EP2788828A1 - Procédé pour faire fonctionner une installation de production - Google Patents

Procédé pour faire fonctionner une installation de production

Info

Publication number
EP2788828A1
EP2788828A1 EP11797185.3A EP11797185A EP2788828A1 EP 2788828 A1 EP2788828 A1 EP 2788828A1 EP 11797185 A EP11797185 A EP 11797185A EP 2788828 A1 EP2788828 A1 EP 2788828A1
Authority
EP
European Patent Office
Prior art keywords
robots
workstations
robot
human
assigned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP11797185.3A
Other languages
German (de)
English (en)
Inventor
Willi Klumpp
Matthias Reichenbach
Matthias Schreiber
Volker Zipter
Michael ZÜRN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2788828A1 publication Critical patent/EP2788828A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41845Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by system universality, reconfigurability, modularity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32015Optimize, process management, optimize production line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence

Definitions

  • the invention relates to a method for operating a production plant according to the preamble of patent claim 1.
  • Production plants in which both humans and robots are to be used are usually constructed so that certain workstations of the
  • transport systems also lead to a fixed cycle time of the plant, so that the throughput of the plant can not be flexibly adjusted to current production requirements.
  • the present invention is therefore based on the object, a method for
  • Such a method relates to the operation of a production plant with a plurality of workstations for carrying out at least one respective work step. To operate the production plant is assigned to the production plant
  • Control system provided.
  • at least one criterion relating to a production requirement is assigned to the workstations by human workers or robots, whereby each worker or robot can be assigned to one or more workstations.
  • the required number of human workers and robots can be assigned to the individual workstations of the production plant flexibly and as needed by means of the control system in order to operate the production plant optimally utilized at any time. Due to the flexible allocation also failed robots or the like can be easily replaced or their failure may be bridged in the short term by the use of human labor. Such a method therefore also allows a particularly low-noise operation of the production plant. Due to the changing number of used robots and human workers also an adjustment of the clock rate of the production plant to any external needs is easily possible.
  • the workstations are occupied exclusively with human workers when the number of pieces to be manufactured is below a first threshold value. For small series production, the start of production or in other situations that require a low production quantity, so only
  • Threshold workstations are assigned both human workers and robots. This can be done very quickly by the controller, so that with a short-term increase in production capacity, the human workers are supported with robots.
  • the second threshold ie at a high volume to be produced, for example, in full series operation, all workstations are exclusively occupied with robots to fully exploit the benefits of automation and not to overburden the human workers.
  • Robots in the immediate vicinity for example, within a single
  • an associated laser scanner can be arranged for each robot, which scans a cone-shaped region enclosing the robot and, when an object or worker penetrates this area
  • each robot is assigned a work task and each human worker a plurality of work tasks.
  • each human worker can use it to serve a number of robots and supply them with intermediate products.
  • Such a constellation takes advantage of the special flexibility of human workers, while the robot, for example, for repetitive tasks that are particularly fast to implement, is used.
  • Workstations to use respective tools that are operated by both human workers and robots are used by both human workers and robots.
  • the workstations therefore do not have to be newly adapted to the human worker or the robot during a relocation, but can continue to be used without rest.
  • the robots may be designed to use tools designed for human hands.
  • the manipulators of the robot would be adjusted accordingly.
  • it is possible to use appropriately adapted tools for example, having two handling areas. A first handling area would be ergonomically adapted to the human hand, while a second handling area is designed to interact with a manipulator of a robot.
  • At least one workstation operated by at least one human worker and / or at least one robot is supplied with precursors and / or material by further human workers. This is especially useful if a workflow, for example, provides that certain parts or precursors must be kept in magazines and this can not be done economically automated.
  • Fig. 1 shows a production plant for carrying out an embodiment of the method according to the invention at low utilization.
  • Fig. 2 shows the production plant of FIG. 1 at medium load and 3 shows a robot for use with an exemplary embodiment of the method according to the invention with an associated laser scanner for protecting workers working in its vicinity.
  • a designated as a whole with 10 production plant which is designed here for the production of motor vehicle transmissions, comprises a plurality of workstations 12, which in turn comprise work surfaces 14 and reservoir 16, which are not all designated here for clarity.
  • the workstations 12 are also
  • Machine tools such as presses 18 assigned.
  • a control device not shown in the figures is provided. The latter receives information about the quantities to be produced or the number of variants of the manufactured product to be produced, and from this information subsequently generates instructions for filling the workstations 12.
  • the production facility 10 is therefore operated only by a single human worker 20, who operates all workstations 12 and carries out the work steps provided there.
  • the worker 20 passes through the semicircular workstations arranged 12 in a predetermined order, making each product completely self.
  • Workers 20 are instructed to take over individual workstations 12 of the production facility 10. Each worker now operates one or two workstations, each generated partial products are passed between the workstations 12.
  • the production plant 10 can additionally be assigned robots 22, as shown in FIG. 2. These are arranged on mobile tables 24, which are driven by workers to each of a robot 22 to be operated workstation 12. Intermediates of production in the production plant 10 are now occupied between human and robotic
  • the human workers 20 preferably perform flexible tasks, while the Robots 22 are each programmed to a predetermined amount of work an assembly station 12.
  • the programming can be done by the human worker 20, for example in the form of so-called teaching. Also, an association of wireless-acting programming means, such as RFID chips, to the
  • Workstations 12 is possible. These programming means transmit the work program associated with the respective workstation 12 to the robots 22, so that they only have to be brought to their stand and can take over the necessary tasks immediately.
  • the production plant 10 can be adapted to all necessary utilization levels, with a change in the configuration of the production plant 10 due to commands from the controller can be done in real time to the
  • Production plant 10 to adapt quickly to a fluctuating production demand.
  • the robots 22 In order to facilitate collaboration between human workers 20 and robots 22 in the confined space of production facility 10, the robots must have special safety precautions.
  • the robots 22 may be provided with associated laser scanners 26 that scan a tapered region 28 about the robots 22. This area is one
  • the robot 22 may also be provided with their own collision detection systems that detect impending collisions with objects or workers and in this case interrupt a movement of the robot 22 until its recovery is safe for all parties.
  • workstations 12 preferably use only tools that can be used by both human workers 20 and robots 22.
  • the Tools are adapted so that they have, for example, two different handling areas for human access and robotic access.
  • the robots 22 may be adapted to use tools designed for human handling ergonomics. It is particularly useful here, when the robot 22 via force sensors or
  • Momentum sensors have, with which they can determine what force they exert by means of such tools on the workpieces, so as to avoid damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Factory Administration (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une installation de production (10) comprenant une pluralité de postes de travail (12) destinés à l'exécution d'au moins une étape de travail respective au moyen d'un système de commande associé à l'installation de production (10). Selon au moins un critère concernant une exigence de production, les postes de travail (12) sont attribués à des ouvriers (20) ou des robots (22) au moyen du système de commande, un ou plusieurs postes de travail (12) pouvant être attribués à chaque ouvrier (20) ou robot (22).
EP11797185.3A 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production Ceased EP2788828A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/006202 WO2013083143A1 (fr) 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production

Publications (1)

Publication Number Publication Date
EP2788828A1 true EP2788828A1 (fr) 2014-10-15

Family

ID=45350726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11797185.3A Ceased EP2788828A1 (fr) 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production

Country Status (5)

Country Link
US (1) US20140303767A1 (fr)
EP (1) EP2788828A1 (fr)
JP (1) JP2015506021A (fr)
CN (1) CN103988136A (fr)
WO (1) WO2013083143A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987486B (zh) * 2011-12-09 2017-03-29 戴姆勒股份公司 用于运行生产设备的方法
JP6504072B2 (ja) * 2016-02-15 2019-04-24 オムロン株式会社 作業領域推定装置、制御装置、制御システム、作業領域推定方法およびプログラム
JP6572446B2 (ja) * 2016-11-30 2019-09-11 パナソニックIpマネジメント株式会社 部品実装システムおよび作業者割り当てシステムならびに作業者割り当て方法
JP6852381B2 (ja) * 2016-12-16 2021-03-31 富士通株式会社 配置人数決定装置、配置人数決定方法及び配置人数決定プログラム
US11619927B2 (en) * 2017-11-03 2023-04-04 Drishti Technologies, Inc. Automatic analysis of real time conditions in an activity space
CN109967404A (zh) * 2017-12-28 2019-07-05 顺丰科技有限公司 分拣配置方法、装置、设备及存储介质
AU2020222504B2 (en) 2019-02-12 2020-11-12 Commonwealth Scientific And Industrial Research Organisation Situational awareness monitoring

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819008A (en) * 1995-10-18 1998-10-06 Rikagaku Kenkyusho Mobile robot sensor system
JPH09244730A (ja) * 1996-03-11 1997-09-19 Komatsu Ltd ロボットシステムおよびロボットの制御装置
JPH10261122A (ja) * 1997-03-18 1998-09-29 Sumitomo Wiring Syst Ltd 作業配分最適化方法
JP2001121461A (ja) * 1999-10-26 2001-05-08 Denso Corp ロボットシステム
JP4074425B2 (ja) * 2000-05-31 2008-04-09 セイコーエプソン株式会社 大型表示装置を用いた稼働状況管理
JP2003062727A (ja) * 2001-04-26 2003-03-05 Fuji Photo Film Co Ltd 組立装置
EP1570324B1 (fr) 2002-12-10 2009-02-25 LogObject AG Procede d'automatisation dynamique comportant des elements collaboratifs et systeme de commande correspondant
JP2005349488A (ja) * 2004-06-08 2005-12-22 Sharp Corp 多自由度多指ハンド
US8620728B2 (en) * 2004-07-08 2013-12-31 Jeff Hamelink Manufacturing productivity scoreboard
US20060020509A1 (en) * 2004-07-26 2006-01-26 Sourcecorp Incorporated System and method for evaluating and managing the productivity of employees
WO2006093652A2 (fr) * 2005-02-25 2006-09-08 Abb Research Ltd. Procede et dispositif d'apprentissage de trajectoire automatique
DE102005019233A1 (de) * 2005-04-26 2006-11-09 Sick Ag Vorrichtung zur optischen Erfassung von Objekten
JP4764070B2 (ja) * 2005-05-24 2011-08-31 本田技研工業株式会社 作業ステーションの安全システム
US20100004783A1 (en) * 2005-09-05 2010-01-07 Honda Motor Co, Ltd System For Collaboration Between Device and Person
US20070143169A1 (en) * 2005-12-21 2007-06-21 Grant Chad W Real-time workload information scheduling and tracking system and related methods
US8005701B2 (en) * 2006-06-08 2011-08-23 Bayerische Motoren Werke Aktiengesellschaft Systems and methods for generating a work schedule
US8965578B2 (en) * 2006-07-05 2015-02-24 Battelle Energy Alliance, Llc Real time explosive hazard information sensing, processing, and communication for autonomous operation
US8355818B2 (en) * 2009-09-03 2013-01-15 Battelle Energy Alliance, Llc Robots, systems, and methods for hazard evaluation and visualization
US8271132B2 (en) * 2008-03-13 2012-09-18 Battelle Energy Alliance, Llc System and method for seamless task-directed autonomy for robots
US8522240B1 (en) * 2006-10-19 2013-08-27 United Services Automobile Association (Usaa) Systems and methods for collaborative task management
US20080243575A1 (en) * 2007-03-30 2008-10-02 Keith Weinberger System and Method for Dynamically Allocating Human Resources to a Project Plan
US8577126B2 (en) * 2007-04-11 2013-11-05 Irobot Corporation System and method for cooperative remote vehicle behavior
US20090099897A1 (en) * 2007-10-15 2009-04-16 I.D. Systems, Inc. System and method for managing mobile asset workload
JP4839487B2 (ja) * 2007-12-04 2011-12-21 本田技研工業株式会社 ロボット及びタスク実行システム
CN101450749A (zh) * 2007-12-05 2009-06-10 Abb研究有限公司 生产线及其操作方法
JP5186193B2 (ja) * 2007-12-14 2013-04-17 パナソニック株式会社 フレキシブル生産システム
EP2244866B1 (fr) * 2008-02-20 2015-09-16 ABB Research Ltd. Procédé et système pour optimiser la configuration d'une cellule de travail de robot
JP5088187B2 (ja) * 2008-03-18 2012-12-05 株式会社Ihi ロボット設置方法及びロボット生産システム
KR101479233B1 (ko) * 2008-05-13 2015-01-05 삼성전자 주식회사 로봇 및 그 협조작업 제어방법
US8140369B2 (en) * 2008-08-21 2012-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for optimizing manufacturing workforce
US20100094899A1 (en) * 2008-09-30 2010-04-15 Yahoo! Inc. System for assembling and providing problem solving frameworks
PL2342031T3 (pl) * 2008-10-29 2020-08-24 Sms Group Gmbh System interakcji z robotem
DE112009002648B4 (de) * 2008-11-05 2018-04-12 Honda Motor Co., Ltd. Verfahren zum Ausgleichen der Arbeitslast und Unterstützungssystem zum Ausgleichen der Arbeitslast
US7982662B2 (en) * 2008-12-08 2011-07-19 Intellex, Llc Scanning array for obstacle detection and collision avoidance
JP4648486B2 (ja) * 2009-01-26 2011-03-09 ファナック株式会社 人間とロボットとの協調動作領域を有する生産システム
KR101686517B1 (ko) * 2009-05-22 2016-12-14 도요타지도샤 히가시니혼 가부시키가이샤 작업 지원 로봇 시스템
US8253792B2 (en) * 2009-08-28 2012-08-28 GM Global Technology Operations LLC Vision system for monitoring humans in dynamic environments
JP5167548B2 (ja) * 2009-09-01 2013-03-21 川田工業株式会社 吊下げ型協調作業ロボット
KR101277452B1 (ko) * 2009-12-09 2013-07-05 한국전자통신연구원 군집 지능 기반의 이동 로봇과 이를 제어하는 방법 및 감시 경계 로봇 시스템
US20110298579A1 (en) * 2010-06-08 2011-12-08 Cedes Safety & Automation Ag Dynamically adaptable safety zones
DE102010032877A1 (de) * 2010-07-30 2012-02-02 Daimler Ag Verfahren zum Betreiben einer Produktionsanlage
JP4938118B2 (ja) * 2010-08-17 2012-05-23 ファナック株式会社 人間協調ロボットシステム
DE112011103155T5 (de) * 2010-09-21 2013-07-18 Toyota Jidosha Kabushiki Kaisha Beweglicher Körper
WO2012065175A2 (fr) * 2010-11-11 2012-05-18 The Johns Hopkins University Systèmes robotiques collaboratifs homme-machine
US9008839B1 (en) * 2012-02-07 2015-04-14 Google Inc. Systems and methods for allocating tasks to a plurality of robotic devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "SMErobot(TM) - Publications", 13 November 2011 (2011-11-13), XP055253318, Retrieved from the Internet <URL:http://web.archive.org/web/20111113041039/http://www.smerobot.org/08_scientific_papers> [retrieved on 20160226] *
HENDRIK MÜTHERICH: "Konzeption und Entwicklung von robotergeführten Werkzeugsystemen zur Fertigung von Holzbauteilen in kleinen Losgrößen", 1 January 2006 (2006-01-01), XP055253321, Retrieved from the Internet <URL:http://www.smerobot.org/08_scientific_papers/papers/Diplomarbeit_HendrikMuetherich_IPA_05.pdf> [retrieved on 20160226] *
See also references of WO2013083143A1 *

Also Published As

Publication number Publication date
CN103988136A (zh) 2014-08-13
JP2015506021A (ja) 2015-02-26
US20140303767A1 (en) 2014-10-09
WO2013083143A1 (fr) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2788828A1 (fr) Procédé pour faire fonctionner une installation de production
DE102010032877A1 (de) Verfahren zum Betreiben einer Produktionsanlage
AT398923B (de) Fertigungsanlage mit parallel- und nebenförderwegen
EP2788145A1 (fr) Procédé pour faire fonctionner une installation de production
EP2977149B1 (fr) Procede et moyen de conception et/ou de fonctionnement d&#39;un robot
EP2788144B1 (fr) Procédé pour faire fonctionner une installation de production
DE102011108282B4 (de) Numerische Steuerung für eine Mehrachsenmaschine zum Bearbeiten einer geneigten Bearbeitungsebene
DE102010032876A1 (de) Verfahren zum Betreiben einer Produktionsanlage
EP3529000A2 (fr) Système de transport, procédé et produit-programme informatique permettant le chargement et le déchargement d&#39;au moins une machine de traitement de matériau
EP3535205A1 (fr) Système de préparation de commandes flexible et compact
WO2020011337A1 (fr) Dispositif de travail muni d&#39;un robot monté sous table
WO2013083144A1 (fr) Procédé pour faire fonctionner une installation de production
DE202014101002U1 (de) Fertigungsstation
DE102008014110B4 (de) Verfahren und Vorrichtung zur Kommissionierung von Gegenständen
AT512775A4 (de) Fertigungsanlage zur Herstellung einer Baugruppe aus mehreren Bauteilen
DE102015003573B4 (de) Verfahren zur Durchführung eines Produktionsprozesses mittels einer Bearbeitungsstation, sowie Anordnung zur Durchführung des Verfahrens
DE102015225587A1 (de) Interaktionssystem und Verfahren zur Interaktion zwischen einer Person und mindestens einer Robotereinheit
EP2962803A1 (fr) Machine a souder ergonomique
WO2018055178A1 (fr) Procédé et machine-outil servant à l&#39;usinage de pièces en forme de plaque, en particulier de tôles
DE102015216622A1 (de) Montagelinie und Verfahren zur Montage von Baugruppen
DE102012109040B4 (de) Klettervorrichtung und Verfahren zum Ausführen von Tätigkeiten an gestapelten Gegenständen
DE102018111603A1 (de) Verfahren und Vorrichtung zum Konfigurieren eines roboter-gestützten Bearbeitungssystems
DE102010032869A1 (de) Verfahren zum Betreiben einer Produktionsanlage
EP3631591A1 (fr) Commande de processus
EP3741519B1 (fr) Système et procédé de manipulation et/ou d&#39;usinage de pièces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REICHENBACH, MATTHIAS

Inventor name: ZUERN, MICHAEL

Inventor name: SCHREIBER, MATTHIAS

Inventor name: KLUMPP, WILLI

Inventor name: ZIPTER, VOLKER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170421