EP2805026B1 - Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine - Google Patents

Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine Download PDF

Info

Publication number
EP2805026B1
EP2805026B1 EP13710387.5A EP13710387A EP2805026B1 EP 2805026 B1 EP2805026 B1 EP 2805026B1 EP 13710387 A EP13710387 A EP 13710387A EP 2805026 B1 EP2805026 B1 EP 2805026B1
Authority
EP
European Patent Office
Prior art keywords
turbine
fluid line
fluid
turbines
turbine system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13710387.5A
Other languages
English (en)
French (fr)
Other versions
EP2805026A1 (de
Inventor
Thomas Müller
Volker Neumann
Marc OVERATH
Matthias Schleer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howden Turbo GmbH
Original Assignee
Howden Turbo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howden Turbo GmbH filed Critical Howden Turbo GmbH
Publication of EP2805026A1 publication Critical patent/EP2805026A1/de
Application granted granted Critical
Publication of EP2805026B1 publication Critical patent/EP2805026B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/20Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/003Combinations of two or more machines or engines with at least two independent shafts, i.e. cross-compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/04Control means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power

Definitions

  • the present invention relates generally to the field of turbine technology.
  • the present invention relates in particular to a turbine system which has a plurality of turbines which are connected in series with respect to the flow of a working fluid and which can jointly drive a working machine.
  • the present invention further relates to a turbine system having such a turbine system and a work machine mechanically coupled to the turbine system.
  • the present invention relates to a method for operating a work machine by means of such a turbine system.
  • Turbines and in particular steam turbines are often used to convert thermal energy into mechanical energy.
  • the working fluid or the steam is typically expanded along the direction of flow via a turbine with a turbine shaft.
  • the turbine can be a so-called multi-stage turbine, which has several identical or different arrangements, each consisting of a rotor blade row (rotor blade row) and a stator blade row (guide blade row).
  • the turbine shaft drives a work machine either directly or indirectly via a separate gear.
  • a turbine system in which two separate turbines, each having a turbine housing, are flowed through in succession by the working fluid.
  • the two turbines are arranged on one or on two separate transmission shafts.
  • the two turbines drive the working machine via the gear shaft. Due to the usually small number of rows of rotor blades in both turbines, which are typically used for such a turbine system, the thermodynamic efficiency of such a turbine system is comparatively low.
  • the disclosure of FR 633903 A may be helpful in understanding the present invention.
  • the present invention has for its object to provide an easy to implement turbine system, a turbine system and a method for operating a machine with a good thermodynamic efficiency.
  • the invention consequently relates to a turbine system according to claim 1, a turbine system with such a turbine system according to claim 11 and a method for operating a work machine using such a turbine system according to claim 12.
  • Advantageous embodiments, further features and details of the present invention result the dependent claims, the description and the drawings.
  • Features and details that are described in connection with the turbine system apply, of course, also in connection with the turbine system and the method for operating a work machine. The same applies in reverse, so that reference can always be made to one another with regard to the disclosure of the individual aspects of the invention.
  • a turbine system which has (a) a first turbine, (b) a second turbine, (c) a third turbine, (d) a central transmission which is mechanically coupled on the input side to the three turbines and which has a mechanical connection on the output side to which a mechanical energy-absorbing work machine can be connected, (e) a first fluid line for passing on a working fluid from the first turbine to the second turbine, (f) a second fluid line for passing on the working fluid from the second Turbine to the third turbine, (g) a first connection device which is assigned to the first fluid line and which is set up such that a first partial mass flow of the working fluid can be removed from the first fluid line or can be supplied to the first fluid line, and (h) a second connection device which of the second fluid line is assigned and which is set up in such a way that a second partial mass flow of the working fluid can be removed from the second fluid line or can be supplied to the second fluid line.
  • the turbines of the turbine system are connected in series with
  • the turbine system described is based on the knowledge that in a turbine system which has at least three turbines, not all turbines have to be arranged on a common shaft, but can be mechanically coupled to a central transmission.
  • the working fluid, which has done work in the first turbine and then leaves the first turbine can be transferred to the second turbine by means of the first fluid line.
  • the working fluid, which has done work in the second turbine and then leaves the second turbine can be transferred to the third turbine by means of the second fluid line.
  • the described turbine system with a central transmission offers the possibility of arranging the individual turbines no longer along an elongated row, but flexibly in a spatially compact construction.
  • the described turbine system can thus be implemented within a comparatively small installation space. Due to the possibility of flexibly choosing the spatial arrangement of the individual turbines, the turbine system described can be adapted in a relatively simple manner to a specification specified by a customer. In addition, the turbine system described can be converted relatively easily if necessary and, for example, can be adapted accordingly in the event of changed operating parameters. In the event of a revision, maintenance or repair, particularly easy accessibility of the individual components of the turbine system described are guaranteed. Furthermore, the turbine system described can be implemented comparatively inexpensively.
  • Another advantage of the turbine system described in this document is that, compared to known turbine systems in which the individual turbines are coupled to a common, relatively long shaft, several short individual turbine shafts are used. In this way, a particularly high so-called quick start capability can be achieved in an advantageous manner.
  • the turbines described can in particular be turbines which each take energy from the working fluid only because of an expansion of the working fluid and which, in addition to an expansion stage, have no compressor stage.
  • the working fluid may be any pressurized fluid capable of performing mechanical work as it passes through the turbine.
  • the working fluid can in particular be steam (eg water vapor) be generated by a water vapor generator.
  • the water vapor generator can be a power plant which generates the water vapor primarily for the purpose of use by the turbine system described.
  • the water vapor generator can also be a system which primarily generates the water vapor for other processes (e.g. for the purpose of cleaning and / or sterilization) and which only supplies the water vapor to the turbine system described when the water vapor is not just for these processes is used.
  • the working fluid can also be a simple gas that has been previously compressed to temporarily store energy.
  • the gas compression can be carried out, for example, by a compressor operated with electrical energy in a period in which, for example, a larger quantity of electrical energy is provided by regenerative energy sources than is currently being consumed.
  • the turbines described can be any type of turbine in which the working fluid drives a rotor.
  • the structural design of the turbines depends in a known manner on the working fluid used. If steam is used as the working fluid, these are so-called steam turbines. If the working medium is a gas under pressure, then one usually speaks of gas expansion turbines.
  • the turbine system further comprises (a) a first control device which is assigned to the first connection device for setting the strength of the first partial mass flow and / or (b) a second control device which is assigned to the second connection device for setting the strength of the second partial mass flow.
  • the control devices described can each have an actuator which, for example, due to a Narrowing or widening its cross-section can determine the strength or the height of the respective (partial) mass flow, which is fed into the relevant fluid line from the outside via the connecting device in question or is discharged to the outside through the relevant fluid line.
  • the control devices described can each have a suitable sensor, which detects a state variable, such as the pressure of the working fluid in the relevant fluid line, the actuator, for example an adjustable valve or an adjustable throttle, based on the detection value of this state variable, the relevant (part) Mass flow can set so that this state variable remains at least approximately constant even with changing operating conditions.
  • decoupling or extracting a partial mass flow does not necessarily mean that this partial mass flow is lost for energy generation.
  • This partial mass flow can namely be supplied to the described turbine system again at another point, for example, via another connection device.
  • a (partial) mass flow fed into the turbine system from outside can also have been taken from the main mass flow of the turbine system described elsewhere by means of another connection device.
  • the use of at least one intermediate storage for the temporary storage of working fluid is also possible.
  • the two control devices in conjunction with the associated connection devices, offer the possibility of realizing precisely defined intermediate pressure stages, of which the working fluid removed in a simple and controlled manner and / or to which the working fluid can be supplied in a simple and controlled manner. This significantly increases the flexibility of the entire turbine system, particularly when there are load changes.
  • the first turbine and the second turbine are coupled to the central transmission via a common shaft, in particular one of the two turbines on a first side of the central transmission and the other of the two turbines on a second side of the central transmission is arranged.
  • the first side is opposite the second side.
  • the common shaft can be a one-piece or a multi-piece shaft. In the case of a multi-piece shaft, however, the several pieces of the common shaft should be connected to one another so firmly that the rotors of the two turbines are coupled to one another in a rotationally fixed manner.
  • the rotors of the two turbines can be arranged "on the fly", ie without a bearing on the turbine side in the respective turbine housing.
  • the rotor or the entire turbine is located outside the bearing points of the common shaft. This has the advantage that a suitable mounting of the common shaft only has to be present in or on the central transmission.
  • a suitable bearing can be implemented, for example, by means of two bearings, one of the two bearings on the first side and the other of the two bearings is arranged on the opposite second side of the central transmission.
  • the first turbine and the third turbine are coupled to the central transmission in such a way that the first turbine can be operated with a first rotation frequency and the third turbine with a second rotation frequency, the first rotation frequency being different from the second rotation frequency .
  • suitable transmission ratios in the coupling between the turbine in question and the central transmission a specific ratio between the first rotation frequency and the second rotation frequency can be set.
  • each turbine can then be operated in an optimal speed range. A particularly high efficiency of the individual turbines and thus of the entire turbine system can thus be achieved.
  • the shaft speeds of the first turbine and the second turbine can be adapted to the respective turbines and in particular to the pressure levels assigned to the respective turbines.
  • the described turbine system can be optimized in terms of its efficiency or in terms of its efficiency in a simple manner.
  • At least one of the three turbines is a radial turbine.
  • a radial turbine typically has a shorter design than an axial turbine, the entire turbine system can thus be implemented in a particularly compact design.
  • turbine which has the (compressed) Working fluid is supplied first, be designed as a radial turbine.
  • a radial turbine then represents the first control stage for the entire turbine system, by means of which the total mass flow of working fluid which flows through the entire turbine system is adjusted in a controlled manner.
  • this (first) radial turbine can be equipped with suitable control valves, by means of which the total mass flow of working fluid can be adjusted in a known manner.
  • At least one of the three turbines is an axial turbine.
  • the axial turbine in which the working fluid flows in the axial direction through the corresponding turbine housing and thereby drives the rotor or the rotor, can consist of one stage or preferably of several stages, with one stage (a) in each case a row on the rotor or on Rotor-mounted rotating blades and (b) has a series of stationary vanes attached to the housing.
  • the rotor of the axial turbine is coupled to an axial shaft which is mounted on the side of the central transmission and which is arranged in a housing of the axial turbine without bearing.
  • This means that the rotor or the axial shaft of the axial turbine is arranged "on the fly" on one side.
  • Bearing is therefore only provided on the section of the axial shaft, which section lies outside the axial turbine and is assigned to the central transmission.
  • the bearing on the central transmission can be implemented by means of one or more bearings which are axially offset from one another.
  • the axial shaft is not mounted in the turbine housing but only in or on a housing of the central gear.
  • a "flying" bearing in the turbine housing includes offers the advantage that changes in expansion in the case of fluctuating temperatures, which occur in particular during load changes, do not lead to tensioning of the axial shaft in relation to bearings in the turbine housing.
  • the rotor of the axial turbine has a plurality of turbine stages, each turbine stage arranged around the axial shaft (a) having a row of rotatable rotor blades attached to the rotor and (b) a row of stationary guide vanes attached to the housing.
  • the rotor blades of a row are attached to a rotor blade carrier and the plurality of rotor blade carriers are fixed on the axial shaft by means of a pulling device.
  • the pulling device can be, for example, a so-called tie rod, which comprises a thread formed on the axial shaft and a nut engaging in the thread.
  • tie rod which comprises a thread formed on the axial shaft and a nut engaging in the thread.
  • the turbine system further comprises (a) a fourth turbine which is mechanically coupled to the central transmission, (b) a third fluid line for passing the working fluid from the third turbine to the fourth turbine and (c) one third connection device which is assigned to the third fluid line and which is set up in such a way that a third partial mass flow of the working fluid can be removed from the third fluid line or can be supplied to the third fluid line is.
  • a fourth turbine which is mechanically coupled to the central transmission
  • a third fluid line for passing the working fluid from the third turbine to the fourth turbine
  • one third connection device which is assigned to the third fluid line and which is set up in such a way that a third partial mass flow of the working fluid can be removed from the third fluid line or can be supplied to the third fluid line is.
  • a fluid line which is provided with a connection device, is preferably provided between two turbines which are adjacent from the point of view of the flow direction of the working medium, so that a corresponding partial mass flow of the working fluid can be removed from the relevant fluid line or can be supplied to the relevant fluid line.
  • a control device is further preferably assigned to the connection device in question, so that the strength of the partial mass flow in question can be set precisely and operation which is optimal with respect to the efficiency of the turbine system can be ensured.
  • a turbine system which has (a) a turbine system of the type described above and (b) a work machine which is coupled to the mechanical connection of the central transmission.
  • the turbine system described is based on the knowledge that the above-mentioned Turbine system can be mechanically coupled to a working machine, so that energy contained in the working fluid can be removed from the working fluid and transferred to the working machine in a mechanical manner.
  • a rotor of the working machine can be mechanically coupled to the mechanical connection of the central transmission using a coupling or a flange.
  • the working machine can in particular be an electrical generator, which can be used to generate electricity.
  • the working machine can also be a mechanical machine which uses the mechanical energy that is supplied to it by the turbine system described in a suitable manner for performing mechanical activities.
  • the work machine can be, for example, a pump, a compressor, a fan and / or a press.
  • a method for operating a work machine comprises (a) providing a working fluid containing an energy, (b) supplying the working fluid to a turbine system of the type described above, the turbine system drawing at least part of the energy of the working fluid and at least part of the extracted energy in converts mechanical work, and (c) operating the work machine with the converted mechanical work.
  • the method described is also based on the knowledge that when using the above-mentioned Turbine system the machine can be operated in an efficient manner.
  • the energy is extracted from the working fluid and converted into mechanical energy, which is then transferred to the working machine by means of a purely mechanical coupling.
  • the term “energy-containing working fluid” can be understood in particular to mean that the working fluid has been subjected to energy thermodynamically, so that the working fluid has, in particular, a high temperature and / or a high pressure. If the working fluid is a vapor, for example water vapor, then the hot and / or high-pressure water vapor additionally contains an evaporation energy which occurs when the vapor condenses leads to the release of condensation energy, which can then also be converted into mechanical work.
  • FIG. 1 shows a schematic representation of a turbine system 100 according to an embodiment of the invention.
  • the turbine system 100 has a turbine system 110 which drives a work machine 120.
  • the work machine 120 can in particular be an electrical generator that can be used to generate electricity.
  • the work machine 120 can also be any mechanical machine that uses the mechanical energy that is supplied to it by the turbine system 110 in a suitable manner for performing mechanical activities, for example for pumping, compressing, and / or for pressing processes.
  • Turbine system 110 has four steam turbines, a first steam turbine 151, a second steam turbine 152, a third steam turbine 153 and a fourth steam turbine 154. How out Figure 1 as can be seen, these steam turbines 151, 152, 153 and 154 are connected in series with respect to the general flow direction of a working fluid.
  • the working fluid which is water vapor according to the exemplary embodiment shown here, flows into a fluid inlet 116, strongly overheated by a water vapor generator.
  • a corresponding one Inlet mass flow 116a of water vapor then flows into the first steam turbine 151, in which the water vapor performs mechanical work in a known manner and thereby in Figure 1 drives not shown rotor of the first steam turbine 151.
  • the water vapor emerging from the first steam turbine 151 which still contains a considerable amount of energy which was not converted into mechanical work by the comparatively short first steam turbine 151, then flows via a first fluid line 161 into the second steam turbine 152, in which also in the energy contained in the water vapor is converted into mechanical work.
  • the first fluid line 161 has a first connection device 171, which according to the exemplary embodiment shown here is a simple branch, for example a so-called T-piece.
  • a first partial mass flow 171a of working fluid can be coupled out of the entire mass flow to a first fluid connection 176 via the connection device 171, or an additional mass flow of working fluid can be fed from the first fluid connection 176 into the first fluid line. In this way, the energy which is supplied to the second steam turbine 152 can be adjusted and the power of the entire turbine system 110 can thus be adapted.
  • the first connection device 171 or the first fluid line 161 is assigned a first control device 171b, which has a pressure sensor (not shown) with which the pressure of the working fluid in the fluid line 161 is detected.
  • a pressure sensor not shown
  • the (partial) mass flow can be adjusted based on the detected pressure in such a way that the pressure remains at least approximately constant even under changing operating conditions.
  • the steam turbine 152 can be operated in an optimal operating mode. To this In this way, a high degree of efficiency can be guaranteed for the steam turbine 152 and thus of course also for the entire turbine system 110.
  • the water vapor emerging from the second steam turbine 152 which still contains a considerable amount of energy which has not yet been used, then flows into the third steam turbine 153 via a second fluid line 162.
  • the a (second) connection device 172 designed as a T-piece and a (second) control device 172b are arranged in the second fluid line 162, so that a second partial mass flow 172 is likewise transferred in a controlled manner to a second fluid connection 177 or from the second fluid connection 177 into the second fluid line 162 can be fed.
  • the third steam turbine 153 and the fourth steam turbine 154 connected downstream of the third steam turbine 153 are connected to one another via a third fluid line 163. Furthermore, in the third fluid line there is a third connection device 173, via which a third partial mass flow 173a of water vapor can be branched off from the third fluid line 163 and fed to a third fluid connection 178 and / or via which additional water vapor from the third fluid connection 178 into the third fluid line 163 can be fed.
  • a third control device 173b ensures that the corresponding removal or supply of water vapor takes place in a controlled manner.
  • the pressure sensor of the respective control device 171b, 172b, 173b is preferably arranged upstream in the respective fluid line 161, 162, 163 in relation to the branching of the respective connection device 171, 172, 173.
  • the adjustable valve of the respective control device 171b, 172b, 173b is in relation to the branching of the respective connection device 171, 172, 173 is preferably arranged downstream in the respective fluid line 161, 162, 163.
  • the adjustable valve can be arranged directly in front of or on the housing of the next turbine.
  • an outlet mass flow 118a of water vapor emerges which has flowed through all the turbines 151, 152, 153 and 154 or which has been fed into the turbine system 110 via one of the fluid connections 176, 177 or 178.
  • the escaping water vapor can then be fed to a heater (not shown) in a known manner.
  • This heater can in turn be coupled to the fluid inlet 116, so that a closed circuit of working fluid or water vapor can be implemented.
  • the rotors of the steam turbines 151 and 152 are connected to one another via a common shaft 131a. This means that the rotation frequency of the steam turbines 151 and 152 is the same.
  • a gear (not shown) could also be connected between the two rotors of the steam turbines 151 and 152, so that a first rotational frequency of the rotor of the first steam turbine 151 and a second rotational frequency of the rotor of the second steam turbine 152 are in a fixed relationship to one another.
  • the two rotors of the steam turbines 153 and 154 are connected to one another via a common shaft 132a or, if appropriate, mechanically coupled to one another via an additional gear.
  • a central component of the turbine system 110 described here is a central gear 130, which has a gear 134 and two pinions.
  • a first pinion 131 of the two pinions is attached to the shaft 131a.
  • the second pinion 132 is attached to the shaft 132a. Both pinions 131 and 132 are in engagement with the gear 134.
  • the central gear 130 also has a central drive shaft 136, which connects the gear 134 and the engine 120 to one another.
  • FIG. 2 shows a perspective view of a turbine system 200 according to another embodiment of the invention.
  • the turbine system 200 has a base plate 202 on which at least the main components of the turbine system 200 are attached or mounted.
  • the turbine system 200 has (a) a first steam turbine 251 designed as a radial turbine, (b) a second turbine 252 designed as an axial turbine and (c) a third steam turbine 253 also designed as an axial turbine 253. All turbines 251, 252 and 253 or the rotors of these turbines 251, 252 and 253 are coupled to one another via a central gear 230.
  • the central transmission 230 is mechanically coupled on the output side via a drive shaft 236 to a work machine 220 designed as an electrical generator.
  • An inlet mass flow 216a of working fluid is supplied to the first steam turbine 251.
  • the strength of this inlet mass flow 216a which is regulated by means of a plurality of control valves 251a, thus essentially determines the output of the entire turbine system 200.
  • Working fluid emerging from the first steam turbine 251 is fed to the second steam turbine 252 via a first fluid line 261.
  • Working fluid emerging from the second steam turbine 252 is supplied to the third steam turbine 253 via a second fluid line 262.
  • a first connection device 271 is located in the first fluid line 261 together with an in Figure 2 First control device, not shown, so that a first partial mass flow 271a can be coupled out of the first fluid line 261 or, alternatively, a mass flow, not shown, can be fed into the first fluid line 261.
  • a second connection device 272 is located in the second fluid line 262 together with one in Figure 2 Second control device, not shown, so that a second partial mass flow 272a can be coupled out of the second fluid line 262 or, alternatively, a mass flow, not shown, can be fed into the second fluid line 262.
  • An outlet mass flow 218a of working fluid which has flowed through all the turbines 251, 252 and 253 or which has been fed into the turbine system 200 via one of the connection devices 271 or 272 is then fed to a heater (not shown).
  • This heater can in turn provide the inlet mass flow 216a, so that a closed circuit of working fluid or water vapor can be implemented.
  • Figure 3 shows a turbine system 310 with a first steam turbine 351 designed as a radial turbine, with a second steam turbine 352 designed as an axial turbine and with a third steam turbine 353 also designed as an axial turbine.
  • the first steam turbine 351 and the second steam turbine 352 are connected to one another via a first fluid line (not shown) .
  • the first steam turbine 351 has a first housing 351a
  • the second steam turbine 352 has a second housing 352a
  • the third steam turbine 353 has a third housing 353a.
  • the first fluid line is also assigned a first connection device, also not shown, and a first control device, also not shown.
  • the second steam turbine 352 and the third steam turbine 353 are connected to one another via a second fluid line, not shown, to which a second connection device, also not shown, and a second control device, also not shown, are assigned.
  • the three steam turbines are mechanically coupled to one another by means of a central transmission 330.
  • a central transmission 330 With the transmission 330 there are both a first pinion 331 and a second pinion 332 in engagement with a gear 334.
  • the first pinion 331 has more teeth than the second pinion 332, so that the rotation frequency of the rotors of the first and the second steam turbine 351 and 352 is greater than the rotation frequency of the rotor of the third steam turbine 353.
  • the gear 334 is arranged on a central drive shaft 336, which is mounted in a housing of the central transmission 330 by means of two bearings 338.
  • a mechanical connection 337 designed as a flange, to which one in Figure 3 Drive machine, not shown, can be connected.
  • the two axial turbines 352 and 353 each have a multi-stage configuration of one guide vane and possibly one rotor vane.
  • a rotor blade 381a and a guide blade 381b are assigned to a first stage 381 of the multi-stage axial turbine 353.
  • a rotor blade 382a and a guide blade 382b are assigned to a second stage 382 of the multi-stage axial turbine 353.
  • a rotor blade 383a and a guide blade 383b are assigned to a third stage 383 of the multi-stage axial turbine 353.
  • the rotor blades 381a, 382a and 383a are arranged on an axial shaft 385 of the steam turbine 353.
  • the axial shaft 385 is non-rotatably connected to the shaft 332a.
  • adjacent rotor blades i.e. the rotor blades 381a and 382a as well as the rotor blades 382a and 383a are arranged on the axial shaft 385 in a rotationally fixed manner by means of an axial front toothing.
  • a tie rod connection which is realized by means of a nut 386 in connection with an external thread formed on the axial shaft 385, ensures that the rotor blades 381a, 381b and 381c are firmly locked on the axial shaft 385.
  • the bearings 332b are radial bearings.
  • An axial bearing is realized here by means of the second pinion 332, which, as in FIG Figure 3 can be seen, each has a shoulder on the left and right, the two shoulders engaging with the gear 334 in the axial direction. In this way, one generated during the operation of the steam turbine 353 Axial thrust to the left over the two shoulders of the pinion 332 and the gear 334 transmitted to the bearing 338 and taken up by this.
  • FIG. 4 shows a turbine system 410 which differs from that shown in FIG Figure 3
  • the central drive shaft 336 is thus driven by a total of four steam turbines, the fourth steam turbine 454 being connected downstream of the third steam turbine 353 by means of a third fluid line (not shown).
  • the third fluid line is assigned a second connection device, not shown, and a second control device, also not shown, for regulating the amount of working fluid withdrawn from the third fluid line and / or for regulating the amount of additional working fluid fed into the third fluid line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • General Details Of Gearings (AREA)

Description

  • Die vorliegende Erfindung betrifft allgemein das Gebiet der Turbinentechnik. Die vorliegende Erfindung betrifft insbesondere ein Turbinensystem, welches mehrere Turbinen aufweist, die in Bezug zu der Strömung eines Arbeitsfluids hintereinander geschaltet sind und die gemeinsam eine Arbeitsmaschine antreiben können. Die vorliegende Erfindung betrifft ferner eine Turbinenanlage mit einem derartigen Turbinensystem und einer mechanisch an das Turbinensystem angekoppelten Arbeitsmaschine. Außerdem betrifft die vorliegende Erfindung ein Verfahren zum Betreiben einer Arbeitsmaschine mittels eines derartigen Turbinensystems.
  • Zur Umwandlung von thermischer Energie in mechanische Energie werden häufig Turbinen und insbesondere Dampfturbinen eingesetzt. Beim Betrieb bekannter Turbinen- oder Dampfturbinensystemen wird das Arbeitsfluid bzw. der Dampf entlang der Strömungsrichtung typischerweise über eine Turbine mit einer Turbinenwelle entspannt. Die Turbine kann dabei eine sog. Mehrstufenturbine sein, welche mehrere gleiche oder auch verschiedene Anordnungen aus jeweils einer Rotor-Schaufelreihe (Laufschaufelreihe) und einer Stator-Schaufelreihe (Leitschaufelreihe) aufweist. Die Turbinenwelle treibt entweder direkt oder indirekt über ein separat stehendes Getriebe eine Arbeitsmaschine an.
  • Alternativ ist auch ein Turbinensystem bekannt, bei dem zwei getrennte Turbinen, welche jeweils ein Turbinengehäuse aufweisen, hintereinander von dem Arbeitsfluid durchströmt werden. In diesem Fall sind die beiden Turbinen auf einer oder auf zwei getrennten Getriebewellen angeordnet. Über die Getriebewelle treiben die beiden Turbinen die Arbeitsmaschine an. Aufgrund der üblicherweise geringen Anzahl der Rotor-Schaufelreihen in beiden Turbinen, die typischerweise für ein derartiges Turbinensystem verwendet weiden, ist der thermodynamische Wirkungsgrad eines derartigen Turbinensystems vergleichsweise gering. Weiterhin kann die Offenbarung der FR 633903 A für das Verständnis der vorliegenden Erfindung hilfreich sein.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfach zu realisierendes Turbinensystem, eine Turbinenanlage und ein Verfahren zum Betreiben einer Arbeitsmaschine mit einem guten thermodynamischen Wirkungsgrad zu schaffen.
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Die Erfindung bezieht sich folglich auf ein Turbinensystem gemäß Anspruch 1, eine Turbinenanlage mit einem solchen Turbinensystem gemäß Anspruch 11 sowie ein Verfahren zum Betreiben einer Arbeitsmaschine unter Verwendung eines solchen Turbinensystems gemäß Anspruch 12. Vorteilhafte Ausführungsformen, weitere Merkmale und Details der vorliegenden Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem Turbinensystem beschrieben sind, selbstverständlich auch im Zusammenhang mit der Turbinenanlage sowie dem Verfahren zum Betreiben einer Arbeitsmaschine. Gleiches gilt umgekehrt, so dass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen werden kann.
  • Gemäß einem ersten Aspekt der Erfindung wird ein Turbinensystem beschrieben, welches aufweist (a) eine erste Turbine, (b) eine zweite Turbine, (c) eine dritte Turbine, (d) ein zentrales Getriebe, welches eingangsseitig mit den drei Turbinen mechanisch gekoppelt ist und welches ausgangsseitig einen mechanische Anschluss aufweist, an welchen eine mechanische Energie aufnehmende Arbeitsmaschine anschließbar ist, (e) eine erste Fluidleitung zum Weiterleiten eines Arbeitsfluids von der ersten Turbine zu der zweiten Turbine, (f) eine zweite Fluidleitung zum Weiterleiten des Arbeitsfluids von der zweiten Turbine zu der dritten Turbine, (g) eine erste Anschlusseinrichtung, welche der ersten Fluidleitung zugeordnet ist und welche derart eingerichtet ist, dass ein erster Teilmassenstrom des Arbeitsfluids von der ersten Fluidleitung entnehmbar oder der ersten Fluidleitung zuführbar ist, und (h) eine zweite Anschlusseinrichtung, welche der zweiten Fluidleitung zugeordnet ist und welche derart eingerichtet ist, dass ein zweiter Teilmassenstrom des Arbeitsfluids von der zweiten Fluidleitung entnehmbar oder der zweiten Fluidleitung zuführbar ist. Die Turbinen des Turbinensystems sind hinsichtlich des Strömungspfades des Arbeitsfluids hintereinander geschaltet, wobei die zweite Turbine der ersten Turbine nachgeschaltet und die dritte Turbine der zweiten Turbine nachgeschaltet ist.
  • Dem beschriebenen Turbinensystem liegt die Erkenntnis zugrunde, dass bei einem Turbinensystem, welches zumindest drei Turbinen aufweist, nicht alle Turbinen auf einer gemeinsamen Welle angeordnet sein müssen sondern mechanisch an ein zentrales Getriebe angekoppelt werden können. Dabei ist das Arbeitsfluid, welches in der ersten Turbine Arbeit verrichtet hat und danach die erste Turbine verlässt, mittels der ersten Fluidleitung zu der zweiten Turbine transferierbar. In entsprechender Weise ist das Arbeitsfluid, welches in der zweiten Turbine Arbeit verrichtet hat und danach die zweite Turbine verlässt, mittels der zweiten Fluidleitung zu der dritten Turbine transferierbar.
  • Das beschriebene Turbinensystem mit einem zentralen Getriebe bietet im Vergleich zu einem herkömmlichen Turbinensystem, bei dem alle Turbinen mit einer gemeinsamen relativ langen Welle gekoppelt sind, die Möglichkeit, die einzelnen Turbinen nicht mehr entlang einer länglichen Reihe sondern flexibel in einer räumlich kompakten Bauweise anzuordnen. Damit kann das beschriebene Turbinensystem innerhalb eines vergleichsweise geringen Bauraums realisiert werden. Aufgrund der Möglichkeit die räumliche Anordnung der einzelnen Turbinen flexibel zu wählen, kann das beschriebene Turbinensystem auf relativ einfache Weise an eine von einem Kunden vorgegebene Spezifikation angepasst werden. Außerdem kann das beschriebene Turbinensystem bei Bedarf relativ einfach umgebaut und beispielsweise bei geänderten Betriebsparametern entsprechend angepasst werden. Bei einer Revision, einer Wartung oder einer Instandsetzung kann außerdem eine besonders einfache Zugänglichkeit der einzelnen Komponenten des beschriebenen Turbinensystems gewährleistet werden. Ferner kann das beschriebene Turbinensystem vergleichsweise kostengünstig realisiert werden.
  • Ein weiterer Vorteil des in diesem Dokument beschriebenen Turbinensystems besteht darin, dass im Vergleich zu bekannten Turbinensystemen, bei denen die einzelnen Turbinen mit einer gemeinsamen relativ langen Welle gekoppelt sind, mehrere kurze Einzelturbinenwellen verwendet werden. Dadurch kann auf vorteilhafte Weise eine besonders hohe sog. Schnellstartfähigkeit erreicht werden.
  • Bei dem beschriebenen Turbinensystem sind erfindungsgemäß jeweils zwei aufeinanderfolgende Turbinen mittels einer Fluidleitung miteinander gekoppelt. Da die Turbinen aufgrund der Ankopplung an das zentrale Getriebe nicht mehr entlang einer Reihe angeordnet sind, weisen die Fluidleitungen jeweils einen Verlauf auf, welcher ein einfaches Zuführen und/oder Abführen von Arbeitsfluid erlaubt. Dies bedeutet, dass die beschriebenen Anschlusseinrichtungen, welche jeweils mittels einer einfachen Verzweigung wie beispielsweise eines T-Stücks realisiert sein können, in der entsprechenden Fluidleitung eingebaut werden können, ohne dass Zugänglichkeits- oder Platzprobleme den Einbau der entsprechenden Anschlusseinrichtung behindern würden. Somit können auf einfache Weise Teilmassenströme des Arbeitsfluids der betreffenden Fluidleitung von außen zugeführt oder von der betreffenden Fluidleitung nach außen abgeführt werden.
  • Die beschriebenen Turbinen können insbesondere Turbinen sein, welche jeweils lediglich aufgrund einer Expansion des Arbeitsfluids Energie aus dem Arbeitsfluid entnehmen und welche neben einer Expansionsstufe keine Verdichterstufe aufweisen.
  • Das Arbeitsfluid kann jedes beliebiges unter einem Druck stehende Fluid sein, welches in der Lage ist, bei einem Durchgang durch die jeweilige Turbine mechanische Arbeit zu verrichten. Das Arbeitsfluid kann insbesondere Dampf (z.B. Wasserdampf) sein, welcher von einem Wasserdampfgenerator erzeugt wurde. Dabei kann der Wasserdampfgenerator ein Kraftwerk sein, welches den Wasserdampf in erster Linie zum Zwecke der Nutzung durch das beschriebene Turbinensystem erzeugt. Der Wasserdampfgenerator kann jedoch auch eine Anlage sein, welche den Wasserdampf in erster Linie für andere Prozesse (z.B. zum Zwecke einer Reinigung und/oder einer Sterilisation) erzeugt und welche den Wasserdampf lediglich dann dem beschriebenen Turbinensystem zuführt, wenn der Wasserdampf gerade nicht für diese Prozesse verwendet wird.
  • Das Arbeitsfluid kann auch ein einfaches Gas sein, welches vorher komprimiert wurde, um Energie zwischen zu speichern. Dabei kann die Gaskompression beispielsweise von einem mit elektrischer Energie betriebenen Kompressor in einem Zeitraum durchgeführt werden, in dem beispielsweise von regenerativen Energiequellen eine größere Menge an elektrischer Energie bereitgestellt wird als aktuell verbraucht wird.
  • Die beschriebenen Turbinen können beliebige Arten von Turbinen sein, bei denen das Arbeitsfluid einen Rotor antreibt. Selbstverständlich hängt in bekannter Weise die konstruktive Ausgestaltung der Turbinen von dem verwendeten Arbeitsfluid ab. Im Falle der Verwendung von Wasserdampf als Arbeitsfluid handelt es sich um sog. Dampfturbinen. Falls es sich bei dem Arbeitsmedium um ein unter Druck stehendes Gas handelt, dann spricht man in der Regel von Gasentspannungsturbinen.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist das Turbinensystem ferner auf (a) eine erste Regelungseinrichtung, welche der ersten Anschlusseinrichtung zugeordnet ist, zum Einstellen der Stärke des ersten Teilmassenstroms und/oder (b) eine zweite Regelungseinrichtung, welche der zweiten Anschlusseinrichtung zugeordnet ist, zum Einstellen der Stärke des zweiten Teilmassenstroms.
  • Die beschriebenen Regelungseinrichtungen können jeweils ein Stellglied aufweisen, welches beispielsweise aufgrund einer Verengung oder Erweiterung seines Querschnitts die Stärke oder die Höhe des jeweiligen (Teil)Massenstrom bestimmen kann, welcher über die betreffende Anschlusseinrichtung von außen in die betreffende Fluidleitung eingespeist oder von der betreffenden Fluidleitung nach außen abgegeben wird. Ferner können die beschriebenen Regelungseinrichtungen jeweils einen geeigneten Sensor aufweisen, welcher eine Zustandsgröße wie beispielsweise den Druck des Arbeitsfluids in der betreffenden Fluidleitung erfasst, wobei das Stellglied, beispielsweise ein verstellbares Ventil oder eine verstellbare Drossel, basierend auf dem Erfassungswert dieser Zustandsgröße den betreffenden (Teil)Massenstrom so einstellen kann, dass diese Zustandsgröße auch bei veränderlichen Betriebsbedingungen zumindest annähernd konstant bleibt. Somit können durch eine geschickte Regelung der (Teil)Massenströme des Arbeitsfluids für jede Turbine Bedingungen geschaffen bzw. beibehalten werden, welche einen hohen Wirkungsgrad für jede einzelne Turbine und damit natürlich auch für das gesamte Turbinensystem gewährleisten.
  • Es wird darauf hingewiesen, dass ein Auskoppeln bzw. ein Entnehmen eines Teilmassenstroms nicht zwingend bedeutet, dass dieser Teilmassenstrom für eine Energieerzeugung verloren geht. Dieser Teilmassenstrom kann nämlich beispielsweise an anderer Stelle über eine andere Anschlusseinrichtung wieder dem beschriebenen Turbinensystem zugeführt werden. In entsprechender Weise kann ein von außen in das Turbinensystem eingespeister (Teil)Massenstrom auch an anderer Stelle mittels einer anderen Anschlusseinrichtung aus dem Hauptmassenstrom des beschriebenen Turbinensystems entnommen worden sein. Auch die Verwendung von zumindest einem Zwischenspeicher zum temporären Speichern von Arbeitsfluid ist in diesem Zusammenhang möglich.
  • Anschaulich ausgedrückt bieten die beiden Regelungseinrichtungen in Verbindung mit den jeweils zugehörigen Anschlusseinrichtungen die Möglichkeit, genau definierte Zwischendruckstufen zu realisieren, von denen das Arbeitsfluid auf einfache und kontrollierte Weise entnommen und/oder denen das Arbeitsfluid auf einfache und kontrollierte Weise zugeführt werden kann. Dadurch wird die Flexibilität des gesamten Turbinensystems insbesondere bei vorhandenen Lastwechseln erheblich erhöht.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die erste Turbine und die zweite Turbine über eine gemeinsame Welle mit dem zentralen Getriebe gekoppelt, wobei insbesondere eine der beiden Turbinen an einer ersten Seite des zentralen Getriebes und die andere der beiden Turbinen an einer zweiten Seite des zentralen Getriebes angeordnet ist. Dabei ist die erste Seite gegenüberliegend zu der zweiten Seite. Dies hat den Vorteil, dass die beiden genannten Turbinen mittels eines gemeinsamen Kopplungsgliedes und insbesondere mittels eines gemeinsamen Ritzels mit dem zentralen Getriebe mechanisch gekoppelt sind, wobei das gemeinsame Kopplungsglied an der gemeinsamen Welle angebracht ist. Dadurch sind getriebeseitig lediglich zwei Kopplungsglieder erforderlich, so dass die insgesamt zumindest drei Turbinen mit dem zentralen Getriebe gekoppelt sein können.
  • Die gemeinsame Welle kann eine einstückige oder eine mehrstückige Welle sein. Im Falle einer mehrstückigen Welle sollten die mehreren Stücke der gemeinsamen Welle jedoch so fest miteinander verbunden sein, dass die Rotoren der beiden Turbinen drehfest miteinander gekoppelt sind.
  • Die Rotoren der beiden Turbinen können "fliegend", d.h. ohne eine turbinenseitige Lagerung in dem jeweiligen Turbinengehäuse angeordnet sein. Dabei befindet sich der Rotor bzw. die gesamte Turbine außerhalb der Lagerstellen der gemeinsamen Welle. Dies hat den Vorteil, dass lediglich in oder an dem zentralen Getriebe eine geeignete Lagerung der gemeinsamen Welle vorhanden sein muss. Eine geeignete Lagerung kann dabei beispielsweise mittels zweier Lager realisiert werden, wobei eines der beiden Lager an der ersten Seite und das andere der beiden Lager an der gegenüberliegenden zweiten Seite des zentralen Getriebes angeordnet ist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die erste Turbine und die dritte Turbine derart mit dem zentralen Getriebe gekoppelt, dass die erste Turbine mit einer ersten Rotationsfrequenz und die dritte Turbine mit einer zweiten Rotationsfrequenz betreibbar ist, wobei die erste Rotationsfrequenz unterschiedlich ist zu der zweiten Rotationsfrequenz. Dabei kann durch die Wahl von jeweils geeigneten Übersetzungsverhältnissen bei der Kopplung zwischen der betreffenden Turbine und dem zentralen Getriebe ein bestimmtes Verhältnis zwischen der ersten Rotationsfrequenz und der zweiten Rotationsfrequenz eingestellt werden. Durch eine geeignete Wahl des Übersetzungsverhältnisses kann dann jede Turbine in einem optimalen Drehzahlbereich betrieben werden. Damit kann ein besonders hoher Wirkungsgrad der einzelnen Turbinen und somit auch des gesamten Turbinensystems erreicht werden.
  • Anschaulich ausgedrückt können die Wellendrehzahlen der ersten Turbine und der zweiten Turbine an die jeweiligen Turbinen und insbesondere an die den jeweiligen Turbinen zugeordneten Druckniveaus angepasst werden. Dadurch kann auf einfache Weise eine Optimierung des beschriebenen Turbinensystems hinsichtlich seiner Effizient bzw. hinsichtlich seines Wirkungsgrades erreicht werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist zumindest eine der drei Turbinen eine Radialturbine.
  • Da eine Radialturbine typischerweise ein im Vergleich zu einer Axialturbine kürzere Bauform aufweist, kann das gesamte Turbinensystem damit in einer besonders kompakten Bauform realisiert werden.
  • Von der Mehrzahl der hintereinander geschalteten Turbinen kann insbesondere diejenige Turbine, welcher das (komprimierte) Arbeitsfluid als erstes zugeführt wird, als Radialturbine ausgebildet sein. Dies hat den Vorteil, dass eine Radialturbine dann die erste Regelstufe für das gesamte Turbinensystem darstellt, mittels welcher in kontrollierter Weise der Gesamtmassenstrom an Arbeitsfluid, welches durch das gesamte Turbinensystem strömt, eingestellt wird. Zu diesem Zweck kann diese (erste) Radialturbine mit geeigneten Regelventilen ausgestattet sein, mittels welchen in bekannter Weise der Gesamtmassenstrom an Arbeitsfluid eingestellt werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist zumindest eine der drei Turbinen eine Axialturbine.
  • Die Axialturbine, bei der das Arbeitsfluid in axialer Richtung durch das entsprechende Turbinengehäuse strömt und dadurch den Rotor bzw. den Läufer antreibt, kann aus einer Stufe oder bevorzugt aus mehreren Stufen bestehen, wobei jeweils eine Stufe (a) eine Reihe von am Rotor oder am Läufer angebrachten rotierenden Laufschaufeln und (b) eine Reihe von am Gehäuse angebrachten stationären Leitschaufeln aufweist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist der Rotor der Axialturbine mit einer Axialwelle gekoppelt, welche auf der Seite des zentralen Getriebes gelagert ist und welche in einem Gehäuse der Axialturbine lagerfrei angeordnet ist. Dies bedeutet, dass der Rotor bzw. die Axialwelle der Axialturbine auf einer Seite "fliegend" angeordnet ist. Eine Lagerung ist damit nur an dem Abschnitt der Axialwelle vorgesehen, welcher Abschnitt außerhalb der Axialturbine liegt und dem zentralen Getriebe zugeordnetet ist. Dabei kann die Lagerung an dem zentralen Getriebe mittels einer oder mehreren axial zueinander versetzten Lager realisiert werden.
  • Anschaulich ausgedrückt bedeutet dies, dass eine mechanische Verbindung zwischen der Axialturbine und dem zentralen Getriebe ohne zwischengeschaltete Lagerstellen erfolgt. Die Axialwelle ist nicht im Turbinengehäuse sondern lediglich im oder an einem Gehäuse des zentralen Getriebes gelagert.
  • In diesem Zusammenhang wird darauf hingewiesen, dass eine "fliegende" Lagerung im Gehäuse der Turbine u.a. den Vorteil bietet, dass Ausdehnungsänderungen bei schwankenden Temperaturen, welche insbesondere bei Lastwechseln auftreten, nicht zu Verspannungen der Axialwelle gegenüber Lagerungen im Turbinengehäuse führen.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Rotor der Axialturbine mehrere Turbinenstufen auf, wobei jede Turbinenstufe um die Axialwelle herum angeordnet (a) eine Reihe von am Rotor angebrachten rotierbaren Laufschaufeln und (b) eine Reihe von am Gehäuse angebrachten stationären Leitschaufeln aufweist. Dies hat den Vorteil, dass im Vergleich zu einer Axialturbine mit lediglich einer Turbinenstufe ein höherer Wirkungsgrad erzielt werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Laufschaufeln einer Reihe an einem Laufschaufelträger angebracht und die mehreren Laufschaufelträger sind mittels einer Zugeinrichtung auf der Axialwelle fixiert.
  • Die Zugeinrichtung kann beispielsweise ein sog. Zuganker sein, welcher ein an der Axialwelle ausgebildetes Gewinde und eine in das Gewinde eingreifende Mutter umfasst. Dadurch können auf besonders einfache und trotzdem zuverlässige Weise mehrere Laufschaufelträger drehfest auf der Axialwelle fixiert werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Turbinensystem ferner auf (a) eine vierte Turbine, welche mit dem zentralen Getriebe mechanisch gekoppelt ist, (b) eine dritte Fluidleitung zum Weiterleiten des Arbeitsfluids von der dritten Turbine zu der vierten Turbine und (c) eine dritte Anschlusseinrichtung, welche der dritten Fluidleitung zugeordnet ist und welche derart eingerichtet ist, dass ein dritter Teilmassenstrom des Arbeitsfluids von der dritten Fluidleitung entnehmbar oder der dritten Fluidleitung zuführbar ist. Dies bedeutet, dass der mechanische Anschluss, welcher die Arbeitsmaschine antreiben kann, nunmehr von insgesamt zumindest vier Turbinen angetrieben wird. Dadurch kann die Effizient des beschriebenen Turbinensystems noch weiter verbessert werden.
  • Es wird darauf hingewiesen, dass auch mehr als vier Turbinen mit dem zentralen Getriebe direkt oder indirekt gekoppelt sein können. Bevorzugt ist dabei jeweils zwischen zwei aus Sicht der Strömungsrichtung des Arbeitsmediums benachbarten Turbinen eine Fluidleitung vorgesehen, welche mit einer Anschlusseinrichtung versehen ist, so dass ein entsprechender Teilmassenstrom des Arbeitsfluids von der betreffenden Fluidleitung entnehmbar oder der betreffenden Fluidleitung zuführbar ist. Weiter bevorzugt ist der betreffenden Anschlusseinrichtung eine Regelungseinrichtung zugeordnet, so dass die Stärke des betreffenden Teilmassenstroms genau eingestellt werden kann und so ein in Bezug auf den Wirkungsgrad des Turbinensystems optimaler Betrieb gewährleistet werden kann.
  • Gemäß einem weiteren Aspekt der Erfindung wird eine Turbinenanlage beschrieben, welche aufweist (a) ein Turbinensystem des vorstehend beschriebenen Typs und (b) eine Arbeitsmaschine, welche mit dem mechanischen Anschluss des zentralen Getriebes gekoppelt ist.
  • Der beschriebenen Turbinenanlage liegt die Erkenntnis zugrunde, dass das o.g. Turbinensystem mit einer Arbeitsmaschine mechanisch gekoppelt werden kann, so dass in dem Arbeitsfluid enthaltene Energie aus dem Arbeitsfluid entnommen und auf mechanische Weise auf die Arbeitsmaschine übertragen werden kann.
  • Ein Rotor der Arbeitsmaschine kann unter Verwendung einer Kupplung oder eines Flansches drehfest mit dem mechanischen Anschluss des zentralen Getriebes mechanisch gekoppelt werden.
  • Die Arbeitsmaschine kann insbesondere ein elektrischer Generator sein, welcher zur Stromerzeugung eingesetzt werden kann. Die Arbeitsmaschine kann jedoch auch eine mechanische Maschine sein, welche die mechanische Energie, die ihr von dem beschriebenen Turbinensystem zugeführt wird, in geeigneter Weise zur Verrichtung von mechanischen Tätigkeiten nutzt. Die Arbeitsmaschine kann beispielsweise eine Pumpe, ein Verdichter, ein Ventilator und/oder eine Presse sein.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Betreiben einer Arbeitsmaschine beschrieben. Das beschriebene Verfahren weist auf (a) ein Bereitstellen eines eine Energie enthaltenden Arbeitsfluids, (b) ein Zuführen des Arbeitsfluids zu einem Turbinensystem des vorstehend beschriebenen Typs, wobei das Turbinensystem zumindest einen Teil der Energie des Arbeitsfluids entnimmt und zumindest einen Teil der entnommenen Energie in mechanische Arbeit umwandelt, und (c) ein Betreiben der Arbeitsmaschine mit der umgewandelten mechanischen Arbeit.
  • Auch dem beschriebenen Verfahren liegt die Erkenntnis zugrunde, dass bei Verwendung des o.g. Turbinensystems die Arbeitsmaschine in effizienter Weise betrieben werden kann. Dabei wird entsprechend allgemein anerkannter Grundprinzipien der Thermodynamik die Energie aus dem Arbeitsfluid entnommen und in mechanische Energie umgewandelt, welche dann mittels einer rein mechanischen Kopplung auf die Arbeitsmaschine übertragen wird.
  • Unter dem Ausdruck "Energie enthaltendes Arbeitsfluid" kann in diesem Zusammenhang insbesondere verstanden werden, dass das Arbeitsfluid thermodynamisch mit Energie beaufschlagt worden ist, so dass das Arbeitsfluid insbesondere eine hohe Temperatur und/oder einen hohen Druck aufweist. Falls es sich bei dem Arbeitsfluid um einen Dampf, beispielsweise um Wasserdampf handelt, dann enthält der heiße und/oder unter einem hohen Druck stehende Wasserdampf zusätzlich noch eine Verdampfungsenergie, welche bei einem Kondensieren des Dampfes zu einem Freisetzen von Kondensationsenergie führt, die dann ebenfalls in mechanische Arbeit umgesetzt werden kann.
  • Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Vorrichtungsansprüchen und andere Ausführungsformen der Erfindung mit Verfahrensansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen.
  • Figur 1
    zeigt in einer schematischen Darstellung eine Turbinenanlage mit vier Dampfturbinen, welche über ein gemeinsames Getriebe eine Arbeitsmaschine antreiben.
    Figur 2
    zeigt in einer perspektivischen Darstelllung eine Turbinenanlage mit drei Dampfturbinen, welche gemeinsam einen elektrischen Generator antreiben.
    Figur 3
    zeigt ein Turbinensystem mit einer Radialturbine und zwei Axialturbinen, welche über ein gemeinsames Getriebe eine Arbeitsmaschine antreiben können.
    Figur 4
    zeigt ein Turbinensystem mit einer Radialturbine und drei Axialturbinen, welche über ein gemeinsames Getriebe eine Arbeitsmaschine antreiben können.
  • Es wird darauf hingewiesen, dass Merkmale bzw. Komponenten von unterschiedlichen Ausführungsformen, die mit den entsprechenden Merkmalen bzw. Komponenten der Ausführungsform nach gleich oder zumindest funktionsgleich sind, mit den gleichen Bezugszeichen oder mit anderen Bezugszeichen versehen sind, welche sich lediglich in ihrer ersten Ziffer von dem Bezugszeichen eines (funktional) entsprechenden Merkmals oder einer (funktional) entsprechenden Komponente unterscheiden. Zur Vermeidung von unnötigen Wiederholungen werden bereits anhand einer vorher beschriebenen Ausführungsform erläuterte Merkmale bzw. Komponenten an späterer Stelle nicht mehr im Detail erläutert.
  • Ferner wird darauf hingewiesen, dass die nachfolgend beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. Insbesondere ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier explizit dargestellten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.
  • Figur 1 zeigt in einer schematischen Darstellung eine Turbinenanlage 100 gemäß einem Ausführungsbeispiel der Erfindung. Die Turbinenanlage 100 weist ein Turbinensystem 110 auf, welches eine Arbeitsmaschine 120 antreibt. Die Arbeitsmaschine 120 kann insbesondere ein elektrischer Generator sein, welcher zur Stromerzeugung eingesetzt werden kann. Die Arbeitsmaschine 120 kann jedoch auch eine beliebige mechanische Maschine sein, welche die mechanische Energie, die ihr von dem Turbinensystem 110 zugeführt wird, in geeigneter Weise zur Verrichtung von mechanischen Tätigkeiten, beispielsweise zum Pumpen, zum Verdichten, und/oder für Pressvorgänge, nutzt.
  • Das Turbinensystem 110 weist vier Dampfturbinen, eine erste Dampfturbine 151, eine zweite Dampfturbine 152, eine dritte Dampfturbine 153 und eine vierte Dampfturbine 154, auf. Wie aus Figur 1 ersichtlich, sind diese Dampfturbinen 151, 152, 153 und 154 in Bezug zu der allgemeinen Strömungsrichtung eines Arbeitsfluids hintereinander geschaltet. Das Arbeitsfluid, welches gemäß dem hier dargestellten Ausführungsbeispiel Wasserdampf ist, strömt, von einem Wasserdampfgenerator stark überhitzt, in einen Fluideinlass 116 ein. Ein entsprechender Einlassmassenstrom 116a von Wasserdampf strömt dann in die erste Dampfturbine 151, in welcher der Wasserdampf in bekannter Weise mechanische Arbeit verrichtet und dabei einen in Figur 1 nicht dargestellten Rotor der ersten Dampfturbine 151 antreibt.
  • Der aus der ersten Dampfturbine 151 austretende Wasserdampf, welcher noch eine beträchtliche Menge an Energie enthält, die von der vergleichsweise kurzen ersten Dampfturbine 151 nicht in mechanische Arbeit umgewandelt wurde, strömt dann über eine erste Fluidleitung 161 in die zweite Dampfturbine 152, in welcher ebenfalls in dem Wasserdampf enthaltene Energie in mechanische Arbeit umgewandelt wird.
  • Die erste Fluidleitung 161 weist eine erste Anschlusseinrichtung 171 auf, welche gemäß dem hier dargestellten Ausführungsbeispiel eine einfache Verzweigung ist, beispielsweise ein sog. T-Stück. Über die Anschlusseinrichtung 171 kann ein erster Teilmassenstrom 171a an Arbeitsfluid aus dem gesamten Massenstrom zu einen ersten Fluidanschluss 176 ausgekoppelt oder ein zusätzlicher Massenstrom an Arbeitsfluid kann von dem ersten Fluidanschluss 176 in die erste Fluidleitung eingespeist werden. Auf diese Weise kann die Energie, welche der zweiten Dampfturbine 152 zugeführt wird, eingestellt und damit die Leistung des gesamten Turbinensystems 110 angepasst werden.
  • Der ersten Anschlusseinrichtung 171 bzw. der ersten Fluidleitung 161 ist eine erste Regelungseinrichtung 171b zugeordnet, welche einen nicht dargestellten Drucksensor aufweist, mit dem der Druck des Arbeitsfluids in der Fluidleitung 161 erfasst wird. Mittels eines ebenfalls nicht dargestellten verstellbaren Ventils kann basierend auf dem erfassten Druck der (Teil)Massenstrom so eingestellt werden, dass der Druck auch bei veränderlichen Betriebsbedingungen zumindest annähernd konstant bleibt. Somit kann durch eine geschickte Regelung der (Teil)Massenströme des Arbeitsfluids die Dampfturbine 152 in einem optimalen Betriebsmodus betrieben werden. Auf diese Weise kann ein hoher Wirkungsgrad für die Dampfturbine 152 und damit natürlich auch für das gesamte Turbinensystem 110 gewährleist werden.
  • Der aus der zweiten Dampfturbine 152 austretende Wasserdampf, welcher immer noch eine beträchtliche Menge an Energie enthält, die bisher noch nicht genutzt wurde, strömt dann über eine zweite Fluidleitung 162 in die dritte Dampfturbine 153. Genauso wie bei der ersten Fluidleitung 161 ist auch in der zweiten Fluidleitung 162 eine (zweite) als T-Stück ausgebildete Anschlusseinrichtung 172 sowie eine (zweite) Regelungseinrichtung 172b angeordnet, so dass ebenfalls in kontrollierter Weise ein zweiter Teilmassenstrom 172 zu einem zweiten Fluidanschluss 177 transferiert oder von dem zweiten Fluidanschluss 177 in die zweite Fluidleitung 162 eingespeist werden kann.
  • In entsprechender Weise sind die dritte Dampfturbine 153 und die der dritten Dampfturbine 153 nachgeschaltete vierte Dampfturbine 154 über eine dritte Fluidleitung 163 miteinander verbunden. Ferner befindet sich in der dritten Fluidleitung eine dritte Anschlusseinrichtung 173, über welche ein dritter Teilmassenstrom 173a an Wasserdampf von der dritten Fluidleitung 163 abgezweigt und einem dritten Fluidanschluss 178 zugeführt werden kann und/oder über welche zusätzlicher Wasserdampf von dem dritten Fluidanschluss 178 in die dritte Fluidleitung 163 eingespeist werden kann. Eine dritte Regelungseinrichtung 173b sorgt dafür, dass die entsprechende Entnahme oder Zufuhr an Wasserdampf in geregelter Weise erfolgt.
  • Es wird darauf hingewiesen, dass der Drucksensor der jeweiligen Regelungseinrichtung 171b, 172b, 173b in Bezug zu der Verzweigung der jeweiligen Anschlusseinrichtung 171, 172, 173 bevorzugt stromaufwärts in der jeweiligen Fluidleitung 161, 162, 163 angeordnet ist. Ferner ist das verstellbare Ventil der jeweiligen Regelungseinrichtung 171b, 172b, 173b in Bezug zu der Verzweigung der jeweiligen Anschlusseinrichtung 171, 172, 173 bevorzugt stromabwärts in der jeweiligen Fluidleitung 161, 162, 163 angeordnet ist. Insbesondere kann das verstellbare Ventil unmittelbar vor oder an dem Gehäuse der nächsten Turbine angeordnet sein.
  • An einem Fluidauslass 118 tritt ein Auslassmassenstrom 118a an Wasserdampf aus, welcher sämtliche Turbinen 151, 152, 153 und 154 durströmt hat oder welcher über einen der Fluidanschlüsse 176, 177 oder 178 in das Turbinensystem 110 eingespeist wurde. Der austretende Wasserdampf kann dann in bekannter Weise einem Erhitzer (nicht dargestellt) zugeführt werden. Dieser Erhitzer kann wiederum mit dem Fluideinlass 116 gekoppelt sein, so dass ein geschlossener Kreislauf an Arbeitsfluid bzw. Wasserdampf realisiert werden kann.
  • Wie aus Figur 1 ersichtlich, sind die Rotoren der Dampfturbinen 151 und 152 über eine gemeinsame Welle 131a miteinander verbunden. Dies bedeutet, dass die Rotationsfrequenz der Dampfturbinen 151 und 152 gleich ist. Alternativ könnte auch ein Getriebe (nicht dargestellt) zwischen den beiden Rotoren der Dampfturbinen 151 und 152 geschaltet sein, so dass eine erste Rotationsfrequenz des Rotors der ersten Dampfturbine 151 und eine zweite Rotationsfrequenz des Rotors der zweiten Dampfturbine 152 in einem festen Verhältnis zueinander stehen. In entsprechender Weise sind die beiden Rotoren der Dampfturbinen 153 und 154 über eine gemeinsame Welle 132a miteinander verbunden oder ggf. über ein zusätzliches Getriebe mechanisch miteinander gekoppelt.
  • Zentraler Bestandteil des hier beschriebenen Turbinensystems 110 ist ein zentrales Getriebe 130, welches ein Zahnrad 134 und zwei Ritzel aufweist. Ein erstes Ritzel 131 der beiden Ritzel ist an der Welle 131a angebracht. Das zweite Ritzel 132 ist an der Welle 132a angebracht. Beide Ritzel 131 und 132 stehen im Eingriff mit dem Zahnrad 134. Das zentrale Getriebe 130 weist ferner eine zentrale Antriebswelle 136 auf, welche das Zahnrad 134 und die Antriebsmaschine 120 miteinander verbindet.
  • Figur 2 zeigt in einer perspektivischen Darstelllung eine Turbinenanlage 200 gemäß einem weiteren Ausführungsbeispiel der Erfindung. Die Turbinenanlage 200 weist eine Grundplatte 202 auf, auf welcher zumindest die Hauptkomponenten der Turbinenanlage 200 angebracht oder montiert sind. Die Turbinenanlage 200 weist auf (a) eine als Radialturbine ausgebildete erste Dampfturbine 251, (b) eine als Axialturbine ausgebildete zweite Turbine 252 und (c) eine ebenfalls als Axialturbine 253 ausgebildete dritte Dampfturbine 253 auf. Alle Turbinen 251, 252 und 253 bzw. die Rotoren dieser Turbinen 251, 252 und 253 sind über ein zentrales Getriebe 230 miteinander gekoppelt. Das zentrale Getriebe 230 ist ausgangsseitig über eine Antriebswelle 236 mit einer als elektrischer Generator ausgebildeten Arbeitsmaschine 220 mechanisch gekoppelt.
  • Der ersten Dampfturbine 251 wird ein Einlassmassenstrom 216a an Arbeitsfluid zugeführt. Die Stärke dieses Einlassmassenstroms 216a, welcher mittels einer Mehrzahl von Regelventilen 251a geregelt wird, bestimmt damit wesentlich die Leistung der gesamten Turbinenanlage 200. Aus der ersten Dampfturbine 251 austretendes Arbeitsfluid wird über eine erste Fluidleitung 261 der zweiten Dampfturbine 252 zugeführt. Aus der zweiten Dampfturbine 252 austretendes Arbeitsfluid wird über eine zweite Fluidleitung 262 der dritten Dampfturbine 253 zugeführt.
  • Um den Massenstrom an Arbeitsfluid zwischen jeweils zwei in Bezug auf die Strömungsrichtung des Arbeitsfluids benachbarten Dampfturbinen 251 und 252 oder 252 und 253 zu regeln, befindet sich in der ersten Fluidleitung 261 eine erste Anschlusseinrichtung 271 zusammen mit einer in Figur 2 nicht dargestellten ersten Regelungseinrichtung, so dass ein erster Teilmassenstrom 271a aus der ersten Fluidleitung 261 ausgekoppelt oder alternativ ein nicht dargestellter Massenstrom in die erste Fluidleitung 261 eingespeist werden kann. In entsprechender Weise befindet sich in der zweiten Fluidleitung 262 eine zweite Anschlusseinrichtung 272 zusammen mit einer in Figur 2 nicht dargestellten zweiten Regelungseinrichtung, so dass ein zweiter Teilmassenstrom 272a aus der zweiten Fluidleitung 262 ausgekoppelt oder alternativ ein nicht dargestellter Massenstrom in die zweite Fluidleitung 262 eingespeist werden kann.
  • Ein Auslassmassenstrom 218a an Arbeitsfluid, welches sämtliche Turbinen 251, 252 und 253 durströmt hat oder welches über eine der Anschlusseinrichtungen 271 oder 272 in die Turbinenanlage 200 eingespeist wurde, wird dann einem Erhitzer (nicht dargestellt) zugeführt. Dieser Erhitzer kann wiederum den Einlassmassenstrom 216a bereitstellen, so dass ein geschlossener Kreislauf an Arbeitsfluid bzw. Wasserdampf realisiert werden kann.
  • Figur 3 zeigt ein Turbinensystem 310 mit einer als Radialturbine ausgebildeten ersten Dampfturbine 351, mit einer als Axialturbine ausgebildeten zweiten Dampfturbine 352 und mit einer ebenfalls als Axialturbine ausgebildeten dritten Dampfturbine 353. Die erste Dampfturbine 351 und die zweite Dampfturbine 352 sind über eine nicht dargestellte erste Fluidleitung miteinander verbunden. Die erste Dampfturbine 351 weist ein erstes Gehäuse 351a, die zweite Dampfturbine 352 weist ein zweites Gehäuse 352a und die dritte Dampfturbine 353 weist ein drittes Gehäuse 353a auf.
  • Wie bei den zuvor dargestellten Ausführungsbeispielen sind der ersten Fluidleitung eine ebenfalls nicht dargestellte erste Anschlusseinrichtung sowie eine ebenfalls nicht dargestellte erste Regeleinrichtung zugeordnet. Die zweite Dampfturbine 352 und die dritte Dampfturbine 353 sind über eine nicht dargestellte zweite Fluidleitung miteinander verbunden, welcher eine ebenfalls nicht dargestellte zweite Anschlusseinrichtung sowie eine ebenfalls nicht dargestellte zweite Regeleinrichtung zugeordnet sind.
  • Mittels eines zentralen Getriebes 330 sind die drei Dampfturbinen miteinander mechanisch gekoppelt. Bei dem Getriebe 330 befinden sich sowohl ein erstes Ritzel 331 als auch ein zweites Ritzel 332 in Eingriff mit einem Zahnrad 334. Dabei bestimmt ein Verhältnis zwischen (a) einer ersten Anzahl an Zähnen des ersten Ritzels 331, welches auf einer Welle 331a angeordnet ist, welche die Rotoren der beiden Dampfturbinen 351 und 352 miteinander verbindet, und (b) einer zweiten Anzahl an Zähnen des zweiten Ritzels 332, welches auf einer Welle 332a des Rotors der dritten Dampfturbine 353 angeordnet ist, das Verhältnis zwischen der Rotationsfrequenz der Rotoren der ersten und der zweiten Dampfturbine 351 und 352 und der Rotationsfrequenz des Rotors der dritten Dampfturbine 353. Gemäß dem hier dargestellten Ausführungsbeispiel hat das erste Ritzel 331 mehr Zähne als das zweite Ritzel 332, so dass die Rotationsfrequenz der Rotoren der ersten und der zweiten Dampfturbine 351 und 352 größer ist als die Rotationsfrequenz des Rotors der dritten Dampfturbine 353.
  • Das Zahnrad 334 ist auf einer zentralen Antriebswelle 336 angeordnet, welche mittels zweier Lager 338 in einem Gehäuse des zentralen Getriebes 330 gelagert ist. In Figur 3 ist am rechten Ende der zentralen Antriebswelle 336 ein als Flansch ausgebildeter mechanischer Anschluss 337 vorgesehen, an welchen eine in Figur 3 nicht dargestellte Antriebsmaschine angeschlossen werden kann.
  • Wie aus Figur 3 ersichtlich, weisen die beiden Axialturbinen 352 und 353 jeweils eine mehr-stufige Konfiguration von jeweils einer Leitschaufel und ggf. einer Rotorschaufel auf. Dabei ist eine Rotorschaufel 381a und eine Leitschaufel 381b einer ersten Stufe 381 der mehr-stufigen Axialturbine 353 zugeordnet. Eine Rotorschaufel 382a und eine Leitschaufel 382b sind einer zweiten Stufe 382 der mehr-stufigen Axialturbine 353 zugeordnet. Eine Rotorschaufel 383a und eine Leitschaufel 383b sind einer dritten Stufe 383 der mehr-stufigen Axialturbine 353 zugeordnet.
  • Die Rotorschaufeln 381a, 382a und 383a sind auf einer Axialwelle 385 der Dampfturbine 353 angeordnet. Die Axialwelle 385 ist drehfest mit der Welle 332a verbunden.
  • Gemäß dem hier dargestellten Ausführungsbeispiel sind benachbarte Rotorschaufeln, d.h. die Rotorschaufeln 381a und 382a sowie die Rotorschaufeln 382a und 383a, mittels einer Axial-Stirn-Verzahnung drehfest zueinander auf der Axialwelle 385 angeordnet. Eine Zugankerverbindung, welche mittels einer Mutter 386 in Verbindung mit einem an der Axialwelle 385 ausgebildeten Außengewinde realisiert ist, sorgt für eine feste Arretierung der Rotorschaufeln 381a, 381b und 381c auf der Axialwelle 385.
  • An dieser Stelle wird darauf hingewiesen, dass aus Gründen der Übersichtlichkeit in Figur 3 die verschiedenen Stufen 381, 382 und 383 und die jeweils zugehörigen Komponenten nur in der Dampfturbine 353 mit Bezugszeichen gekennzeichnet sind.
  • Wie aus Figur 3 ferner ersichtlich, sind die Rotoren der beiden Axialturbinen 352 und 353 fliegend gelagert. Dies bedeutet, dass die Rotoren der beiden Dampfturbinen 352 und 353 nicht in dem jeweiligen Turbinengehäuse 352a bzw. 353a sondern lediglich (mittels der Welle 332a) an dem Gehäuse des zentralen Getriebes 330 gelagert sind. Zu diesem Zweck ist links und rechts an dem Gehäuse des zentralen Getriebes 330 jeweils ein Lager 332b vorgesehen. In dem Turbinengehäuse 352a bzw. 353a sind entsprechend einer "fliegenden Anordnung" des jeweiligen Rotors keine Lagerelemente vorhanden.
  • Es wird darauf hingewiesen, dass gemäß dem hier dargestellten Ausführungsbeispiel die Lager 332b Radiallager sind. Eine axiale Lagerung wird hier mittels des zweiten Ritzels 332 realisiert, welches, wie in Figur 3 ersichtlich, links und rechts jeweils eine Schulter aufweist, wobei die beiden Schultern in axialer Richtung mit dem Zahnrad 334 in Eingriff stehen. Damit wird eine im Betrieb der Dampfturbine 353 erzeugter Axialschub nach links über die beiden Schultern des Ritzels 332 und das Zahnrad 334 auf das Lager 338 übertragen und von diesem aufgenommen.
  • Figur 4 zeigt ein Turbinensystem 410, welches sich von dem in Figur 3 dargestellten Turbinensystem 310 lediglich darin unterscheidet, dass an der Welle 332a zusätzlich eine vierte als Axialturbine ausgebildete Dampfturbine 454 angeordnet ist, welche ein Gehäuse 454a aufweist. Damit wird bei diesem Ausführungsbeispiel die zentrale Antriebswelle 336 von insgesamt vier Dampfturbinen angetrieben, wobei die vierte Dampfturbine 454 mittels einer nicht dargestellten dritten Fluidleitung der dritten Dampfturbine 353 nachgeschaltet ist. Dabei sind der dritten Fluidleitung in entsprechender Weise eine nicht dargestellte zweite Anschlusseinrichtung sowie eine ebenfalls nicht dargestellte zweite Regeleinrichtung zur Regelung der Menge des aus der dritten Fluidleitung entnommenen Arbeitsfluids und/oder zur Regelung der Menge des in die dritte Fluidleitung zusätzlich eingespeisten Arbeitsfluids zugeordnet.

Claims (12)

  1. Turbinensystem (110, 310, 410), aufweisend
    eine erste Turbine (151, 251, 351),
    eine zweite Turbine (152, 252, 352),
    eine dritte Turbine (153, 253, 353),
    ein zentrales Getriebe (130, 230, 330), welches eingangsseitig mit den drei Turbinen (151, 251, 351; 152, 252, 352; 153, 253, 353) mechanisch gekoppelt ist und welches ausgangsseitig einen mechanische Anschluss (337) aufweist, an welchen eine mechanische Energie aufnehmende Arbeitsmaschine (120, 220) anschließbar ist,
    eine erste Fluidleitung (161, 261) zum Weiterleiten eines Arbeitsfluids von der ersten Turbine (151, 251, 351) zu der zweiten Turbine (152, 252, 352),
    eine zweite Fluidleitung (162, 262) zum Weiterleiten des Arbeitsfluids von der zweiten Turbine (152, 252, 352) zu der dritten Turbine (153, 253, 353),
    eine erste Anschlusseinrichtung (171, 271), welche der ersten Fluidleitung (161, 261) zugeordnet ist und welche derart eingerichtet ist, dass ein erster Teilmassenstrom (171a) des Arbeitsfluids von der ersten Fluidleitung (161, 261) entnehmbar oder der ersten Fluidleitung (161, 261) zuführbar ist, und
    eine zweite Anschlusseinrichtung (172, 272), welche der zweiten Fluidleitung (162, 262) zugeordnet ist und welche derart eingerichtet ist, dass ein zweiter Teilmassenstrom (172a) des Arbeitsfluids von der zweiten Fluidleitung (162, 262) entnehmbar oder der zweiten Fluidleitung (162, 262) zuführbar ist,
    wobei die drei Turbinen (151, 251, 351; 152, 252, 352; 153, 253, 353) hinsichtlich eines Strömungspfades des Arbeitsfluids hintereinander geschaltet sind, wobei die zweite Turbine (152, 252, 352) der ersten Turbine (151, 251, 351) nachgeschaltet ist und die dritte Turbine (153, 253, 353) der zweiten Turbine (152, 252, 352) nachgeschaltet ist.
  2. Turbinensystem (110, 310, 410) gemäß dem vorangehenden Anspruch, ferner aufweisend
    eine erste Regelungseinrichtung (171b), welche der ersten Anschlusseinrichtung (171) zugeordnet ist, zum Einstellen der Stärke des ersten Teilmassenstroms (171a) und/oder
    eine zweite Regelungseinrichtung (172b), welche der zweiten Anschlusseinrichtung (172, 272) zugeordnet ist, zum Einstellen der Stärke des zweiten Teilmassenstroms (172a).
  3. Turbinensystem (110, 310, 410) gemäß einem der vorangehenden Ansprüche, wobei
    die erste Turbine (151, 251, 351) und die zweite Turbine (152, 252, 352) über eine gemeinsame Welle (131a, 331a) mit dem zentralen Getriebe (130, 230, 330) gekoppelt sind, wobei insbesondere eine der beiden Turbinen (151, 251, 351; 152, 252, 352) an einer ersten Seite des zentralen Getriebes (130, 230, 330) und die andere der beiden Turbinen (151, 251, 351; 152, 252, 352) an einer zweiten Seite des zentralen Getriebes (130, 230, 330) angeordnet ist, wobei die erste Seite gegenüberliegend zu der zweiten Seite ist.
  4. Turbinensystem (110, 310, 410) gemäß einem der vorangehenden Ansprüche, wobei die erste Turbine (151, 251, 351) und die dritte Turbine (153, 253, 353) derart mit dem zentralen Getriebe (130, 230, 330) gekoppelt sind, dass die erste Turbine (151, 251, 351) mit einer ersten Rotationsfrequenz und die dritte Turbine (153, 253, 353) mit einer zweiten Rotationsfrequenz betreibbar ist, wobei die erste Rotationsfrequenz unterschiedlich ist zu der zweiten Rotationsfrequenz.
  5. Turbinensystem (110, 310, 410) gemäß einem der vorangehenden Ansprüche, wobei
    zumindest eine der drei Turbinen (151, 251, 351; 152, 252, 352; 153, 253, 353) eine Radialturbine ist.
  6. Turbinensystem (110, 310, 410) gemäß einem der vorangehenden Ansprüche, wobei
    zumindest eine der drei Turbinen (151, 251, 351; 152, 252, 352; 153, 253, 353) eine Axialturbine ist.
  7. Turbinensystem (110, 310, 410) gemäß dem vorangehenden Anspruch, wobei
    der Rotor der Axialturbine (353) mit einer Axialwelle (385) gekoppelt ist, welche auf der Seite des zentralen Getriebes (330) gelagert ist und welche in einem Gehäuse (353a) der Axialturbine (353) lagerfrei angeordnet ist.
  8. Turbinensystem (110, 310, 410) gemäß dem vorangehenden Anspruch, wobei
    der Rotor der Axialturbine (353) mehrere Turbinenstufen (381, 382, 383) aufweist, wobei jede Turbinenstufe (381, 382, 383) um die Axialwelle (385) herum angeordnet
    (a) eine Reihe von am Rotor angebrachten rotierbaren Laufschaufeln (381a, 382a, 383a) und
    (b) eine Reihe von am Gehäuse (353a) angebrachten stationären Leitschaufeln (381a, 381b) aufweist.
  9. Turbinensystem (110, 310, 410) gemäß dem vorangehenden Anspruch, wobei
    die Laufschaufeln (381a, 382a, 383a) einer Reihe an einem Laufschaufelträger angebracht sind und wobei
    die mehreren Laufschaufelträger mittels einer Zugeinrichtung (386) auf der Axialwelle (385) fixiert sind.
  10. Turbinensystem (110, 410) gemäß einem der vorangehenden Ansprüche, ferner aufweisend
    eine vierte Turbine (154, 454), welche mit dem zentralen Getriebe (130, 330) mechanisch gekoppelt ist,
    eine dritte Fluidleitung (163) zum Weiterleiten des Arbeitsfluids von der dritten Turbine (153, 353) zu der vierten Turbine (154, 454 und
    eine dritte Anschlusseinrichtung (173), welche der dritten Fluidleitung (163) zugeordnet ist und welche derart eingerichtet ist, dass ein dritter Teilmassenstrom (173a) des Arbeitsfluids von der dritten Fluidleitung (163) entnehmbar oder der dritten Fluidleitung (163) zuführbar ist.
  11. Turbinenanlage (100), 200 aufweisend
    ein Turbinensystem (110, 310, 410) gemäß einem der vorangehenden Ansprüche, und
    eine Arbeitsmaschine (120, 220), welche mit dem mechanischen Anschluss des zentralen Getriebes (130, 230) gekoppelt ist.
  12. Verfahren zum Betreiben einer Arbeitsmaschine (120, 220), das Verfahren aufweisend
    Bereitstellen eines eine Energie enthaltenden Arbeitsfluids,
    Zuführen des Arbeitsfluids zu einem Turbinensystem (110, 310) gemäß einem der vorangehenden Ansprüche 1 bis 10, wobei das Turbinensystem (110, 310) zumindest einen Teil der Energie des Arbeitsfluids entnimmt und zumindest einen Teil der entnommenen Energie in mechanische Arbeit umwandelt, und
    Betreiben der Arbeitsmaschine (120, 220) mit der umgewandelten mechanischen Arbeit.
EP13710387.5A 2012-03-29 2013-03-15 Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine Active EP2805026B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012205159A DE102012205159A1 (de) 2012-03-29 2012-03-29 Turbinensystem mit drei an einem zentralen Getriebe angekoppelten Turbinen, Turbinenanlage und Verfahren zum Betreiben einer Arbeitsmaschine
PCT/EP2013/055341 WO2013143877A1 (de) 2012-03-29 2013-03-15 Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine

Publications (2)

Publication Number Publication Date
EP2805026A1 EP2805026A1 (de) 2014-11-26
EP2805026B1 true EP2805026B1 (de) 2020-06-10

Family

ID=47901089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13710387.5A Active EP2805026B1 (de) 2012-03-29 2013-03-15 Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine

Country Status (9)

Country Link
US (1) US20150044021A1 (de)
EP (1) EP2805026B1 (de)
JP (1) JP2015514897A (de)
CN (1) CN104204420B (de)
BR (1) BR112014023698A8 (de)
DE (1) DE102012205159A1 (de)
IN (1) IN2014DN07393A (de)
RU (1) RU2659848C2 (de)
WO (1) WO2013143877A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2962461C (en) * 2014-09-25 2022-06-21 Nuhn Industries Ltd. Fluid pump with multiple pump heads
CN112576317B (zh) * 2020-12-08 2023-11-24 内蒙古汇能集团蒙南发电有限公司 一种多级涡轮发电机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR555683A (fr) * 1922-05-13 1923-07-04 Bbc Brown Boveri & Cie Installation de turbines à vapeur pour hautes pressions et hautes températures de surchauffe
GB226232A (en) * 1923-12-14 1925-08-06 Ljungstroms Angturbin Ab Improvements in turbine aggregates
FR633903A (fr) * 1926-05-06 1928-02-06 Locomotive à turbines à vapeur avec turbines de commande disposées dans des enveloppes différentes
CH126468A (de) * 1927-05-19 1928-06-16 Escher Wyss Maschf Ag Verfahren zum Betreiben von Dampfkraftanlagen.
GB370371A (en) * 1929-10-04 1932-04-07 Siemens Ag Multi-stage radial turbine, more particularly for high pressure steam
GB575812A (en) * 1942-12-12 1946-03-06 Bbc Brown Boveri & Cie Ultra-high temperature turbine plant
US3175366A (en) * 1961-07-28 1965-03-30 Taranov Boris Pavlovich Steam turbine with regulated bleeding of steam
US3724214A (en) * 1971-03-05 1973-04-03 Westinghouse Electric Corp Extraction control system for a turbogenerator set
JPS5817358B2 (ja) * 1978-03-07 1983-04-06 川崎重工業株式会社 多段タ−ボ形圧縮機
FR2518644B1 (fr) * 1981-12-18 1986-05-02 Intelautomatisme Turbo-machine
JPS5946303A (ja) * 1982-09-10 1984-03-15 Toshiba Corp タ−ビン制御装置
FR2635561B1 (fr) * 1988-08-16 1990-10-12 Alsthom Gec Installation de turbine a vapeur avec soutirage regle
DE4234739C1 (de) * 1992-10-15 1993-11-25 Gutehoffnungshuette Man Getriebe-Mehrwellenturbokompressor mit Rückführstufen
DE4239138A1 (de) * 1992-11-20 1994-05-26 Bhs Voith Getriebetechnik Gmbh Verdichteranlage
JP4764255B2 (ja) * 2006-05-25 2011-08-31 株式会社神戸製鋼所 小型貫流ボイラ発電システムおよびその運転制御方法
JP2009047123A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 蒸気タービン
JP4993503B2 (ja) * 2008-03-25 2012-08-08 パンパシフィック・カッパー株式会社 蒸気タービンの出力増強方法
US20110083437A1 (en) * 2009-10-13 2011-04-14 General Electric Company Rankine cycle system
EP2434103B1 (de) * 2010-09-24 2014-11-26 Siemens Aktiengesellschaft Hochgeschwindigkeitsturbinenanordnung
CN202081921U (zh) * 2011-04-28 2011-12-21 中国科学院工程热物理研究所 一种多级向心透平系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013143877A1 (de) 2013-10-03
RU2659848C2 (ru) 2018-07-04
CN104204420B (zh) 2016-08-24
IN2014DN07393A (de) 2015-04-24
BR112014023698A2 (de) 2017-06-20
CN104204420A (zh) 2014-12-10
JP2015514897A (ja) 2015-05-21
RU2014143499A (ru) 2016-05-20
EP2805026A1 (de) 2014-11-26
US20150044021A1 (en) 2015-02-12
DE102012205159A1 (de) 2013-10-02
BR112014023698A8 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
EP1795725B1 (de) Gasturbine mit geregelter Luftkühlung
EP2122129B1 (de) Kraftwerksanlage sowie verfahren zu deren betrieb
EP4193049A1 (de) Wärmekraftmaschine mit dampfzufuhrvorrichtung
EP2909452B1 (de) Vorrichtung zum erzeugen elektrischer energie mittels eines orc-kreislaufs
EP1917428A1 (de) Kraftwerksanlage
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
DE10258594A1 (de) Stromerzeugungsanlage mit Druckluftenergiesystem
WO2004088132A1 (de) Antriebsstrang zum übertragen einer variablen leistung
EP1440223A1 (de) Gasturbogruppe
DE102011102599A1 (de) Verfahren zum Betrieb einer Kleingasturbinenanordnung, sowie Kleingasturbinenanordnung selbst
DE102011111707A1 (de) Dampfturbinenanlage
EP2407652A1 (de) Gasturbine mit einem Sekundärluftsystem und Verfahren zum Betreiben einer solchen Gasturbine
EP1241323A1 (de) Verfahren zum Betrieb einer Dampfkraftanlage sowie Dampfkraftanlage
EP2805026B1 (de) Turbinensystem mit drei an einem zentralen getriebe angekoppelten turbinen und verfahren zum betreiben einer arbeitsmaschine
DE102011057134A1 (de) Energieerzeugungsvorrichtung
EP2802748B1 (de) Strömungsmaschine mit schraubenkühlung
WO2006024597A1 (de) Dampfturbine
EP0597325B1 (de) Verfahren zur Zwischenkühlung eines Turboverdichter
DE102010035393B4 (de) Turbine und Verfahren zum Betrieb einer Turbine für ein CAES-System
EP2143912A1 (de) Gasturbine mit zumindest einer mehrstufigen, mehrere Verdichtermodule umfassenden Verdichtereinheit
EP2775096B1 (de) Diffusoranordnung für ein Abdampfgehäuse einer Dampfturbine, sowie damit ausgestattete Dampfturbine
DE69817693T2 (de) Kraftwerk mit kombiniertem Kreislauf
DE102017213280A1 (de) Verfahren zum Betreiben einer Dampfturbine
BE1030268B1 (de) Salpetersäureanlage zur Herstellung von Salpetersäure
DE852783C (de) Turbinenanlage mit mindestens zwei hintereinandergeschalteten Turbinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS TURBOMACHINERY EQUIPMENT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOWDEN TURBO GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014785

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014785

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1279354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230321

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 12

Ref country code: CZ

Payment date: 20240227

Year of fee payment: 12

Ref country code: GB

Payment date: 20240327

Year of fee payment: 12