EP2766514A2 - Procédé et système de traitement de gaz carbonés par hydrogénation électrochimique pour l'obtention d'un composé de type cxhyoz - Google Patents
Procédé et système de traitement de gaz carbonés par hydrogénation électrochimique pour l'obtention d'un composé de type cxhyozInfo
- Publication number
- EP2766514A2 EP2766514A2 EP12780242.9A EP12780242A EP2766514A2 EP 2766514 A2 EP2766514 A2 EP 2766514A2 EP 12780242 A EP12780242 A EP 12780242A EP 2766514 A2 EP2766514 A2 EP 2766514A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrolyser
- heating means
- treating
- cathode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 150000001875 compounds Chemical class 0.000 title claims abstract description 40
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 36
- 239000007789 gas Substances 0.000 title claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title description 5
- 229910052799 carbon Inorganic materials 0.000 title description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 44
- 239000012528 membrane Substances 0.000 claims abstract description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 238000005868 electrolysis reaction Methods 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 17
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 150000001722 carbon compounds Chemical class 0.000 claims description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000005191 phase separation Methods 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 3
- 150000001345 alkine derivatives Chemical class 0.000 claims description 3
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 150000002978 peroxides Chemical class 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 230000005012 migration Effects 0.000 claims description 2
- 238000013508 migration Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 33
- 229910002091 carbon monoxide Inorganic materials 0.000 description 33
- 239000000919 ceramic Substances 0.000 description 19
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- 239000011195 cermet Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 150000002602 lanthanoids Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Natural products O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/202—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/326—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a method and a system for treating carbonaceous gases - carbon dioxide (CO 2) and / or carbon monoxide (CO) - from highly reactive hydrogen generated by electrolysis of water to produce water. obtaining a compound of the type CxH y O z , in particular with x>1; 0 ⁇ y ⁇ (2x + 2) and 0 ⁇ z ⁇ 2x.
- the production method uses an electrolyte capable of driving the protons and operating at temperatures generally between 200 ° C and 800 ° C.
- FIG. 1 schematically represents an electrolyzer 10 comprising a proton-conducting ceramic membrane 1 1 providing the electrolyte function separating an anode 12 and a cathode 13.
- this process provides at the outlet of the electrolyzer 10 pure hydrogen - cathode compartment - and oxygen mixed with water vapor - anodic compartment.
- H 2 passes through the formation of intermediate compounds which are hydrogen atoms adsorbed on the surface of the cathode with varying energies and degrees of interaction and / or radical hydrogen atoms . (or H tectrode in the Kröger-Vink notation). These species being highly reactive, they usually recombine to form hydrogen H 2 according to the equation:
- the object of the invention is to promote the carbonaceous gases resulting for example from the production of heating from carbon products (coal, wood, oil), or the incineration of waste, and to optimally reduce the production of gas. greenhouse effect for carrying out the hydrogenation treatment.
- the invention proposes a method for treating CO 2 and / or CO by electrochemical hydrogenation to obtain a compound of type C x H y O z, with x>1; 0 ⁇ y ⁇ (2x + 2) and z between 0 and 2x, said CO 2 and / or CO being obtained by the combustion of carbonaceous products via heating means (160), said method comprising:
- reactive hydrogen atoms are meant atoms absorbed on the surface of the cathode and / or radical hydrogen atoms H (or Hf ieci: rode in the Kröger-Vink notation).
- the process according to the invention makes it possible to recover the carbon dioxide produced by heating means resulting from the combustion of carbonaceous products by jointly using the electrolysis of water vapor, which generates highly reactive hydrogen at the cathode.
- the electrolyser with electrocatalyzed hydrogenation of the carbonaceous products injected cathode level of the electrolyzer by reaction with highly reactive hydrogen.
- these compounds of the C x H y O z type are paraffins C n H 2n + 2 , olefins C 2n H 2 n, alcohols C n H 2 n + 2 0H or ⁇ ⁇ ⁇ 2 ⁇ - ⁇ , aldehydes and ketones C n H 2n O.
- the compounds C x H y O z produced are components for feeding the combustion of the heating means so as to reduce the external input of carbon products.
- the compounds formed are combustible carbonaceous products, such as for example aliphatics or aromatics belonging to the family of alkanes, alkenes or alkynes, substituted or unsubstituted, which may include one or more functions alcohol, aldehyde, ketone, acetal, ether, peroxide, ester, anhydride.
- the invention also makes it possible to advantageously use the heat produced by the heating means (resulting from the combustion of carbonaceous products) to bring the proton conducting electrolyser into temperature, the setting of the temperature of the electrolyser being necessary for the production of the electrolysis reaction and the electrocatalyzed hydrogenation reaction.
- the electrolyser does not require the use of expensive specific heating means and greenhouse gas generator.
- the method according to the invention may also have one or more of the following characteristics, considered individually or in any technically possible combination:
- the process comprises a step of using the compounds of the type
- said method comprises a phase separation step for injecting into the heating means the compounds of the type C x H y O z only in gaseous form: prior to said step of introducing CO 2 and / or CO produced by said heating means into the cathode compartment of the electrolyser, said method comprises a step of purifying the CO 2 and / or CO produced by said means of heating to obtain pure CO 2 and / or CO;
- step of oxidizing the water vapor at the anode generates oxygen at the outlet of the anode compartment
- said method comprises a step of phase separation of the oxygen produced by said electrolyser
- said method comprises a step of reinjection of oxygen in gaseous form into said heating means
- the method comprises a step of controlling the nature of the CxH y Oz type compounds formed as a function of the potential and / or the current applied to the cathode or to the terminals of the electrolyser;
- the compounds of the type C x H y O z formed belong to the family of alkanes or alkenes or alkynes, substituted or unsubstituted, which may include one or more functions alcohol or aldehyde or ketone or acetal or ether or peroxide or ester or anhydride;
- the compounds of the type C x H y O z are formed carbonaceous combustibles
- said step of transferring heat from the heating means to said electrolyser is carried out by means of a heat exchanger: said step of transferring heat from the heating means to said electrolyser is carried out by direct heat transfer, said electrolyser being positioned in said a heat zone in the vicinity of said heat means;
- the heat transfer from the heating means to a proton-conductive electrolyser is carried out so that said electrolyser reaches a temperature greater than or equal to 200 ° C. and less than or equal to 800 ° C., advantageously lying in the range 350 ° C. to 650 ° C. ° C; the heat transfer from the heating means to a proton-conductive electrolyser is carried out in such a way that said electrolyser reaches a temperature of between 500 ° C. and 600 ° C.
- the subject of the invention is also a system for treating carbonaceous gases by electrochemical hydrogenation for implementing the method according to the invention, said system comprising:
- heating means emitting CO 2 and / or CO by the combustion of carbonaceous products
- a proton conductive electrolyser comprising an electrolyte in the form of a proton conducting membrane, an anode and a cathode; said electrolyser being positioned near the heating means;
- the heating means are formed by a boiler.
- FIG. 1 is a simplified schematic representation of a proton-conductive water vapor electrolyser
- FIG. 2 is a schematic representation of a system for treating carbonaceous gases produced by a boiler during the combustion of carbonaceous products
- FIG. 3 is a general simplified schematic representation of an electrolysis cell for implementing the method according to the invention.
- FIG. 2 schematically represents a carbonaceous gas treatment system 100 for implementing the method according to the invention.
- the treatment system 100 comprises:
- heating means 160 such as a boiler, discharging CO 2 and / or CO and other gases resulting from the combustion of carbonaceous products used for the production of heat;
- a purifier 120 making it possible to purify gases discharged by the boiler 160 so as to isolate the CO 2 and / or CO;
- a proton conduction electrolyser 1 10 comprising an electrolyte 31 in the form of a proton conducting membrane, an anode 32 and a cathode 33 (FIG. 3);
- the means 34 for inducing a current flowing between the anode 32 and the cathode 34 may be a voltage generator, a current generator or a potentiostat (in this case, the cell will also comprise at least one cathodic or anodic reference electrode). .
- FIG. 3 illustrates in more detail an exemplary embodiment of an electrolysis cell 30 of the electrolyser 1 used to form compounds of the CxH y Oz type, (with x> 1, 0 ⁇ y ⁇ (2x + 2) and 0 ⁇ z ⁇ 2x) following the reduction of CO 2 and / or CO.
- the water is oxidized by releasing electrons while H + ions (in OH 0 form) are generated.
- H + ions migrate through the electrolyte 31 and are therefore likely to react with various compounds that would be injected at the cathode 33, the carbon compounds of the type C0 2 and / or CO reacting at the cathode 33 with these H + ions to form compounds of type C x H y O z (with x> 1, 0 ⁇ y ⁇ (2x + 2) and 0 ⁇ z ⁇ 2x) and water at cathode 33.
- the nature of the compounds C x H y O z synthesized at the cathode 33 depends on numerous operating parameters such as, for example, the pressure of the cathode compartment, the partial pressure of the gases, the operating temperature T1, the potential / current / torque. voltage applied to the cathode 33 or the terminals of the electrolyzer, the residence time of the gas and the nature of the electrodes.
- the operating temperature T1 of the electrolyser is in the range between 200 and 800 ° C, preferably between 350 ° C and 650 ° C.
- the operating temperature T1 in this temperature range will also depend on the nature of the CxHyO 2 carbon compounds that it is desired to generate. These operating parameters are defined so as to form at the outlet of the cathode 33 of the electrolyser 1 10 a combustible compound capable of supplying the combustion of the boiler 160.
- the hydrogen / compound mixture C x H y O z has the advantage of aiding the combustion of the compound C x H y O z in the heating means.
- the operating parameters are defined so as to obtain a mixture formed by 90% of CxHyO 2 compound and 10% of hydrogen.
- the anode 32 and the cathode 33 are preferably formed by a cermet constituted by the mixture of a proton-conductive ceramic and an electrically conductive passivable alloy which is capable of forming an oxide layer protection so as to protect it in an oxidizing environment (ie at the anode of an electrolyser).
- This passivable alloy is preferably a metal alloy
- the passivable alloy comprises for example chromium (and preferably at least 40% of chromium) so as to have a cermet having the particularity of not oxidizing temperature.
- the chromium content of the alloy is determined so that the melting point of the alloy is greater than the sintering temperature of the ceramic.
- sintering temperature is meant the sintering temperature necessary to sinter the electrolyte membrane so as to make it gas tight.
- the chromium alloy may also include a transition metal so as to maintain an electronic conductive character of the passive layer.
- the chromium alloy is an alloy of chromium and one of the following transition metals: cobalt, nickel, iron, titanium, niobium, molybdenum, tantalum, tungsten, etc.
- the ceramic of the anode and cathode electrodes 32 and 33 is advantageously the same ceramic as that used for producing the electrolyte membrane of the electrolyte 31.
- the proton-conducting ceramic used for producing the cermet of electrodes 32 and 33 and electrolyte 31 is a zirconate perovskite of formula of general formula AZrO 3 that can advantageously be doped with an element A selected from lanthanides.
- the use of this type of ceramic for the production of the membrane therefore requires the use of a high sintering temperature in order to obtain a densification sufficient to be gastight.
- the sintering temperature of the electrolyte 31 is more particularly defined according to the nature of the ceramic but also as a function of the desired porosity level. Conventionally, it is estimated that to be gas-tight, the electrolyte 31 must have a porosity of less than 6% (or a density greater than 94%).
- the sintering of the ceramic is carried out under a reducing atmosphere so as to avoid the oxidation of the metal at high temperature, that is to say under an atmosphere of hydrogen (H 2 ) and argon (Ar) or even carbon monoxide (CO) if there is no risk of carburation.
- a reducing atmosphere so as to avoid the oxidation of the metal at high temperature, that is to say under an atmosphere of hydrogen (H 2 ) and argon (Ar) or even carbon monoxide (CO) if there is no risk of carburation.
- the electrodes 32 and 33 of the cell 30 are also sintered at a temperature above 1500 ° C (according to the example of sintering a zirconate type ceramic).
- the anode 32 and the cathode 33 may also be formed by a ceramic material which is a perovskite doped with a lanthanide.
- Perovskite can be a zirconate of formula AZr0 3 .
- the zirconate is doped with a lanthanide which is, for example, erbium.
- the lanthanide-doped perovskite is doped with a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
- doping elements are chosen to dope the ceramic since they can go from an oxidation degree of 5 to an oxidation degree of 3, which allows to release oxygen during sintering. More specifically, the doping element is preferably niobium or tantalum.
- Each electrode may also comprise a metal mixed with the ceramic so as to form a cermet. Ceramic example between 0.1% and 0.5% by weight of niobium, between 4 and 4.5% by weight of erbium and the remainder of zirconate. Boosting the ceramic with niobium, tantalum, vanadium, phosphorus, arsenic, antimony or bismuth makes the ceramic conductive electrons.
- the ceramic is then a mixed conduction ceramic; in other words, it is conducting both electrons and protons while in the absence of these doping elements, the perovskite doped with a lanthanide with a single degree of oxidation is not electron conducting.
- Such a configuration makes it possible to have electrodes made of a material of the same nature as the solid electrolyte which has good conductivity of both protons and electrons, even when the ceramic is not mixed with a metal ( as is the case of the first embodiment).
- the system 100 further comprises a condenser 130 receiving as input the compound C x H y O z synthesized at the cathode 33 of the electrolyser 1 10.
- the condenser 130 makes it possible to separate the compound C x H y O z in the state gas and water that are produced by the hydrogenation reaction.
- the condenser 130 traps the water in liquid form making it possible to obtain, at the outlet of the condenser 130, only the compound C x H y O z synthesized in the gaseous state (combustible carbon compounds in the embodiment shown in FIG. Figure 2).
- the compound CxH y O z is then injected into the carbonaceous feed system of the boiler 160 after dehydration in a desiccant cartridge 170.
- the addition of the synthesized compound C x H y O z reduces the specific carbon products.
- the system according to the invention therefore makes it possible to operate in a semi-closed circuit, the external supply of fuel being reduced by supplying the boiler with the compound C x H y O z synthesized.
- the water recovered in the condenser 130 is then reinjected into the water supply circuit so as to limit the external influx of water.
- the system 100 also comprises a condenser 140 receiving as input the oxygen produced by electrolysis of the water vapor at the anode 31.
- the condenser 140 makes it possible to separate the oxygen from the water.
- the oxygen is then reinjected into the boiler 160 to feed the combustion of the carbonaceous products, and the water is reinjected into the water supply circuit.
- the oxygen thus injected makes it possible to carry out an oxy-combustion by directly using the oxygen leaving the electrolyser as an oxidizer instead of air.
- the condensers 130 and 140 also have the function of cooling the compounds entering the condensers so as to reinject into the various circuits of the system 100 compounds cooled to a temperature between 80 and 85 ° C.
- the electrolyser 1 10 is brought to temperature by heat transfer from the boiler 160 to the electrolyser 1 10 so that the electrolyser reaches the temperature T1 greater than or equal to 200 ° C. and less than or equal to 800 ° C, advantageously between 350 ° C and 650 ° C.
- the temperature T1 of the electrolyser must advantageously be between 500 ° C. and 600 ° C.
- the heat transfer is carried out by positioning the electrolyser 1 10 in a heat zone 150 around the boiler 160.
- the heat transfer is carried out by means of a heat exchanger (not shown) making it possible to transfer the thermal energy produced by the boiler to the electrolyser.
- the system further comprises a turbine positioned at the outlet of the electrolyser, and more specifically at the anode outlet (steam) and / or cathode of the electrolyser.
- a turbine is illustrated as a dashed example by reference numeral 50.
- the turbine is positioned in the path of the output gas stream at the anode of the electrolyser .
- Such a turbine is adapted to generate electricity by passing the gas stream.
- the electricity produced then makes it possible to feed the electrolyser electrically.
- this particular embodiment makes it possible to reduce the power consumption of a specific generator in order to generate a potential difference across the electrolyser.
- the system according to the invention comprises thermoelectric devices advantageously placed so as to recover the heat of the products formed by the electrolysis reaction of the water.
- the system comprises a heat exchanger adapted to cool the oxygen / water mixture generated at the anode by the electrolysis reaction and to heat the water entering the electrolyzer so as to forming the water vapor capable of being inserted into the electrolyte via the anode.
- the invention finds a particularly advantageous application for upgrading carbonaceous gases resulting for example from the production of heating from carbon products (coal, wood, oil), or the incineration of waste.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Catalysts (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR1159223A FR2981369B1 (fr) | 2011-10-12 | 2011-10-12 | Procede et systeme de traitement de gaz carbones par hydrogenation electrochimique pour l'obtention d'un compose de type cxhyoz |
| PCT/FR2012/052319 WO2013054053A2 (fr) | 2011-10-12 | 2012-10-11 | Procédé et système de traitement de gaz carbonés par hydrogénation électrochimique pour l'obtention d'un composé de type cxhyoz |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2766514A2 true EP2766514A2 (fr) | 2014-08-20 |
Family
ID=47116072
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12780242.9A Withdrawn EP2766514A2 (fr) | 2011-10-12 | 2012-10-11 | Procédé et système de traitement de gaz carbonés par hydrogénation électrochimique pour l'obtention d'un composé de type cxhyoz |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US20140291162A1 (enExample) |
| EP (1) | EP2766514A2 (enExample) |
| JP (1) | JP2014528519A (enExample) |
| CN (1) | CN104024479A (enExample) |
| BR (1) | BR112014008751A2 (enExample) |
| FR (1) | FR2981369B1 (enExample) |
| IN (1) | IN2014DN03032A (enExample) |
| RU (1) | RU2014118837A (enExample) |
| WO (1) | WO2013054053A2 (enExample) |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB201202791D0 (en) * | 2012-02-20 | 2012-04-04 | Simpson Robert | Methods and system for energy conversion and generation |
| FR3007425B1 (fr) * | 2013-06-20 | 2016-07-01 | Ifp Energies Now | Nouveau procede de fabrication d'acide formique |
| US11421330B2 (en) * | 2017-03-16 | 2022-08-23 | Battelle Energy Alliance, Llc | Methods for carbon dioxide hydrogenation |
| EP3691771B1 (en) | 2017-10-02 | 2023-08-16 | Battelle Energy Alliance, LLC | Methods and systems for the electrochemical reduction of carbon dioxide using switchable polarity materials |
| WO2019157507A1 (en) | 2018-02-12 | 2019-08-15 | Lanzatech, Inc. | A process for improving carbon conversion efficiency |
| JP6818711B2 (ja) | 2018-03-22 | 2021-01-20 | 株式会社東芝 | 二酸化炭素電解装置および二酸化炭素電解方法 |
| EP3775319B1 (en) | 2018-04-13 | 2025-07-23 | Topsoe A/S | Method for the generation of a gas mixture comprising carbon monoxide, carbon dioxide and hydrogen and for performing a hydroformylation |
| CA3095524A1 (en) * | 2018-04-13 | 2019-10-17 | Haldor Topsoe A/S | A method for generating gas mixtures comprising carbon monoxide and carbon dioxide for use in synthesis reactions |
| CN112203757A (zh) | 2018-05-31 | 2021-01-08 | 托普索公司 | 通过电阻加热进行加热的吸热反应 |
| EP3574991A1 (en) | 2018-05-31 | 2019-12-04 | Haldor Topsøe A/S | Steam reforming heated by resistance heating |
| JP6951310B2 (ja) | 2018-09-19 | 2021-10-20 | 株式会社東芝 | 電気化学反応装置 |
| EP3670705B1 (en) * | 2018-12-21 | 2022-02-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Carbon dioxide conversion process |
| CN110311161B (zh) * | 2019-06-21 | 2022-04-08 | 大连理工大学 | 一种膜法调控电化学氢泵co2加氢反应器中阴极电势的方法 |
| EP4038014A1 (en) | 2019-10-01 | 2022-08-10 | Haldor Topsøe A/S | On demand synthesis gas from methanol |
| WO2021063793A1 (en) | 2019-10-01 | 2021-04-08 | Haldor Topsøe A/S | Offshore reforming installation or vessel |
| CA3148729A1 (en) | 2019-10-01 | 2021-04-08 | Haldor Topsoe A/S | On demand hydrogen from ammonia |
| KR20220074922A (ko) | 2019-10-01 | 2022-06-03 | 할도르 토프쉐 에이/에스 | 메탄올로부터 맞춤형 수소 |
| CA3148730A1 (en) | 2019-10-01 | 2021-04-08 | Haldor Topsoe A/S | Cyanide on demand |
| WO2021063792A1 (en) | 2019-10-01 | 2021-04-08 | Haldor Topsøe A/S | Synthesis gas on demand |
| US12246299B2 (en) | 2019-11-12 | 2025-03-11 | Haldor Topsøe A/S | Electric steam cracker |
| JP7520757B2 (ja) | 2021-03-18 | 2024-07-23 | 株式会社東芝 | 二酸化炭素電解装置 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1066417B1 (de) * | 1998-03-01 | 2005-04-20 | Klaus Rennebeck | Verfahren und vorrichtung zur gewinnung von synthesegas |
| DE102006035893A1 (de) * | 2006-07-31 | 2008-02-07 | Wolf, Bodo M., Dr. | Verfahren zur Wiederaufarbeitung von Verbrennungsprodukten fossiler Brennstoffe |
| KR20100031500A (ko) * | 2007-05-04 | 2010-03-22 | 프린시플 에너지 솔루션스, 인코포레이티드 | 탄소원과 수소원으로부터 탄화수소 제조 |
| FR2919618B1 (fr) * | 2007-08-02 | 2009-11-13 | Commissariat Energie Atomique | Electrolyseur haute temperature et haute pression a fonctionnement allothermique et forte capacite de production |
| FR2931168B1 (fr) | 2008-05-15 | 2010-07-30 | Areva | Procede de production de composes du type cxhyoz par reduction de dioxyde de carbone (co2) et/ou de monoxyde de carbone (co) |
| FR2939450B1 (fr) * | 2008-12-05 | 2013-11-01 | Alex Hr Roustaei | Systeme de production, conversion et restitution de h2 en cycle gaz-liquide-gaz avec absorption du co2 a chaque changement d'etat, utilisant une double electrolyse alcaline a base des nanoparticules |
-
2011
- 2011-10-12 FR FR1159223A patent/FR2981369B1/fr not_active Expired - Fee Related
-
2012
- 2012-10-11 WO PCT/FR2012/052319 patent/WO2013054053A2/fr not_active Ceased
- 2012-10-11 EP EP12780242.9A patent/EP2766514A2/fr not_active Withdrawn
- 2012-10-11 BR BR112014008751A patent/BR112014008751A2/pt not_active Application Discontinuation
- 2012-10-11 IN IN3032DEN2014 patent/IN2014DN03032A/en unknown
- 2012-10-11 JP JP2014535150A patent/JP2014528519A/ja active Pending
- 2012-10-11 RU RU2014118837/04A patent/RU2014118837A/ru not_active Application Discontinuation
- 2012-10-11 CN CN201280058046.8A patent/CN104024479A/zh active Pending
- 2012-10-11 US US14/350,837 patent/US20140291162A1/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013054053A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2014118837A (ru) | 2015-11-20 |
| CN104024479A (zh) | 2014-09-03 |
| WO2013054053A2 (fr) | 2013-04-18 |
| FR2981369B1 (fr) | 2013-11-15 |
| US20140291162A1 (en) | 2014-10-02 |
| IN2014DN03032A (enExample) | 2015-05-08 |
| FR2981369A1 (fr) | 2013-04-19 |
| JP2014528519A (ja) | 2014-10-27 |
| BR112014008751A2 (pt) | 2017-04-25 |
| WO2013054053A3 (fr) | 2013-06-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2766514A2 (fr) | Procédé et système de traitement de gaz carbonés par hydrogénation électrochimique pour l'obtention d'un composé de type cxhyoz | |
| EP3502317B1 (fr) | Procede de fonctionnement en mode de demarrage ou en mode stand-by d'une unite power-to-gas comportant une pluralite de reacteurs d'electrolyse (soec) ou co-electrolyse a haute temprature | |
| EP3077574B1 (fr) | Procédé de fonctionnement d'un réacteur a empilement de type soec pour produire du méthane, en l'absence d'électricité disponible | |
| EP2984209B1 (fr) | Procedes d'obtention de gaz combustible a partir d'electrolyse de l'eau (eht) ou de co-electrolyse avec h2o/co2 au sein d'une meme enceinte, reacteur catalytique et systeme associes | |
| CA2980664C (fr) | Systeme de production d'electricite par pile a combustible sofc avec circulation des especes carbonees en boucle fermee | |
| WO2013053858A1 (fr) | Procédé de génération d'hydrogène et d'oxygène par électrolyse de vapeur d'eau | |
| WO2009150352A2 (fr) | Procede de production de composes du type cxhyo2 par reduction de dioxyde de carbone (co2) et/ou de monoxyde de carbone (co) | |
| EP2782175B1 (fr) | Procédé de fabrication d'un assemblage membrane-électrode | |
| EP1423331A1 (fr) | Procede et dispositif de production d'un gaz riche en hydrogene par pyrolyse thermique d'hydrocarbures | |
| CA3032375A1 (fr) | Systeme de regulation de temperature et de pression d'un electrolyseur a haute temperature (soec) fonctionnant de maniere reversible en pile a combustible (sofc) | |
| FR3074971A1 (fr) | Systeme reversible de stockage et destockage d'electricite comprenant un convertisseur electrochimique (sofc/soec) couple a un systeme de stockage/destockage d'air comprime (caes) | |
| WO2014202855A1 (fr) | Procédé de fabrication d'acide formique | |
| WO2019193283A1 (fr) | Procede electrochimique de production d'hydrogene gazeux sous pression par electrolyse puis par conversion electrochimique | |
| EP2129622A2 (fr) | Production d'hydrogene par dissociation de l'eau en presence de sno en utilisant le couple sno2/sno dans une suite de reactions thermochimiques | |
| EP4259851B1 (fr) | Procédé de fonctionnement en mode stand-by chaud d'une pile à combustible sofc ou d'un réacteur soec. | |
| CA3201721C (fr) | Procede de fonctionnement en mode stand-by chaud d'une pile a combustible sofc ou d'un reacteur soec | |
| WO2002062700A2 (fr) | Procede et dispositif pour la production d'hydrogene par oxydation partielle de carburants hydrocarbones | |
| BE1031541B1 (fr) | Unité d'électrolyse à productivité et disponibilité accrues | |
| EP1525635B1 (fr) | Systeme de tractiion electrique pour vehicule automobile et procede de mise en oeuvre d'une pile a combustible | |
| EP3174793A1 (fr) | Procédé de gestion de fluides nécessaires à l'exploitation d'un véhicule et dispositif permettant de le mettre en oeuvre |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140408 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20170503 |