EP2759048A2 - Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse - Google Patents

Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse

Info

Publication number
EP2759048A2
EP2759048A2 EP12740372.3A EP12740372A EP2759048A2 EP 2759048 A2 EP2759048 A2 EP 2759048A2 EP 12740372 A EP12740372 A EP 12740372A EP 2759048 A2 EP2759048 A2 EP 2759048A2
Authority
EP
European Patent Office
Prior art keywords
mosfet
voltage
converter
inverse diode
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12740372.3A
Other languages
German (de)
English (en)
Inventor
Nils Draese
Mirko Schinzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2759048A2 publication Critical patent/EP2759048A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the invention relates to a method for driving a MOSFET in reverse operation, a circuit arrangement for carrying out the method and a DC / DC converter with such a circuit arrangement.
  • MOSFETs are active devices with at least three terminals, namely gate, drain and source and act as voltage controlled resistors, where the gate to source voltage can affect the resistance between drain and source.
  • a MOSFET transistor comprises the actual MOSFET channel and an inverse diode through which a current flows in the reverse operation, causing a voltage drop across the inverse diode. This high performance can occur, which can cause destruction of the semiconductor structure of the MOSFET. Such a reverse operation can occur, for example, when using MOSFETs in DC / DC converters in the case of reverse polarity. As a DC / DC converter
  • High-performance DC / DC converters are increasingly being used in motor vehicles.
  • these converters are executed in many cases reverse polarity.
  • a common approach of reverse polarity protection is to switch a reverse polarity protection element, such as a diode or a MOSFET, into the output circuit or input circuit.
  • This polarity reversal protection prevents a negative current flow and protects in this way the converter. Since the Reverse polarity protection but is installed in the current path, it produces in normal operation loss heat or performance and reduces the efficiency.
  • the reverse polarity currents can be conducted for a sufficient length of time with suitable dimensioning in order to cover the polarity reversal protection requirement.
  • the converter By carrying the high current, the converter thereby represents a central polarity reversal protection element, as is usually realized in current vehicles by the diodes in the generator. If the central polarity reversal protection element is missing in new vehicle concepts without a generator in the onboard power supply, this has an influence on the design of all control devices. Deriving high Verpolströmen by the
  • Converter therefore represents a certain advantage in the design of new vehicle electrical system concepts.
  • Figure 1 shows a DC / DC converter according to the prior art.
  • Figure 2 shows a DC / DC converter according to the prior art.
  • FIG. 3 shows an embodiment of the DC / DC converter according to the invention.
  • FIG. 1 shows a known DC / DC converter, designated overall by the reference numeral 10. This includes an output circuit 12 and an input circuit 14. In the input circuit 14 is the voltage Ui (arrow 16).
  • Output circuit 12 is a battery 18 is provided, which is reversed (here as a fault) (arrow 20) and to which a voltage U 2 (arrow 22) is applied.
  • the DC / DC converter 10 furthermore has a high-side MOSFET 30 and a low-side MOSFET 32 and an inductance 34.
  • a MOSFET 36 is provided which serves as Verpoltikelement and prevents a negative current flow and thus protects the DC / DC converter 10.
  • the MOSFET 36 is incorporated in the current path, it generates waste heat in regular operation and reduces the efficiency.
  • FIG. 2 shows a further DC / DC converter 50 with an output circuit 52 and an input circuit 54.
  • the input circuit 54 is the voltage Ui (arrow 56).
  • a battery 58 is provided, which is polarity reversed (arrow 60) and at which a voltage U 2 (arrow 62) is applied.
  • a high-side MOSFET 70 and a low-side MOSFET 72 as well as an inductance 74 are provided.
  • the high-side MOSFET 70 comprises an inverse diode 82 and a MOSFET channel 84.
  • the low-side MOSFET 72 comprises an inverse diode 86 and a MOSFET channel 88.
  • the polarity reversal results in a current (current path 80) which flows via the inverse diode 86 of the low-side transistor 72.
  • the diode forward voltage which is about 1 V, this results in power losses of more than 1,000 W, which can cause a destruction of the semiconductor structure of the low-side MOSFET 72.
  • the illustrated DC / DC converter 50 is a high power converter that is capable, in principle, of carrying the high reverse polarity current.
  • the low-side MOSFET 72 would have to be opened or closed in order to redirect the flow of current from the inverse diode 86 into the MOSFET channel 88.
  • the Verpolströme can be performed with sufficient dimensioning sufficient time to cover the Verpoltikan proof.
  • FIG. 3 shows an embodiment of the presented DC / DC converter, which is denoted overall by the reference numeral 100.
  • This DC / DC converter 100 includes an output circuit 102 and an input circuit 104.
  • a battery 108 is provided, which is reversed polarity (arrow
  • first MOSFET 120 which serves as a high-side MOSFET
  • second MOSFET 122 which serves as a low-side MOSFET
  • MOSFET 120 includes an inverse diode 130 and a MOSFET channel 132.
  • the second MOSFET 122 has an inverse diode 140 and a
  • MOSFET channel 142 on.
  • the illustration also shows an inductance 136.
  • FIG. 3 shows a circuit arrangement 150 which serves to drive the MOSFETs 120 and 122, in this case the second MOSFET 122.
  • This includes a DC / DC converter 152, a hysteresis element 154, and a driver 156.
  • the illustration shows a shot diode 158, a logic element 160, and a diode pair 162.
  • the circuit arrangement 150 is provided for actively activating or controlling the current-carrying second MOSFET 122 in the reverse-polarity DC / DC converter 100, in order to divert the current flow from the inverse diode 140 into the MOSFET channel 142. This reduces the losses and thermal destruction can be prevented.
  • the voltage dropping across the inverse diode 140 is used for driving the second MOSFET 122. It should be noted, however, that the voltage across the inverse diode 140 in Verpolfall is about -1V and therefore no energy source for driving the second MOSFET 122 with 12V is available. In the illustrated embodiment, therefore, the special DC / DC converter 152 is used, as it is currently available, for example, for "energy harvesting applications".
  • This type of converter is optimized for operation with extremely low input voltages. These converters typically convert energy from small thermoelectric generators or piezo generators into higher voltages.
  • the low reverse voltage of the inverse diode 140 is converted into a high output voltage for supplying the driver 156.
  • the DC / DC converter 152 only becomes active in the coil and provides at its output a voltage which is sufficiently high to safely drive the MOSFETs 120 and 122 or to operate the driver 156.
  • an input signal for the driver 156 is generated via the hysteresis element 154 and the logic element 160. riert.
  • the hysteresis element 154 ensures that the second MOSFET 122 is not activated until the DC / DC converter 152 has generated a sufficiently high voltage. This is important because the voltage drop across MOSFET 122 breaks down during the drive.
  • the circuit arrangement 150 thus always drives the second MOSFET 122 for a certain period of time, until the voltage drops below the hysteresis threshold. Thereafter, the second MOSFET 122 is turned off and the current flows again over the inverse diode 140 for a short time in order to supply the DC / DC converter 152 again via the voltage drop.
  • the DC / DC converter 152 for example, a
  • Charge pump can be used. It is important that the voltage across the inverse diode 140 is first converted into a higher voltage, with which then the second MOSFET 122 is driven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un procédé et une circuiterie (150) pour assurer le déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur (120, 122) se trouvant en mode inverse, ainsi qu'un convertisseur continu-continu (100) doté d'une telle circuiterie (150). En mode inverse, un courant qui parcourt une diode inverse (130, 140) du transistor à effet de champ métal-oxyde-semi-conducteur (120, 122) entraîne la baisse d'une tension au-dessus de ladite diode à tension inverse (130, 140). La tension au-dessus de la diode à tension inverse (130, 140) est utilisée pour mettre le transistor à effet de champ métal-oxyde-semi-conducteur (120, 122) en marche.
EP12740372.3A 2011-09-22 2012-07-30 Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse Withdrawn EP2759048A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110083234 DE102011083234A1 (de) 2011-09-22 2011-09-22 Verfahren zum Ansteuern eines MOSFET im Rückwärtsbetrieb
PCT/EP2012/064867 WO2013041275A2 (fr) 2011-09-22 2012-07-30 Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse

Publications (1)

Publication Number Publication Date
EP2759048A2 true EP2759048A2 (fr) 2014-07-30

Family

ID=46582713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12740372.3A Withdrawn EP2759048A2 (fr) 2011-09-22 2012-07-30 Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse

Country Status (3)

Country Link
EP (1) EP2759048A2 (fr)
DE (1) DE102011083234A1 (fr)
WO (1) WO2013041275A2 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300206B2 (ja) * 1995-08-28 2002-07-08 科学技術振興事業団 光ソリトン制御方式
DE19534159A1 (de) * 1995-09-14 1997-03-20 Siemens Ag Schaltungsanordnung mit einem Leistungsschalter
US6060943A (en) * 1998-04-14 2000-05-09 Nmb (Usa) Inc. Circuit simulating a diode
US8232830B2 (en) * 2007-02-02 2012-07-31 Mitsubishi Electric Corporation Rectifier with less conduction loss than a diode
US8067859B2 (en) * 2008-12-11 2011-11-29 Infineon Technologies Ag Reverse polarity protection for MOSFETs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013041275A2 *

Also Published As

Publication number Publication date
WO2013041275A3 (fr) 2013-12-19
DE102011083234A1 (de) 2013-03-28
WO2013041275A2 (fr) 2013-03-28

Similar Documents

Publication Publication Date Title
DE102015114365B4 (de) System und verfahren zum generieren einer hilfsspannung
EP1783910B1 (fr) Circuit et un procédé pour commander d'une manière galvaniquement séparée un commutateur semi-conducteur
DE102016220118B4 (de) Batterie-Trenneinrichtung und Verfahren zur Durchführung eines Vorladezyklus
EP1884008A1 (fr) Dispositif de coupure de protection conçu pour un module solaire
DE102016219098A1 (de) Batterie-Trenneinrichtung
DE102008032876A1 (de) Verfahren, Schaltungsanordnung und Brückenschaltung
DE112009000142T5 (de) Schaltung zur Ansteuerung einer induktiven Last
DE102019102311A1 (de) Gate-Treiber-Schaltung mit Spannungsinvertierung für einen Leistungshalbleiterschalter
DE102012215002B4 (de) Systeme und Verfahren zum Entladen einer Busspannung unter Verwendung von Halbleitereinrichtungen
DE102012218914A1 (de) Schutzschaltungsanordnung für ein Mehrspannungsnetz
DE102014107815A1 (de) System und Verfahren zum Ansteuern von Transistoren
WO2006134009A1 (fr) Circuit pour la commutation d'une charge
DE3741394C2 (de) Schaltungsanordnung zum Schutz vor Verpolungsschäden für Lastkreise mit einem MOS-FET als Schalttransistor
DE102013017091A1 (de) Energiespeichereinrichtung für einen Kraftwagen
DE102011007339A1 (de) Versorgungsschaltungsanordnung
DE102012109978A1 (de) Steuerschaltung für ein elektrisches Gebläse für ein Kraftfahrzeug
EP3317967B1 (fr) Circuit de commutation destiné à la commande d'un transistor
WO2013041275A2 (fr) Procédé de déclenchement d'un transistor à effet de champ métal-oxyde-semi-conducteur se trouvant en mode inverse
EP3931963B1 (fr) Dispositif électronique de puissance et procédé d'alimentation en tension électrique d'un circuit d'attaque d'un commutateur semi-conducteur de puissance
WO2018015282A1 (fr) Circuit de commande d'une charge inductive
DE102017208187A1 (de) Elektronisches Modul sowie Kraftfahrzeug und Verfahren zum Begrenzen eines Eingangsstroms während eines Einschaltvorgangs des Moduls
DE102021104142A1 (de) Umschaltvorrichtung und Spulenanordnung für Fahrzeuge
DE102016215688A1 (de) Schaltungsanordnung zum Koppeln eines elektrischen Steuergeräts mit einer Spannungsversorgung und elektrisches Steuergerät
DE102010001622A1 (de) Verfahren zum Entregen bei einer elektrischen Maschine
WO2015067410A1 (fr) Régulateur de courant pour charge inductive dans un véhicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140620

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190424

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191105