EP2795788A1 - Verfahren zum ermitteln der absolutposition eines linearaktuators - Google Patents

Verfahren zum ermitteln der absolutposition eines linearaktuators

Info

Publication number
EP2795788A1
EP2795788A1 EP12805964.9A EP12805964A EP2795788A1 EP 2795788 A1 EP2795788 A1 EP 2795788A1 EP 12805964 A EP12805964 A EP 12805964A EP 2795788 A1 EP2795788 A1 EP 2795788A1
Authority
EP
European Patent Office
Prior art keywords
linear actuator
sensor
absolute position
rotor
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12805964.9A
Other languages
English (en)
French (fr)
Inventor
Jürgen Böhm
Marco Besier
Tom Kaufmann
Peter Stauder
Andreas Schirling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP2795788A1 publication Critical patent/EP2795788A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Definitions

  • the present invention relates to a method for Ermit ⁇ stuffs the absolute position of a linear actuator.
  • linear actuators In many electromechanically actuated systems, in particular brake systems, linear actuators are used which, in addition to the actual actuator element, have an electric motor and at least one downstream transmission for driving the actuator element.
  • An example of a Derar ⁇ tiges gear is a ball screw.
  • Another possibility is to determine the change in the angular position of the rotor of the associated electric ⁇ motors of the linear actuator via a sensor, and to calculate therefrom the Po ⁇ sitionsver selectedung of the linear actuator.
  • a rotor position sensor is required to operate the engine when an electronically commutated motor, such as a synchronous machine, is used.
  • an electronically commutated motor such as a synchronous machine.
  • summing up the rotor position change can provide a substitute signal for the actuator position that is many times more accurate and higher than the signal from an actuator position sensor.
  • the actuator must be free to move, there shall be no interference of the system from the outside, and it must be available to the power-up when ever ⁇ the time to carry out the reference run. This leads to restrictions in the system availability and to the necessity ⁇ ability to safely exclude an external influence on the reference run.
  • the object of the present invention is to provide a method for determining the absolute position of a linear actuator, which can be carried out in a particularly simple and cost-effective manner.
  • Absolute position of the linear actuator can be derived.
  • the absolute position of the actuator results from the following relationship:
  • Absolute position of the actuator determined differential angle x theoretical total stroke / 360 °
  • theoretical total stroke here is the Er chargedsbe ⁇ rich multiplied meant by the slope of the system.
  • the absolute position of the linear actuator can be determined from this.
  • the coupling of the encoder wheel of the second sensor with the Ro ⁇ tor is preferably carried out via a positive gear.
  • a transmission ratio of 1: x is selected, where x represents a slightly different from an integer value.
  • a transmission ratio of 1: 2.1 is used, in which case, for example, a transmitter wheel of the second sensor with 42 teeth and a transmitter wheel of the first sensor with 20 teeth are used.
  • Difference angle X rotation angle of the rotor - 2 * rotation angle of the second sensor generates a monotonously rising signal over approx. 10 engine revolutions, which is multiplied by the gear ratio and offset with a linear offset can be used directly as a position signal.
  • the absolute position of the linear actuator is preferably determined from the difference in rotational angle taking into ⁇ supply of a linear offset.
  • angle_2 atan (sin2 / cos2) angle offset_2.
  • angle_2 atan (sin2 / cos2) angle offset_2.
  • both angles 0.
  • angle_motor atan (sinl / cosl) angle offset motor and is used to control the motor.
  • Actuator position compensation signals are formed on a motor revolution absolute rotor position replacement signal. From this (and stored in the memory offset values) can then be closed directly to the motor commutation required electrical angular position of the electric motor. In this way, in the system design, the selection of the Motorpolfariere and the rotor position sensor used (first sensor) are independent of each other.
  • the inventive process can be carried out easily and kos ⁇ -effectively. Only a second sensor is required. Constructive measures to ensure that the actuator is in a known position at system startup are not necessary. Furthermore, no reference run must be performed at system startup.
  • Figure 1 is a diagram of the raw signals of the rotor sensor
  • Figure 2 is a diagram showing the output over engine revolutions.
  • the first sensor (rotor position sensor) sits centrally on the motor shaft and has a gear with 20 teeth.
  • a second sensor is arranged, the transmitter wheel has 42 teeth and meshes with the gear of the first sensor.
  • the corresponding sample of the gears via Mag ⁇ Neten The signal evaluation is carried out via boards with two sensors / ICs.
  • the angular position of the gears is determined by measuring the direction of the emitted magnetic field of positively connected to the gears magnet via two magnetic sensors (preferably MR sensors).
  • Rotation angle difference X rotor angle - 2 * Angle sensor 2, a monotonically increasing signal over about 10 Motorumdre ⁇ ments generated, which can be used directly by means of multiplication with the gear ratio and offsetting with a linear offset as a position signal. This signal is shown in FIG. As mentioned, Before executing the calculation, the offsets of the two sensors must still be subtracted, ie the angle values which result when the linear actuator is in the end position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Es wird ein Verfahren zum Ermitteln der Absolutposition eines Linearaktuators beschrieben. Hierbei wird die Drehwinkellage des Rotors des zugehörigen Elektromotors des Linearaktuators mit einem ersten Sensor ermittelt. Ferner wird die Drehwinkellage eines mit dem Rotor über ein spezielles Übersetzungsverhältnis gekoppelten Geberrades eines zweiten Sensors ermittelt. Aus dem Differenzwert der ermittelten Drehwinkellagen wird die Absolutposition des Linearaktuators abgeleitet. Das Verfahren lässt sich auf einfache und kostengünstige Weise durchführen.

Description

Verfahren zum Ermitteln der Absolutposition eines Linearak- tuators
Die vorliegende Erfindung betrifft ein Verfahren zum Ermit¬ teln der Absolutposition eines Linearaktuators .
In vielen elektromechanisch betätigten Systemen, insbesondere Bremssystemen, kommen Linearaktuatoren zum Einsatz, die neben dem eigentlichen Aktuatorelement einen Elektromotor und mindestens ein nachgeschaltetes Getriebe zum Antreiben des Aktuatorelementes aufweisen. Ein Bespiel für ein derar¬ tiges Getriebe ist ein Kugelgewindetrieb.
Beim Betrieb von derartigen Systemen ist es erforderlich, neben der Bewegungsstrecke des Linearaktuators dessen abso¬ lute Position zu kennen. Der Einsatz eines linear messenden Aktuatorpositionssensors ist hierbei eine Möglichkeit, die Position des Linearaktuators zu bestimmen.
Eine andere Möglichkeit besteht darin, über einen Sensor die Änderung der Winkellage des Rotors des zugehörigen Elektro¬ motors des Linearaktuators zu ermitteln und hieraus die Po¬ sitionsveränderung des Linearaktuators zu berechnen. Ein solcher Rotorlagesensor ist zum Betrieb des Motors erforderlich, wenn ein elektronisch kommutierter Motor, wie beispielsweise eine Synchronmaschine, zum Einsatz kommt. Auf- grund der gewählten Übersetzungen ergibt es sich üblicherweise, dass für das Zurücklegen des gesamten Aktuatorhubs eine Vielzahl von Motorumdrehungen notwendig ist. Geht man davon aus, dass Linearaktuatorposition und Rotorlage mit der gleichen Auflösung und Genauigkeit eingelesen werden, so kann man durch Aufsummieren der Rotorlageänderung ein Ersatzsignal für die Aktuatorposition bilden, dass um ein Vielfaches genauer und höher aufgelöst ist als das Signal eines Aktuatorpositionssensors .
Zur Verwendung des Aktuatorpositionsersatzsignales (durch Erfassung der Änderung der Rotorlage) muss dieses jedoch auf die tatsächliche Aktuatorposition referenziert werden. Es ist dabei bekannt, dies über konstruktive Maßnahmen zu rea¬ lisieren, die sicherstellen, dass sich der Aktuator bei Systemstart an einer bekannten Position befindet (Sperrklinke, Feder) . Eine andere Maßnahme besteht darin, einen Referenzlauf des Aktuators vorzusehen. Beide Methoden haben jedoch Nachteile. Das Vorsehen zusätzlicher Konstruktionselemente verursacht zusätzliche Kosten und erweitert das Feld mögli¬ cher Fehlerquellen und ist meist nur dann sinnvoll, wenn eine entsprechende Funktionalität auch anderweitig benötigt wird (z.B. Sperrklinke für Parkbremse) . Zur Durchführung ei¬ nes Referenzlaufs bei Systemstart müssen einige Randbedin¬ gungen erfüllt sein. Der Aktuator muss freigängig sein, es darf keine Beeinflussung des Systems von außen erfolgen, und es muss die Zeit zur Durchführung des Referenzlaufs bei je¬ dem Systemstart zur Verfügung stehen. Dies führt zu Einschränkungen bei der Systemverfügbarkeit und zur Notwendig¬ keit, eine externe Beeinflussung des Referenzlaufs sicher auszuschließen . Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Ermitteln der Absolutposition eines Linearak- tuators zur Verfügung zu stellen, das auf besonders einfache und kostengünstige Weise durchgeführt werden kann.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Ermitteln der Absolutposition eines Linearaktuators gelöst, das die folgenden Schritte umfasst:
Ermitteln der Drehwinkellage des Rotors des zugehörigen Elektromotors des Linearaktuators mit einem ersten Sensor;
Ermitteln der Drehwinkellage eines mit dem Rotor über ein spezielles Übersetzungsverhältnis gekoppelten Geberrades ei¬ nes zweiten Sensors; und
Berechnen des Differenzwertes aus den ermittelten Drehwinkellagen und Ableiten der Absolutposition des Linearaktuators aus dem ermittelten Differenzwert.
Erfindungsgemäß wird somit vorgeschlagen, den Linearaktuator mit einem zweiten rotatorischen Sensor auszustatten, der mit einer besonders gewählten Übersetzung angekoppelt ist, so dass die Drehwinkellage des Rotors und die sich aus einer übersetzten Rotordrehung resultierende Drehwinkellage er- fasst werden können. Aus den ermittelten Drehwinkeln wird ein Differenzwert errechnet, aus dem die lineare
Absolutposition des Linearaktuators abgeleitet werden kann. So ergibt sich die absolute Position des Aktuators aus der folgenden Beziehung:
Absolute Position des Aktuators = ermittelter Differenzwinkel x theoretischer Gesamthub / 360°
Mit „theoretischem Gesamthub" ist hierbei der Erfassungsbe¬ reich multipliziert mit der Steigung des Systems gemeint.
Da sich der Differenzwinkel über die Anzahl der Umdrehungen verändert, kann hieraus die Absolutposition des Linearaktua- tors ermittelt werden.
Die Kopplung des Geberrades des zweiten Sensors mit dem Ro¬ tor erfolgt vorzugsweise über ein formschlüssiges Getriebe. Für dieses wird vorzugsweise ein Übersetzungsverhältnis von 1 : x gewählt, wobei x einen geringfügig von einer ganzen Zahl abweichenden Wert darstellt. Bei einer besonders bevorzugten Ausführungsform wird ein Übersetzungsverhältnis von 1 : 2,1 verwendet, wobei hier beispielsweise ein Geberrad des zweiten Sensors mit 42 Zähnen und ein Geberrad des ersten Sensors mit 20 Zähnen eingesetzt wird.
Für das Beispiel mit einem Übersetzungsverhältnis von i = 1 : 2,1 kann durch Anwendung der folgenden Rechenvorschrift
Differenzwinkel X = Drehwinkel des Rotors - 2* Drehwinkel des zweiten Sensors ein monoton ansteigendes Signal über ca. 10 Motorumdrehungen erzeugt werden, welches mittels Multiplikation mit der Ge- triebeübersetzung und Verrechnung mit einem linearen Offset direkt als Positionssignal verwendet werden kann.
Generell gilt, dass die Absolutposition des Linearaktuators aus der Drehwinkeldifferenz vorzugsweise unter Berücksichti¬ gung eines linearen Offset ermittelt wird.
Hinsichtlich des Winkeloffsets sei das Verfahren wie folgt präzisiert :
Bei Produktion oder bei einem Referenzlauf des Systems wer¬ den die Winkeloffsets der beiden Sensoren in einer bekannten Lage gemessen und gespeichert. Die bekannte Lage ist sinn¬ vollerweise eine Endlage. Nach Einschalten des Systems wer¬ den dann ein Winkel 1 aus Winkel_l=atan sinl/cosl)- Winkeloffset_l
und ein Winkel 2 aus Winkel_2=atan ( sin2 /cos2 ) -Winkeloffset_2 gebildet. In der Endlage sind beide Winkel=0. Jetzt kann die weitere Auswertung mittels der beschriebenen Gleichungen ablaufen. Zum Betrieb des Elektromotors ist ein weiterer Winkeloffset notwendig, der den Winkelunterschied zwischen Rotorwinkel aus atan ( sin/cos ) und der Lage der Permanentmag¬ nete beschreibt. Hiermit wird ein Win- kel_Motor=atan ( sinl /cosl ) - Winkeloffset_Motor gebildet und für die Regelung des Motors verwendet.
Nach der Ermittlung der Absolutposition des Linearaktuators ist es vorteilhaft, nur noch den ersten Sensor zur Gewinnung der Linearposition des Linearaktuators zu verwenden, um entsprechenden Rechenaufwand zu sparen. Bei Verwendung von Rotorlagesensoren (ersten Sensoren) , die nicht direkt absolut zur elektrischen Motorlage sind (Bei¬ spiel: MR-Sensor und Synchronmotor mit ungerader
Polpartzahl) , kann mithilfe des
Aktuatorpositionsersatzsignales ein auf eine Motorumdrehung absolutes Rotorlageersatzsignal gebildet werden. Aus diesem (und aus im Speicher abgelegten Offsetwerten) kann dann direkt auf die zur Motorkommutierung erforderliche elektrische Winkellage des Elektromotors geschlossen werden. Auf diese Weise kann bei der Systemauslegung die Auswahl der Motorpolpaarzahl und des eingesetzten Rotorpositionssensors (ersten Sensors) voneinander unabhängig erfolgen.
Das erfindungsgemäße Verfahren lässt sich einfach und kos¬ tengünstig durchführen. Es ist lediglich ein zweiter Sensor erforderlich. Konstruktive Maßnahmen, die sicherstellen, dass sich der Aktuator bei Systemstart an einer bekannten Position befindet, sind nicht nötig. Des Weiteren muss kein Referenzlauf bei Systemstart durchgeführt werden.
Die Erfindung wird nachfolgend anhand eines Ausführungsbei¬ spiels in Verbindung mit der Zeichnung im Einzelnen erläutert. Es zeigen:
Figur 1 ein Diagramm der Rohsignale des Rotorsensors
(ersten Sensors) und des zweiten Sensors; und
Figur 2 ein Diagramm, das das Ausgangssignal über Motorumdrehungen zeigt. Bei dem hier beschriebenen Ausführungsbeispiel sitzt der erste Sensor (Rotorlagesensor) mittig auf der Motorwelle und besitzt ein Zahnrad mit 20 Zähnen. Parallel neben diesem ersten Sensor ist ein zweiter Sensor angeordnet, dessen Geberrad 42 Zähne aufweist und mit dem Zahnrad des ersten Sensors kämmt. Der zweite Sensor ist somit mit einem Über¬ setzungsverhältnis von i = 1 : 2,1 mit dem ersten Sensor gekoppelt .
Die entsprechende Abtastung der Zahnräder erfolgt über Mag¬ neten. Die Signalauswertung wird über Platinen mit zwei Sen- sor/ICs durchgeführt.
Bei einer anderen Ausführungsform wird die Winkellage der Zahnräder durch Messung der Richtung des emittierten Magnetfeldes von formschlüssig mit den Zahnrädern verbundenen Magneten über zwei magnetische Sensoren (bevorzugt MR-Sensoren) ermittelt .
In Figur 1 sind die Rohsignale des Rotorsensors (ersten Sen¬ sors) und des zweiten Sensors dargestellt, die den Verlauf der gemessenen Umdrehungen bezogen auf die Motorumdrehungen wiedergeben. Durch die Rechenvorschrift
Drehwinkeldifferenz X = Rotorwinkel - 2* Winkel Sensor 2 kann ein monoton ansteigendes Signal über ca. 10 Motorumdre¬ hungen erzeugt werden, welches mittels Multiplikation mit der Getriebeübersetzung und Verrechnung mit einem linearen Offset direkt als Positionssignal verwendet werden kann. Dieses Signal ist in Figur 2 dargestellt. Wie erwähnt, müs- sen vor Ausführung der Berechnung noch die Offsets der beiden Sensoren abgezogen werden, d.h. die Winkelwerte, die sich ergeben, wenn sich der Linearaktuator in der Endposition befindet.

Claims

Patentansprüche
1. Verfahren zum Ermitteln der Absolutposition eines Line- araktuators mit den folgenden Schritten:
Ermitteln der Drehwinkellage des Rotors des zughörigen Elektromotors des Linearaktuators mit einem ersten Sensor;
Ermitteln der Drehwinkellage eines mit dem Rotor über ein spezielles Übersetzungsverhältnis gekoppelten Ge¬ berrades eines zweiten Sensors; und
Berechnen des Differenzwertes aus den ermittelten Drehwinkellagen und Ableiten der Absolutposition des Linearaktuators aus dem ermittelten Differenzwert.
2. Verfahren nach Anspruch 1, dadurch kennzeichnet, dass ein Übersetzungsverhältnis von 1 : x gewählt wird, wo¬ bei x einen geringfügig von einer ganzen Zahl abweichenden Wert darstellt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Übersetzungsverhältnis von 1 : 2,1 ver¬ wendet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Geberrad des zweiten Sensors mit 42 Zähnen und ein Geberrad des ersten Sensors mit 20 Zähnen verwendet wird . Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Absolutposition des Linearaktutors aus der Drehwinkeldifferenz unter Berücksichtigung eines linearen Offset ermittelt wird.
Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass nach der Ermittlung der Absolutposition des Linearaktutors nur noch der erste Sensor zur Gewinnung der Linearposition des Linearak- tuators verwendet wird.
EP12805964.9A 2011-12-23 2012-11-28 Verfahren zum ermitteln der absolutposition eines linearaktuators Withdrawn EP2795788A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089820A DE102011089820A1 (de) 2011-12-23 2011-12-23 Verfahren zum Ermitteln der Absolutposition eines Linearaktuators
PCT/EP2012/073880 WO2013092147A1 (de) 2011-12-23 2012-11-28 Verfahren zum ermitteln der absolutposition eines linearaktuators

Publications (1)

Publication Number Publication Date
EP2795788A1 true EP2795788A1 (de) 2014-10-29

Family

ID=47429750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12805964.9A Withdrawn EP2795788A1 (de) 2011-12-23 2012-11-28 Verfahren zum ermitteln der absolutposition eines linearaktuators

Country Status (6)

Country Link
US (1) US20150316371A1 (de)
EP (1) EP2795788A1 (de)
KR (1) KR20140106593A (de)
CN (1) CN104011991B (de)
DE (1) DE102011089820A1 (de)
WO (1) WO2013092147A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218304B4 (de) 2013-09-12 2023-09-14 Continental Automotive Technologies GmbH Verfahren zum Ermitteln der Absolutposition eines Linearaktuators
DE102013225273A1 (de) * 2013-12-09 2015-06-11 Siemens Aktiengesellschaft Zählgetriebe mit Zahn- bzw. magnetischen Polrädern
KR101687365B1 (ko) 2014-10-29 2016-12-16 이명해 모션제어장치
DE102014016189A1 (de) 2014-11-03 2016-05-04 Audi Ag Bestimmung einer Position eines beweglichen Elementes eines für ein Kraftfahrzeug bestimmten Linearaktuators
US10137878B2 (en) 2015-10-14 2018-11-27 Akebono Brake Industry Co., Ltd. Method for controlling a parking brake system
WO2024129680A1 (en) * 2022-12-14 2024-06-20 Overair Inc. Absolute position sensor using multiple rotary feedback sensors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9902438D0 (en) * 1999-02-05 1999-03-24 Trw Lucas Varity Electric Improvements relating to electric power assisted steering assemblies
US6519549B1 (en) * 2000-07-31 2003-02-11 Delphi Technologies, Inc. Method and device for determining absolute angular position of a rotating body
FR2845212B1 (fr) * 2002-09-27 2005-03-18 Roulements Soc Nouvelle Dispositif de pilotage d'un moteur a commutation electronique au moyen d'un signal de position
DE502005010541D1 (de) * 2004-07-10 2010-12-30 Schaeffler Technologies Gmbh Verfahren zum Betreiben eines EC-Motors
DE202005013037U1 (de) * 2005-08-18 2007-01-04 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Drehsensor sowie Kraftfahrzeug-Verstellsystem
EP1921347A3 (de) * 2006-11-06 2010-08-04 Sener, Ingenieria Y Sistemas, S.A. Einzelantriebbetätigungssystem mit Redundanzen und Sicherheitsvorrichtung
DE102007010737A1 (de) * 2007-02-27 2008-08-28 Valeo Schalter Und Sensoren Gmbh Vorrichtung zur Erfassung des absoluten Drehwinkels einer Welle
JP5267031B2 (ja) * 2008-10-09 2013-08-21 株式会社ジェイテクト 電動パワーステアリング装置
TR201816551T4 (tr) * 2010-08-24 2018-11-21 Rotork Controls Çoklu dönüş üzerinden bir girdi elemanının bir açısal konumunun bir göstergesini sağlamak için uyarlanan aparat.
CN201910728U (zh) * 2011-01-17 2011-07-27 杨衍圣 电动汽车用开关磁阻电机绝对位置传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013092147A1 *

Also Published As

Publication number Publication date
WO2013092147A1 (de) 2013-06-27
US20150316371A1 (en) 2015-11-05
CN104011991A (zh) 2014-08-27
DE102011089820A1 (de) 2013-06-27
CN104011991B (zh) 2017-09-05
KR20140106593A (ko) 2014-09-03

Similar Documents

Publication Publication Date Title
EP2795788A1 (de) Verfahren zum ermitteln der absolutposition eines linearaktuators
EP2225142B1 (de) Absolut messende lenkwinkelsensoranordnung
WO2014019578A1 (de) Verfahren zur bestimmung einer position eines elektromotors, insbesondere in einem kupplungsbetätigungssystem eines kraftfahrzeuges
DE102015109652A1 (de) Rotationssensor
WO2015086014A1 (de) Vorrichtung und verfahren zur messung eines rotorparameters
EP2455721A2 (de) Absolutwertgeber mit Sprungstelle in kodierter Absolutlage
DE102021212470A1 (de) Steer-by-wire-Lenkung für ein Kraftfahrzeug
WO2018108365A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
DE102018213402A1 (de) Induktiver Positionssensor, insbesondere zur Erfassung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE102005019515A1 (de) Verfahren zum Messen der Drehzahl eines EC-Motors
WO2018006901A1 (de) Verfahren und vorrichtung zur ermittlung einer umdrehungszahl und einer winkelposition eines um eine drehachse verdrehbaren bauteils
WO2019110178A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
DE102012111799A1 (de) Elektrisch kommutierter Motor und Verfahren zum Kalibieren eines elektrisch kommutierten Motors
WO2012123133A1 (de) Verfahren und vorrichtung zum kalibrieren eines stellgebersystems mit einem elektronisch kommutierten stellantrieb
EP3446071A1 (de) Bürstenloser gleichstrommotor und verfahren zur bereitstellung eines winkelsignals
WO2019001629A1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
DE102014225658A1 (de) Verfahren und Messsystem zur Sensierung einer Dreh- und Linearbewegung in einem Schaltaktor
DE102016203176B3 (de) Bestimmen des Berührpunkts eines Fahrpedalaktuators mit einem Fahrpedal
DE102013201241A1 (de) Verfahren und Einrichtung zur Bestimmung der Position des Rotors bei einem bürstenlosen Gleichstrommotor
DE102010021375B4 (de) Verfahren zur Erfassung der Lage und des Diskontinue-Punktes mit einem Winkelsensor
WO2018065002A1 (de) Verfahren zur absoluten positionsbestimmung, elektromotor und betätigungseinrichtung für eine reibungskupplung
DE102017221761A1 (de) Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements
DE102016214497A1 (de) Steuerungseinheit und Verfahren zum Steuern einer elektrischen Maschine
DE102006026537A1 (de) Verfahren und System zur Schrittverlustermittlung eines Schrittmotors
DE102015216616A1 (de) Fehlerkompensation von Rotorwinkelsignalen für elektrische Antriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL TEVES AG & CO. OHG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180602