EP2789710B1 - Bismuthaltiger automatenstahl - Google Patents

Bismuthaltiger automatenstahl Download PDF

Info

Publication number
EP2789710B1
EP2789710B1 EP13827542.5A EP13827542A EP2789710B1 EP 2789710 B1 EP2789710 B1 EP 2789710B1 EP 13827542 A EP13827542 A EP 13827542A EP 2789710 B1 EP2789710 B1 EP 2789710B1
Authority
EP
European Patent Office
Prior art keywords
steel
max
bismuth
manganese
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13827542.5A
Other languages
English (en)
French (fr)
Other versions
EP2789710A4 (de
EP2789710A1 (de
Inventor
Alexander Dmitriyevich VOLOSKOV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ao Omutninsky Metallurgichesky Zavod
Original Assignee
Ao Omutninsky Metallurgichesky Zavod
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ao Omutninsky Metallurgichesky Zavod filed Critical Ao Omutninsky Metallurgichesky Zavod
Publication of EP2789710A1 publication Critical patent/EP2789710A1/de
Publication of EP2789710A4 publication Critical patent/EP2789710A4/de
Application granted granted Critical
Publication of EP2789710B1 publication Critical patent/EP2789710B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the invention relates to a combinzerspanbaren free cutting steel with carbon, silicon, manganese, sulfur, phosphorus, aluminum and iron.
  • the invention can be used in iron metallurgy and indeed in the production of highly processable free-cutting steel for the production of components in motor vehicle construction.
  • the patent RU 2437739 C1 discloses a process for producing high sulfur content continuously cast bismuth steels having the following chemical composition by mass fractions: carbon - Max. 0.16; silicon - Max. 0.35; manganese - 1.0 - 1.50; sulfur - 0.08 - 0.35; phosphorus - 0.06 - 0.15; aluminum - Max. 0.03; bismuth - 0.06 - 0.12; Iron and impurities - rest.
  • High cuttability / machinability of free cutting steel is achieved by the ratio Cr-Mn-S.
  • chromium is not an inevitable impurity (not an indispensable inclusion), by the introduction of which a globular form of sulphides is achieved.
  • the minimum chromium content threshold of 0.3% is controlled / monitored, because "reducing the chromium content” is difficult to achieve a sufficient effect of suppressing the elongation (elongation) of the sulfides. can not be achieved sufficient effect of the improved cuttability of steel ".
  • the manganese content as a sulfide-forming element is set in the range of 0.05 to 1.8%, but is preferably in the range of 0.22 to 0.60%, because manganese produces extended sulfides.
  • bismuth occurs, but in combination with lead.
  • the publication JP 2000 336454 A describes the prototype of the invention which discloses bismuth free steel. This has a perfect high-temperature plasticity and the following composition: carbon - 0.05 - 0.15; manganese - 0.5 - 2.0; sulfur -0.15 - 0.4; phosphorus - 0.01 - 0.1; oxygen - 0.003 - 0.02; bismuth - 0.03 - 0.30; silicon - Max. 0.01; aluminum - Max. 0.00009; Iron and manganese sulphide - inevitable impurities
  • This steel is the steel according to the invention its mechanical properties, its composition and its application closest and is considered a prototype.
  • This steel has the defect that it is dominated by heavily deformed thin-layer inclusions. These cause inferior physical and mechanical properties, a poorer processability of the metals and prevent an increase in machinability.
  • Another deficiency is the toxicity of lead, which is one of the elements of the first hazard class.
  • lead-containing steels quite complicated systems are used in steelworks for the extraction of liberated lead vapors. The problem of protection against toxic lead compounds in rolling mills is virtually unresolvable.
  • the bismuth-containing free-cutting steel according to the invention has the following composition by mass: carbon - Max. 0.16; silicon - Max. 0.15; manganese - 1.2 - 1.68; sulfur - 0.2 - 0.4; phosphorus - 0.06 - 0.15; aluminum - Max. 0.01; bismuth - 0.06 - 0.12; total oxygen - 0.003-0.015; Iron and impurities - rest.
  • the reference designation of this steel according to the invention is AM 14.
  • a cheap steel with an economical bismuth alloy is proposed with the following proportions by mass: carbon - Max. 0.16; silicon - Max. 0.15; manganese - 1.2 - 1.68; sulfur - 0.2 - 0.4; phosphorus - 0.06 - 0.15; aluminum - Max. 0.01; bismuth - 0.03 - 0.05; total oxygen - 0.003-0.015; Iron and impurities - rest.
  • the reference designation of this steel according to the invention is AM 12.
  • an alloy with sulfur and bismuth is made and evenly distributed ellipsoidal and round sulfide inclusions formed in the metal.
  • the extent of sulfide inclusions depends on the sulfur content. Their morphology depends on the degree of steel deoxidation and oxygen content in the steel as well as on the cooling rate during crystallization.
  • the sulfides are best rounded and almost globular and little deformed. They are produced in mild steel with a total oxygen content of 0.0030 - 0.0150%. For this, the oxygen efficiency in the steel is maintained at 20-70 ppm during transfer to the cast steel.
  • the presence of almost globular, low-strain sulfides in the metal is well consistent with the levels of active oxygen and residual aluminum: the higher the oxygen content with smaller residual aluminum content, the more globular sulfides are present in the metal.
  • the maximum aluminum content of 0.01% is limited by a reduction in the cuttability of the components.
  • the carbon content of max. 0.16% ensures that the required mechanical characteristics are achieved. If the upper limit of the carbon content is exceeded, the fluidity decreases and the hardness increases. For this reason, it is not possible to use the steel as intended.
  • the manganese and sulfur contents provide a ratio in the range of 3.4 to 8.0. At this ratio, the red-fracture effects in the steel are less likely. A sulfur content of less than 0.2% leads to a reduction in the acceptable level of machinability.
  • the lower limit of the phosphorus content of 0.06% increases the steel machinability. If the phosphorus concentration exceeds 0.15%, this has a negative effect on the metal flowability.
  • the minimal bismuth content of 0.03% in the steel is due to the fact that the machinability inherent in the lead-containing steel is achieved.
  • the maximum bismuth content of 0.12% is, according to experience, selected for optimum casting conditions in a continuous casting plant and the compliance with requirements for the maximum permitted bismuth concentration (HZK) in the air (this HZK value is according to experience 0.5 mg / m 3 ) ,
  • the steel grades according to the invention are produced by the Omutninsk Metallurgiewer ZAO in a steel smelting plant.
  • the steel is deoxidized using aluminum at the tapping from the steel melting plant to the pan.
  • the components at an optimum ratio [Mn] / [Si] ⁇ 3 for deoxidation are supplied to the bottom portion of a pan.
  • the metal treatment is carried out including argon inflation and lime-clay slag adjustment.
  • powder wire is introduced with a filler elemental sulfur.
  • a wire with a filler bismuth (MnBi) is introduced.
  • the casting takes place in the continuous casting plant according to the "underbody" method. In this case, the continuously cast steel is produced.
  • the strand is rolled in the hot rolling mill according to procedural instructions and rolling plans by the Omutninsk Metallurgiewer ZAO. Thereafter, the rough rolling stock is formed in a 10-tonne drawing machine into a bright steel finished profile, in circles ranging from 10 to 27 mm and in a hexagon ranging from 14 to 27 mm.
  • the mechanical properties and microstructure of the steels AM 12 and AM 14 were evaluated by the Omutninsk metallurgical plant ZAO in the testing laboratory for comparative tests.
  • the mechanical properties were tested in a 25-tonne tearing machine from QUASAR 250.
  • the Brinell hardness test was performed in a hardness tester type TSch-2M.
  • the mechanical test results for the known and the claimed bright steel are shown in Table 2. From the sample melts, a few lots of profiles were produced in different sizes. The certain dispersion of the strength properties is due to the reduction rate when pulling the profiles of different sizes.
  • the small steel structure, shape and distribution of sulfide inclusions were investigated in the NEOPHOT 21 microscope.
  • the small structure of steel is ferritic-pearlitic with a predominantly striped pearlite and a grain size of max. No. 5.
  • the grain size was determined on the cross-section of the bright steel profile at 100x magnification according to GOST 5639 ( Fig. 1 ) rated.
  • the ratio of grain perlite to streaky perlite was determined by cross-sectioning at 500x magnification according to GOST 8233 ( Fig. 2 ) rated. Differences in the microstructure of the steel grades AM 12 and AM 14 according to the invention are not present.
  • Evaluation of the shape of non-metal inclusions revealed the presence of uniformly distributed, singly, slightly deformed, rounded (ellipsoidal) sulfides on roll-and-draw deformed metal, and lack of accumulation of thin-film inclusions that degrade physical-mechanical and process metal properties.
  • the ratio of the length of the sulfide particles to their thickness is 2: 4 in the surface layer ( Fig. 3 . 4 ) and 4: 6 at the center of the cross section ( Fig. 5 . 6 ).
  • the resulting form of sulfide inclusions ensures a reduction in the adhesion interactions between the material and the tool. Consequently a surface roughness and a wear rate of the cutting tool (the tool life) as achieved with lead-containing steels.
  • OOO Avtopartner emphasizes an improvement in the surface quality of the treated workpieces, which has increased by 1 - 2 classes.
  • OOO PROSAM Ryazan
  • the chemical composition according to the invention, the deoxidation process, the melting, rolling and setting process enable bright steel products of two steel grades with increased machinability over the entire cross-section and circumference of the rolling stock compared to the lead-containing steels AS 14, while maintaining mechanical properties such as those of the steel AS 14 from the prior art to get in various price ranges, the environmental situation in the metallurgical industry is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

  • Die Erfindung betrifft einen hochzerspanbaren Automatenstahl mit Kohlenstoff, Silizium, Mangan, Schwefel, Phosphor, Aluminium und Eisen.
  • Die Erfindung ist in der Eisenmetallurgie und zwar bei der Herstellung von hochzerspanbarem Automatenstahl für die Herstellung von Bauteilen im Kraftwagenbau einsetzbar.
  • Das Patent RU 2437739 C1 offenbart ein Verfahren zur Herstellung von stranggegossenen bismuthaltigen Stählen mit hohem Schwefelgehalt, mit folgender chemischer Zusammensetzung, nach Massenanteilen:
    Kohlenstoff - max. 0,16;
    Silizium - max. 0,35;
    Mangan - 1,0 - 1,50;
    Schwefel - 0,08 - 0,35;
    Phosphor - 0,06 - 0,15;
    Aluminium - max. 0,03;
    Bismut - 0,06 - 0,12;
    Eisen und Verunreinigungen - Rest.
  • Zu den Mängeln dieses Stahls gehören:
    • keine Kontrolle / Überwachung der Sauerstoffwirksamkeit vor dem Stahlguss (zwecks Prozessführung und Erzeugung von Nichtmetall-Einschlüssen mit einer vorgegebenen Form sowie Zusammensetzung);
    • keine Regelung des Länge-Stärke-Verhältnisses der Partikeln in der Oberflächenschicht und im Mittelpunkt des Querschnitts;
    • unzureichende mechanische Schneidbarkeit / Zerspanbarkeit,
    • hoher Preis von bismutlegierten Stählen.
  • Im EP 1449932 A1 ist ein kohlenstoffarmer hochzerspanbarer Automatenstahl mit folgender Zusammensetzung (nach Massenanteilen), vorgeschlagen:
    Kohlenstoff - 0,02 - 0,15;
    Mangan - 0,05 - 1,8;
    Schwefel - 0,20 - 0,49;
    Sauerstoff - 0,01 - 0,03;
    Chrom - 0,3 - 2,3
    Eisen und unvermeidliche Verunreinigungen - Rest; Cr/S-Wert liegt im Bereich von 2 bis 6.
  • Hohe Schneidbarkeit / Zerspanbarkeit von Automatenstahl wird durch das Verhältnis Cr-Mn-S erreicht. In diesem Stahl ist Chrom keine unvermeidliche Verunreinigung (kein unentbehrlicher Einschluß), durch die Einführung dessen wird eine globulare Form von Sulfiden erreicht. Besonders wird der minimale Grenzwert für den Chromanteil von 0,3% kontrolliert / überwacht, weil bei der Verringerung des Chromgehalts "ein genügender Effekt der Unterdrückung der Dehnung (Streckung) der Sulfide nur schwer erreicht werden kann. Da ausgedehntes Sulfid im Stahl erhalten bleibt, kann kein genügender Effekt der verbesserten Schneidbarkeit von Stahl erzielt werden". Der Mangananteil als Sulfid bildendes Element wird im Bereich von 0,05 bis 1,8% vorgegeben, bevorzugt ist aber der Bereich von 0,22 bis 0,60%, weil Mangan ausgedehnte Sulfide erzeugt. In einem Beispiel aus dem Stand der Technik kommt Bismut zwar vor, aber in Kombination mit Blei.
  • Der Unterschied dieses Stahls von dem gemäß unserer Lösung besteht darin, dass hohe Schneidbarkeit (Zerspanbarkeit) mit Chrom und nicht mit Bismut erreicht wird. Beim Stand der Technik wird das Verhältnis Cr-S überwacht, nicht Mn-S. Eine völlig mit unserer Lösung übereinstimmende Zusammensetzung konnte dieser Druckschrift nicht entnommen werden.
  • Die Druckschrift JP 2000 336454 A beschreibt den Prototyp der Erfindung, der bismuthaltigen Automatenstahl offenbart. Dieser weist eine perfekte Hochtemperatur-Plastizität und die folgende Zusammensetzung auf:
    Kohlenstoff - 0,05 - 0,15;
    Mangan - 0,5 - 2,0;
    Schwefel -0,15 - 0,4;
    Phosphor - 0,01 - 0,1;
    Sauerstoff - 0,003 - 0,02;
    Bismut - 0,03 - 0,30;
    Silizium - max. 0,01;
    Aluminium - max. 0,00009;
    Eisen und Mangansulfid - unvermeidliche Verunreinigungen
  • Stahl enthält Bismut zur Verteilung an den Grenzen von Mangansulfiden und in freiem Zustand. In dieser Druckschrift ist die Aufgabe der Erhöhung der Plastizität von bismuthaltigem Automatenstahl dadurch gelöst, dass der beanspruchte Stahl im warmen Zustand gewalzt wird, wobei die Bruchbildung ausgeschlossen wird. Schwefel wird teilweise zu vorteilhaften, abgesonderten Mangansulfiden, teilweise - zu Eisensulfiden gebunden, welche zu Bruchbildung (Rotbruch-Effekte im Stahl) beim Warmwalzen führen. Die Lösung ist darauf abgezielt, die Auswirkung von Titan, Bor und Stickstoff auf die Plastizität vom Stahl im warmen Zustand zu nutzen.
  • Diese technische Lösung schlägt kein solches Komponentenverhältnis Mn-S in der chemischen Stahlzusammensetzung vor, das die Bildung von Eisensulfiden sowie die Bruchbildung beim Warmwalzen ohne Einführung von Titan, Bor und Stickstoff ausschließen würde. Es gibt keine Informationen über die Auswirkung von Bor und Titan auf die mechanischen Eigenschaften von Stahl (Festigkeitsgrenze, Dehnungszahl, Härte). Bemängelt ist dieser Stahl durch die fehlenden Angaben über den möglichen Einfluss von Sauerstoff bei dessen Anteilsänderung auf die Geometrie und die Zusammensetzung von Mangan-Sulfideinschlüsse zwecks einer erhöhten Drehbearbeitung des Stahls.
  • Aus dem Stand der Technik ist ein bleihaltiger Automatenstahl AS-14 mit folgender chemischer Zusammensetzung, nach Massenanteilen, bekannt:
    Kohlenstoff - 0,10 - 0,17;
    Silizium - max. 0,12;
    Mangan -1,0 - 1,3;
    Schwefel - 0,15 - 0,30;
    Phosphor - max. 0,1;
    Blei - 0,15 - 0,30;
  • Dieser Stahl liegt dem erfindungsgemäßen Stahl seinen mechanischen Eigenschaften, seiner Zusammensetzung und seinem Anwendungszweck nach am nächsten und gilt als Prototyp.
  • Dieser Stahl hat den Mangel, dass darin stark verformte Dünnschichteinschlüsse dominieren. Diese verursachen schlechtere physikalische und mechanische Eigenschaften, eine schlechtere Verarbeitungsfähigkeit der Metalle und verhindern eine Steigerung der Zerspanbarkeit. Ein weiterer Mangel ist die Giftigkeit von Blei, das zu den Elementen der ersten Gefährdungsklasse gehört. Bei der Herstellung von bleihaltigen Stählen werden in Stahlwerken ziemlich komplizierte Anlagen zur Absaugung von freiwerdenden Bleidämpfen eingesetzt. Das Problem des Schutzes gegen toxische Bleiverbindungen in Walzwerken ist so gut wie nicht lösbar.
  • Es ist Aufgabe der Erfindung, die Schneidbarkeit über den gesamten Querschnitt und Umfang des Walzguts aus Automatenstahl unter Beibehaltung von mechanischen Eigenschaften wie denen der bleihaltigen Stähle zu erhöhen, die Umweltsituation in der Hüttenindustrie zu verbessern und den Preisbereich der Stähle zu erweitern.
  • Die gestellte Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
  • Der erfindungsgemäße bismuthaltige Automatenstahl weist folgende massenanteilige Zusammensetzung auf:
    Kohlenstoff - max. 0,16;
    Silizium - max. 0,15;
    Mangan - 1,2 - 1,68;
    Schwefel - 0,2 - 0,4;
    Phosphor - 0,06 - 0,15;
    Aluminium - max. 0,01;
    Bismut - 0,06 - 0, 12;
    Gesamtsauerstoff - 0,003-0,015;
    Eisen und Verunreinigungen - Rest.
  • Die Referenzkennzeichnung dieses erfindungsgemäßen Stahls ist AM 14.
  • Ein preiswerter Stahl mit einer sparsamen Bismutlegierung ist mit folgenden Massenanteilen vorgeschlagen:
    Kohlenstoff - max. 0,16;
    Silizium - max. 0,15;
    Mangan - 1,2 - 1,68;
    Schwefel - 0,2 - 0,4;
    Phosphor - 0,06 - 0,15;
    Aluminium - max. 0,01;
    Bismut - 0,03 - 0,05;
    Gesamtsauerstoff - 0,003-0,015;
    Eisen und Verunreinigungen - Rest.
  • Die Referenzkennzeichnung dieses erfindungsgemäßen Stahls ist AM 12.
  • Die technische Aufgabe ist dadurch gelöst, dass eine Legierung mit Schwefel und Bismut vorgenommen ist und gleichmäßig verteilte ellipsenförmige und runde Sulfideinschlüsse im Metall gebildet sind. Der Umfang der Sulfideinschlüsse hängt vom Schwefelgehalt ab. Ihre Morphologie hängt vom Stahldesoxidationsgrad und Sauerstoffanteil im Stahl sowie von der Abkühlgeschwindigkeit während der Kristallisation ab. Um die Zerspanbarkeit zu erhöhen, sind die Sulfide am besten abgerundet und fast globular und wenig verformt. Sie entstehen im leichtberuhigten Stahl mit einem Gesamtsauerstoffgehalt von 0,0030 - 0,0150 %. Dafür ist die Sauerstoffwirksamkeit im Stahl während der Übergabe zum Stahlguss bei 20 - 70 ppm aufrechterhalten. Das Vorhandensein von fast globularen, wenig verformten Sulfiden im Metall steht gut mit dem Gehalt an wirksamem Sauerstoff und Restaluminium im Einklang: Je höher der Sauerstoffgehalt mit kleinerem Restaluminium-Anteil ist, desto mehr globulare Sulfide sind im Metall vorhanden.
  • Der maximale Aluminiumanteil von 0,01 % ist durch eine Verminderung der Schneidbarkeit der Bauteile beschränkt.
  • Der Kohlenstoffgehalt von max. 0,16 % sorgt dafür, dass die erforderlichen mechanischen Kenndaten erreicht werden. Ist die obere Grenze des Kohlenstoffanteils überschritten, so nehmen das Fließvermögen ab und die Härte zu. Aus diesem Grund ist es nicht möglich, den Stahl bestimmungsgemäß zu verwenden.
  • Die Mangan- und Schwefelanteile sorgen für ein Verhältnis im Bereich von 3,4 bis 8,0. Bei diesem Verhältnis sind die Rotbruch-Effekte im Stahl weniger wahrscheinlich. Ein Schwefelgehalt von unter 0,2 % führt zur Verringerung des annehmbaren Zerspanbarkeitsgrads.
  • Die untere Grenze des Phosphoranteils von 0,06 % sorgt für eine Steigerung der Stahlzerspanbarkeit. Überschreitet die Phosphorkonzentration 0,15 %, so wirkt sich dies negativ auf das Metallfließvermögen aus.
  • Der minimale Bismutanteil von 0,03 % im Stahl ist dadurch bedingt, dass dabei die dem bleihaltigen Stahl eigene Zerspanbarkeit erreicht ist. Der maximale Bismutanteil von 0,12 % ist erfahrungs-gemäß für optimale Gussverhältnisse in einer Stranggussanlage und die Einhaltung von Anforderungen hinsichtlich der höchstzulässigen Bismutkonzentration (HZK) in der Luft gewählt (dieser HZK-Wert liegt erfahrungsgemäß bei 0,5 mg/m3).
  • Die Erfindung wird anhand der beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine Aufnahme eines Kleingefüges eines modifizierten Automatenstahls mit einer Korngröße von 8 - 9 in einer der Schmelzen bei 100-facher Vergrößerung, wobei die anhand einer Messleiste eingestellte Länge 400 µm beträgt,
    Fig. 2
    eine Aufnahme eines Kleingefüges mit körnigem und streifigem Perlit (wobei der streifige Perlit in diesem Verhältnis dominiert) bei einer 500-fachen Vergrößerung, wobei die anhand einer Messleiste eingestellte Länge 90 µm beträgt,
    Fig. 3
    die Verteilung und die Form der Sulfideinschlüsse im modifizierten Automatenstahl in einer der Schmelzen, wobei die Oberflächenschicht eines Längsschliffs bei 100-facher Vergrößerung wiedergegeben ist,
    Fig. 4
    die Verteilung und die Form der Sulfideinschlüsse in der Oberflächenschicht eines Längsschliffs des modifizierten Automatenstahls bei 500-facher Vergrößerung,
    Fig. 5
    die Verteilung und die Form der Sulfideinschlüsse in der Mitte des Längsschliffs bei 100-facher Vergrößerung aus einer Probe des modifizierten Automatenstahls in einer der Schmelzen und
    Fig. 6
    die Verteilung und die Form der Sulfideinschlüsse in der Mitte des Längsschliffs bei 500-facher Vergrößerung aus einer Probe des modifizierten Automatenstahls in einer der Schmelzen.
  • Die erfindungsgemäßen Stahlsorten sind bei dem Omutninsker Metallurgiewerk ZAO in einer Stahlschmelzanlage hergestellt. Der Stahl ist unter Einsatz von Aluminium am Abstich aus der Stahlschmelzanlage zur Pfanne desoxidiert. Die Komponenten bei einem optimalen Verhältnis [Mn]/[Si]≤3 für eine Desoxidation sind dem Bodenbereich einer Pfanne zugeführt. Im Pfannenofen wird die Metallbehandlung einschließlich eines Argonaufblasens und einer Kalk-Tonerde-Schlackeneinstellung vorgenommen. Nach einer Verdickung der Schlacke mit Magnesitpulver wird Pulverdraht mit einem Füllstoff Elementarschwefel eingeführt. Anschließend wird ein Draht mit einem Füllstoff Bismut (MnBi) eingeführt. Der Guss erfolgt in der Stranggussanlage nach dem "Unterboden"-Verfahren. Dabei wird der stranggegossene Stahl hergestellt.
  • Der Strang wird im Warmwalzwerk nach verfahrenstechnischen Anleitungen und Walzplänen vom Omutninsker Metallurgiewerk ZAO gewalzt. Danach wird das Rohwalzgut in einer Ziehmaschine mit einer Kraft von 10 Tonnen zum Blankstahl-Fertigprofil geformt, und zwar in Kreisen im Bereich von 10 bis 27 mm und in einem Sechskant im Bereich von 14 bis 27 mm.
  • Es wurden Schmelzen von Stahl AM 12 und AM 14 mit der erfindungsgemäßen Zusammensetzung hergestellt. Die erzielte chemische Zusammensetzung ist der Tabelle 1 in Gegenüberstellung zum Prototyp zu entnehmen.
  • Die mechanischen Eigenschaften und das Gefüge der Stähle AM 12 und AM 14 wurden im Prüfungslabor für Vergleichsprüfungen vom Omutninsker Metallurgiewerk ZAO bewertet. Die mechanischen Eigenschaften wurden in einer 25-Tonnen-Reißmaschine der Fa. QUASAR 250 geprüft. Die Brinell-Härteprüfung wurde in einem Härteprüfer Typ TSch-2M durchgeführt. Die mechanischen Prüfungsergebnisse für den bekannten und den beanspruchten Blankstahl sind der Tabelle 2 zu entnehmen. Aus den Probeschmelzen wurden einige Lose der Profile in verschiedenen Baugrößen hergestellt. Die gewisse Streuung der Festigkeitseigenschaften ist durch die Reduktionsrate beim Ziehen der Profile verschiedener Größen bedingt.
  • Das Stahlkleingefüge, die Form und die Verteilung der Sulfideinschlüsse wurden im NEOPHOT-21-Mikroskop erforscht. Das Kleingefüge von Stahl ist ferritisch-perlitisch mit einem überwiegenden streifigen Perlit und mit einer Korngröße von max. Nr. 5. Die Korngröße wurde am Querschliff des Blankstahlprofils bei 100-facher Vergrößerung nach GOST 5639 (Fig. 1) bewertet. Das Verhältnis von Kornperlit zum streifigen Perlit wurde am Querschliff bei 500-facher Vergrößerung nach GOST 8233 (Fig. 2) bewertet. Unterschiede im Kleingefüge der erfindungsgemäßen Stahlsorten AM 12 und AM 14 liegen nicht vor.
  • Die Bewertung der Form von Nichtmetall-Einschlüssen zeigte ein Vorhandensein von gleichmäßig verteilten, abgesonderten, wenig verformten, abgerundeten (ellipsenförmigen) Sulfiden an durch Walzen und Ziehen verformtem Metall sowie fehlende Anhäufungen von Dünnschichteinschlüssen, die die physikalisch-mechanischen und die verfahrenstechnischen Metalleigenschaften vermindern. Das Verhältnis der Länge der Sulfidpartikeln zu ihrer Stärke ist 2 : 4 in der Oberflächenschicht (Fig. 3, 4) und 4 : 6 im Mittelpunkt des Querschnitts (Fig. 5, 6).
  • Die resultierende Form der Sulfideinschlüsse stellt eine Minderung der Adhäsionswechselwirkungen zwischen dem Werkstoff und dem Werkzeug sicher. Folglich werden eine Oberflächenrauheit und eine Verschleißrate des Schneidewerkzeugs (die Werkzeugstandzeit) wie bei bleihaltigen Stählen erreicht.
  • Die Großversuche der Schneidbarkeit von Walzerzeugnissen aus erfindungsgemäßem Automatenstahl wurden durchgeführt, um die Standfestigkeit des Schneidewerkzeugs, die Oberflächen-rauheit und das Spanverhalten zu prüfen.
  • Anhand von Funktionsproben meldeten einige Betriebe (OAO Uljanowsker Autowerk, OAO Avtodetal-Service, OOO Laguna, St. Petersburg, ZAO Okulovsker Möbelbeschlagfabrik usw.) positive Ergebnisse der Drehbearbeitung des Stahls AM 12. Die Standfestigkeit der Schneidewerkzeuge wurde um 15 - 20 % erhöht. Der Span lässt sich leicht klümpern und sammelt sich nicht im Bearbeitungsbereich.
  • OOO Avtopartner, Dimitrovgrad, betont eine Verbesserung der Oberflächengüte der behandelten Werkstücke, die um 1 - 2 Klassen höher geworden ist. Nach Einsatz von einem Prüflos hat OOO PROSAM, Ryazan, über eine stabile Genauigkeit der prüfbaren Bauteilabmessungen mit hoher Oberflächengüte berichtet, wobei das Metall keine Spaltungen beim Gewindewalzen aufweist.
  • Die erfindungsgemäße chemische Zusammensetzung, das Desoxidationsverfahren, das Schmelz-, Walz- und Einstellverfahren ermöglichen, Blankstahlerzeugnisse aus zwei Stahlsorten mit einer erhöhten Zerspanbarkeit über den gesamten Querschnitt und Umfang des Walzguts gegenüber den bleihaltigen Stählen AS 14, unter Beibehaltung von mechanischen Eigenschaften wie denen des Stahls AS 14 aus dem Stand der Technik, in verschiedenen Preisbereichen zu bekommen, wobei die Umweltsituation in der Hüttenindustrie verbessert ist. Tabelle 1
    Nr. Stahl Chemische Zusammensetzung, %
    C Mn Si P S Bi Al O Pb
    1 7780-1 0,11 1,45 0,060 0,072 0,247 0,040 - 0,0037
    2 4397-1 0,1 1,47 0,002 0,076 0,263 0,030 - 0,0035
    AM12 ≤0,16 1,2-1,68 ≤0,15 0,06-0,15 0,2-0,4 0,03-0,05 ≤0,01 0,003 - 0,015
    1 4690-1 0,1 1,5 0,03 0,078 0,260 0,06 - 0,0034
    AM14 ≤0,16 1,2-1,68 ≤0,15 0,06-0,15 0,2-0,4 0,06-0,12 ≤0,01 0,003-0,015
    Stand der Technik AS14 0,1-0,17 1,0-1,3 ≤0,12 ≤0,1 0,15-0,3 - - 0,15-0,3
    Tabelle 2
    Nr. Stahl Mechanische Eigenschaften des Blankstahls
    Min. Festigkeitsgrenze GB, MPa Min. Dehnungszahl δ, % Härte HB, max.
    1 7780-1 610-620 11 207
    2 4397-1 634-639 10-11 197
    Vorgeschlagener Stahl AM 12 490 10 217
    1 4690-1 515-519 12-13 187
    Vorgeschlagener Stahl AM 14 490 10 217
    Stand der Technik AS14 490 10 207
  • Quellennachweis: Stand der Technik:
    1. [1.] GOST 1414-75, Gosstandard Russlands, M., 1992, S. 4-5, 9

Claims (1)

  1. Hochzerspanbarer Automatenstahl mit Kohlenstoff, Silizium, Mangan, Schwefel, Phosphor, Aluminium und Eisen,
    dadurch gekennzeichnet,
    dass er zusätzlich Bismut und eine definierte Sauerstoffmenge aufweist, wobei die Sauerstoffwirksamkeit während der Stahlübergabe zum Stahlguss 20 - 70 ppm beträgt,
    dass die gleichmäßig verteilten Sulfideinschlüsse eine fast globulare Form haben und leicht verformt sind und
    dass der Automatenstahl folgendes massenanteiliges Komponentenverhältnis aufweist: Kohlenstoff max. 0,16; Silizium max. 0,15; Mangan 1,2 - 1,68; Schwefel 0,2 - 0,4; Phosphor 0,06-0,15; Aluminium max. 0,01; Bismut 0,03-0,05 oder 0,06-0,12; Gesamtsauerstoff 0,003-0,015; Eisen und Verunreinigungen - Rest.
EP13827542.5A 2012-08-06 2013-02-12 Bismuthaltiger automatenstahl Active EP2789710B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012133578/02A RU2503737C1 (ru) 2012-08-06 2012-08-06 Автоматные висмутсодержащие стали
PCT/RU2013/000105 WO2014025287A1 (ru) 2012-08-06 2013-02-12 Автоматные висмутсодержащие стали

Publications (3)

Publication Number Publication Date
EP2789710A1 EP2789710A1 (de) 2014-10-15
EP2789710A4 EP2789710A4 (de) 2015-05-20
EP2789710B1 true EP2789710B1 (de) 2019-08-21

Family

ID=49884706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13827542.5A Active EP2789710B1 (de) 2012-08-06 2013-02-12 Bismuthaltiger automatenstahl

Country Status (5)

Country Link
EP (1) EP2789710B1 (de)
CN (1) CN104245992B (de)
ES (1) ES2757277T3 (de)
RU (1) RU2503737C1 (de)
WO (1) WO2014025287A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714161B (zh) * 2019-10-17 2020-09-22 中天钢铁集团有限公司 一种汽车用高硫易切削钢及其生产工艺
CN114480963A (zh) * 2021-12-24 2022-05-13 鞍钢集团北京研究院有限公司 一种环保型低碳低硫含铋易切削钢

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135628C1 (ru) * 1998-09-29 1999-08-27 ОАО Челябинский металлургический комбинат "МЕЧЕЛ" Автоматная сталь
JP2000336454A (ja) * 1999-05-25 2000-12-05 Pohang Iron & Steel Co Ltd 高温延性に優れたビスマス(Bi)−硫黄(S)系快削鋼、及びその製造方法
JP4502519B2 (ja) * 2001-01-15 2010-07-14 新日鐵住金ステンレス株式会社 マルテンサイト系快削ステンレス鋼
JP3468239B2 (ja) * 2001-10-01 2003-11-17 住友金属工業株式会社 機械構造用鋼及びその製造方法
CN1920086A (zh) * 2001-11-30 2007-02-28 Jfe条钢株式会社 易切钢
TW583315B (en) * 2001-11-30 2004-04-11 Nkk Bars & Shapes Co Ltd Free cutting steel
JP3758581B2 (ja) * 2002-02-04 2006-03-22 住友金属工業株式会社 低炭素快削鋼
WO2008082153A1 (en) * 2006-12-28 2008-07-10 Posco Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
RU2437739C1 (ru) * 2010-03-29 2011-12-27 ЗАО "Омутнинский металлургический завод" Способ производства автоматной стали ам14

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014025287A1 (ru) 2014-02-13
CN104245992B (zh) 2016-12-14
RU2503737C1 (ru) 2014-01-10
ES2757277T3 (es) 2020-04-28
EP2789710A4 (de) 2015-05-20
EP2789710A1 (de) 2014-10-15
CN104245992A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
EP2052094B1 (de) Hochsiliziumhaltiger stahlwerkstoff zur herstellung von kolbenringen und zylinderlaufbuchsen
DE60318745T2 (de) Stahl mit hervorragender zerspanbarkeit und herstellungsverfahren dafür
DE602004007730T2 (de) Niedrig gekohlter Automatenstahl.
AT522440B1 (de) Mehrschichtgleitlagerelement
DE69821851T2 (de) Titanberuhigter Stahl und Verfahren zu seiner Herstellung
EP1888798B1 (de) Aluminium-gleitlagerlegierung
DE3507785A1 (de) Lagerstahl und verfahren zu seiner herstellung
DE2937724A1 (de) Pulvermetallurgisch hergestelltes stahlerzeugnis mit hohem vanadiumcarbid- anteil
DE60030083T2 (de) Hochkohlenstoffhaltiger draht mit hervorragenden zieheigenschaften und ermüdungswiderstand nach dem drahtziehen
EP3374533B1 (de) Sondermessinglegierung sowie sondermessinglegierungsprodukt
EP1190108B1 (de) Gusswerkstoff für indefinitewalzen mit einem mantelteil und verfahren zu dessen herstellung
DE60024495T2 (de) Stahl mit ausgezeichneter Schmiedbarkeit und Bearbeitbarkeit
AT511432B1 (de) Verfahren zur herstellung eines gleitlagerelementes
EP2617855B1 (de) Niedrig legierter Stahl und damit hergestellte Bauteile
DE112015001872T5 (de) Warmgewalztes Stahlblech mit gutem Kaltbearbeitungsvermögen und hervorragender Härte nach der Bearbeitung
DE69021342T2 (de) Sehr gut schweissbarer Stahl zur Verwendung als Form bei der Herstellung von Kunststoffgegenständen.
DE60211958T2 (de) Schwefelhaltiger automatenstahl
EP2789710B1 (de) Bismuthaltiger automatenstahl
DE112019006504T5 (de) Stahlmaterial als ausgangsmaterial für karbonitrierte lagerkomponente
DE112014004028T5 (de) Warm-gewalztes Stahlblech mit ausgezeichneter Kalt-Verarbeitbarkeit und ausgezeichneten Oberflächen-Eigenschaften und Härte nach Umformen
DE602005003430T2 (de) Hochduktiles Stahlblech und Verfahren zu dessen Herstellung
DE60021919T2 (de) Stahl mit schweißwärmebeeinflusster Zone mit ausgezeichneter Zähigkeit
DE2937908A1 (de) Te-s-automatenstahl mit niedriger anisotropie und verfahren zu seiner herstellung
DE3009491A1 (de) Stahl fuer das kaltschmieden und verfahren zu seiner herstellung
DE60209590T2 (de) Automatenstahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150417

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/60 20060101AFI20150413BHEP

Ipc: C22C 38/02 20060101ALI20150413BHEP

Ipc: C22C 38/04 20060101ALI20150413BHEP

Ipc: C22C 38/00 20060101ALI20150413BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160307

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AO OMUTNINSKY METALLURGICHESKY ZAVOD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013433

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1169844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2757277

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013433

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1169844

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 12

Ref country code: ES

Payment date: 20240325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240228

Year of fee payment: 12

Ref country code: FR

Payment date: 20240221

Year of fee payment: 12