EP2788145A1 - Procédé pour faire fonctionner une installation de production - Google Patents

Procédé pour faire fonctionner une installation de production

Info

Publication number
EP2788145A1
EP2788145A1 EP11797184.6A EP11797184A EP2788145A1 EP 2788145 A1 EP2788145 A1 EP 2788145A1 EP 11797184 A EP11797184 A EP 11797184A EP 2788145 A1 EP2788145 A1 EP 2788145A1
Authority
EP
European Patent Office
Prior art keywords
workstations
workstation
production
work
production plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11797184.6A
Other languages
German (de)
English (en)
Inventor
Willi Klumpp
Matthias Reichenbach
Matthias Schreiber
Volker Zipter
Michael ZÜRN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2788145A1 publication Critical patent/EP2788145A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • B23P21/004Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4188Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by CIM planning or realisation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32085Layout of factory, facility, cell, production system planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to a method for operating a production plant with a plurality of work areas.
  • the transfer system includes a plurality of CNC machines arranged immediately adjacent to each other and having servo motor drives configured to transfer workpieces between the individual machines.
  • the present invention has for its object to provide a method of the type mentioned, which is a particularly flexible adaptation of
  • Such a method is for operating a production plant having a plurality of work areas in which respective work stations are arranged to perform at least one respective work step. Furthermore, such includes
  • Production plant at least one transport system by means of which goods to be processed are transported on at least one predetermined path between the workstations.
  • Workstation feasible step and the at least one predetermined path is chosen in this case according to a predetermined, a production requirement criterion and adapted when a change in the at least one criterion.
  • the method according to the invention enables a flexible adaptation of the operation of the production plant to respectively current production requirements.
  • the method according to the invention enables a flexible adaptation of the operation of the production plant to respectively current production requirements.
  • Production plant preferably all movably designed so that new arrangements and transport routes can be created in a very short time. It is included
  • workstations are preferably used which are designed as essentially identical modules.
  • modules may be assembly robots that match their hardware.
  • these robots receive updated programming.
  • Production requirements may be the use of such modules, in particular for the rapid replacement of extended stations application.
  • the modules can also be constructed more complex and several machine tools, shelves, Robot or the like include. In such more complex modules, a plurality of work steps can be performed in each case. It is possible, for example, to provide a separate module of this type for each variant of a product to be produced, or to install several modules for the same variant, if a particularly high number of pieces is to be manufactured. Preferably, such modules then work in parallel to enable particularly high product throughputs.
  • the products of such parallel workstations can be transported by the transport system to a single workstation, where they are further processed.
  • overloads of individual workstations can be compensated or the number of units can be increased on request.
  • Assembly robots is operated. In this way, a much smaller area for the assembly task is needed. Furthermore, the need for permanently installed conveyor technology is reduced to the absolutely necessary minimum, which greatly reduces the investment costs.
  • Fig. 1 is a perspective view of a production plant for use with an embodiment of a method according to the invention
  • Figs. 2 to 4 show three alternative arrangements of work stations for use with an embodiment of a method according to the invention.
  • Automotive transmissions include a plurality of workspaces in which respective workstations 14 are arranged.
  • the workstations 14 include several
  • a workstation can also shelves or
  • Embodiment protected by schematically indicated laser cone 28 If a person moves in the area of the laser cones 28, the robots 18, 26 are automatically deactivated in order to protect the worker in this way.
  • the robots 18, 26 which have force / torque sensors with which collisions of the robots 18, 26 with each other, with other elements of the workstation and, in particular, with workers, can be avoided.
  • Both the lightweight robot 18 and the tables 16 are freely arrangeable in the various work areas 12.
  • the workstations 14 can therefore be easily reconfigured. This applies both to their arrangement in space as well as the work tasks performed by the respective workstations 14. If the task of a workstation 14 changes, then the
  • Lightweight robot 18 can be easily reprogrammed. In order to compensate for overloading of the production facility 10, empty work areas 12 can be provided, in which new workstations 14 are required for an increased production requirement being constructed. The order in which the workstations 14 their
  • Processing steps can also be adapted freely, since no fixed transport systems are needed. Rather, the transport paths between the workstations 14 can be freely determined by appropriate reprogramming of the self-propelled forklift trucks 22.
  • the workstations 1 can perform identical or different manufacturing scopes. Two examples of this are shown in FIGS. 2 and 3. In the arrangement according to FIG. 2, a first variant of a component is manufactured in a first group 30 of three workstations 14. In parallel, in a second group 32 of two workstations 14, a second variant of the component is manufactured.
  • Workstations 14 of groups 30 and 32 are then bundled by transport systems and brought together to a final assembly station.
  • the parallel processing achieves a particularly high throughput.
  • production can be easily and quickly adapted to changing needs. For example, by adding the further group 34 or additional, not shown groups another
  • Variant of the component to be produced are included in the manufacturing process. There must be no changes to the already existing
  • Work stations of groups 30,32 are made, which can continue their production unchanged. It is also possible to add workstations 14, which produce an already existing variant, in order to increase the manufactured quantities.
  • Workstation 14 also only, as shown in Fig. 4, from a single work table 16 with associated shelves or storage containers. This can then be operated by one or more assembly robots 18 or human workers. Ideally, such a single work table 16 replaces a complete assembly line and therefore provides large free mounting surfaces, as exemplified in FIG. Furthermore, the reduction of the assembly line to a single work table 16 eliminates the need for expensive and inflexible permanently installed conveyor technology.
  • all workstations 14 are designed to hold all of them in them
  • human workers can be performed. For example, if only very small quantities are to be produced in a particular variant, then one can Workstation 14 for the production of this variant with human workers instead of robots are replaced, while high volumes are manufactured purely robotic.
  • the adaptation of production to new variants is by modifying individual

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Factory Administration (AREA)
  • Automatic Assembly (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner une installation de production (10) présentant une pluralité de zones de travail (12) dans lesquelles chaque poste de travail (14) est aménagé pour effectuer au moins une étape de travail respective, ainsi qu'au moins un système de transport (22) au moyen duquel les pièces à usiner sont transportées entre les postes de travail (14) selon au moins une trajectoire prédéterminée. La configuration des postes de travail (14), l'étape de travail à accomplir par le poste de travail (14) respectif ainsi que la moins une trajectoire prédéterminée sont sélectionnés en fonction d'au moins un critère concernant une exigence de production et sont adaptés en cas de modification dudit au moins un critère.
EP11797184.6A 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production Withdrawn EP2788145A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/006201 WO2013083142A1 (fr) 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production

Publications (1)

Publication Number Publication Date
EP2788145A1 true EP2788145A1 (fr) 2014-10-15

Family

ID=45350725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11797184.6A Withdrawn EP2788145A1 (fr) 2011-12-09 2011-12-09 Procédé pour faire fonctionner une installation de production

Country Status (5)

Country Link
US (1) US10108186B2 (fr)
EP (1) EP2788145A1 (fr)
JP (1) JP2015500746A (fr)
CN (1) CN103987486B (fr)
WO (1) WO2013083142A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609738B1 (en) 2013-12-23 2017-03-28 Flextronics Ap, Llc Graphite sheet to redirect SMT components during thermal exposure
US9789572B1 (en) * 2014-01-09 2017-10-17 Flextronics Ap, Llc Universal automation line
WO2015132378A1 (fr) * 2014-03-06 2015-09-11 Kuka Systems Gmbh Poste de production, usine de production et procédé
HUE046384T2 (hu) * 2015-02-19 2020-03-30 Kuka Systems Gmbh Gyártóberendezés és gyártási eljárás
FR3043928B1 (fr) * 2015-11-24 2018-05-18 Psa Automobiles Sa. Ligne de fabrication industrielle
FR3045427B1 (fr) * 2015-12-17 2018-05-25 Psa Automobiles Sa. Poste d’assemblage d’une ligne de fabrication industrielle
CN106002559B (zh) * 2016-05-19 2018-09-28 福建工程学院 一种全自动化机器人磨抛生产线的模块化物料投递方法
US10928792B2 (en) * 2016-07-25 2021-02-23 Leridge Corporation Parallel manufacturing systems and methods
EP3510458A2 (fr) * 2016-09-09 2019-07-17 The Procter and Gamble Company Système et procédé de production de produits sur la base de la demande
DE102016226062A1 (de) * 2016-12-22 2018-06-28 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Kennzeichnung von Werkstücken, zugehörige Produktionsstation und zugehöriges Aufrüstverfahren
CN107527115A (zh) * 2017-08-14 2017-12-29 震坤行工业超市(上海)有限公司 智能仓储管理方法、装置、系统、及无人智能仓储设备
US11625023B2 (en) * 2017-09-29 2023-04-11 Donald Scott Rogers Device and method for automated assembly of interlocking segments
CN113168166A (zh) * 2019-03-19 2021-07-23 千兆跃香港有限公司 灵活动态的工厂
DE102019112437A1 (de) * 2019-05-13 2020-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Industrielle Fertigungseinrichtung zur Herstellung von Karosseriebauteilen von Kraftfahrzeugen
EP3878611A1 (fr) * 2020-03-10 2021-09-15 Hochschule für angewandte Wissenschaften Landshut Cellule de fabrication partiellement automatisée
WO2023141894A1 (fr) * 2022-01-27 2023-08-03 宁德时代新能源科技股份有限公司 Chaîne de production d'ensemble final de véhicule et procédé d'assemblage final de véhicule

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2435220A1 (fr) * 1978-09-06 1980-04-04 Bonnet Pierre Installation pour la production de chaussures
DE3209222C2 (de) * 1982-03-13 1985-04-25 Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg Bearbeitungsstation in einer durch Verkettung von einzelnen Bearbeitungsstationen gebildeten Transferstraße
US4653159A (en) * 1984-11-13 1987-03-31 Westinghouse Electric Corp. Flexible automated manufacturing system
DE3443076A1 (de) * 1984-11-26 1986-06-05 Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg Flexibles fertigungssystem fuer die bearbeitung und herstellung mehrteiliger baugruppen, insbesondere rohkarosserie-baugruppen
US4982827A (en) * 1985-04-01 1991-01-08 Globe Products Inc. Workpiece processing system
US5189604A (en) * 1985-07-19 1993-02-23 El Paso Technologies Company Distributed logic control system and method
US5280431A (en) * 1985-08-30 1994-01-18 Texas Instruments Incorporated Method for controlling the movements of a mobile robot in a multiple node factory
US4703558A (en) * 1986-02-18 1987-11-03 Maekinen Matti Assembly system
DE3614165A1 (de) * 1986-04-26 1987-10-29 Kloeckner Humboldt Deutz Ag Transportsystem fuer serienfertigungen
US4773523A (en) * 1986-05-14 1988-09-27 Gmf Robotics Corporation Method for automated handling of materials such as automotive parts and system utilizing same
FR2606178B1 (fr) * 1986-11-05 1991-08-30 Aerospatiale Systeme pour le guidage d'un chariot automoteur sur une surface de roulement
JP2560302B2 (ja) * 1987-01-19 1996-12-04 トヨタ自動車株式会社 無人車を用いた生産方式
US4815190A (en) * 1987-08-20 1989-03-28 Gmf Robotics Corporation Method for automated assembly of assemblies such as automotive assemblies
US4894908A (en) * 1987-08-20 1990-01-23 Gmf Robotics Corporation Method for automated assembly of assemblies such as automotive assemblies and system utilizing same
US5210821A (en) * 1988-03-28 1993-05-11 Nissan Motor Company Control for a group of robots
US5019968A (en) * 1988-03-29 1991-05-28 Yulan Wang Three-dimensional vector processor
US4928383A (en) * 1988-10-18 1990-05-29 Permaflex Company Non-synchronous assembly system
US5125149A (en) * 1989-04-28 1992-06-30 Canon Kabushiki Kaisha Method of accessing and assembling parts in an assembly apparatus incorporating mobile robots
US5119732A (en) * 1991-01-18 1992-06-09 R.R. Donnelley & Sons Company Portable gantry robot
US5272805A (en) * 1991-04-01 1993-12-28 Fanuc Robotics North America, Inc. System for the flexible assembly of assemblies
DE4290927C2 (de) * 1991-04-01 2000-04-27 Fanuc Robotics North America Anlage zur flexiblen Positionierung von Bauteilen in einer Montagestation und Anlage zur flexiblen Montage von Bauteilen
SE501263C2 (sv) * 1991-12-10 1994-12-19 Asea Brown Boveri Förfarande för kalibrering av rörelseaxlar hos en industrirobot
US5268837A (en) * 1992-04-23 1993-12-07 Digital Equipment Corporation Robotics workstation
JPH06155197A (ja) * 1992-11-16 1994-06-03 Pfu Ltd 混流生産システムにおける部材供給システム
JP2501010B2 (ja) * 1993-10-25 1996-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 移動ロボットの誘導装置
JP3116715B2 (ja) * 1994-03-11 2000-12-11 株式会社安川電機 Faコネクタおよびそれを用いたワークパレット
JP3048873B2 (ja) * 1995-02-21 2000-06-05 三洋電機株式会社 自走式ワークセンターを用いた生産システム
US5771553A (en) * 1996-10-03 1998-06-30 National University Of Singapore Precision and quick affixing method for flexible automated assembly
EP0838398B1 (fr) * 1996-10-17 2000-01-26 DaimlerChrysler AG Procédé et dispositif pour l'application de film protecteur auto-adhésif aux carrosseries de véhicules
US6213309B1 (en) * 1999-04-30 2001-04-10 B & H Manufacturing Company, Inc. Turret feed control apparatus for sorting and distributing articles in a process system
JP2001001237A (ja) * 1999-06-22 2001-01-09 Sony Corp 複数品種の製品の製造方法及びその生産システム構築方法
US6516239B1 (en) * 1999-08-03 2003-02-04 Honda Of Canada Incorporated Assembly line control system
US6801821B2 (en) * 1999-08-03 2004-10-05 Honda Canada Incorporated Assembly line control system
US6429016B1 (en) * 1999-10-01 2002-08-06 Isis Pharmaceuticals, Inc. System and method for sample positioning in a robotic system
US6554119B2 (en) * 2000-02-07 2003-04-29 Progressive Tool & Industries Co. Flexible automotive assembly line and method
US6564440B2 (en) * 2000-02-07 2003-05-20 Progressive Tool & Industries Co. Flexible automotive assembly workstation and method
US6834473B2 (en) * 2000-02-23 2004-12-28 Khs Maschinen- Und Anlagenbau Ag Bottling plant and method of operating a bottling plant and a bottling plant with sections for stabilizing the bottled product
US6535786B1 (en) * 2000-03-10 2003-03-18 David W. Duemler Modular automated assembly system
US6651799B1 (en) * 2000-06-30 2003-11-25 Wright Industries Incorporated Modular pallet indexing chassis for automated manufacturing and assembly operations
JP2002036073A (ja) 2000-07-28 2002-02-05 Denso Corp 生産システム
US6741055B2 (en) * 2000-12-26 2004-05-25 Matsushita Electric Industrial Co., Ltd. Positioning-controlling apparatus and positioning-controlling method, and part-mounting equipment and part-mounting method
JP2003062727A (ja) * 2001-04-26 2003-03-05 Fuji Photo Film Co Ltd 組立装置
US6668203B1 (en) * 2001-04-26 2003-12-23 Sandia Corporation State machine analysis of sensor data from dynamic processes
US7991505B2 (en) * 2003-08-29 2011-08-02 Casepick Systems, Llc Materials-handling system using autonomous transfer and transport vehicles
US7591630B2 (en) * 2003-08-29 2009-09-22 Casepick Systems, Llc Materials-handling system using autonomous transfer and transport vehicles
DE102004029665A1 (de) 2004-03-30 2005-10-27 Continental Teves Ag & Co. Ohg Modulares Transfersystem für Werkstücke
US7861392B2 (en) * 2006-02-27 2011-01-04 American Axle & Manufacturing, Inc. Method of assembling a power transmission device
US7490710B1 (en) * 2006-08-19 2009-02-17 Wes-Tech Automation Solutions, Llc Flexible manufacturing system having modular work stations
US20090028669A1 (en) * 2007-07-25 2009-01-29 Dynamic Micro Systems Removable compartments for workpiece stocker
US20080112787A1 (en) * 2006-11-15 2008-05-15 Dynamic Micro Systems Removable compartments for workpiece stocker
DE102007047279A1 (de) 2007-10-02 2009-04-09 Wilhelm Karmann Gmbh Fertigungsanlage, insbesondere für Karosserieeinheiten
US7809457B2 (en) * 2007-10-30 2010-10-05 Gm Global Technology Operations, Inc. Framework for automatic generation of sequence of operations
US7684892B2 (en) * 2007-10-30 2010-03-23 Gm Global Technology Operations, Inc. Process for generating control sequence of operations
US8229586B2 (en) * 2007-12-12 2012-07-24 Comau Inc. Method and apparatus for assembling a complex product in a parallel process system
JP2009241227A (ja) * 2008-03-31 2009-10-22 Honda Motor Co Ltd ワーク取付システムおよびワーク取付方法
WO2009151644A2 (fr) * 2008-06-13 2009-12-17 Yale University Inhibiteurs à petites molécules d'autotaxine et procédés d'utilisation
FR2939769B1 (fr) * 2008-12-11 2010-12-31 Ballina Freres De Procede et installation de distribution de produits pour leur conditionnement
JP2011000702A (ja) 2009-05-17 2011-01-06 Yasunaga Corp 工程間フレキシブル自動搬送システム
JP5167548B2 (ja) 2009-09-01 2013-03-21 川田工業株式会社 吊下げ型協調作業ロボット
EP2585656A4 (fr) * 2010-01-07 2014-05-14 Comau Inc Installation de fabrication modulaire et procédé
US20110282476A1 (en) * 2010-05-07 2011-11-17 Skinit, Inc. Systems and methods of on demand manufacturing of customized products
US8869370B2 (en) * 2010-06-25 2014-10-28 Comau, Inc. Sequenced part delivery system
KR101772977B1 (ko) * 2010-10-07 2017-08-31 삼성전자주식회사 이동 로봇 및 그 지도 작성 방법
DE102010055957A1 (de) * 2010-12-23 2012-06-28 Daimler Ag Verfahren zum Herstellen von Kraftwagen und Kraftwagen
DE102010055959A1 (de) * 2010-12-23 2012-06-28 Daimler Ag Verfahren zum Montieren von Kraftwagen
DE102010055942A1 (de) * 2010-12-23 2012-06-28 Daimler Ag Bodenmodul für einen Kraftwagen
DE102010055941A1 (de) * 2010-12-23 2012-06-28 Daimler Ag Verfahren zum Montieren von Kraftwagen
EP2469366B1 (fr) * 2010-12-27 2013-08-14 Siemens Aktiengesellschaft Contrôle de production d'article JIT via des cartes Kanban
CN103561905A (zh) * 2011-06-08 2014-02-05 村田机械株式会社 工件处理系统
EP2788828A1 (fr) * 2011-12-09 2014-10-15 Daimler AG Procédé pour faire fonctionner une installation de production
EP2788144B1 (fr) * 2011-12-09 2017-05-17 Daimler AG Procédé pour faire fonctionner une installation de production
US9581983B2 (en) * 2012-05-29 2017-02-28 Comau Llc Methods for using an automated guided cart

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013083142A1 *

Also Published As

Publication number Publication date
JP2015500746A (ja) 2015-01-08
US20140288690A1 (en) 2014-09-25
CN103987486B (zh) 2017-03-29
CN103987486A (zh) 2014-08-13
US10108186B2 (en) 2018-10-23
WO2013083142A1 (fr) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2788145A1 (fr) Procédé pour faire fonctionner une installation de production
EP1601492B1 (fr) Installation de production de composants, en particulier de composants de carrosserie
EP1827754B1 (fr) Cellule servant au montage d' ensembles de pièces sur des palettes et procédé pour faire fonctionner ladite cellule
EP3114017B1 (fr) Poste de production, usine de production et procédé
EP1871570B1 (fr) Châine de production servant à usiner des pièces avec souplesse
EP2788144B1 (fr) Procédé pour faire fonctionner une installation de production
DE202015100782U1 (de) Fertigungsanlage
EP3463745A1 (fr) Station de fabrication et procédé de fabrication
DE102010022582A1 (de) Verfahren zur Steuerung einer getakteten Fertigungsstraße
DE112016004041T5 (de) Eine verbindungsgliedbedienungsseinrichtung verwendende verbundarbeitseinrichtung
DE102010032876A1 (de) Verfahren zum Betreiben einer Produktionsanlage
DE102010032877A1 (de) Verfahren zum Betreiben einer Produktionsanlage
EP2788828A1 (fr) Procédé pour faire fonctionner une installation de production
DE60121941T2 (de) Herstellungsverfahren und herstellungsanlage
WO2013083144A1 (fr) Procédé pour faire fonctionner une installation de production
DE102011010944B4 (de) Flexible Fertigungszelle
DE102022202196B4 (de) Modulares, flexibles Werkzeugmaschinensystem mit mindestens einer Werkzeugmaschinen-Basisanordnung
DE102010032869A1 (de) Verfahren zum Betreiben einer Produktionsanlage
DE10050481B4 (de) System aus kooperierenden Robotern und Verfahren zu deren Steuerung
DE102005012312B4 (de) Montagelinie und -verfahren
DE102015003573B4 (de) Verfahren zur Durchführung eines Produktionsprozesses mittels einer Bearbeitungsstation, sowie Anordnung zur Durchführung des Verfahrens
EP1892068A2 (fr) Dispositif et procédé destinés au traitement de pièces à usiner
DE102022117386B4 (de) Fertigungsstation zur Herstellung von Karosserieteilen sowie Verfahren zur Fertigung
DE102018111603A1 (de) Verfahren und Vorrichtung zum Konfigurieren eines roboter-gestützten Bearbeitungssystems
DE102022114008A1 (de) Modulares Montagesystem und Verfahren zur Montage eines Werkstücks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180321