JP7162742B2 - 設備状態測定装置 - Google Patents

設備状態測定装置 Download PDF

Info

Publication number
JP7162742B2
JP7162742B2 JP2021539715A JP2021539715A JP7162742B2 JP 7162742 B2 JP7162742 B2 JP 7162742B2 JP 2021539715 A JP2021539715 A JP 2021539715A JP 2021539715 A JP2021539715 A JP 2021539715A JP 7162742 B2 JP7162742 B2 JP 7162742B2
Authority
JP
Japan
Prior art keywords
temperature
wave signal
unit
equipment
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021539715A
Other languages
English (en)
Other versions
JPWO2021028981A1 (ja
Inventor
慎二 篠原
照 波多野
周作 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Publication of JPWO2021028981A1 publication Critical patent/JPWO2021028981A1/ja
Application granted granted Critical
Publication of JP7162742B2 publication Critical patent/JP7162742B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、設備の状態を測定する設備状態測定装置に関する。
従来から、設備に発生した異常を早期に発見するため、例えば、回転機械の振動レベルをリアルタイムに測定し、測定された振動レベルから回転機械の劣化傾向を把握することが行われている。回転機械の劣化傾向に基づいて回転機械の寿命の予測または設備の状態の診断が可能である。また、回転機械に異常が発生している状態であるか、または回転機械が高い稼働状況である場合、一般に、回転機械が通常の回転状態であるときよりも回転機械の温度は高くなる。このように、回転機械の温度は、回転機械の寿命予測または状態診断における指標となり得る。
例えば、特許文献1には、振動センサ部と温度センサ部を備えたセンサが記載されている。当該センサは、一端が固定された片持ち梁構造の支持板を備えており、振動センサ部は、支持板のうち振動可能な振動領域上に、多層状に成膜された下部電極、圧電薄膜および上部電極を有し、温度センサ部が、支持板のうち振動領域以外の領域上に、振動センサ部が有する下部電極と同じ材料で成膜された薄膜によって形成されている。特許文献1に記載されたセンサは、回転機械の振動レベルと回転機械の温度を同時に測定できるので、回転機械の異常判定に用いることができる。
特開2012-8101号公報
特許文献1に記載されたセンサを用いた測定装置は、振動センサ部によって検出された振動の検出信号を用いた振動測定と、温度センサ部によって検出された温度の検出信号を用いた温度測定という、互いに独立した測定処理を行う必要があるという課題があった。この場合、振動センサ部によって検出された信号を振動測定部に出力するための配線と、温度センサ部によって検出された信号を温度測定部に出力するための配線をそれぞれ別に設ける必要がある。
本発明は上記課題を解決するものであり、設備から検出された共通の信号を用いて振動測定と温度測定を行うことができる設備状態測定装置を得ることを目的とする。
本発明に係る設備状態測定装置は、測定対象の設備に発生した振動および温度に応じたアコースティックエミッション(以下、AEと記載する)信号を検出し、検出したAE信号の正弦波信号を出力するカンチレバー構造を有したAEセンサ部と、正弦波信号に基づいて設備の振動レベルを測定する振動測定部と、正弦波信号に基づいて設備の温度を測定する温度測定部を備える。
本発明によれば、設備に発生した振動および温度に応じたAE信号を検出し、検出したAE信号の正弦波信号を出力するAEセンサ部と、正弦波信号に基づいて設備の振動レベルを測定する振動測定部と、正弦波信号に基づいて設備の温度を測定する温度測定部を備える。これにより、設備から検出された共通の信号(正弦波信号)を用いて振動測定と温度測定を行うことができる。
実施の形態1に係る設備状態測定装置の構成を示すブロック図である。 時間測定部の構成を示すブロック図である。 AEセンサ部の周波数温度特性を示す図である。 周波数温度テーブルデータの例を示す図である。 実施の形態2に係る設備状態測定装置の構成を示すブロック図である。 実施の形態3に係る設備状態測定装置の構成を示すブロック図である。 実施の形態4に係る設備状態測定装置の構成を示すブロック図である。
実施の形態1.
図1は、実施の形態1に係る設備状態測定装置の構成を示すブロック図である。以降の説明では、状態測定の対象の設備が回転機械であるものとする。図1に示す設備状態測定装置は、回転機械の状態として振動レベルと温度を測定し、回転機械の振動レベルまたは温度の少なくとも一方に基づいて、回転機械の異常を判定する。図1に示すように、設備状態測定装置は、AEセンサ部1、振動測定部2、温度測定部3、異常判定部4および外部I/F部5を備える。回転機械には、例えば、モータ、減速機、切削器、ポンプおよびタービンがある。AEは、材料が変形または破壊するときに当該材料の内部に蓄えられた弾性エネルギーが弾性波として放出される現象である。
AEセンサ部1は、回転機械(設備)に取り付けられ、回転機械の回転で発生した振動および温度に応じたAE信号を検出し、検出したAE信号の正弦波信号を出力するカンチレバー構造を有する。このカンチレバー構造は、Q値が高い圧電材料で構成された発振構造であり、AE信号の周波数帯域中に共振周波数が設定されている。例えば、カンチレバー構造は、AE信号の周波数帯域中に各々の共振周波数を有する複数のカンチレバーを有している。回転機械の回転で生じた振動に対応する広帯域(数kHzから数MHzの周波数成分)のAE信号が発生すると、AE信号の周波数帯域のうち、共振周波数に対応した正弦波信号がカンチレバー構造から出力される。
AEセンサ部1は、振動測定部2と温度測定部3に共通の配線で接続されており、AEセンサ部1から出力された正弦波信号は、共通の配線を介して振動測定部2と温度測定部3に出力される。また、AE信号は、回転機械の回転で生じた振動に対応するので、AEセンサ部1から出力される正弦波信号に基づいて、回転機械の振動レベルを測定することができる。また、AE信号の周波数は、回転機械においてAEセンサ部1(カンチレバー構造)が設置された箇所の温度に応じて変動するので、回転機械から検出されたAE信号の周波数に基づいて回転機械の温度を測定することが可能である。
振動測定部2は、AEセンサ部1から出力された正弦波信号に基づいて回転機械(設備)の振動レベルを測定する。例えば、振動測定部2は、図1に示すように、ノイズフィルタ部21、A/D変換部22、実効値算出部23および平均化処理部24を備える。
ノイズフィルタ部21は、AEセンサ部1から出力された正弦波信号におけるノイズを除去する。ノイズが除去された正弦波信号は、ノイズフィルタ部21からA/D変換部22に出力される。A/D変換部22は、正弦波信号をデジタル処理するために、アナログの正弦波信号をデジタル信号に変換する。
実効値算出部23は、A/D変換部22によってデジタル信号に変換された正弦波信号の実効値を算出する。実効値は、時間的に変化する正弦波信号の大きさを評価するための評価値であり、例えば、A/D変換部22によってサンプリングされた正弦波信号のデジタル信号の値の2乗を当該正弦波信号の一周期について平均し、その値の平方根をとった値である。
平均化処理部24は、実効値算出部23によって算出された実効値について平均化処理を施すことで、回転機械の振動レベルを数値化した結果である平均値を、異常判定部4に出力する。例えば、平均化処理部24は、前回の測定までに蓄積された実効値の平均値を算出する。この平均値は、回転機械に発生した振動に対応した正弦波信号に基づくものであり、回転機械の振動レベルを示す値である。
なお、振動レベルを数値化するために正弦波信号の実効値を平均化する方法は、一例であり、これ以外の方法であっても、AEセンサ部1から出力された正弦波信号に基づいて振動レベルを数値化できる方法であればよい。例えば、正弦波信号の実効値そのものを、振動レベルとして数値化してもよいし、正弦波信号の実効値の期間積算値を、振動レベルとして数値化してもよい。
温度測定部3は、AEセンサ部1から出力された正弦波信号に基づいて回転機械(設備)の温度を測定する。例えば、温度測定部3は、図1に示すように、矩形波変換部31、時間測定部32、周波数算出部33、温度判定部34およびテーブルデータ記憶部35を備える。
矩形波変換部31は、AEセンサ部1から出力された正弦波信号を、矩形波信号に変換する。例えば、矩形波変換部31は、コンパレータを用いて一定の基準電圧レベルと正弦波信号のレベルを比較することで、正弦波信号のレベルが基準レベルよりも大きい期間にハイレベルとなり、正弦波信号のレベルが基準レベル以下の期間にローレベルとなるような矩形波信号を生成する。
時間測定部32は、矩形波変換部31によって生成された矩形波信号のN回のサイクルの時間を測定する。Nは、2以上の自然数である。図2は、時間測定部32の構成を示すブロック図である。例えば、時間測定部32は、Nサイクルカウンタ32A、時間測定用カウンタ32BおよびNサイクル時間算出部32Cを備える。Nサイクルカウンタ32Aは、矩形波変換部31によって生成された矩形波信号のハイレベルからローレベル(またはローレベルからハイレベル)の変化点から、矩形波信号のハイレベルからローレベル(またはローレベルからハイレベル)の次の変化点までの間を1サイクルとしてNサイクル分カウントする。時間測定用カウンタ32Bは、Nサイクルカウンタ32AがNサイクル分のカウントを行っている間の時間測定用クロック信号のクロック回数をカウントする。Nサイクル時間算出部32Cは、時間測定用カウンタ32Bのカウント数と、時間測定用クロック信号の1クロックの周期との積によってNサイクルの時間を算出する。ただし、矩形波信号のハイレベルからローレベル(またはローレベルからハイレベル)の変化点を漏れなく察知するためには、時間測定用クロック信号が矩形波信号の周期よりも短くなければならない。
1℃の変化の検出に必要な時間Δtを時間測定用クロック信号の周波数fcountに基づいて決定する場合、下記式(1)が用いられる。下記式(1)から、1℃の変化の検出に必要なサイクル数Nは、1/(fcount×Δt)以上の値に設定すればよい。
Δt×Nサイクル≧1/fcount ・・・(1)
図3は、AEセンサ部1の周波数温度特性を示す図であり、基準周波数からの変化率(%)と温度(℃)の関係を示している。図3において、横軸の温度は、AEセンサ部1の温度(すなわち、回転機械におけるAEセンサ部1が設置された箇所の温度)である。基準周波数は、回転機械におけるAEセンサ部1の設置箇所の温度が基準温度(例えば、20℃)であるときに、当該AEセンサ部1から出力された正弦波信号の周波数である。基準周波数からの変化率は、正弦波信号の周波数についてのAEセンサ部1の設置箇所の温度の変化に応じた基準周波数からの変化率である。図3に示す周波数温度特性は、事前の実験により求められて時間測定部32に設定される。
例えば、図3に示す周波数温度特性において、基準温度は20℃であり、基準温度での基準周波数からの変化率は0%である。時間測定用のクロック信号の周波数fcountを10MHzとし、AEセンサ部1から出力された正弦波信号の周波数を20kHzとした場合、AEセンサ部1の設置箇所の温度が40℃であるとき、基準周波数からの変化率は-0.2%である。すなわち、1℃の変化によって正弦波信号の周波数は基準周波数から約0.01%変化している。20kHzの1周期は、50マイクロ秒である。
時間測定部32は、1℃の変化の検出に必要な時間Δtとして、正弦波信号の1周期の時間50マイクロ秒の0.01%である、5ナノ秒を算出する。さらに、時間測定部32は、上記式(1)に従って、サイクル数Nを20サイクル以上と算出する。
周波数算出部33は、時間測定部32によって測定された矩形波信号の複数のサイクルの時間(Nサイクル以上の時間)に基づいて、矩形波信号の周波数を算出する算出部である。例えば、周波数算出部33は、時間測定部32によって測定された矩形波信号のNサイクルの時間をカウント数(=N)で割り算することにより、1サイクルの時間(1周期)を算出し、1サイクルの時間の逆数演算を行って、矩形波信号の周波数を算出する。
温度判定部34は、周波数算出部33によって算出された矩形波信号の周波数を入力して、矩形波信号の周波数に対応する温度を判定する。例えば、温度判定部34は、周波数温度テーブルデータに基づいて、周波数算出部33によって算出された周波数に対応する温度を判定する。周波数温度テーブルデータは、矩形波信号の周波数と、測定対象の回転機械の温度との対応関係を示すテーブルデータである。温度判定部34は、周波数温度テーブルデータを参照することで、周波数温度テーブルデータのうち、矩形波信号の周波数に対応する温度を、回転機械の温度と判定する。
図4は、周波数温度テーブルデータの例を示す図である。テーブルデータ記憶部35には、図4に示すような周波数温度テーブルデータが記憶されている。周波数温度テーブルデータには、一定の周波数範囲ごとの矩形波信号の周波数とこれに対応する温度が設定されており、周波数範囲と温度との関係は、事前の実験により求められる。
なお、図1にはテーブルデータ記憶部35を備えた温度測定部3を示したが、テーブルデータ記憶部35は、設備状態測定装置とは別個に設けられた外部装置が備えてもよい。この場合、温度判定部34は、外部装置が備えるテーブルデータ記憶部35から周波数温度テーブルデータを読み出すので、温度測定部3は、テーブルデータ記憶部35を備えていなくてもよい。
異常判定部4は、振動測定部2によって測定された回転機械(設備)の振動レベルまたは温度測定部3によって測定された回転機械の温度の少なくとも一方に基づいて回転機械の異常を判定する。例えば、異常判定部4は、回転機械が正常であるときに得られた振動レベルを正常値とし、振動測定部2によって測定された振動レベルと正常値との差を算出して、算出した差の値と許容範囲を比較し、当該差の値が許容範囲外である場合に、回転機械に異常が発生したと判定する。同様に、異常判定部4は、回転機械が正常であるときに得られた温度を正常値とし、温度測定部3によって測定された温度と正常値の差を算出して、算出した差の値と許容範囲とを比較し、当該差の値が許容範囲外である場合、回転機械に異常が発生したと判定する。
また、異常判定部4は、振動レベルを用いた回転機械の異常判定結果と、温度を用いた回転機械の異常判定結果との組み合わせに基づいて、回転機械の異常を判定してもよい。例えば、異常判定部4は、回転機械の振動レベルが許容範囲内であっても回転機械の温度が許容範囲外である場合、回転機械に異常が発生して温度が上昇していると判定する。このように、異常判定部4は、振動レベルを用いた異常判定に加え、温度を用いた異常判定を行うので、異常判定の確実性が向上する。また、異常判定部4は、振動測定または温度測定のいずれか一方に故障が発生した場合であっても、回転機械の異常判定を行うことができる。
異常判定部4は、振動測定部2によって測定された回転機械の振動レベルの初期値からの変化傾向を検出し、さらに、温度測定部3によって測定された回転機械の温度の初期値からの変化傾向を検出して、これらの変化傾向に基づいて回転機械の劣化傾向を診断してもよい。例えば、工場に回転機械が新たに設置されてから一定の期間内に測定された回転機械の振動レベルと温度(例えば、実効値の平均値)をそれぞれ初期値に設定する。異常判定部4は、回転機械の回転によって生じた振動レベルが初期値から有意な変化があるか、または回転機械の回転によって温度が初期値から有意な変化がある場合、回転機械が劣化傾向にあると判定する。異常判定部4は、回転機械の劣化傾向を解析し、劣化傾向の解析結果に基づいて回転機械の寿命を予測してもよい。
外部I/F部5は、図示しない外部装置とデータをやり取りするためのインタフェースであり、例えば、外部I/F部5を介して異常判定部4の判定結果が外部装置に出力される。
なお、図1には、異常判定部4および外部I/F部5を備えた設備状態測定装置を示したが、異常判定部4および外部I/F部5は、設備状態測定装置とは別個に設けられた外部装置が備えてもよい。この場合、振動測定部2は、外部装置が備える異常判定部4に振動レベルを出力し、温度測定部3は、外部装置が備える異常判定部4に温度を出力するので、実施の形態1に係る設備状態測定装置は、異常判定部4と外部I/F部5を備えていなくてもよい。
これまでの説明は、温度判定部34が、周波数温度テーブルデータに基づいて、矩形波信号の周波数に対応する設備の温度を判定する場合を示したが、これに限定されるものではない。例えば、温度判定部34は、周期温度テーブルデータに基づいて、矩形波信号の周期に対応する温度を判定することができる。周期温度テーブルデータには、矩形波信号の時間(周期)とこれに対応する温度が設定されており、周期範囲と温度の関係は、事前の実験により求められる。この場合、周波数算出部33は、時間測定部32によって測定された矩形波信号のNサイクルの時間に基づいて、矩形波信号の1サイクルの時間(周期)を算出する。実施の形態1に係る設備状態測定装置では、矩形波信号の1サイクルの時間に基づいて温度を判定することで、矩形波信号の1サイクルの時間についての逆数演算を省略することができる。
また、温度判定部34は、周波数温度テーブルデータを用いず、矩形波信号の周波数を用いた近似関数に基づいて回転機械の温度を算出してもよい。この近似関数は、例えば、周波数範囲ごとの矩形波信号の周波数をパラメータとし、矩形波信号の周波数に対応する温度を算出するための関数であり、事前の実験により求められる。温度判定部34は、周波数算出部33によって算出された矩形波信号の周波数を入力すると、この周波数を近似関数に代入して回転機械の温度を算出する。なお、温度判定部34は、矩形波信号の1サイクルの周期を用いた近似関数に基づいて回転機械の温度を算出してもよい。この近似関数は、例えば、周期範囲ごとの矩形波信号の1サイクルの時間(周期)をパラメータとし、この周期に対応する温度を算出するための関数である。このように、温度の測定に近似関数を用いることで、温度測定部3からテーブルデータ記憶部35を省略することができるので、設備状態測定装置を小型化することができる。
以上のように、実施の形態1に係る設備状態測定装置は、回転機械に発生した振動および温度に応じたAE信号の正弦波信号を出力するAEセンサ部1と、正弦波信号に基づいて回転機械の振動レベルを測定する振動測定部2と、正弦波信号に基づいて回転機械の温度を測定する温度測定部3を備えるので、回転機械から検出された共通の信号(正弦波信号)を用いて、振動測定と温度測定を行うことができる。すなわち、実施の形態1に係る設備状態測定装置は、振動測定に用いられる信号を振動測定部2に出力するための配線と、温度測定に用いられる信号を温度測定部3に出力するための配線を別々に設ける必要がなく、回転機械の振動レベルを検出するセンサと回転機械の温度を検出するセンサを別々に設ける必要がない。このため、実施の形態1に係る設備状態測定装置は、小型化が可能である。また、異常判定部4は、振動測定または温度測定のいずれか一方に故障が発生した場合であっても、回転機械の異常判定を行うことができるため、実施の形態1に係る設備状態測定装置は、設備の異常を判定する目的の装置としても非常に有用である。
実施の形態2.
図5は、実施の形態2に係る設備状態測定装置の構成を示すブロック図である。図5において、図1と同一の構成要素には同一の符号を付して説明を省略する。図5に示す設備状態測定装置は、AEセンサ部1、振動測定部2、温度測定部3、異常判定部4、外部I/F部5および稼働判定部6を備える。稼働判定部6は、振動測定部2によって測定された振動レベルに基づいて、回転機械が稼働しているか否かを判定し、回転機械が稼働していないと判定すると、温度測定部3による温度測定を停止させる。
例えば、稼働判定部6は、振動測定部2が備える実効値算出部23から入力した実効値を閾値と比較し、この比較結果に応じて回転機械(設備)が稼働しているか否かを判定する。例えば、稼働判定部6は、実効値が閾値以上である場合、回転機械が稼働していると判定し、実効値が閾値未満であれば、回転機械が稼働していないと判定する。
なお、稼働判定部6は、振動測定部2が備える平均化処理部24から入力した平均値を閾値と比較し、この比較結果に応じて回転機械(設備)が稼働しているか否かを判定することも可能である。例えば、稼働判定部6は、平均値が閾値以上である場合、回転機械が稼働していると判定し、平均値が閾値未満である場合には、回転機械が稼働していないと判定する。
稼働判定部6は、回転機械が稼働していないと判定すると、温度測定部3が備える時間測定部32に停止信号を出力する。時間測定部32は、稼働判定部6から停止信号を入力すると、矩形波信号のサイクル数Nのカウントを停止する。これにより、温度測定部3による温度測定が停止されて、時間測定部32による矩形波信号のサイクル数Nのカウントと時間測定用クロック信号のカウントがリセットされる。一方、稼働判定部6は、回転機械が稼働していると判定すると、時間測定部32に停止信号を出力しない。この場合、時間測定部32は、矩形波信号のサイクル数Nのカウントと時間測定用クロック信号のカウントを継続する。
一般に、設備の動作に伴う状態(例えば、振動レベルおよび温度)の変化が設備の劣化に影響を与えると考えられる。そこで、実施の形態2に係る設備状態測定装置では、稼働判定部6が、回転機械(設備)が稼働していないと判定すると、温度測定部3による温度測定を停止させる。これにより、実施の形態2に係る設備状態測定装置は、回転機械が稼働しているときの振動レベルおよび温度を測定することができる。例えば、回転機械が断続的に稼働していても、回転機械が稼働しているときの回転機械の温度のみを適切に測定することができる。これにより、回転機械の異常判定の精度が向上する。
実施の形態3.
図6は、実施の形態3に係る設備状態測定装置の構成を示すブロック図である。図6において、図1と同一の構成要素には同一の符号を付して説明を省略する。図6に示す設備状態測定装置は、AEセンサ部1、振動測定部2、温度測定部3A、異常判定部4および外部I/F部5を備える。温度測定部3Aは、矩形波変換部31、時間測定部32、周波数算出部33、温度判定部34、テーブルデータ記憶部35および周波数範囲判定部36を備える。
周波数範囲判定部36は、周波数算出部33によって算出された矩形波信号の周波数が、稼働中の回転機械(設備)から検出された振動に対応した正弦波信号の周波数範囲内であるか否かを判定する。正弦波信号の周波数範囲は、回転機械の回転で生じた振動に対応するAE信号の周波数範囲であり、数kHzから数MHzの範囲である。AE信号は、回転機械の回転で生じた振動に応じて発生するので、回転機械が稼働していない、すなわち回転機械が回転していない場合、AE信号は検出されない。
周波数範囲判定部36は、矩形波信号の周波数が正弦波信号の周波数範囲内であると、当該矩形波信号に変換された正弦波信号が、稼働中の回転機械に生じる特有な信号(AE信号)であると判断して、回転機械が稼働していると判定する。一方、周波数範囲判定部36は、矩形波信号の周波数が正弦波信号の周波数範囲外である場合、矩形波信号に変換された正弦波信号が、稼働中の回転機械に生じる特有な信号ではないと判断し、回転機械は稼働していないと判定する。
周波数範囲判定部36は、矩形波信号の周波数が正弦波信号の周波数範囲外であって、回転機械(設備)が稼働していない場合、温度測定部3Aによる温度測定を停止させる。例えば、周波数範囲判定部36は、回転機械が稼働していないと判定すると、図6に示すように、温度測定部3が備える時間測定部32に停止信号を出力する。時間測定部32は、周波数範囲判定部36から停止信号を入力すると、矩形波信号のサイクル数Nのカウントを停止する。これにより、温度測定部3Aによる温度測定が停止されて、矩形波信号のサイクル数Nのカウントと時間測定用クロック信号のカウントがリセットされる。一方、周波数範囲判定部36は、回転機械が稼働していると判定すると、時間測定部32に停止信号を出力しない。この場合、時間測定部32は、矩形波信号のサイクル数Nのカウントと時間測定用クロック信号のカウントを継続する。
なお、これまで、周波数範囲判定部36が、矩形波信号の周波数が正弦波信号の周波数範囲内であるか否かに基づいて、回転機械が稼働しているか否かを判定する場合を示したが、これに限定されるものではない。例えば、周波数範囲判定部36は、矩形波信号の周波数についての基準周波数からの変化率が、そのときの回転機械の温度における基準周波数からの変化率であるか否かに基づいて、回転機械が稼働しているか否かを判定してもよい。
以上のように、実施の形態3に係る設備状態測定装置において、周波数範囲判定部36が、回転機械が稼働していないと判定した場合、温度測定部3Aによる温度測定を停止させる。これにより、実施の形態3に係る設備状態測定装置は、回転機械が稼働しているときの振動レベルおよび温度を測定することができる。例えば、回転機械が断続的に稼働していても、回転機械が稼働しているときの回転機械の温度のみを適切に測定することができる。これにより、回転機械の異常判定の精度が向上する。
実施の形態4.
図7は、実施の形態4に係る設備状態測定装置の構成を示すブロック図である。図7において、図1と同一の構成要素には同一の符号を付して説明を省略する。図7に示す設備状態測定装置は、AEセンサ部1、振動測定部2A、温度測定部3、異常判定部4、外部I/F部5およびノイズフィルタ部21Aを備える。振動測定部2Aは、ノイズフィルタ部21を備えておらず、温度測定部3との間でノイズフィルタ部21Aを共用している。
ノイズフィルタ部21Aは、AEセンサ部1から出力された正弦波信号のノイズを除去する。ノイズフィルタ部21Aによってノイズが除去された正弦波信号は、振動測定部2Aが備えるA/D変換部22と温度測定部3が備える矩形波変換部31に分岐して出力される。これにより、温度測定部3は、ノイズが除去された正弦波信号に基づいて回転機械の温度を測定することができ、温度測定の精度が向上する。
図7に示す設備状態測定装置は、実施の形態1に係る設備状態測定装置において、振動測定部からノイズフィルタ部を省略し、振動測定部および温度測定部でノイズフィルタ部21Aを共用している。ただし、実施の形態4に係る設備状態測定装置は、図7の構成に限定されるものではない。例えば、図5または図6に示した設備状態測定装置において、振動測定部からノイズフィルタ部を省略し、振動測定部と温度測定部で共用されるノイズフィルタ部21Aを設けてもよい。
以上のように、実施の形態4に係る設備状態測定装置は、AEセンサ部1から出力された共通の信号(正弦波信号)を用いて振動測定と温度測定を行うので、振動測定部2Aと温度測定部3で、正弦波信号からノイズを除去するノイズフィルタ部21Aを共用することができる。これにより、温度測定部3は、ノイズが除去された正弦波信号に基づいて、回転機械の温度を測定することができ、温度測定の精度が向上する。また、例えば、AEセンサ部1が複数のカンチレバーを有し、複数のカンチレバーが各々に対応した共振周波数の正弦波信号を出力する場合、振動測定部2は、正弦波信号の周波数ごとに設けられる。この場合、実施の形態4に係る設備状態測定装置では、複数の振動測定部2および温度測定部3によってノイズフィルタ部21Aが共用されるので、装置の大幅な小型化を実現することができる。
実施の形態1から実施の形態4において、状態測定の対象設備が回転機械である場合を示したが、状態測定の対象設備は、その動作に応じて振動が発生し温度が変化する機器であればよく、回転機械に限定されるものではない。
なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
本発明に係る設備状態測定装置は、例えば、設備から検出された振動レベルおよび温度に基づいて設備の異常を判定する設備異常判定システムに利用可能である。
1 AEセンサ部、2,2A 振動測定部、3,3A 温度測定部、4 異常判定部、5 外部I/F部、6 稼働判定部、21,21A ノイズフィルタ部、22 A/D変換部、23 実効値算出部、24 平均化処理部、31 矩形波変換部、32 時間測定部、33 周波数算出部、34 温度判定部、35 テーブルデータ記憶部、36 周波数範囲判定部。

Claims (8)

  1. 測定対象の設備に発生した振動および温度に応じたアコースティックエミッション信号を検出し、検出した前記アコースティックエミッション信号の正弦波信号を出力するカンチレバー構造を有したAEセンサ部と、
    前記正弦波信号に基づいて前記設備の振動レベルを測定する振動測定部と、
    前記正弦波信号に基づいて前記設備の温度を測定する温度測定部と、
    を備えたことを特徴とする設備状態測定装置。
  2. 前記温度測定部は、
    前記正弦波信号を矩形波信号に変換する矩形波変換部と、
    前記矩形波信号の複数のサイクルの時間を測定する時間測定部と、
    前記矩形波信号の複数のサイクルの時間に基づいて当該矩形波信号の周波数または周期を算出する算出部と、
    前記矩形波信号の周波数または周期に対応する温度を判定する温度判定部と、
    を備えたことを特徴とする請求項1記載の設備状態測定装置。
  3. 前記温度判定部は、前記矩形波信号の周波数または周期と前記設備の温度の対応関係を示すテーブルデータに基づいて、前記算出部によって算出された前記矩形波信号の周波数または周期に対応する温度を判定すること
    を特徴とする請求項2記載の設備状態測定装置。
  4. 前記温度判定部は、前記矩形波信号の周波数または周期を用いた近似関数に基づいて、前記設備の温度を算出すること
    を特徴とする請求項2記載の設備状態測定装置。
  5. 前記振動測定部によって測定された振動レベルに基づいて、前記設備が稼働しているか否かを判定し、前記設備が稼働していないと判定すると、前記温度測定部による温度測定を停止させる稼働判定部を備えたこと
    を特徴とする請求項1記載の設備状態測定装置。
  6. 前記矩形波信号の周波数が、稼働中の前記設備から検出された振動に対応する前記正弦波信号の周波数範囲内であるか否かを判定し、前記周波数範囲内ではないと判定すると、前記温度測定部による温度測定を停止させる周波数範囲判定部を備えたこと
    を特徴とする請求項2記載の設備状態測定装置。
  7. 前記正弦波信号からノイズを除去するノイズフィルタ部を備え、
    前記振動測定部は、前記ノイズフィルタ部によってノイズが除去された前記正弦波信号に基づいて前記設備の振動レベルを測定し、
    前記温度測定部は、前記ノイズフィルタ部によってノイズが除去された前記正弦波信号に基づいて前記設備の温度を測定すること
    を特徴とする請求項1記載の設備状態測定装置。
  8. 前記設備の振動レベルまたは前記設備の温度の少なくとも一方に基づいて、前記設備の異常を判定する異常判定部を備えたこと
    を特徴とする請求項1から請求項7のいずれか1項記載の設備状態測定装置。
JP2021539715A 2019-08-09 2019-08-09 設備状態測定装置 Active JP7162742B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031693 WO2021028981A1 (ja) 2019-08-09 2019-08-09 設備状態測定装置

Publications (2)

Publication Number Publication Date
JPWO2021028981A1 JPWO2021028981A1 (ja) 2021-12-23
JP7162742B2 true JP7162742B2 (ja) 2022-10-28

Family

ID=74569556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021539715A Active JP7162742B2 (ja) 2019-08-09 2019-08-09 設備状態測定装置

Country Status (2)

Country Link
JP (1) JP7162742B2 (ja)
WO (1) WO2021028981A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062154A (ja) 2003-07-29 2005-03-10 Nsk Ltd 異常診断装置及びこれを有する転がり軸受装置
JP2008175678A (ja) 2007-01-18 2008-07-31 Nec Tokin Corp 力学量センサシステム
US20140204976A1 (en) 2012-01-20 2014-07-24 Purdue Research Foundation Highly-Reliable Micro-Electromechanical System Temperature Sensor
US20150059478A1 (en) 2012-04-19 2015-03-05 Siemens Aktiengesellschaft Method and measuring arrangement for monitoring operational states of a slide bearing
WO2016009932A1 (ja) 2014-07-18 2016-01-21 Ntn株式会社 機械部品診断システムおよびそのサーバ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062154A (ja) 2003-07-29 2005-03-10 Nsk Ltd 異常診断装置及びこれを有する転がり軸受装置
JP2008175678A (ja) 2007-01-18 2008-07-31 Nec Tokin Corp 力学量センサシステム
US20140204976A1 (en) 2012-01-20 2014-07-24 Purdue Research Foundation Highly-Reliable Micro-Electromechanical System Temperature Sensor
US20150059478A1 (en) 2012-04-19 2015-03-05 Siemens Aktiengesellschaft Method and measuring arrangement for monitoring operational states of a slide bearing
WO2016009932A1 (ja) 2014-07-18 2016-01-21 Ntn株式会社 機械部品診断システムおよびそのサーバ

Also Published As

Publication number Publication date
JPWO2021028981A1 (ja) 2021-12-23
WO2021028981A1 (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
US11143632B2 (en) Rotating machine abnormality detection device and method, and rotating machine
US8214160B2 (en) State detection device, state detection method, state detection program, and information recording medium
US20100054957A1 (en) Method for determining a statement of a state of a turbomolecular pump and a turbomolecular pump
JP2017015604A (ja) 感震センサ及び地震判定方法
KR20100113592A (ko) 베어링의 진단 시스템
JP6728808B2 (ja) 計測診断装置、及び計測診断方法
JP2011027452A (ja) データ収集装置及び該データ収集装置を備えた設備機器の診断装置
JPS5850397B2 (ja) 異常信号等を判定する信号判定装置
JPWO2011122365A1 (ja) 半導体集積回路の経年劣化診断回路および経年劣化診断方法
RU2315968C2 (ru) Способ и устройство для обнаружения механических воздействий импульсного типа на компонент установки
JP2020056801A (ja) 計測診断装置、及び計測診断方法
EP3349003B1 (en) Rotating machine abnormality detection device, rotating machine abnormality detection method, and rotating machine
JP7350135B2 (ja) 異常判定システム
JP2012163439A (ja) 回転機振動監視システムおよび監視方法
CN117871945A (zh) 一种高精度频率测量方法、系统、电子设备及存储介质
JP7162742B2 (ja) 設備状態測定装置
BRPI0706274A2 (pt) processo e dispositivo para detectar a localização de um efeito mecánico do tipo de pulso sobre uma parte de sistema
CN113795735B (zh) 用于监测旋转装置的方法以及状态监测设备
JP2014222150A (ja) 電動部品監視装置及び電動部品監視方法
JP2006189333A (ja) 軸受の異常診断装置
CN110879912A (zh) 疲劳分析方法与装置
JP7309079B2 (ja) 設備状態監視装置、異常判定システムおよび設備状態監視方法
JP7352371B2 (ja) 診断装置
KR102199104B1 (ko) 회전 기계의 결함을 검출하는 장치 및 방법
RU99158U1 (ru) Устройство дистанционного измерения коэффициента преобразования пьезоэлектрического акселерометра

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221018

R150 Certificate of patent or registration of utility model

Ref document number: 7162742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150