EP2791511B1 - Flüssigkeitsring-vakuumpumpe mit kavitationsregelung - Google Patents
Flüssigkeitsring-vakuumpumpe mit kavitationsregelung Download PDFInfo
- Publication number
- EP2791511B1 EP2791511B1 EP12799568.6A EP12799568A EP2791511B1 EP 2791511 B1 EP2791511 B1 EP 2791511B1 EP 12799568 A EP12799568 A EP 12799568A EP 2791511 B1 EP2791511 B1 EP 2791511B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- cavitation
- rotational speed
- predefined
- ring vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 76
- 238000000034 method Methods 0.000 claims description 36
- 230000006978 adaptation Effects 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C19/00—Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
- F04C19/004—Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C19/00—Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/08—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/81—Sensor, e.g. electronic sensor for control or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/05—Speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/12—Vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/12—Vibration
- F04C2270/125—Controlled or regulated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/44—Conditions at the outlet of a pump or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/86—Detection
Definitions
- the invention relates to a method for operating a liquid ring vacuum pump.
- vibration measurement values of the pump are recorded and compared with a predetermined cavitation threshold value.
- the invention also relates to a liquid ring vacuum pump suitable for carrying out the method.
- Liquid-ring vacuum pumps pose the problem that cavitation can occur in different operating states. Operating the pump under cavitation conditions for an extended period of time exposes the components of the pump to high mechanical stress, which can quickly destroy the pump. Previous liquid ring vacuum pumps are therefore designed so that always a sufficient distance is maintained to the operating conditions in which cavitation may occur. Although the pump is thus protected against damage due to cavitation, the distance to the cavitation limit does not exploit part of the potential performance of the pump.
- Liquid ring vacuum pumps with control devices for stepless adjustment of the rotational speed as a function of pressure and temperature are known US 4,655,688 A , which is considered to be the closest prior art, and can prevent cavitation.
- the invention is based on the object to present a pump and a method for operating a pump, in which the efficiency is increased.
- a measured value is recorded which represents the liquid content in the gas to be delivered, and the measured value is compared with a predetermined limit value.
- the speed of the pump is reduced if the specified cavitation threshold is exceeded and the liquid content is below the specified limit.
- the speed of the pump is increased if the specified cavitation threshold is exceeded and the liquid content is above the specified limit.
- the liquid that forms the liquid ring of the pump is called the working fluid.
- condensate is not limited to liquids that have been formed by condensation, but also includes other liquids that are carried by the gas. In particular, it is not necessary that the condensate is a different substance than the operating fluid. If the condensate enters the pump, it can mix with the operating fluid. It is therefore not inevitably challenged the same fluid from the pump, which has occurred as condensate.
- liquid content refers to liquid / condensate entrained by the gas to be delivered.
- the cavitation threshold is selected so that it can be concluded from vibration readings above the cavitation threshold that cavitation occurs in the pump, while there is no cavitation in the pump for vibration readings below the cavitation threshold.
- the concrete value of the cavitation threshold value depends on the design of the pump as well as the type of sensor and the absorption of the Measured values. For each individual pump, the cavitation threshold can be easily determined by experiment.
- the limit value for the liquid content is also dependent on the specific shape of the pump. In one pump, even very small amounts of condensate trigger cavitation. With the other pump, a certain amount of condensate can be carried without affecting the operation of the pump. This, too, can easily be determined by tests for each pump. It is also conceivable that the limit value changes depending on the rotational speed of the pump, so that the limit value is a function dependent on the rotational speed. The statement that the measured value is compared with a limit value is to be understood by a wide margin. For example, if the liquid content is deduced from indirect measurements, the comparison with the limit value may be that the indirect measurement identifies features that indicate high or low liquid content.
- the invention has recognized that in liquid ring vacuum pumps unlike other types of pumps (cf. DE 35 20 538 A1 ) is not always possible to bring the pump back out of the cavitation by lowering the speed. In fact, decreasing the speed helps only in certain operating conditions, for example, when the cavitation occurs because the pump is operated at high speed and at low suction pressure. This cavitation is called classical cavitation.
- this finding is used to introduce a method by which the operation of the pump can be automatically adjusted for different types of cavitation.
- the method according to the invention in each case two criteria are combined in order to decide whether the rotational speed is increased or decreased. If the cavitation threshold has been exceeded and the liquid content is low, the speed will be reduced. If the cavitation threshold has been exceeded and the liquid content is high, the speed is increased.
- the process step to increase the speed of the pump after the occurrence of cavitation is exactly opposite to the usual teaching, according to which it was assumed that in cavitation, the speed must always be lowered.
- readings from external sensors can be processed to determine the liquid content of the gas being pumped. It can be provided in the space to be evacuated a sensor that measures the liquid content directly. It can also be concluded from other measured values, which concern about the pressure or the temperature in the space to be evacuated, on the liquid content.
- measured values recorded at the pump can be used to determine the liquid content. It is possible, for example, to deduce the liquid content from measured values of a vibration sensor. Although the liquid content can not be measured directly via a vibration sensor. It turns out, however, that the cavitation caused by an excess of condensate causes characteristic oscillations that differ from the oscillations in classical cavitation. By suitable evaluation the measured values of the vibration sensor, these characteristic properties can be determined. For example, a Fourier analysis can be carried out and it can be concluded from the peculiarities of the frequency spectrum whether the cavitation is caused by increased liquid content or not. How the specifics look concretely depends on the design of the pump and the arrangement of the vibration sensor and must be determined in individual cases by tests if necessary.
- the measured values to be compared with the cavitation threshold value can be recorded with the same vibration sensor or another vibration sensor.
- the evaluation of whether there is any cavitation is easier than the evaluation of the different types of cavitation.
- the cavitation threshold may simply relate to the amplitude of the oscillation. If the amplitude exceeds the cavitation threshold, it can be concluded that cavitation is present.
- Another way of determining the liquid content and thus the type of cavitation from measured values recorded on the pump is to evaluate the internal motor data, such as the motor voltage and the motor current.
- cavitation can not be eliminated by adjusting the speed alone. In this case it can be provided to admit additional air via a valve in the working space of the pump. Although this reduces the efficiency of the pump, cavitation is reliably eliminated.
- the operation of the pump can be based on a multi-stage sequence.
- the pump may be operated at a speed below the minimum speed lies.
- the minimum speed denotes that speed at which the liquid ring in the pump is just stable.
- the pump is therefore operated without a stable liquid ring.
- the pump which is actually designed for conveying gas, can be used to initially convey an amount of liquid out of the space to be evacuated.
- the blades of the impeller then act as blades, with which the liquid is passed through the pump. A separate condensate pump is thereby superfluous.
- the liquid ring vacuum pump can be operated at a second stage of the process initially at maximum speed to bring out in the shortest possible time as much gas from the space to be evacuated.
- This operating state there is the risk that with decreasing pressure, classical cavitation will occur in the liquid ring.
- the classic cavitation can be counteracted by reducing the speed.
- the pump can be operated in this way close to the cavitation limit, the speed is reduced further and further, the lower the pressure.
- the term cavitation limit designates an operating state the pump, which shows the first signs of cavitation.
- the speed of the pump can be reduced in a third process stage to a value close to the minimum speed.
- Low-speed operation saves energy. If cavitation occurs at such a low speed, this is usually due to an increased liquid content in the gas to be delivered. So cavitation occurs, this can be counteracted by increasing the speed.
- the pump can be used in this way, for example, when disinfecting in hospitals.
- the object to be disinfected is placed in a chamber and treated with hot steam.
- the chamber can be evacuated by the method according to the invention. It can first be transported away at low speed, the condensate. By then operating the pump at maximum speed and then lowering the speed along the cavitation limit, time is saved in the actual evacuation. By finally maintaining low pressure through low speed operation, energy is saved.
- the invention also relates to a liquid ring vacuum pump which can be operated according to the method of the invention.
- the pump includes a pump housing, an impeller mounted eccentrically in the pump housing, and a vibration sensor for absorbing vibrations of the pump.
- a logic module is provided which compares a measured value of the vibration sensor with a predetermined cavitation threshold value and which compares a measured value representing the liquid content of the gas to be conveyed with a first limit value.
- a control unit of the pump is designed to adjust the speed of the pump. In this case, the control unit is to designed to reduce the speed when the predetermined Kavitationsschwellwert was exceeded and the liquid content is below a predetermined limit. In this case, the control unit is designed to increase the speed when the predetermined Kavitationsschwellwert has been exceeded and the liquid content is above a predetermined limit.
- the predetermined cavitation threshold value is chosen so that it is not exceeded during normal operation of the pump, but only when the pump approaches the cavitation limit.
- the predetermined cavitation threshold value is suitably selected for the respective pump.
- the cavitation threshold may, for example, refer to the amplitude of the oscillations. It is also possible that the threshold value refers to certain characteristic properties of the vibrations that are triggered by cavitation. For example, it may be that with cavitation vibrations in certain frequencies occur with particular intensity.
- the distance to the cavitation boundary can also be increased by increasing the pressure in the interior of the pump.
- the pump may for this purpose have a channel which extends from the outside through the pump housing into the interior of the pump.
- the channel is provided with a valve which is normally closed. The valve can be opened briefly after exceeding the threshold value, to release gas from the environment into the interior of the pump. This again establishes a distance to the cavitation boundary.
- the vibration sensor is preferably connected to the pump housing so that it detects vibrations occurring in the pump housing.
- the vibration sensor can be arranged where the vibrations caused by cavitation occur, ie in the vicinity of the impeller.
- the vibration sensor can be arranged, for example, on the circumference or on the front side of this region of the housing.
- the vibration sensor is arranged in a region of the pump housing in which electronic components are present in any case. This can be, for example, the area in which the control unit for the drive is arranged. This is particularly useful when the pump is designed in block design. Block design means that the pump and the drive are surrounded by a common pump housing. The vibrations generated in the area of the impeller propagate through the pump housing and can also be measured well elsewhere. If the control unit for driving the pump is connected to the pump housing, the vibration sensor may be integrated in the control unit.
- the pump can be developed with further features which are described above with reference to the method according to the invention.
- an impeller 14 is mounted eccentrically in a pump housing 20. Liquid in the interior of the pump is carried by the impeller 14 in rotation and forms a liquid ring extending radially inwardly from the outer wall of the pump housing 20. Due to the eccentric bearing the wings of the impeller 14 protrude different depths depending on the angular position in the liquid ring. The volume of a chamber enclosed between two flights changes as a result. The liquid ring thus acts as a piston which moves up and down in the chamber during one revolution of the impeller 14.
- a channel leads into the interior of the pump, in which the impeller 14 rotates.
- the channel 16 opens in the area in which the wings of the impeller 14 emerge from the liquid ring, in which thus the enclosed between two wings chamber increases.
- gas is sucked through the inlet opening 16 into the chamber.
- the liquid ring penetrates the further rotation of the impeller 14 back into the chamber. If the gas is sufficiently compressed by the further penetrating liquid ring, it is passed through an outlet opening 17 at atmospheric pressure delivered again.
- Such a liquid ring vacuum pump serves to evacuate a space connected to the inlet opening 16 to a pressure of, for example, 50 millibars.
- the pump is also equipped with a designated as Kavitationsbohrung channel extending from the outside into the interior of the pump.
- a solenoid valve is arranged, with which the channel can be selectively opened or closed.
- the impeller 14 is connected via a shaft 18 to a drive motor.
- the pump is designed in block construction, the drive and the impeller 14 are thus accommodated together in the pump housing 20.
- a control unit 21 is also arranged, via which the drive supplied electrical energy and the speed of the pump is adjusted.
- control unit 21 comprises a vibration sensor 22, a logic module 23 and a control module 24.
- the control unit 21 are also supplied with measured values from an external sensor 27.
- the vibration sensor 22 is connected to the pump housing 20 to detect vibrations of the pump housing 20.
- the measured values of the vibration sensor 22 are continuously transmitted to the logic module 23.
- the logic module 23 compares the measured values with a predetermined cavitation threshold value 26 (see Fig. 4 ). If the cavitation threshold 26 is exceeded, this is interpreted as an indication that cavitation has occurred in the pump. However, exceeding the cavitation threshold does not yet determine whether it is classic cavitation or cavitation due to increased liquid content. For this reason, the logic module is additionally supplied with measured values from the external sensor 27, from which it results what the liquid content of the gas to be delivered is.
- the external sensor 27 may be a sensor that directly measures the fluid content in the supply line to the pump. It is also possible that the external sensor 27 measures values from which the liquid content can be indirectly deduced. These values may, for example, relate to the temperature, the pressure or the amount of the supplied steam in the space to be evacuated.
- the information is merged, on the basis of which it can be decided whether the speed must be increased or decreased in order to eliminate the cavitation. If cavitation occurs and the gas to be pumped contains no condensate or only very little condensate, the speed is lowered. If cavitation occurs and the gas to be pumped contains more condensate, the speed is increased. From the logic module 23, a corresponding signal is given to the control module 24, so that the drive of the pump is adjusted accordingly. In both cases, adjusting the speed will cause the pump to exit cavitation again.
- the solenoid valve 28 can be opened for a short time via the control module 24, so that air from the environment can penetrate into the interior of the pump. Also by the associated pressure increase in the interior of the pump, the distance to the cavitation limit is increased.
- the logic module 23 does not receive information from an external sensor. Instead, the measured values are evaluated by the vibration sensor 22 in two ways. First, the amplitude of the oscillation compared with the predetermined Kavitationsschwellwert. If the amplitude exceeds the threshold, this indicates cavitation. On the other hand, a Fourier transformation of the measured values is made and the frequency distribution of the vibrations is considered. For this purpose, for example, the third-octave band at 5 kHz and the third-octave band at 10 kHz can be singled out.
- the classical cavitation manifests itself by a characteristic distribution in the 5 kHz third band, while the cavitation caused by increased liquid content causes a characteristic frequency distribution in the 10 kHz third band.
- This evaluation of the frequency bands in the context of the invention represents a comparison between a limit value and measured values which represent the liquid content.
- the pump may be used to operate at a first stage of the process at a speed of, for example, 1000 rpm.
- the minimum speed from which the liquid ring is stable is about 2000 rpm.
- the pump is therefore operated well below the minimum speed. In this operating state, the pump can be used to transport an amount of liquid out of the space to be evacuated.
- the pump can go on in a second stage of the process in the vacuum operation.
- A represents the speed of the pump in Hz
- B shows the measurements taken with the vibration sensor 22 on a relative scale between 0 and 10
- C indicates the pressure in the space to be evacuated in millibars
- the room to be evacuated has a volume of 400 l.
- the horizontal axis shows the time in seconds.
- To the Time t 0 is in the room to be evacuated atmospheric pressure of just over 1000 mbar and the vibration sensor measures no vibration of the pump.
- the pump is accelerated within a short time to the maximum speed of about 5400 rpm.
- the pressure in the room quickly drops to values of about 500 mbar.
- the vibrations measured with the vibration sensor 22 exceed for the first time the in Fig. 5B Dashed shown Kavitationsschwellwert 26.
- the speed of the pump is then slightly reduced, which causes the vibrations within a short time again falls below the predetermined Kavitationsschwellwert 26.
- the speed is then increased again slightly until the cavitation limit is reached again.
- the container which has a volume of 400 l, evacuated within 80 s to a pressure of 60 mbar. If you operate the same pump with constant speed, the same process takes 113 s.
- the speed is therefore reduced so that it is just above the minimum speed. If it comes to cavitation in this state, this is usually due to an increased liquid content in the gas to be delivered.
- the logic module 23 on the one hand, an excess of the cavitation threshold and, on the other hand, a high liquid content are determined. The logic module 23 will thus convey the instruction to the control unit 24 to increase the speed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Betreiben einer Flüssigkeitsring-Vakuumpumpe. Bei dem Verfahren werden Schwingungsmesswerte der Pumpe aufgenommen und mit einem vorgegebenen Kavitationsschwellwert verglichen. Die Erfindung betrifft außerdem eine zum Durchführen des Verfahrens geeignete Flüssigkeitsring-Vakuumpumpe.
- Bei Flüssigkeitsring-Vakuumpumpen stellt sich das Problem, dass in unterschiedlichen Betriebszuständen Kavitation auftreten kann. Wenn die Pumpe über einen längeren Zeitraum unter Kavitationsbedingungen betrieben wird, stellt dies eine hohe mechanische Belastung für die Komponenten der Pumpe dar, durch die die Pumpe schnell zerstört werden kann. Bisherige Flüssigkeitsring-Vakuumpumpen sind deswegen so ausgelegt, dass immer ein ausreichender Abstand eingehalten wird zu den Betriebszuständen, in denen Kavitation auftreten kann. Damit ist die Pumpe zwar vor Schäden durch Kavitation geschützt, durch den Abstand zur Kavitationsgrenze wird aber ein Teil der möglichen Leistungsfähigkeit der Pumpe nicht ausgenutzt.
- Flüssigkeitsring-Vakuumpumpen mit Steuereinrichtungen zum stufenlosen Anpassen der Drehzahl in Abhängigkeit von Druck und Temperatur sind bekannt aus
US 4,655,688 A , die als nächstliegender Stand der Technik angesehen wird, und können Kavitation vorbeugen. - Der Erfindung liegt die Aufgabe zu Grunde, eine Pumpe und ein Verfahren zum Betreiben einer Pumpe vorzustellen, bei denen die Effizienz erhöht ist. Ausgehend vom eingangs genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Ausführungsformen finden sich in den Unteransprüchen.
- Bei dem Verfahren wird erfindungsgemäß ein Messwert aufgenommen, der den Flüssigkeitsgehalt in dem zu fördernden Gas repräsentiert, und der Messwert wird mit einem vorgegebenen Grenzwert verglichen. Die Drehzahl der Pumpe wird vermindert, wenn der vorgegebene Kavitationsschwellwert überschritten wird und der Flüssigkeitsgehalt unterhalb des vorgegebenen Grenzwerts liegt. Die Drehzahl der Pumpe wird erhöht, wenn der vorgegebene Kavitationsschwellwert überschritten wird und der Flüssigkeitsgehalt oberhalb des vorgegebenen Grenzwerts liegt.
- Zunächst werden einige Begriffe erläutert. Die Flüssigkeit, die den Flüssigkeitsring der Pumpe bildet, wird als Betriebsflüssigkeit bezeichnet. Davon zu unterscheiden ist eine von dem zu fördernden Gas mitgeführte Flüssigkeit, die nachfolgend als Kondensat bezeichnet wird. Der Begriff Kondensat ist nicht auf Flüssigkeiten beschränkt, die sich durch Kondensation gebildet haben, sondern umfasst auch andere Flüssigkeiten, die von dem Gas mitgeführt werden. Insbesondere ist es nicht erforderlich, dass das Kondensat ein anderer Stoff ist als die Betriebsflüssigkeit. Tritt das Kondensat in die Pumpe ein, kann es sich mit der Betriebsflüssigkeit vermischen. Es wird also nicht zwangsläufig dieselbe Flüssigkeit aus der Pumpe herausgefordert, die als Kondensat eingetreten ist. Der Begriff Flüssigkeitsgehalt bezieht sich auf von dem zu fördernden Gas mitgeführte Flüssigkeit/Kondensat.
- Der Kavitationsschwellwert ist so ausgewählt, dass aus Schwingungsmesswerten oberhalb des Kavitationsschwellwerts darauf geschlossen werden kann, dass Kavitation in der Pumpe auftritt, während es bei Schwingungsmesswerten unterhalb des Kavitationsschwellwerts keine Kavitation in der Pumpe gibt. Der konkrete Wert des Kavitationsschwellwerts hängt sowohl von der Gestaltung der Pumpe als auch von der Art des Sensors und der Aufnahme der Messwerte ab. Für jede einzelne Pumpe kann der Kavitationsschwellwert durch Versuche leicht ermittelt werden.
- Der Grenzwert für den Flüssigkeitsgehalt ist ebenfalls abhängig von der konkreten Gestalt der Pumpe. Bei der einen Pumpe lösen bereits sehr geringe Mengen von Kondensat die Kavitation aus. Bei der anderen Pumpe kann eine gewisse Menge an Kondensat mitgeführt werden, ohne dass der Betrieb der Pumpe beeinträchtigt wird. Auch dies lässt sich durch Versuche für jede Pumpe leicht ermitteln. Denkbar ist auch, dass der Grenzwert sich in Abhängigkeit von der Drehzahl der Pumpe ändert, dass der Grenzwert also eine von der Drehzahl abhängige Funktion ist. Die Angabe, dass der Messwert mit einem Grenzwert verglichen wird, ist weit zu verstehen. Wird beispielsweise aus indirekten Messungen auf den Flüssigkeitsgehalt geschlossen, kann der Vergleich mit dem Grenzwert darin bestehen, dass in der indirekten Messung Merkmale identifiziert werden, die auf einen hohen bzw. niedrigen Flüssigkeitsgehalt hinweisen.
- Die Erfindung hat erkannt, dass es bei Flüssigkeitsring-Vakuumpumpen anders als bei anderen Arten von Pumpen (vgl. etwa
DE 35 20 538 A1 ) nicht in jedem Fall möglich ist, die Pumpe durch Absenken der Drehzahl wieder aus der Kavitation herauszuführen. Tatsächlich hilft eine Verminderung der Drehzahl nur in bestimmten Betriebszuständen, beispielsweise wenn die Kavitation dadurch entsteht, dass die Pumpe mit hoher Drehzahl und bei niedrigem Ansaugdruck betrieben wird. Diese Kavitation wird als klassische Kavitation bezeichnet. - Entsteht die Kavitation hingegen dadurch, dass der Pumpe zusammen mit dem zu fördernden Gas Kondensat zugeführt wird, wäre es sogar kontraproduktiv, die Drehzahl der Pumpe abzusenken. Mit der verminderten Drehzahl wäre die Pumpe nämlich erst recht nicht mehr in der Lage, die überschüssige Flüssigkeit aus der Pumpe herauszubefördern. Tatsächlich ist es aber möglich, die überschüssige Flüssigkeit durch eine Erhöhung der Drehzahl aus der Pumpe herauszubefördern. Die Erhöhung der Drehzahl bewirkt also in diesem Fall, dass die Kavitation beseitigt wird.
- Mit der Erfindung wird diese Erkenntnis genutzt, um ein Verfahren vorzustellen, mit dem der Betrieb der Pumpe bei verschiedenen Arten der Kavitation automatisch angepasst werden kann. Bei dem erfindungsgemäßen Verfahren werden jeweils zwei Kriterien zusammengeführt, um zu entscheiden, ob die Drehzahl erhöht oder vermindert wird. Wurde der Kavitationsschwellwert überschritten und ist der Flüssigkeitsgehalt niedrig, wird die Drehzahl vermindert. Wurde der Kavitationsschwellwert überschritten und ist der Flüssigkeitsgehalt hoch, wird die Drehzahl erhöht. Der Verfahrensschritt, die Drehzahl der Pumpe nach dem Auftreten von Kavitation zu erhöhen, ist der gängigen Lehre genau entgegengesetzt, gemäß der man davon ausging, dass bei Kavitation die Drehzahl immer abgesenkt werden muss.
- In der Pumpe können Messwerte von externen Sensoren verarbeitet werden, um den Flüssigkeitsgehalt des zu fördernden Gases zu ermitteln. Es kann dazu in dem zu evakuierenden Raum ein Sensor vorgesehen sein, der den Flüssigkeitsgehalt direkt misst. Es kann auch aus anderen Messwerten, die etwa den Druck oder die Temperatur in dem zu evakuierendem Raum betreffen, auf den Flüssigkeitsgehalt geschlossen werden.
- Zusätzlich oder alternativ dazu können an der Pumpe aufgenommene Messwerte herangezogen werden, um den Flüssigkeitsgehalt zu ermitteln. Möglich ist es beispielsweise, aus Messwerten eines Schwingungssensors auf den Flüssigkeitsgehalt zu schließen. Zwar lässt sich der Flüssigkeitsgehalt über einen Schwingungssensor nicht direkt messen. Es zeigt sich aber, dass die durch einen Überschuss an Kondensat hervorgerufene Kavitation charakteristische Schwingungen verursacht, die sich von den Schwingungen bei der klassischen Kavitation unterscheiden. Durch geeignete Auswertung der Messwerte des Schwingungssensors können diese charakteristischen Eigenschaften ermittelt werden. Es kann beispielsweise eine Fourier-Analyse vorgenommen werden und aus den Eigenheiten des Frequenzspektrums darauf geschlossen werden, ob die Kavitation durch erhöhten Flüssigkeitsgehalt verursacht ist oder nicht. Wie die Eigenheiten konkret aussehen, hängt von der Gestaltung der Pumpe und der Anordnung des Schwingungssensors ab und muss gegebenenfalls im Einzelfall durch Versuche ermittelt werden.
- Die mit dem Kavitationsschwellwert zu vergleichenden Messwerte können mit dem gleichen Schwingungssensor oder einem anderen Schwingungssensor aufgenommen werden. Die Auswertung, ob überhaupt Kavitation vorliegt, ist einfacher als die Auswertung hinsichtlich der verschiedenen Arten der Kavitation. Beispielsweise kann der Kavitationsschwellwert sich einfach auf die Amplitude der Schwingung beziehen. Überschreitet die Amplitude den Kavitationsschwellwert, kann daraus gefolgert werden, dass Kavitation vorliegt.
- Eine andere Möglichkeit, aus an der Pumpe aufgenommenen Messwerten auf den Flüssigkeitsgehalt und damit die Art der Kavitation zu schließen, besteht darin, die internen Motordaten, wie etwa die Motorspannung und den Motorstrom auszuwerten.
- Gelegentlich kommt es vor, dass die Kavitation alleine durch eine Anpassung der Drehzahl nicht beseitigt werden kann. In diesem Fall kann vorgesehen sein, über ein Ventil zusätzliche Luft in den Arbeitsraum der Pumpe einzulassen. Dadurch sinkt zwar der Wirkungsgrad der Pumpe, die Kavitation wird aber zuverlässig beseitigt.
- Dem Betrieb der Pumpe kann ein mehrstufiger Ablauf zu Grunde liegen. Auf einer ersten Verfahrensstufe kann die Pumpe mit einer Drehzahl betrieben werden, die unterhalb der Mindestdrehzahl liegt. Dabei bezeichnet die Mindestdrehzahl diejenige Drehzahl, bei der der Flüssigkeitsring in der Pumpe gerade stabil ist. Auf dieser Verfahrensstufe wird die Pumpe also ohne stabilen Flüssigkeitsring betrieben. In diesem Betriebszustand kann die Pumpe, die eigentlich zum Fördern von Gas ausgelegt ist, dazu genutzt werden, zunächst eine Flüssigkeitsmenge aus dem zu evakuierenden Raum herauszubefördern. Die Flügel des Flügelrads wirken dann wie Schaufeln, mit denen die Flüssigkeit durch die Pumpe hindurchgeführt wird. Eine gesonderte Kondensatpumpe wird dadurch überflüssig.
- Ist auf diese Weise die Flüssigkeit aus dem zu evakuierenden Raum entfernt worden, kann zum normalen Vakuumbetrieb übergegangen werden, in dem die Pumpe mit einer oberhalb der Mindestdrehzahl liegenden Drehzahl betrieben wird. Der Gedanke, die Pumpe zunächst mit einer Drehzahl unterhalb der Mindestdrehzahl zu betreiben, um Flüssigkeit abzutransportieren, und dann den Vakuumbetrieb mit einer Drehzahl oberhalb der Mindestdrehzahl fortzusetzen, hat eigenständigen erfinderischen Gehalt, auch ohne dass Schwingungsmesswerte aufgenommen werden, der Flüssigkeitsgehalt ermittelt wird und die Drehzahl angepasst wird. Die nachfolgende Beschreibung weiterer Verfahrensstufen konkretisiert den eigenständigen erfinderischen Gehalt.
- Nach dem Übergang in den Vakuumbetrieb kann die Flüssigkeitsring-Vakuumpumpe auf einer zweiten Verfahrensstufe zunächst mit maximaler Drehzahl betrieben werden, um in möglichst kurzer Zeit möglichst viel Gas aus dem zu evakuierendem Raum herauszufördern. In diesem Betriebszustand besteht das Risiko, dass es mit abnehmendem Druck zu klassischer Kavitation in dem Flüssigkeitsring kommt. Der klassischen Kavitation kann durch eine Drehzahlverminderung entgegengewirkt werden. Die Pumpe kann auf diese Weise nahe der Kavitationsgrenze betrieben werden, wobei die Drehzahl immer weiter reduziert wird, je niedriger der Druck wird. Der Begriff Kavitationsgrenze bezeichnet dabei einen Betriebszustand der Pumpe, bei dem sich erste Anzeichen von Kavitation zeigen.
- Ist der Druck in dem zu evakuierenden Raum auf den gewünschten Wert abgesunken, kann die Drehzahl der Pumpe in einer dritten Verfahrensstufe auf einen Wert nahe der Mindestdrehzahl vermindert werden. Durch den Betrieb mit niedriger Drehzahl wird Energie gespart. Kommt es bei einer derart niedrigen Drehzahl zu Kavitation, liegt dies regelmäßig an einem erhöhten Flüssigkeitsgehalt in dem zu fördernden Gas. Tritt also Kavitation auf, kann dieser durch eine Erhöhung der Drehzahl entgegengewirkt werden.
- Die Pumpe kann auf diese Weise beispielsweise beim Desinfizieren in Krankenhäusern zum Einsatz kommen. Der zu desinfizierende Gegenstand wird in eine Kammer eingebracht und mit heißem Dampf behandelt. Anschließend kann die Kammer mit dem erfindungsgemäßen Verfahren evakuiert werden. Es kann zunächst mit niedriger Drehzahl das Kondensat abtransportiert werden. Indem die Pumpe anschließend mit maximaler Drehzahl betrieben wird und die Drehzahl dann entlang der Kavitationsgrenze abgesenkt wird, wird bei der eigentlichen Evakuierung Zeit gespart. In dem schließlich der niedrige Druck durch einen Betrieb mit geringer Drehzahl aufrechterhalten wird, wird Energie gespart.
- Die Erfindung betrifft außerdem eine Flüssigkeitsring-Vakuumpumpe, die gemäß dem erfindungsgemäßen Verfahren betrieben werden kann. Die Pumpe umfasst ein Pumpengehäuse, ein exzentrisch in dem Pumpengehäuse gelagertes Flügelrad und einen Schwingungssensor zum Aufnehmen von Schwingungen der Pumpe. Erfindungsgemäß ist ein Logikmodul vorgesehen, das einen Messwert des Schwingungssensors mit einem vorgegebenen Kavitati-onsschwellwert vergleicht und das einen den Flüssigkeitsgehalt des zu fördernden Gases repräsentierenden Messwert mit einem ersten Grenzwert vergleicht. Eine Steuereinheit der Pumpe ist dazu ausgelegt, die Drehzahl der Pumpe anzupassen. Dabei ist die Steuereinheit dazu ausgelegt, die Drehzahl zu vermindern, wenn der vorgegebene Kavitationsschwellwert überschritten wurde und der Flüssigkeitsgehalt unterhalb eines vorgegebenen Grenzwerts liegt. Dabei ist die Steuereinheit dazu ausgelegt, die Drehzahl zu erhöhen, wenn der vorgegebene Kavitationsschwellwert überschritten wurde und der Flüssigkeitsgehalt oberhalb eines vorgegebenen Grenzwerts liegt.
- Wenn es zu Kavitation im Flüssigkeitsring der Pumpe kommt, treten charakteristische Schwingungen auf, die sich von den Schwingungen im normalen Betrieb unterscheiden. Mit dem Schwingungssensor können erste Anzeichen von Kavitation festgestellt werden, bevor die Kavitation derart ausgeprägt ist, dass es zu Schäden an der Pumpe kommen kann. Der vorgegebene Kavitationsschwellwert wird so gewählt, dass er im normalen Betrieb der Pumpe nicht überschritten wird, sondern erst dann, wenn die Pumpe sich an die Kavitationsgrenze annähert.
- Der vorgegebene Kavitationsschwellwert wird für die jeweilige Pumpe geeignet ausgewählt. Der Kavitationsschwellwert kann sich beispielsweise auf die Amplitude der Schwingungen beziehen. Möglich ist auch, dass der Schwellwert sich auf bestimmte charakteristische Eigenschaften der Schwingungen bezieht, die durch Kavitation ausgelöst werden. Beispielsweise kann es sein, dass bei Kavitation Schwingungen in bestimmten Frequenzen mit besonderer Intensität auftreten.
- Zusätzlich oder alternativ zu Anpassung der Drehzahl kann der Abstand zur Kavitationsgrenze auch dadurch vergrößert werden, dass der Druck im Innenraum der Pumpe erhöht wird. Die Pumpe kann zu diesem Zweck einen Kanal aufweisen, der sich von außen durch das Pumpengehäuse hindurch in den Innenraum der Pumpe erstreckt. Der Kanal ist mit einem Ventil versehen, das im Normalzustand geschlossen ist. Das Ventil kann nach dem Überschreiten des Schwellwerts kurzzeitig geöffnet werden, um Gas aus der Umgebung in den Innenraum der Pumpe einzulassen. Es wird dadurch wieder ein Abstand zur Kavitationsgrenze hergestellt.
- Der Schwingungssensor ist vorzugsweise mit dem Pumpengehäuse verbunden, so dass er in dem Pumpengehäuse auftretende Schwingungen feststellt. Der Schwingungssensor kann dort angeordnet sein, wo die durch Kavitation verursachten Schwingungen entstehen, also in der Nähe des Flügelrads. Der Schwingungssensor kann beispielsweise am Umfang oder an der Stirnseite dieses Bereichs des Gehäuses angeordnet sein.
- Allerdings sind im Bereich des Flügelrads sonst normalerweise keine elektronischen Komponenten angeordnet. Wenn der Schwingungssensor dort angeordnet ist, hat dies folglich den Nachteil, dass extra Kabel verlegt werden müssen. Vorteilhaft kann es deswegen sein, wenn der Schwingungssensor in einem Bereich des Pumpengehäuses angeordnet wird, in dem ohnehin elektronische Komponenten vorhanden sind. Dies kann beispielsweise der Bereich sein, in dem auch die Steuereinheit für den Antrieb angeordnet ist. Dies bietet sich insbesondere an, wenn die Pumpe in Blockbauweise ausgeführt ist. Blockbauweise bedeutet, dass die Pumpe und der Antrieb mit einem gemeinsamen Pumpengehäuse umgeben sind. Die in dem Bereich des Flügelrads erzeugten Schwingungen verbreiten sich durch das Pumpengehäuse hindurch und können auch an anderer Stelle gut gemessen werden. Wenn die Steuereinheit für den Antrieb der Pumpe mit dem Pumpengehäuse verbunden ist, kann der Schwingungssensor in die Steuereinheit integriert sein.
- Die Pumpe kann mit weiteren Merkmalen fortgebildet werden, die oben mit Bezug auf das erfindungsgemäße Verfahren beschrieben sind.
- Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:
- Fig. 1:
- eine schematische Schnittdarstellung einer erfindungsgemäßen Flüssigkeitsring-Vakuumpumpe;
- Fig. 2:
- die Pumpe aus
Fig. 1 in einer Seitenansicht; - Fig. 3:
- eine Steuereinheit einer erfindungsgemäßen Flüssigkeitsring-Vakuumpumpe;
- Fig. 4:
- die Ansicht aus
Fig. 3 bei einer anderen Ausführungsform der Erfindung; und - Fig. 5:
- eine schematische Darstellung eines Betriebsablaufs der erfindungsgemäßen Pumpe.
- Bei einer in
Fig. 1 gezeigten Flüssigkeitsring-Vakuumpumpe ist ein Flügelrad 14 exzentrisch in einem Pumpengehäuse 20 gelagert. Flüssigkeit im Innenraum der Pumpe wird von dem in Drehung befindlichen Flügelrad 14 mitgeführt und bildet einen Flüssigkeitsring, der sich von der äußeren Wand des Pumpengehäuses 20 radial nach innen erstreckt. Aufgrund der exzentrischen Lagerung ragen die Flügel des Flügelrads 14 je nach Winkelposition unterschiedlich tief in den Flüssigkeitsring hinein. Das Volumen einer zwischen zwei Flügen eingeschlossenen Kammer verändert sich dadurch. Der Flüssigkeitsring wirkt damit wie ein Kolben, der während einer Umdrehung des Flügelrads 14 in der Kammer auf- und abfährt. - Von einer Eingangsöffnung 16 führt ein Kanal in den Innenraum der Pumpe, in dem das Flügelrad 14 sich dreht. Der Kanal 16 mündet in dem Bereich, in dem die Flügel des Flügelrads 14 aus dem Flüssigkeitsring auftauchen, in dem also die zwischen zwei Flügeln eingeschlossene Kammer sich vergrößert. Durch die sich vergrößernde Kammer wird Gas durch die Eingangsöffnung 16 in die Kammer gesaugt. Nachdem die Kammer ihr maximales Volumen erreicht hat, dringt der Flüssigkeitsring bei der weiteren Drehung des Flügelrads 14 wieder in die Kammer ein. Wenn das Gas durch den weiter eindringenden Flüssigkeitsring hinreichend komprimiert ist, wird es durch eine Austrittsöffnung 17 bei Atmosphärendruck wieder abgegeben. Eine solche FlüssigkeitsringVakuumpumpe dient dazu, einen an die Eingangsöffnung 16 angeschlossenen Raum auf einen Druck von beispielsweise 50 Millibar zu evakuieren.
- Die Pumpe ist außerdem mit einem als Kavitationsbohrung bezeichneten Kanal ausgestattet, der sich von außen in den Innenraum der Pumpe erstreckt. In dem Kanal ist ein Magnetventil angeordnet, mit dem der Kanal wahlweise geöffnet oder geschlossen werden kann.
- Gemäß
Fig. 2 ist das Flügelrad 14 über eine Welle 18 mit einem Antriebsmotor verbunden. Die Pumpe ist in Blockbauweise ausgeführt, der Antrieb und das Flügelrad 14 sind also gemeinsam in dem Pumpengehäuse 20 aufgenommen. An dem Pumpengehäuse 20 ist außerdem eine Steuereinheit 21 angeordnet, über die dem Antrieb elektrische Energie zugeführt und die Drehzahl der Pumpe eingestellt wird. - Wie die schematische Darstellung der
Fig. 3 zeigt, umfasst die Steuereinheit 21 einen Schwingungssensor 22, ein Logikmodul 23 und ein Stellmodul 24. Der Steuereinheit 21 werden außerdem Messwerte von einem externen Sensor 27 zugeführt. - Der Schwingungssensor 22 ist mit dem Pumpengehäuse 20 verbunden, um Schwingungen des Pumpengehäuses 20 zu ermitteln. Die Messwerte des Schwingungssensors 22 werden laufend an das Logikmodul 23 übermittelt. Das Logikmodul 23 vergleicht die Messwerte mit einem vorgegebenen Kavitationsschwellwert 26 (siehe
Fig. 4 ). Wird der Kavitationsschwellwert 26 überschritten, so wird dies als Hinweis gewertet, dass in der Pumpe Kavitation aufgetreten ist. Allein aus der Überschreitung des Kavitationsschwellwerts ergibt sich aber noch nicht, ob es sich um klassische Kavitation handelt oder um Kavitation aufgrund erhöhten Flüssigkeitsgehalts. Dem Logikmodul werden deswegen zusätzlich Messwerte von dem externen Sensor 27 zugeführt, aus denen sich ergibt, wie hoch der Flüssigkeitsgehalt des zu fördernden Gases ist. Der externe Sensor 27 kann beispielsweise ein Sensor sein, der den Flüssigkeitsgehalt in der Zuleitung zu der Pumpe direkt misst. Möglich ist es auch, dass der externe Sensor 27 Werte misst, aus denen indirekt auf den Flüssigkeitsgehalt geschlossen werden kann. Diese Werte können beispielsweise die Temperatur, den Druck oder die Menge des zugeführten Dampfs in dem zu evakuierenden Raum betreffen. - Damit werden in dem Logikmodul 23 die Informationen zusammengeführt, anhand derer entschieden werden kann, ob die Drehzahl erhöht oder abgesenkt werden muss, um die Kavitation zu beseitigen. Tritt Kavitation auf und enthält das zu fördernde Gas kein Kondensat oder nur sehr wenig Kondensat, wird die Drehzahl abgesenkt. Tritt Kavitation auf und das zu fördernde Gas enthält eine größere Menge Kondensat, wird die Drehzahl erhöht. Von dem Logikmodul 23 wird ein entsprechendes Signal an das Stellmodul 24 gegeben, so dass der Antrieb der Pumpe entsprechend eingestellt wird. In beiden Fällen führt das Anpassen der Drehzahl dazu, dass die Pumpe wieder aus der Kavitation herausgeführt wird.
- Zusätzlich oder alternativ zu der Drehzahlanpassung kann über das Stellmodul 24 kurzzeitig das Magnetventil 28 geöffnet werden, so dass Luft aus der Umgebung in den Innenraum der Pumpe eindringen kann. Auch durch die damit verbundene Druckerhöhung im Innenraum der Pumpe wird der Abstand zur Kavitationsgrenze vergrößert.
- Bei der Ausführungsform gemäß
Fig. 4 erhält das Logikmodul 23 keine Informationen von einem externen Sensor. Stattdessen werden die Messwerte von dem Schwingungssensor 22 in zweifacher Hinsicht ausgewertet. Zum einen wird die Amplitude der Schwingung mit dem vorgegebenen Kavitationsschwellwert verglichen. Überschreitet die Amplitude den Schwellwert, deutet dies auf Kavitation hin. Zum anderen wird eine Fourier-Transformation der Messwerte vorgenommen und die Frequenzverteilung der Schwingungen betrachtet. Dazu können beispielsweise das Terzband bei 5 kHz und das Terzband bei 10 kHz herausgegriffen werden. Die klassische Kavitation äußert sich durch eine charakteristische Verteilung im 5 kHz-Terzband, während die durch erhöhten Flüssigkeitsgehalt verursachte Kavitation eine charakteristische Frequenzverteilung im 10 kHz-Terzband hervorruft. Durch die Auswertung der beiden Terzbänder in dem Logikmodul 23 kann also festgestellt werden, um welche Art von Kavitation es sich handelt. Diese Auswertung der Frequenzbänder stellt im Sinne der Erfindung einen Vergleich dar zwischen einem Grenzwert und Messwerten, die den Flüssigkeitsgehalt repräsentieren. - Die Pumpe kann beispielsweise so verwendet werden, dass sie auf einer ersten Stufe des Verfahrens mit einer Drehzahl von beispielsweise 1000 U/min betrieben wird. Die Mindestdrehzahl, ab der der Flüssigkeitsring stabil ist, liegt bei etwa 2000 U/min. Mit 1000 U/min wird die Pumpe also deutlich unterhalb der Mindestdrehzahl betrieben. In diesem Betriebszustand kann die Pumpe dazu genutzt werden, eine Flüssigkeitsmenge aus dem zu evakuierenden Raum herauszutransportieren.
- Ist keine Flüssigkeit mehr in dem Raum enthalten, kann die Pumpe auf einer zweiten Stufe des Verfahrens in den Vakuumbetrieb übergehen. In
Fig. 5 ist die zweite Stufe des Verfahrens schematisch dargestellt, wobei A die Drehzahl der Pumpe in Hz wiedergibt, wobei B die mit dem Schwingungssensor 22 aufgenommenen Messwerte auf einer relativen Skala zwischen 0 und 10 zeigt und wobei C den Druck in dem zu evakuierenden Raum in Millibar angibt. Der zu evakuierende Raum hat ein Volumen von 400 l. Auf der waagerechten Achse ist die Zeit in Sekunden angegeben. Zum Zeitpunkt t = 0 liegt in dem zu evakuierenden Raum Atmosphärendruck von etwas mehr als 1000 mbar an und der Schwingungssensor misst keine Schwingungen der Pumpe. Nach dem Übergang in den Vakuumbetrieb wird die Pumpe innerhalb kurzer Zeit auf die maximale Drehzahl von etwa 5400 U/min beschleunigt. Der Druck in dem Raum sinkt schnell auf Werte von etwa 500 mbar ab. Zum Zeitpunkt t = 20 s überschreiten die mit dem Schwingungssensor 22 gemessenen Schwingungen zum ersten Mal den inFig. 5B gestrichelt dargestellten vorgegebenen Kavitationsschwellwert 26. Die Drehzahl der Pumpe wird daraufhin etwas reduziert, was dazu führt, dass die Schwingungen innerhalb kurzer Zeit wieder unterhalb den vorgegebenen Kavitationsschwellwert 26 absinkt. Die Drehzahl wird anschließend wieder etwas erhöht, bis die Kavitationsgrenze erneut erreicht wird. Mit dem erfindungsgemäßen Verfahren wird der Behälter, der ein Volumen von 400 l hat, innerhalb von 80 s auf einen Druck von 60 mbar evakuiert. Betreibt man die gleiche Pumpe mit konstanter Drehzahl, dauert der gleiche Vorgang 113 s. - Ist der endgültige Druck erreicht, ist eine niedrigere Drehzahl ausreichend, um den Druck aufrechtzuerhalten. Auf der dritten Stufe des Verfahrens wird die Drehzahl deswegen so weit reduziert, dass sie gerade noch oberhalb der Mindestdrehzahl liegt. Kommt es in diesem Zustand zu Kavitation, liegt dies in aller Regel an einem erhöhten Flüssigkeitsgehalt in dem zu fördernden Gas. In dem Logikmodul 23 wird also einerseits eine Überschreitung des Kavitationsschwellwerts und andererseits ein hoher Flüssigkeitsgehalt festgestellt. Das Logikmodul 23 wird folglich die Anweisung an die Steuereinheit 24 übermitteln, die Drehzahl zu erhöhen.
Claims (15)
- Verfahren zum Betreiben einer Flüssigkeitsring-Vakuumpumpe mit folgenden Schritten:a. Aufnehmen von Schwingungsmesswerten der Pumpe und Vergleichen der Schwingungsmesswerte mit einem vorgegebenen Kavitationsschwellwert (26);b. Aufnehmen eines Messwerts, der den Flüssigkeitsgehalt in dem zu fördernden Gas repräsentiert, und Vergleichen des Messwerts mit einem vorgegebenen Grenzwert;c. Anpassen der Drehzahl der Flüssigkeitsring-Vakuumpumpe, wobeii. die Drehzahl vermindert wird, wenn der vorgegebene Kavitationsschwellwert (26) überschritten wurde und der Flüssigkeitsgehalt unterhalb des vorgegebenen Grenzwerts liegt;ii. die Drehzahl erhöht wird, wenn der vorgegebene Kavitationsschwellwert überschritten wurde und der Flüssigkeitsgehalt oberhalb des vorgegebenen Grenzwerts liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt b. Messwerte von einem externen Sensor (27) verarbeitet werden.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt b. an der Pumpe aufgenommene Messwerte verarbeitet werden.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in Schritt b. Schwingungsmesswerte verarbeitet werden.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass in Schritt b. das Frequenzspektrum der Schwingungsmesswerte betrachtet wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kavitationsschwellwert (26) sich auf die Amplitude der Schwingung bezieht.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Luft in den Arbeitsraum der Pumpe eingelassen wird, falls sich die Kavitation durch Anpassen der Drehzahl nicht beseitigen lässt.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pumpe auf einer ersten Verfahrensstufe mit einer unterhalb der Mindestdrehzahl liegenden Drehzahl betrieben wird.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Pumpe auf einer zweiten Verfahrensstufe zunächst mit maximaler Drehzahl betrieben wird und dass die Drehzahl nach dem Auftreten von Kavitation abgesenkt wird.
- Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Pumpe auf einer dritten Verfahrensstufe mit einer Drehzahl knapp oberhalb der Mindestdrehzahl betrieben wird.
- Flüssigkeitsring-Vakuumpumpe mit einem Pumpengehäuse (20), mit einem exzentrisch in dem Pumpengehäuse (20) gelagerten Flügelrad (14) und mit einem Schwingungssensor (22) zum Aufnehmen von Schwingungen der Pumpe, dadurch gekennzeichnet, dass die Pumpe ein Logikmodul (23) umfasst, das einen Messwert des Schwingungssensors (22) mit einem vorgegebenen Kavitationsschwellwert (26) vergleicht und das einen den Flüssigkeitsgehalt des zu fördernden Gases repräsentierenden Messwert mit einem ersten Grenzwert vergleicht, wobei ferner eine Steuereinheit zum Anpassen der Drehzahl der Pumpe vorgesehen ist, wobei:i. die Steuereinheit dazu ausgelegt ist, die Drehzahl zu vermindern, wenn der vorgegebene Kavitationsschwellwert überschritten wurde und der Flüssigkeitsgehalt unterhalb eines vorgegebenen Grenzwerts liegt;ii. die Steuereinheit dazu ausgelegt ist, die Drehzahl zu erhöhen, wenn der vorgegebene Kavitationsschwellwert überschritten wurde und der Flüssigkeitsgehalt oberhalb eines vorgegebenen Grenzwerts liegt.
- Flüssigkeitsring-Vakuumpumpe nach Anspruch 11, dadurch gekennzeichnet, dass das Pumpengehäuse (20) einen Kanal aufweist, der sich von außen in den Innenraum der Pumpe erstreckt, und dass der Kanal mit einem Ventil (28) versehen ist.
- Flüssigkeitsring-Vakuumpumpe nach Anspruch 11 oder 12,
dadurch gekennzeichnet, dass nach dem Überschreiten des vorgegebenen Kavitationsschwellwerts (26) das Ventil (28) geöffnet wird. - Flüssigkeitsring-Vakuumpumpe nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Pumpe in Blockbauweise ausgeführt ist.
- Flüssigkeitsring-Vakuumpumpe nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, der Schwingungssensor (22) in die Steuereinheit (21) integriert ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12799568.6A EP2791511B1 (de) | 2011-12-12 | 2012-12-12 | Flüssigkeitsring-vakuumpumpe mit kavitationsregelung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11193012 | 2011-12-12 | ||
PCT/EP2012/075254 WO2013087708A2 (de) | 2011-12-12 | 2012-12-12 | Flüssigkeitsring-vakuumpumpe mit kavitationsregelung |
EP12799568.6A EP2791511B1 (de) | 2011-12-12 | 2012-12-12 | Flüssigkeitsring-vakuumpumpe mit kavitationsregelung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2791511A2 EP2791511A2 (de) | 2014-10-22 |
EP2791511B1 true EP2791511B1 (de) | 2016-09-14 |
Family
ID=47356048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12799568.6A Active EP2791511B1 (de) | 2011-12-12 | 2012-12-12 | Flüssigkeitsring-vakuumpumpe mit kavitationsregelung |
Country Status (7)
Country | Link |
---|---|
US (1) | US9169838B2 (de) |
EP (1) | EP2791511B1 (de) |
JP (1) | JP5657846B1 (de) |
CN (1) | CN104066994B (de) |
BR (1) | BR112014014150B1 (de) |
MX (1) | MX348628B (de) |
WO (1) | WO2013087708A2 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016056738A (ja) * | 2014-09-10 | 2016-04-21 | 有限会社K&G | 真空ポンプシステム及びそれを用いた湿式真空スプリンクラーシステム |
CN104504970B (zh) * | 2015-01-06 | 2017-03-22 | 北京理工大学 | 一种基于压力控制的小型空化实验装置 |
PE20181937A1 (es) | 2016-05-16 | 2018-12-13 | Weir Minerals Australia Ltd | Monitoreo de bomba |
JP7000800B2 (ja) * | 2017-10-31 | 2022-01-19 | 横河電機株式会社 | 検知装置、検知方法、およびプログラム |
EP3748162A1 (de) * | 2017-12-28 | 2020-12-09 | Ebara Corporation | Pumpvorrichtung, testbetriebsverfahren der pumpvorrichtung, motoranordnung und verfahren zur identifizierung einer anormalen vibration einer motoranordnung |
WO2020082285A1 (en) * | 2018-10-25 | 2020-04-30 | Edwards Technologies Vacuum Engineering (Qingdao) Co Ltd | Liquid ring pump control |
DE102019105692A1 (de) * | 2019-03-06 | 2020-09-10 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Vorrichtung zur kontinuierlichen Schwingungsüberwachung |
US11713237B2 (en) * | 2020-07-14 | 2023-08-01 | Paragon Tank Truck Equipment, Llc | Liquid discharge system including liquid product pump having vibration sensor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257747A (en) * | 1978-12-15 | 1981-03-24 | The Nash Engineering Company | Monitoring machinery by detecting vibrations |
DE3420144A1 (de) * | 1984-05-30 | 1985-12-05 | Loewe Pumpenfabrik GmbH, 2120 Lüneburg | Regelungs- und steuerungssystem, insbes. fuer wassering-vakuumpumpen |
DE3520538A1 (de) * | 1985-06-07 | 1986-12-11 | Kraftwerk Union AG, 4330 Mülheim | Verfahren und einrichtung zum betrieb einer kreiselpumpe |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
US5228840A (en) * | 1988-11-14 | 1993-07-20 | Impact Mst Incorporated | Positive displacement pumps |
EP0437637A1 (de) * | 1989-11-20 | 1991-07-24 | KKW Kulmbacher Klimageräte-Werk GmbH | Flüssigkeitsringpumpe |
DE9306559U1 (de) * | 1992-06-10 | 1993-07-01 | Siemens AG, 8000 München | Anordnung bestehend aus wenigstens zwei in Reihe geschalteten Flüssigkeitsringmaschinen |
DE4327291C2 (de) * | 1993-08-13 | 1997-07-31 | Krauss Maffei Ag | Verfahren und Vorrichtung zur Bestimmung von Meßgrößen einer Zentrifuge |
EP0943805B1 (de) | 1998-03-19 | 2004-12-15 | NSB Gas Processing AG | Verfahren und Sensor zur Detektion von Kavitationen, sowie Vorrichtung enthaltend einen solchen Sensor |
DE102005043434A1 (de) * | 2005-09-13 | 2007-03-15 | Gardner Denver Elmo Technology Gmbh | Einrichtung zur Leistungsanpassung einer Flüssigkeitsringpumpe |
US8657584B2 (en) * | 2010-02-16 | 2014-02-25 | Edwards Limited | Apparatus and method for tuning pump speed |
-
2012
- 2012-12-12 WO PCT/EP2012/075254 patent/WO2013087708A2/de active Application Filing
- 2012-12-12 BR BR112014014150-9A patent/BR112014014150B1/pt active IP Right Grant
- 2012-12-12 MX MX2014007011A patent/MX348628B/es active IP Right Grant
- 2012-12-12 JP JP2014546491A patent/JP5657846B1/ja active Active
- 2012-12-12 US US14/364,083 patent/US9169838B2/en active Active
- 2012-12-12 CN CN201280061046.3A patent/CN104066994B/zh active Active
- 2012-12-12 EP EP12799568.6A patent/EP2791511B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
BR112014014150B1 (pt) | 2021-11-30 |
MX2014007011A (es) | 2015-01-14 |
CN104066994A (zh) | 2014-09-24 |
WO2013087708A3 (de) | 2014-03-20 |
JP2015502486A (ja) | 2015-01-22 |
JP5657846B1 (ja) | 2015-01-21 |
BR112014014150A2 (pt) | 2017-06-13 |
EP2791511A2 (de) | 2014-10-22 |
WO2013087708A2 (de) | 2013-06-20 |
MX348628B (es) | 2017-06-22 |
US20140377084A1 (en) | 2014-12-25 |
US9169838B2 (en) | 2015-10-27 |
CN104066994B (zh) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2791511B1 (de) | Flüssigkeitsring-vakuumpumpe mit kavitationsregelung | |
EP2853744B1 (de) | Kompressor mit und Verfahren zur Spülung des Kompressorgehäuses mit Spülgas | |
EP3408503B1 (de) | Strömungsmaschine mit beschaufeltem diffusor | |
DE102005043434A1 (de) | Einrichtung zur Leistungsanpassung einer Flüssigkeitsringpumpe | |
DE102015109562B4 (de) | Luftspülsystem, geeignet zur Steuerung einer Luftdurchflussrate | |
DE112006001186T5 (de) | Verbesserte Flügelpumpe | |
EP3161320B1 (de) | Seitenkanalpumpe | |
DE69004566T2 (de) | Vakuumpumpeneinheit. | |
DE102016110273A1 (de) | Vakuum Pumpensystem mit Leichtgas Pumpen und einer Leckage Detektion Vorrichtung, aufweisend dieselbe | |
DE3605958A1 (de) | Vorrichtung zum erfassen und beheben von abloeseschwingungen an verdichterschaufeln | |
DE3700153A1 (de) | Turbomaschine | |
EP2867533B1 (de) | Verfahren und pumpenanordnung zum evakuieren einer kammer | |
EP2805058B1 (de) | VERFAHREN ZUR VERMEIDUNG VON PUMPSTÖßEN IN EINEM VERDICHTER | |
WO1996030649A1 (de) | Umwälzgebläse, vakuumpumpe oder dergleichen | |
EP2071186A2 (de) | Vakuumpumpe und Verfahren zum Betrieb | |
WO2011079892A1 (de) | Tauchpumpe | |
EP3812583A1 (de) | Pump-einheit, damit ausgestattete lagervorrichtung sowie verfahren zum betreiben der lagervorrichtung | |
EP3438460B1 (de) | Vakuumpumpe | |
DE102011015336A1 (de) | Vorrichtung und Verfahren zur Diagnose von Luftleckagen hydraulische Maschinen | |
WO2016041814A1 (de) | Wellendichtung, verfahren zum betrieb | |
WO2019057446A1 (de) | Erkennung einer verdichterinstabilität mittels der axialen position der verdichterwelle und einer temperatur | |
EP2927500B1 (de) | Verfahren und system zur versorgung einer lageranordnung | |
DE102018108827B3 (de) | Verfahren zur Steuerung von zumindest einem Radialgebläse in einer Kälteanlage sowie Radialgebläse | |
DE102015112672A1 (de) | Verdrängerpumpe zur förderung eines fluides für einen verbraucher eines kraftfahrzeuges | |
EP2990713A1 (de) | Ölmodul für ein Lager eines Turbosatzes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140331 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160411 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 829319 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012008281 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161214 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161215 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170116 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170114 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012008281 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20170615 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161212 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161214 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161212 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 829319 Country of ref document: AT Kind code of ref document: T Effective date: 20171212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231129 Year of fee payment: 12 Ref country code: IT Payment date: 20231220 Year of fee payment: 12 Ref country code: FR Payment date: 20231227 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 12 |