2016-08-02 2016-09-14 Skf Ab Bearing assembly with contamination sensor
DE102016220101A1 (de) * 2016-10-14 2018-04-19 Zf Friedrichshafen Ag Akustische Brücke
DE102017200964A1 (de) 2017-01-20 2018-07-26 Rolls-Royce Deutschland Ltd & Co Kg Messvorrichtung und Messverfahren zur Erfassung von Mischreibungsereignissen und / oder Stick-Slip-Ereignissen
CN107702919A (zh) * 2017-06-30 2018-02-16 长沙理工大学 基于声发射的滑动轴承润滑状态监测方法
DE102017119543A1 (de) * 2017-08-25 2019-02-28 Rolls-Royce Deutschland Ltd & Co Kg Verfahren und Vorrichtung zur Überwachung eines Gleitlagers
DE102017223386A1 (de) * 2017-12-20 2019-06-27 Zf Friedrichshafen Ag Gleitlageranordnung für eine schwere Welle, insbesondere einer Windkraftanlage, sowie Steuersystem und Verfahren zur Schmierölversorgung derselben
US11519820B2 (en) * 2018-09-19 2022-12-06 Rolls-Royce Deutschland Ltd & Co Kg Method and device for monitoring a journal bearing
DE102018123571A1 (de) * 2018-09-25 2020-03-26 Rolls-Royce Deutschland Ltd & Co Kg Verfahren und Vorrichtung zur Schätzung des Verschleißzustandes eines Gleitlagers
DE102018220111A1 (de) * 2018-11-23 2020-05-28 Zf Friedrichshafen Ag Selbstheilendes Gleitlager
JP7162742B2 (ja) * 2019-08-09 2022-10-28 三菱電機エンジニアリング株式会社 設備状態測定装置
DE102019122642A1 (de) * 2019-08-22 2021-02-25 Dickow Pumpen GmbH & Co. KG. Vorrichtung und Verfahren zur Überwachung wenigstens eines Gleitlagers
DE102020204228A1 (de) * 2020-04-01 2021-10-07 Aktiebolaget Skf Vorrichtung zum Identifizieren eines Typs eines Lagers
DE102022121294A1 (de) 2022-08-23 2024-02-29 Ks Gleitlager Gmbh Verfahren und Vorrichtung zur Überwachung des Betriebs einer Gleitlagerstelle/-anordnung und eine entsprechende Gleitlagerstelle/-anordnung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653422A (en) * 1979-10-08 1981-05-13 Hitachi Ltd Diagnosis device for bearing abnormality
JPS5745428A (en) * 1980-09-03 1982-03-15 Hitachi Ltd Metal contact detector of plain bearing part
JPH06100580B2 (ja) * 1985-03-01 1994-12-12 川崎製鉄株式会社 すべり軸受の損傷診断装置
DE3523289A1 (de) * 1985-06-28 1987-01-08 Busch Dieter & Co Prueftech Verfahren und vorrichtung zur ermittlung und auswertung von maschinenzustandsdaten
JPS6219755A (ja) * 1985-07-19 1987-01-28 Hitachi Ltd Ae方式回転機異常診断システム
US5140858A (en) * 1986-05-30 1992-08-25 Koyo Seiko Co. Ltd. Method for predicting destruction of a bearing utilizing a rolling-fatigue-related frequency range of AE signals
DE3875398T2 (de) * 1987-06-03 1993-04-08 Kawasaki Steel Co Vorrichtung zum feststellen von fehlern in lagern.
DD293422A5 (de) * 1990-04-02 1991-08-29 Technische Hochschule Zittau,De Verfahren und anordnung zur ursachenerkennung von anstreiferscheinungen in gleitlagern
US5511422A (en) * 1993-04-09 1996-04-30 Monitoring Technology Corporation Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
US6202491B1 (en) * 1997-07-22 2001-03-20 Skf Condition Monitoring, Inc. Digital vibration coupling stud
AU4183999A (en) * 1998-05-12 1999-11-29 Rhodia Inc. Acoustic emission monitor, method and memory media for solid material processingmachinery
US6967586B2 (en) * 2000-10-20 2005-11-22 Sankyo Seiki Mfg. Co., Ltd. Bearing test method, bearing test device, bearing monitoring device and storage device
DE50204393D1 (de) * 2001-02-02 2006-02-09 Alstom Technology Ltd Baden Verfahren und vorrichtung zur betriebsüberwachung eines gleitlagers
US6923063B2 (en) * 2002-09-16 2005-08-02 Radiaulics, Inc. Acoustic sensing device, system and method for monitoring emissions from machinery
JP4981413B2 (ja) * 2006-11-02 2012-07-18 三菱重工業株式会社 軸受温度監視装置及びこれをそなえた軸受装置

Also Published As

Publication number Publication date
US20150059478A1 (en) 2015-03-05
CN104246247A (zh) 2014-12-24
CN104246247B (zh) 2016-11-09
WO2013156068A1 (fr) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2805072A1 (fr) Procédé et dispositif de mesure pour contrôler des états de fonctionnement d'un palier lisse
Singh et al. Rolling element bearing fault diagnosis based on over-complete rational dilation wavelet transform and auto-correlation of analytic energy operator
Kim et al. Condition monitoring of low speed bearings: A comparative study of the ultrasound technique versus vibration measurements
EP2623949A1 (fr) Dispositif de surveillance d'état et procédé de surveillance d'état de composants mécaniques rotatifs
CN202083555U (zh) 汽油发动机故障特征提取及诊断系统
DE102011121789B4 (de) Verfahren zur Bestimmung eines schadhaften Teils in einem Getriebe und Vorrichtung, eingerichtet zur Durchführung des Verfahrens
DE102008021360A1 (de) Verfahren und Vorrichtung zum Erkennen eines Lagerschadens
DE2152848A1 (de) Vorrichtung zur Feststellung von Beschädigungen in Maschinenelementen
DE102015216468A1 (de) Verfahren und Anordnung zur Zustandsüberwachung eines Lagers, das ein Planetenrad eines Planetengetriebes auf einem Planetenträger lagert
EP2737292B1 (fr) Procédé et dispositif pour déterminer et/ou surveiller l'état d'un roulement
DE102017200761A1 (de) Vorrichtung zur überwachung eines rotierenden elements und entsprechendes verfahren
DE102005020901A1 (de) Verfahren und System zur Diagnose von mechanischen, elektromechanischen oder fluidischen Komponenten
DE102011055523A1 (de) Verfahren und Vorrichtung zur Schwingungsanalyse von Anlagen oder Maschinenelementen
EP1616163B1 (fr) Procede de detection d'evenements de bruit de structure dans un palier a roulement
DE102016202340A1 (de) Messvorrichtung und Messverfahren
DE102010005525B4 (de) Verfahren zur Zustandsüberwachung einer Maschine und Überwachungseinrichtung hierfür
EP1415132B1 (fr) Evaluation spectrale d'un objet d'essai
DE102009024981A1 (de) Verfahren zur Ermittlung und Analyse von Schäden an umlaufenden Maschinenelementen
EP2110649B1 (fr) Capteur pour surveiller des éléments mécaniques de construction
EP2378145A2 (fr) Procédé de surveillance d'un guidage linéaire
EP2378146A2 (fr) Procédé de surveillance d'un guidage linéaire
DE102017212666A1 (de) Vorrichtung zur Bestimmung des Zustands eines mechanischen Bauteils, Verwendung eines Messgeräts, System, Verfahren zur Bestimmung des Zustands eines mechanischen Bauteils
Manghai et al. Feature-based vibration monitoring of a hydraulic brake system using machine learning
WO2021004851A1 (fr) Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine
DE112020007629T5 (de) Verfahren und Vorrichtung zur Erfassung von Lagerfehlern auf der Grundlage der Höreigenschaften des menschlichen Ohres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170214