EP2756252A1 - Dispositif de transport de chaleur à pompage capillaire - Google Patents

Dispositif de transport de chaleur à pompage capillaire

Info

Publication number
EP2756252A1
EP2756252A1 EP12766395.3A EP12766395A EP2756252A1 EP 2756252 A1 EP2756252 A1 EP 2756252A1 EP 12766395 A EP12766395 A EP 12766395A EP 2756252 A1 EP2756252 A1 EP 2756252A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
evaporator
inlet
fluid
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12766395.3A
Other languages
German (de)
English (en)
Other versions
EP2756252B1 (fr
Inventor
Vincent Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Heat Pipes SA
Original Assignee
Euro Heat Pipes SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro Heat Pipes SA filed Critical Euro Heat Pipes SA
Publication of EP2756252A1 publication Critical patent/EP2756252A1/fr
Application granted granted Critical
Publication of EP2756252B1 publication Critical patent/EP2756252B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Definitions

  • the present invention relates to capillary pumping heat transport devices, in particular passive biphasic fluid loop devices.
  • the subject of the invention is a capillary pumping thermal transfer device adapted to extract heat from a hot source and to restore this heat to a cold source by means of a two-phase working fluid contained in a enclosed general circuit, comprising:
  • At least one evaporator having an inlet and an outlet, and a microporous mass adapted to provide capillary pumping of fluid in the liquid phase
  • At least one condenser having an inlet and an outlet, a reservoir having an interior volume and at least one inlet and / or outlet,
  • a first communication circuit for essentially vapor phase fluid, connecting the outlet of the evaporator to the inlet of the condenser
  • a second communication circuit for fluid essentially in the liquid phase, connecting the condenser outlet to the tank and to the inlet of the evaporator, characterized in that it comprises an anti-return member arranged between the interior volume of the reservoir and the microporous mass of the evaporator, and arranged to prevent the liquid present in the evaporator does not move towards the interior volume of the tank, the device being mainly subjected to gravity, the anti-return member comprising a float floated by a floatation thrust towards a range in the closed state.
  • the float is able to let gas bubbles pass and thus avoid the formation of a gas cap; in addition, the anti-return member is simple and reliable and moreover it can pass steam bubbles or gas.
  • the float has a density that is lower than the density of the fluid in the liquid phase, and between 60% and 90% of the fluid density in the liquid phase; whereby the anti-return member does not interfere with capillary pumping;
  • the float is made of stainless steel; so that its durability is very good;
  • the anti-return member is formed in the second fluid communication circuit; so that it can be independent of the tank and the evaporator;
  • the anti-return member is formed in the lower zone of the reservoir; so that it can be combined with the tank;
  • the anti-return member is formed in the upper zone of the evaporator; so that it can be combined with the evaporator;
  • the fluid communication circuit is a tubular conduit; so that its cost is moderate;
  • the inlet / outlet orifice is arranged in the lower zone the reservoir, preferably the lower side zone of the reservoir;
  • the second fluid communication circuit may be in the form of a single pipe with a 'T' or two independent pipes;
  • the reservoir comprises an inlet jet deflector in the vicinity of the inlet orifice; whereby a mixing effect due to the inlet jet can be avoided;
  • the reservoir comprises a plurality of distinct volumes remaining in fluid communication; whereby the mixing of the volume of liquid contained in the reservoir is limited;
  • the reservoir comprises a plurality of internal walls forming compartments adapted to separate said several distinct volumes;
  • the plurality of internal walls forms a compartment structure in the form of a honeycomb; so that the cost-effectiveness ratio is optimized;
  • the heat transfer device is preferably without a mechanical pump; whereby its reliability is increased;
  • the device further comprises an energy supply element at the reservoir to control the pressurization of the loop during startup; so that the start of the loop can be made reliable.
  • FIG. 1 is a general view of a device according to one embodiment of the invention.
  • FIG. 2 is a variant of the device of FIG.
  • FIG. 3 is another variant of the device of FIG.
  • FIGS. 4a and 4b show a nonreturn valve for a device according to FIGS. 1-3,
  • FIG. 5 is a detailed view of the anti ⁇ return member when located at the base of the tank
  • FIG. 6 is a sectional view of the anti ⁇ return member
  • FIGS. 7a and 7b show variants of the device of FIG. 1, with several evaporators.
  • FIG. 1 shows a capillary pumping heat transport device with a two-phase fluid loop.
  • the device comprises an evaporator 1, having an inlet 1a and an outlet 1b, and a microporous mass 10 adapted to provide capillary pumping.
  • the microporous mass 10 surrounds a blind central longitudinal recess 15 in communication with the inlet 1a to receive working fluid 9 in the liquid state from a reservoir 3.
  • the evaporator 1 is thermally coupled to a hot source 11, such as an assembly comprising electronic power components or any other element generating heat, for example by joule effect, or by any other process.
  • a hot source 11 such as an assembly comprising electronic power components or any other element generating heat, for example by joule effect, or by any other process.
  • the evacuated vapor is replaced by the liquid sucked by the microporous mass 10 from the aforementioned central recess 15; it is the phenomenon of capillary pumping well known in itself.
  • heat is transferred by the fluid in the vapor phase to a cold source 12, which causes a cooling of the vapor fluid and its phase change to the liquid phase, ie its condensation.
  • the temperature of the working fluid 9 is lowered below its equilibrium liquid-vapor temperature, which is also called sub-cooling ('sub-cooling' in English) so that the fluid can not do not iron in a vapor state without a significant amount of heat
  • the vapor pressure pushes the liquid towards the outlet 2b of the condenser 2 which opens onto a second communication circuit 5, furthermore connected to the tank 3.
  • the reservoir has at least one inlet and / or outlet port 31, here in this case in FIG. 1 an inlet orifice 31a and a separate outlet orifice 31b, and the reservoir 3 has an interior volume 30, filled with heat transfer fluid 9.
  • the working fluid 9 may be for example ammonia or any other suitable fluid, but it is preferable to choose methanol.
  • the working fluid 9 is two-phase and is partly in liquid phase 9a and partly in vapor phase 9b. In an environment where gravity is exerted (vertical along Z), the gas phase portion 9b is above the liquid phase portion 9a and a separation surface 19 separates the two phases.
  • this pressure corresponds to the saturation pressure of the fluid at the temperature prevailing at the separation surface 19.
  • the temperature of the liquid is generally lower than the temperature prevailing at the separation surface 19.
  • the first and second fluid communication circuits 4,5 are preferably tubular conduits, but could be other types of fluid conduits or communication channels.
  • the second fluid communication circuit 5 may be in the form of two separate independent pipes 5a, 5b (see Fig 1) or a single pipe with a 'T' connection 5c (see Fig 2).
  • the second fluid communication circuit 5 connects the outlet of the condenser 2b to the inlet of the evaporator 1a, either indirectly via the reservoir (in the case of two independent conduits) or directly (case or single driving with 'T').
  • the device comprises a non-return member 6, arranged between the internal volume 30 of the reservoir and the microporous mass 10 of the evaporator 1, to prevent the liquid present in the evaporator from moving towards the volume interior 30 of the tank.
  • This non-return member 6 makes it possible to prevent a return of liquid from the evaporator towards the reservoir. Even a limited return of liquid from the evaporator towards the reservoir causes local drying of the microporous mass which can lead to defusing the pumping of the two-phase loop, which is prevented by said non-return member 6. This phenomenon is even more important than the starting power is high (several kW and / or several tens of Watts per cm 2 ) .
  • the non-return member 6 thus makes it possible to increase the performance of the system at start-up .
  • the position of said non-return member 6 may be selected from several locations of particular interest depending on the purpose and the optimizations pursued.
  • the non-return member 6 is positioned on the pipe 5b connecting the reservoir to the evaporator 1. In this way, one non-return member 6 can be inserted in a two-phase loop where the evaporator and the reservoir are given organs that are difficult to modify.
  • said non-return member 6 can be positioned, as illustrated in FIG. 2, adjacent to the evaporator 1, so that said non-return member 6 can be combined with one evaporator, which allows the optimize the overall size of the system.
  • said non-return member 6 can be positioned, as illustrated in FIG. 3, adjacent to the reservoir, so that said non-return member 6 can be combined with the reservoir as will be detailed later. which optimizes the size of the system.
  • this non-return member 6 may comprise a float 60 whose density is slightly less than the fluid density in the liquid phase, the float abutting on a range to close the passage of liquid, as will be specified more far .
  • this non-return member 6 can also take the more conventional form of a non-return valve (not shown in the figures), with a valve, a valve seat and an elastic return tending to push said valve towards the seat of valve.
  • the elastic restoring force must be moderated so as not to upset the aforementioned capillary pumping force.
  • a float member 60 is arranged inside a hollow body 63 in which the float 60 can to move at least in a so-called longitudinal direction.
  • the longitudinal direction here coincides with the direction Z in which the buoyancy and the gravity are exerted.
  • the hollow body and the float are symmetrical about this Z axis, but it could be otherwise.
  • the float comprises an annular support surface 67 which bears on a corresponding annular bearing surface 66 which forms a shoulder directed radially inwards in the hollow body 63.
  • bubbles of vapor or non-condensable gas are in said liquid in the downstream part 65, they can escape in the opposite direction (from downstream to upstream) which allows avoid blocking the supply of 1 evaporator fresh liquid: the float is thus able to let gas bubbles pass and thus prevent the formation of a gas cap, this function can also be called degassing function.
  • the float has a density lower than the fluid density in the liquid phase, and between 60% and 90% of the fluid density in the liquid phase (at a maximum temperature of about 100 ° C for example).
  • the result of the weight and thrust of Archimedes gives a thrust force P oriented upwards.
  • This thrust P must however be moderate to be less than the suction effect of the aforementioned capillary pumping.
  • an upwardly pressing pressure F has the effect of pressing the float 60 against the bearing surface 66 and thus closing the passage of liquid. Therefore, any reflux of liquid towards the interior space of the tank is avoided.
  • the non-return member 6 is arranged at the base of the reservoir, at the outlet orifice 31b (see FIGS. 3 and 5).
  • the body 63 comprises a collar 68 which is secured to the base 37 of the tank by means of known fasteners.
  • the base 37 at the orifice 31b can serve directly as a closing surface 66.
  • the float can be made of stainless steel so that its durability is very good.
  • the float 60 may be formed as two half-shells 61, 62 welded together at a diameter by means of a weld 68; the two half-shells 61, 62 then define an interior volume 89 filled with air or preferably inert gas.
  • the thickness of the wall of the two half-shells 61, 62 as well as the size of the inner volume 89 are chosen to obtain the desired density for the complete float 60.
  • the reservoir may comprise an inlet jet deflector 8 in the vicinity of the inlet orifice 31a or the inlet / outlet orifice 31 according to the configuration of the second conduit.
  • This inlet jet deflector 8 prevents a rapid arrival of liquid in the tank creates a bubbling or a current promoting the mixing of the liquid. It may be in the form of a downward U-shaped profile, or a bell or other shape creating a sufficient deflection of the path of the inlet jet.
  • the compartment structure 71 may have vertical walls 7, that is to say oriented in the direction of gravity. It should be noted, however, that the walls may equally well be slightly or substantially inclined, as illustrated for example in FIG. 7a.
  • the reservoir may have any shape, and in particular parallelepipedal or cylindrical.
  • the compartment structure may be formed of stainless steel.
  • said plurality of separate volumes communicate through passages of small section, preferably less than 1/10 of the largest section of the tank.
  • the compartment structure may comprise a phase change material imparting a thermal inertia to said structure which contributes to limiting the sudden variations in temperature.
  • Figures 7a and 7b show that it is possible in the context of the present invention to have several evaporators 1 in parallel with each other to increase the calorie evacuation capacity and / or to place the evaporators closer to the sources of heat.
  • each evaporator has an anti-return member 6 in its particular liquid supply circuit, whereas according to the configuration of FIG. 7b, the anti-return member 6 is placed in the common branch 5d in upstream of the distribution 5e, 5f to the evaporators, which allows to commonize the non-return member 6 and thus optimize the cost of a multi-evaporator system.
  • the device may further comprise a power supply element 36, for example a heating element or pressurizing, located at the reservoir to control the pressurization of the loop during startup.
  • a control system 'Ctrl' 38 controls, in the case of a heating element, the contribution of calories on this heating element 36, as a function of temperature information and / or pressure information delivered by sensors (not shown), and this to ensure the start of the two-phase loop.
  • this control system 'Ctrl' can also prepare the two-phase loop for an imminent and important arrival of calories on one evaporator, which makes it possible to anticipate the reaction of the two-phase loop with respect to the need for heat dissipation.
  • the design of the loop can be optimized for large quantities of heat to be evacuated.
  • the device is devoid of any mechanical pump although the invention does not exclude the presence of a mechanical booster pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Dispositif de transfert thermique à pompage capillaire, adapté pour extraire de la chaleur depuis une source chaude (11) et pour restituer cette chaleur à une source froide (12) au moyen d'un fluide de travail diphasique, comprenant un évaporateur (1) ayant une masse microporeuse (10) assurant un pompage capillaire de fluide en phase liquide, un condenseur (2), un réservoir (3) ayant un volume intérieur (30) et un orifice d'entrée et/ou sortie (31; 31a, 31b), un circuit de communication (4) vapeur, reliant la sortie de l'évaporateur à l'entrée du condenseur, un circuit de communication (5) liquide, caractérisé en ce qu'il comprend un organe anti retour (6) agencé entre le volume intérieur (30) du réservoir et la masse microporeuse (10) de l'évaporateur, et agencé pour empêcher que du liquide présent dans l'évaporateur ne se déplace vers le volume intérieur du réservoir.

Description

Dispositif de transport de chaleur à pompage capillaire
La présente invention est relative aux dispositifs de transport de chaleur à pompage capillaire, en particulier les dispositifs passifs à boucle fluide diphasique.
Il est connu du document FR-A-2949642 de tels dispositifs utilisés comme moyen de refroidissement pour convertisseur de puissance électrotechnique.
Cependant, il est apparu que les phases de démarrage étaient particulièrement délicates pour des puissances thermiques importantes, il peut se produire un assèchement de la mèche capillaire et donc un échec du démarrage.
Il est donc apparu un besoin d'augmenter la fiabilité du démarrage et du fonctionnement de telles boucles.
A cet effet, l'invention a pour objet un dispositif de transfert thermique à pompage capillaire, adapté pour extraire de la chaleur depuis une source chaude et pour restituer cette chaleur à une source froide au moyen d'un fluide de travail diphasique contenu dans un circuit général clos, comprenant :
- au moins un évaporateur, ayant une entrée et une sortie, et une masse microporeuse adaptée pour assurer un pompage capillaire de fluide en phase liquide
- au moins un condenseur, ayant une entrée et une sortie, - un réservoir ayant un volume intérieur et au moins un orifice d'entrée et/ou sortie,
- un premier circuit de communication, pour du fluide essentiellement en phase vapeur, reliant la sortie de 1 ' évaporateur à l'entrée du condenseur,
- un deuxième circuit de communication, pour du fluide essentiellement en phase liquide, reliant la sortie du condenseur au réservoir et à l'entrée de 1 'évaporateur, caractérisé en ce qu'il comprend un organe anti retour agencé entre le volume intérieur du réservoir et la masse microporeuse de 1 'évaporateur, et agencé pour empêcher que du liquide présent dans 1 ' évaporateur ne se déplace vers le volume intérieur du réservoir, le dispositif étant principalement soumis à la gravité, l'organe anti retour comprenant un flotteur rappelé par poussée de flottaison vers une portée à l'état fermé.
Grâce à ces dispositions, on évite un retour de liquide venant de 1 ' évaporateur en direction du réservoir. Le démarrage sous forte charge thermique est ainsi fiabilisé. De plus, le flotteur est apte à laisser passer des bulles de gaz et éviter ainsi la formation d'un bouchon de gaz; en outre, l'organe anti retour est simple et fiable et de plus il peut laisser passer des bulles de vapeur ou de gaz .
Dans divers modes de réalisation de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :
- le flotteur présente une densité inférieure à la densité du fluide en phase liquide, et comprise entre 60% et 90% de la densité du fluide en phase liquide ; moyennant quoi l'organe anti-retour ne contrarie pas le pompage capillaire ;
- le flotteur est réalisé en acier inox ; de sorte que sa durabilité est très bonne ;
- l'organe anti retour est formé dans le deuxième circuit de communication fluide ; de sorte qu'il peut être indépendant du réservoir et de 1 ' évaporateur ;
- l'organe anti retour est formé dans la zone inférieure du réservoir ; de sorte qu'il peut être combiné avec le réservoir ;
- l'organe anti retour est formé dans la zone supérieure de 1 ' évaporateur ; de sorte qu'il peut être combiné avec 1 ' évaporateur ;
le circuit de communication fluide est une conduite tubulaire ; de sorte que son coût est modéré ;
- l'orifice d'entrée/sortie est agencé en zone inférieure du réservoir, de préférence zone latérale inférieure du réservoir ;
- le deuxième circuit de communication fluide peut être sous la forme d'une seule conduite avec un ' T ' ou de deux conduites indépendantes;
- le réservoir comprend un déflecteur de jet d'entrée au voisinage de l'orifice d'entrée ; moyennant quoi un effet de mélange dû au jet d'entrée peut être évité ;
- le réservoir comprend une pluralité de volumes distincts restant en communication fluide ; moyennant quoi le mélange du volume de liquide contenu dans le réservoir est limité ;
- le réservoir comprend une pluralité de parois internes formant des compartiments adaptés pour séparer lesdits plusieurs volumes distincts;
- la pluralité de parois internes forme une structure de compartiments en forme de nid d'abeille ; de sorte que le rapport coût /efficacité est optimisé ;
le dispositif de transfert thermique est préfèrentiellement dépourvu de pompe mécanique ; moyennant quoi sa fiabilité est augmentée ;
le dispositif comprend en outre un élément d'apport d'énergie au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage ; de sorte que le démarrage de la boucle peut être fiabilisé.
D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante de plusieurs modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en regard des dessins joints sur lesquels :
- la figure 1 est une vue générale d'un dispositif selon un mode de réalisation de l'invention,
- la figure 2 est une variante du dispositif de la Figure 1,
- la figure 3 est une autre variante du dispositif de la Figure 1, - les figures 4a et 4b montrent un clapet anti-retour pour un dispositif selon les figures 1-3,
- la figure 5 est une vue de détail de l'organe anti¬ retour lorsqu'il est situé à la base du réservoir,
- la figure 6 est une vue en coupe de l'organe anti¬ retour ;
- les figures 7a et 7b montrent des variantes du dispositif de la Figure 1, avec plusieurs évaporateurs .
Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
La figure 1 montre un dispositif de transport de chaleur à pompage capillaire, à boucle fluide diphasique. Le dispositif comprend un évaporateur 1, ayant une entrée la et une sortie lb, et une masse microporeuse 10 adaptée pour assurer un pompage capillaire. A cet effet, la masse microporeuse 10 entoure un évidement longitudinal central borgne 15 en communication avec l'entrée la pour recevoir du fluide de travail 9 à l'état liquide depuis un réservoir 3.
L ' évaporateur 1 est thermiquement couplé à une source chaude 11, comme par exemple un ensemble comprenant des composants électroniques de puissance ou tout autre élément générant de la chaleur, par exemple par effet joule, ou par tout autre processus.
Sous l'effet de l'apport de calories au contact 16 de la masse microporeuse emplie de liquide, du fluide passe de l'état liquide à l'état vapeur et s'évacue par la chambre de transfert 17 et par un premier circuit de communication 4 qui achemine ladite vapeur vers un condenseur 2 ayant une entrée 2a et une sortie 2b.
Dans 1 ' évaporateur 1, la vapeur évacuée est remplacée par le liquide aspiré par la masse microporeuse 10 à partir de 1 'évidement central 15 susmentionné ; il s'agit du phénomène de pompage capillaire bien connu en soi. A l'intérieur dudit condenseur 2, de la chaleur est cédé par le fluide en phase vapeur à une source froide 12, ce qui provoque un refroidissement du fluide vapeur et son changement de phase vers la phase liquide, autrement dit sa condensation.
Au niveau du condenseur 2, la température du fluide de travail 9 est abaissée en dessous de sa température d'équilibre liquide-vapeur, ce qui est aussi appelé sous- refroidissement ( ' sub cooling' en anglais) de sorte que le fluide ne peut pas repasser à l'état vapeur sans apport conséquent de chaleur
La pression de vapeur pousse le liquide en direction de la sortie 2b du condenseur 2 qui débouche sur un deuxième circuit de communication 5, relié par ailleurs au réservoir 3.
Le réservoir présente au moins un orifice d'entrée et/ou sortie 31, ici en l'occurrence sur la figure 1 un orifice d'entrée 31a et un orifice de sortie 31b distincts, et le réservoir 3 présente un volume intérieur 30, rempli du fluide caloporteur 9. Le fluide de travail 9 peut être par exemple de l'ammoniac ou tout autre fluide approprié, mais on peut choisir préfèrentiellement du méthanol. Le fluide de travail 9 est diphasique et se présente pour partie sous phase liquide 9a et pour partie sous phase vapeur 9b. Dans un environnement où une gravité s'exerce (verticale selon Z), la partie de phase gazeuse 9b se situe au dessus de la partie de phase liquide 9a et une surface de séparation 19 sépare les deux phases.
C'est la température de cette surface de séparation 19 qui détermine la pression dans la boucle, cette pression correspond à la pression de saturation du fluide à la température prévalant à la surface de séparation 19.
Au niveau de la base du réservoir 34, la température du liquide est généralement inférieure à la température prévalant à la surface de séparation 19. Pour un fonctionnement correct de la boucle à pompage capillaire, il faut éviter que la température qui prévaut à la surface de séparation 19 évolue rapidement, et éviter en particulier un mélange de la phase liquide 9a qui a tendance à ramener du liquide froid du bas du réservoir vers le haut et donc de faire chuter la température de surface, et par la même la pression.
Les premier et second circuits de communication fluide 4,5 sont de préférence des conduites tubulaires, mais il pourrait s'agir d'autres types de conduites ou de canaux de communication fluides.
De même, le deuxième circuit de communication fluide 5 peut être sous la forme de deux conduites indépendantes distinctes 5a, 5b (cf. Fig 1) ou d'une seule conduite avec un raccord en ' T ' 5c (cf. Fig 2) .
Dans tous les cas, le deuxième circuit de communication fluide 5 relie la sortie du condenseur 2b à l'entrée de 1 ' évaporateur la, soit indirectement en passant par le réservoir (cas de deux conduites indépendantes) soit directement (cas ou d'une seule conduite avec ' T ' ) .
Selon l'invention, le dispositif comprend un organe anti-retour 6, agencé entre le volume intérieur 30 du réservoir et la masse microporeuse 10 de 1 ' évaporateur 1, pour empêcher que du liquide présent dans 1 ' évaporateur ne se déplace vers le volume intérieur 30 du réservoir. Cet organe anti-retour 6 permet d'éviter un retour de liquide depuis 1 ' évaporateur en direction du réservoir Un retour même limité de liquide depuis 1 ' évaporateur en direction du réservoir provoque un assèchement local de la masse micro- poreuse qui peut conduire à un désamorçage du pompage de la boucle diphasique, ce qui est empêché par ledit organe anti-retour 6. Ce phénomène est d'autant plus important que la puissance au démarrage est élevée (plusieurs kW et/ou plusieurs dizaines de Watts par cm2). L'organe anti-retour 6 permet ainsi d'augmenter les performances du système au démarrage .
La position dudit organe anti-retour 6 peut être choisie parmi plusieurs emplacements particulièrement intéressants selon le but recherché et les optimisations poursuivies.
Sur la figure 1, l'organe anti-retour 6 est positionné sur la conduite 5b reliant le réservoir à 1 'évaporateur 1. De cette façon, 1 organe anti-retour 6 peut être inséré dans une boucle diphasique où l 'évaporateur et le réservoir sont des organes donnés qu'il est difficile de modifier.
Par ailleurs, ledit organe anti-retour 6 peut être positionné, comme illustré à la figure 2, de façon adjacente à 1 ' évaporateur 1, de sorte que ledit organe anti-retour 6 peut être combiné avec 1 'évaporateur, ce qui permet d'optimiser l'encombrement du système.
Par ailleurs, ledit organe anti-retour 6 peut être positionné, comme illustré à la figure 3, de façon adjacente au réservoir, de sorte que ledit organe anti- retour 6 peut être combiné avec le réservoir comme il sera détaillé par la suite, ce qui permet d'optimiser l'encombrement du système.
De façon préférentielle, cet organe anti-retour 6 peut comporter un flotteur 60 dont la densité est légèrement inférieure à la densité du fluide en phase liquide, le flotteur venant en butée sur une portée pour fermer le passage de liquide, comme cela sera précisé plus loin .
Mais cet organe anti-retour 6 peut aussi prendre la forme plus classique d'une valve anti-retour (non représenté sur les figures), avec un clapet, un siège de clapet et un rappel élastique tendant à pousser ledit clapet vers le siège de clapet. Toutefois, la force de rappel élastique doit être modérée de façon à ne pas trop contrarier la force de pompage capillaire susmentionnée. Lorsque l'organe anti-retour 6 se présente sous la forme d'un flotteur, et comme illustré aux figures 4a et 4b, un élément formant flotteur 60 est agencé à l'intérieur d'un corps creux 63 dans lequel le flotteur 60 peut se déplacer au moins selon une direction dite longitudinale. La direction longitudinale coïncide ici avec la direction Z selon laquelle s'exercent la poussée d'Archimède et la gravité .
Dans l'exemple illustré, le corps creux et le flotteur sont symétriques de révolution autour de cet axe Z, mais il pourrait toutefois en être autrement.
Le flotteur comporte une surface d'appui 67 annulaire qui vient en appui sur une portée annulaire correspondant 66 qui forme un épaulement dirigé radialement vers l'intérieur dans le corps creux 63. Lorsque le flotteur est en appui sur la portée 66, l'espace amont 64 du deuxième circuit de communication 5 est isolé de l'espace aval 65 du deuxième circuit de communication 5, ce qui correspond à l'état fermé.
Comme illustré à la figure 4a, lorsque la boucle est en fonctionnement établi, le pompage capillaire exerce un effet de succion qui établit une pression légèrement inférieure dans l'espace aval, et cet effet de succion S aspire le flotteur vers le bas. Alors le passage de liquide au niveau de la portée 66 est ouvert et du liquide peut s'écouler de l'amont 64 vers l'aval 65.
Il est à noter que, si des bulles de vapeur ou de gaz non condensable se trouvent en dans ledit liquide dans la partie aval 65, elles peuvent s'échapper en sens inverse (de l'aval vers l'amont) ce qui permet d'éviter de bloquer l'alimentation de 1 ' évaporateur en liquide frais : le flotteur est donc apte à laisser passer des bulles de gaz et éviter ainsi la formation d'un bouchon de gaz, cette fonction pouvant aussi être appelée fonction dégazage.
Selon un aspect avantageux de l'invention, le flotteur présente une densité inférieure à la densité du fluide en phase liquide, et comprise entre 60% et 90% de la densité du fluide en phase liquide (à température maximale de l'ordre de 100°C par exemple) . Ainsi, la résultante du poids et de la poussée d'Archimède donne une force de poussée P orientée vers le haut.
L'intensité de cette poussée P doit être toutefois modérée pour être inférieure à l'effet de succion du pompage capillaire susmentionné.
En régime transitoire, en particulier lors d'un démarrage initial ou en cas d'augmentation brutale de la charge thermique à évacuer, une augmentation brutale de génération de vapeur dans 1 ' évaporateur a tendance à repousser le liquide contenu dans la cavité 15 en direction du réservoir. Ceci doit être évité pour prévenir un assèchement de la masse microporeuse (aussi appelé mèche) qui désamorcerait la boucle.
Comme représenté à la figure 4b, en cas de flux de liquide depuis la cavité 15 de 1 'évaporateur, une force de pression F orientée vers le haut a pour effet de plaquer le flotteur 60 contre la portée 66 et de fermer ainsi le passage de liquide. Par conséquent, tout reflux de liquide en direction de l'espace intérieur 30 du réservoir est évité .
Dans une configuration particulièrement avantageuse où l'organe anti-retour 6 est formé dans la zone inférieure du réservoir, l'organe anti-retour 6 est disposé à la base du réservoir, au niveau de l'orifice 31b de sortie (cf. figures 3 et 5) . Dans ce cas, le corps 63 comporte un collet 68 qui est solidarisé à la base 37 du réservoir par des moyens de fixations connus. De plus la base 37 au niveau de l'orifice 31b peut servir directement de portée de fermeture 66.
Selon l'invention, le flotteur peut être réalisé en acier inox de sorte que sa durabilité est très bonne. Comme représenté à la figure 6, le flotteur 60 peut être réalisé sous la forme de deux demi-coquilles 61, 62 soudées entre elles au niveau d'un diamètre au moyen d'une soudure 68 ; les deux demi-coquilles 61,62 délimitent alors un volume intérieur 89 rempli d'air ou de gaz de préférence inerte. L'épaisseur de la paroi des deux demi coquilles 61,62 ainsi que la taille du volume intérieur 89 sont choisis pour obtenir la densité désirée pour le flotteur complet 60.
En outre, en vue d'éviter les phénomènes de mélange au sein du réservoir qui sont propices au phénomène de ycold shock', il peut être prévu à l'intérieur du réservoir, et comme illustré aux figures 7a-7b, plusieurs volumes distincts séparés les uns des autres, lesdits volumes distincts restant en communication fluide. En particulier, et plus précisément, dans le réservoir peuvent être agencée une pluralité de parois internes 7 adaptées pour séparer lesdits plusieurs volumes distincts.
De plus, avantageusement selon l'invention, le réservoir peut comprendre un déflecteur de jet d'entrée 8 au voisinage de l'orifice d'entrée 31a ou de l'orifice d'entrée/sortie 31 selon la configuration de la deuxième conduite .
Ce déflecteur de jet d'entrée 8 empêche qu'une arrivée rapide de liquide dans le réservoir ne crée un bouillonnement ou un courant favorisant le mélange du liquide. Il peut se présenter sous la forme d'un profilé en U orienté vers le bas, ou d'une cloche ou de toute autre forme créant une déviation suffisante de la trajectoire du jet d'entrée.
La structure de compartiment 71 peut présenter des parois verticales 7, c'est-à-dire orientées selon la direction de gravité. Il est toutefois à noter que les parois peuvent tout aussi bien être légèrement ou substantiellement inclinées, comme illustré par exemple sur la Figure 7a. De façon avantageuse, on peut choisir une structure en nid d'abeille de maille hexagonale.
Il est à noter que le réservoir peut avoir une forme quelconque, et en particulier parallélépipédique ou cylindrique. De plus, la structure de compartiment peut être formée en acier inox.
Selon un aspect de la présente invention, lesdits plusieurs volumes distincts communiquent par des passages de section de faible, de préférence inférieure au 1/10 de la plus grande section du réservoir.
Selon un autre aspect avantageux de l'invention, la structure de compartiment peut comprendre un matériau à changement de phase conférant une inertie thermique à ladite structure qui concourt à limiter les écarts brusques de température.
Les figures 7a et 7b montrent qu'il est possible dans le cadre de la présente invention d'avoir plusieurs évaporateurs 1 en parallèle les uns des autres pour augmenter la capacité d'évacuation de calories et/ou pour placer les évaporateurs au plus près des sources de chaleur .
Selon la configuration de la figure 7a, chaque évaporateur possède un organe anti retour 6 dans son circuit d'amenée de liquide particulier, alors que selon la configuration de la figure 7b, l'organe anti retour 6 est placé dans la branche commune 5d en amont de la distribution 5e, 5f vers les évaporateurs, ce qui permet de commonaliser l'organe anti-retour 6 et d'optimiser ainsi le coût d'un système à plusieurs évaporateurs.
Par ailleurs, le dispositif peut comprendre en outre un élément d'apport d'énergie 36, par exemple un élément de chauffage ou de mise en pression, situé au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage. Un système de commande 'Ctrl' 38 pilote, dans le cas d'un élément de chauffage, l'apport de calories sur cet élément de chauffage 36, en fonction d'une information de température et/ou une information de pression délivrées par des capteurs (non représentés), et ceci afin d'assurer le démarrage de la boucle diphasique. De plus, ce système de commande 'Ctrl' peut aussi préparer la boucle diphasique à une arrivée imminente et importante de calories sur 1 'évaporateur, ce qui permet d'anticiper la réaction de la boucle diphasique par rapport au besoin de dissipation thermique. Le dimensionnement de la boucle peut être ainsi optimisé pour des quantités de chaleur importante à évacuer.
Avantageusement selon l'invention, le dispositif est dépourvu d'une quelconque pompe mécanique bien que l'invention n'exclut pas la présence d'une pompe mécanique d ' appoint .

Claims

REVENDICATIONS
1. Dispositif de transfert thermique à pompage capillaire, adapté pour extraire de la chaleur depuis une source chaude (11) et pour restituer cette chaleur à une source froide (12) au moyen d'un fluide de travail diphasique contenu dans un circuit général clos, comprenant :
- au moins un évaporateur (1), ayant une entrée et une sortie, et une masse microporeuse (10) adaptée pour assurer un pompage capillaire de fluide en phase liquide
- au moins un condenseur (2), ayant une entrée et une sortie,
- un réservoir (3) ayant un volume intérieur (30), et au moins un orifice d'entrée et/ou sortie ( 31 ; 3 la, 3 lb) ,
- un premier circuit de communication (4), pour du fluide essentiellement en phase vapeur, reliant la sortie de 1 ' évaporateur à l'entrée du condenseur,
- un deuxième circuit de communication (5), pour du fluide essentiellement en phase liquide, reliant la sortie du condenseur au réservoir et à l'entrée de 1 'évaporateur, caractérisé en ce qu'il comprend un organe anti retour (6) agencée entre le volume intérieur (30) du réservoir et la masse microporeuse (10) de 1 'évaporateur, et agencé pour empêcher que du liquide présent dans 1 ' évaporateur ne se déplace vers le volume intérieur du réservoir,
le dispositif étant principalement soumis à la gravité, l'organe anti retour comprenant un flotteur (60) rappelé par poussée de flottaison vers une portée à l'état fermé.
2. Dispositif selon la revendication 1, dans lequel le flotteur présente une densité inférieure à la densité du fluide en phase liquide, et comprise entre 60% et 90% de la densité du fluide en phase liquide.
3. Dispositif selon l'une des revendications 1 à 2, dans lequel le flotteur est réalisé en acier inox.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel l'organe anti retour est formé dans la zone inférieure du réservoir.
5. Dispositif selon l'une des revendications 1 à 3, dans lequel l'organe anti retour est formé dans la zone supérieure de 1 ' évaporateur .
6. Dispositif selon l'une des revendications 1 à 5, dans lequel le réservoir comprend un déflecteur de jet d'entrée (8) au voisinage de l'orifice d'entrée.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel le réservoir (3) comprend plusieurs volumes distincts, les dits volumes distincts restant en communication fluide.
8. Dispositif selon la revendication 7, comprenant une pluralité de parois internes (7) formant des compartiments adaptés pour séparer lesdits plusieurs volumes distincts.
9. Dispositif de transfert thermique selon l'une des revendications précédentes, caractérisé en ce qu'il est dépourvu de pompe mécanique.
10. Dispositif selon l'une des revendications précédentes, comprenant en outre un élément d'apport d'énergie au niveau du réservoir pour contrôler la mise en pression de la boucle lors du démarrage.
EP12766395.3A 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire Active EP2756252B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158203A FR2979982B1 (fr) 2011-09-14 2011-09-14 Dispositif de transport de chaleur a pompage capillaire
PCT/EP2012/067753 WO2013037785A1 (fr) 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire

Publications (2)

Publication Number Publication Date
EP2756252A1 true EP2756252A1 (fr) 2014-07-23
EP2756252B1 EP2756252B1 (fr) 2017-10-11

Family

ID=46940453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12766395.3A Active EP2756252B1 (fr) 2011-09-14 2012-09-12 Dispositif de transport de chaleur à pompage capillaire

Country Status (7)

Country Link
US (1) US9766016B2 (fr)
EP (1) EP2756252B1 (fr)
JP (1) JP6163491B2 (fr)
CN (1) CN104094073B (fr)
ES (1) ES2645370T3 (fr)
FR (1) FR2979982B1 (fr)
WO (1) WO2013037785A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283221A1 (en) * 2007-05-15 2008-11-20 Christian Blicher Terp Direct Air Contact Liquid Cooling System Heat Exchanger Assembly
FR2979981B1 (fr) * 2011-09-14 2016-09-09 Euro Heat Pipes Dispositif de transport de chaleur a pompage capillaire
FR3003725B1 (fr) * 2013-03-22 2015-04-17 Alstom Transport Sa Convertisseur de puissance electrique pour un vehicule ferroviaire.
FR3006431B1 (fr) * 2013-05-29 2015-06-05 Euro Heat Pipes Dispositif de transport de chaleur a fluide diphasique
US20150168079A1 (en) * 2013-12-17 2015-06-18 General Electric Company System and method for transferring heat between two units
DE102015107473A1 (de) 2015-05-12 2016-11-17 Benteler Automobiltechnik Gmbh Kraftfahrzeug-Wärmeübertragersystem
CN105115329A (zh) * 2015-08-14 2015-12-02 北京空间飞行器总体设计部 一种适应于小空间、多点热源的高效散热系统
JP6579275B2 (ja) * 2016-09-09 2019-09-25 株式会社デンソー 機器温調装置
ES2910103T3 (es) * 2017-03-12 2022-05-11 Zuta Core Ltd Sistemas y procedimientos de refrigeración
CN107575272A (zh) * 2017-08-23 2018-01-12 山西德泓利科技有限责任公司 一种基于多毛细双相控蒸发器的orc发电系统
CN113304375B (zh) * 2021-05-12 2023-06-27 湖南万脉医疗科技有限公司 一种新型呼吸机管路及其呼吸机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205187A (ja) * 1984-03-28 1985-10-16 Showa Alum Corp 熱輸送システム
US5725018A (en) * 1994-09-16 1998-03-10 Paczonay; Joseph R. Gravity check valve
US20080115843A1 (en) * 2006-11-20 2008-05-22 Chi-Chang Wang Negative check valve of a pneumatic transfer pipe

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2366955A (en) * 1941-09-20 1945-01-09 Servel Inc Refrigeration
JPS4827346A (fr) * 1971-08-12 1973-04-11
DE2235792A1 (de) 1972-07-21 1974-01-31 Dornier System Gmbh Vorrichtung zur uebertragung von waermeenergie
US4061131A (en) * 1975-11-24 1977-12-06 Acme Engineering And Manufacturing Corporation Heat transfer system particularly applicable to solar heating installations
JPH0230439B2 (ja) * 1985-01-30 1990-07-06 Matsushita Electric Ind Co Ltd Ruupushikihiitopaipu
JPS62233686A (ja) * 1986-03-31 1987-10-14 Yamato Seisakusho:Kk 熱伝達装置
JPH0718408B2 (ja) * 1986-06-23 1995-03-06 謙治 岡安 熱駆動ポンプ
FR2602851B1 (fr) * 1986-08-05 1988-11-18 Nantes D Avignonet Philippe De Systeme anti-retour pour toutes canalisations d'ecoulement non pulse ni aspire
US4830097A (en) 1987-07-15 1989-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space vehicle thermal rejection system
JP2657809B2 (ja) * 1987-12-22 1997-09-30 謙治 岡安 熱伝達装置
JP2544433B2 (ja) * 1988-03-31 1996-10-16 三機工業株式会社 冷媒自然循環式熱移動装置
US4957157A (en) 1989-04-13 1990-09-18 General Electric Co. Two-phase thermal control system with a spherical wicked reservoir
JP2859927B2 (ja) * 1990-05-16 1999-02-24 株式会社東芝 冷却装置および温度制御装置
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
JP3748984B2 (ja) * 1997-05-29 2006-02-22 本田技研工業株式会社 熱駆動式液圧発生装置
US8136580B2 (en) * 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US8047268B1 (en) * 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
US7549461B2 (en) * 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US8109325B2 (en) * 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US6474074B2 (en) * 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
JP3661862B2 (ja) 2002-02-05 2005-06-22 独立行政法人 宇宙航空研究開発機構 アキュムレータ
JP2004132601A (ja) * 2002-10-10 2004-04-30 Mitsubishi Electric Corp 毛細管力駆動型二相流体ループ及びその熱輸送方法
US20050067146A1 (en) * 2003-09-02 2005-03-31 Thayer John Gilbert Two phase cooling system method for burn-in testing
CN100349285C (zh) * 2004-04-12 2007-11-14 中南大学 用于电子器件冷却的循环流动型脉动热管
JP2006064193A (ja) * 2004-08-24 2006-03-09 Mitsubishi Electric Corp ループ熱交換熱輸送機器
US20060065386A1 (en) * 2004-08-31 2006-03-30 Mohammed Alam Self-actuating and regulating heat exchange system
JP4381998B2 (ja) * 2005-02-24 2009-12-09 株式会社日立製作所 液冷システム
WO2007146083A2 (fr) * 2006-06-06 2007-12-21 Albert Montague Clapet anti-retour
FR2919923B1 (fr) * 2007-08-08 2009-10-30 Astrium Sas Soc Par Actions Si Dispositif passif a micro boucle fluide a pompage capillaire
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
FR2949642B1 (fr) * 2009-08-27 2012-05-04 Alstom Transport Sa Convertisseur de puissance electrique pour un vehicule ferroviaire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205187A (ja) * 1984-03-28 1985-10-16 Showa Alum Corp 熱輸送システム
US5725018A (en) * 1994-09-16 1998-03-10 Paczonay; Joseph R. Gravity check valve
US20080115843A1 (en) * 2006-11-20 2008-05-22 Chi-Chang Wang Negative check valve of a pneumatic transfer pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013037785A1 *

Also Published As

Publication number Publication date
CN104094073B (zh) 2020-03-10
US20150114605A1 (en) 2015-04-30
WO2013037785A1 (fr) 2013-03-21
US9766016B2 (en) 2017-09-19
FR2979982B1 (fr) 2016-09-09
FR2979982A1 (fr) 2013-03-15
CN104094073A (zh) 2014-10-08
EP2756252B1 (fr) 2017-10-11
JP6163491B2 (ja) 2017-07-12
JP2014526670A (ja) 2014-10-06
ES2645370T3 (es) 2017-12-05

Similar Documents

Publication Publication Date Title
EP2756252B1 (fr) Dispositif de transport de chaleur à pompage capillaire
EP2956729B1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP2756251B1 (fr) Dispositif de transport de chaleur à pompage capillaire
EP2179240B1 (fr) Dispositif passif a micro boucle fluide a pompage capillaire
EP3004773A1 (fr) Dispositif de transport de chaleur à fluide diphasique
FR2919922A1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP2306116B1 (fr) Installation solaire thermique à drainage gravitaire
BE898425A (fr) Appareil à vortex pour séparer et éliminer un gaz d'un liquide, et installation en comportant l'application.
FR2964183A1 (fr) Echangeur thermique ameliore
EP3250870A1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
WO2023174682A1 (fr) Dispositif de degazage d'hydrogene liquide
EP3271633B1 (fr) Système télescopique et flottant de distribution de fluide caloporteur pour un dispositif de stockage d'énergie thermique
WO2019038501A1 (fr) Systeme d'alimentation ameliore pour l'alimentation de moteur-fusee
EP2981781B1 (fr) Caloduc comportant un bouchon gazeux de coupure
FR2977981A1 (fr) Dispositif de refroidissement d'un panneau photovoltaique
BE897630A (fr) Appareil de transmission de chaleur
WO2022090126A1 (fr) Dispositif de transfert thermique a fluide de travail diphasique
WO2015121179A1 (fr) Système de refroidissement de source chaude
BE345688A (fr)
FR2666384A1 (fr) Pompe a diffusion.
WO2012084748A1 (fr) Système de production d'eau chaude sanitaire à l'aide de capteurs solaires thermiques à eau, dans lequel un même circuit met en relation un ballon d'eau chaude et les capteurs
BE370417A (fr)
FR2819857A1 (fr) Procede de recuperation de liquide notamment d'eau et de production d'energie et dispositif permettant de le mettre en oeuvre
OA11792A (fr) Citerne à bitume à dépotage rapide.
BE435133A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUPONT, VINCENT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012038432

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2645370

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171205

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 936427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012038432

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

26N No opposition filed

Effective date: 20180712

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210928

Year of fee payment: 10

Ref country code: DE

Payment date: 20210908

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20211005

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012038432

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220913