WO2015121179A1 - Système de refroidissement de source chaude - Google Patents

Système de refroidissement de source chaude Download PDF

Info

Publication number
WO2015121179A1
WO2015121179A1 PCT/EP2015/052576 EP2015052576W WO2015121179A1 WO 2015121179 A1 WO2015121179 A1 WO 2015121179A1 EP 2015052576 W EP2015052576 W EP 2015052576W WO 2015121179 A1 WO2015121179 A1 WO 2015121179A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
hot
circuit
source
cold
Prior art date
Application number
PCT/EP2015/052576
Other languages
English (en)
Inventor
Edouard Bonnefous
Julien GIRON
Original Assignee
Zodiac Aero Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zodiac Aero Electric filed Critical Zodiac Aero Electric
Publication of WO2015121179A1 publication Critical patent/WO2015121179A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20627Liquid coolant without phase change
    • H05K7/20645Liquid coolant without phase change within cabinets for removing heat from sub-racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks

Definitions

  • the present invention relates generally to a hot source cooling system.
  • the invention relates to a cooling system of a hot source constituted for example by a transistor, such as an IGBT transistor (for "insulated gate bipolar transistor” in English) or a housing electric, in particular on board aircraft.
  • a transistor such as an IGBT transistor (for "insulated gate bipolar transistor” in English) or a housing electric, in particular on board aircraft.
  • the invention relates to a hot source cooling system based on the use of a closed loop circuit containing a fluid having one or more phases.
  • Such a closed - loop circuit constitutes a cooling system of a hot source under the effect of a remote cold source via heat exchangers in heat exchange relation with the hot source and with the cold source. , respectively.
  • a single-phase fluid circuit 1 comprises a relatively hot zone 2 in heat exchange relation with a hot source Se and a relatively cold zone 3 in heat exchange relation with a hot source SF, each equipped with a heat exchanger, and constitutes a cooling system which mainly uses the heat transfer by conduction of the fluid in the system.
  • the fluid moves by active pumping in the circuit by means of a pump P.
  • a two-phase loop can also be a two-phase loop, that is to say containing a fluid having two phases.
  • a two - phase loop is a system that primarily uses the latent heats of gas - liquid state change of a fluid that moves by active pumping or self - sustaining passive circulation.
  • a two-phase loop uses a fluid that occurs in two different states, namely liquid and gas.
  • FIGS. 2 and 3 show, in which elements identical to those of FIG. 1 bear the same reference signs, a schematic diagram of a two-phase loop.
  • a two-phase loop comprises a fluid circuit 1 in a closed loop comprising a hot part 2 equipped with an evaporator E which takes heat from a hot source S c (arrow F 1) and a cold part
  • the circuit In contact with the heat delivered by the hot source S c , the fluid flowing in the circuit 1 vaporizes in the evaporator. The steam circulating in the circuit is then delivered to the condenser. The liquid leaving the condenser is then fed to the evaporator.
  • the circuit may be provided with a control tank
  • fluid flow in the closed-loop fluid circuit 1 can be either passive or active using a pump.
  • the use of a pump is advantageous in that it increases the speed of circulation of the fluid.
  • the reliability of a cooling system using a pump is no longer compatible with the requirements in certain fields, in particular in the field of aeronautics.
  • the object of the invention is therefore to overcome these drawbacks and to provide a cooling system of a hot source capable of guaranteeing a circulation rate of a cooling fluid in a closed loop fluidic circuit while maintaining a relatively high reliability.
  • the subject of the invention is therefore a cooling system of a hot source comprising a closed-loop circuit containing a fluid having one or more phases and comprising a relatively hot zone and at least one relatively cold zone and means for transferring the fluid. between the relatively hot zone and said relatively cold zone, the relatively hot and relatively cold zones each having a heat exchanger in heat exchange relation with a hot source and with a cold source, respectively.
  • the transfer means comprise a fluidyne.
  • the fluidyne makes it possible to increase the speed of circulation of the fluid in the circuit without using a pump and thus maintaining high reliability.
  • the fluidyne comprises a bypass circuit in communication with the closed-loop circuit and comprising a first liquid / gas column in heat exchange relation with the hot source and a second liquid / gas column in relation thereto. heat exchange with the cold source.
  • the closed bypass circuit further comprises a gas line between said first and second liquid / gas columns.
  • the closed-loop circuit comprises two nonreturn valves placed respectively upstream and downstream of the connection zones of the branch circuit to the closed loop fluidic circuit.
  • the fluid circuit contains a two - phase fluid, and comprises an evaporator and a condenser, the evaporator and the condenser being respectively in heat exchange relationship with the hot source and the cold source.
  • the fluid circuit contains a fluid with a phase and comprises an expansion vessel.
  • the hot source is a transistor, such as an IGBT transistor or an electrical box.
  • FIGS. 4, 5 and 6 are diagrams illustrating the structure and the operating principle of a fluidyne.
  • FIGS 7 and 8 are block diagrams of embodiments of a cooling system of a hot source according to the invention.
  • FIGS. 4, 5 and 6 illustrate the general structure and operating principle of a fluidyne.
  • a fluidyne is a fluid pumping engine based on the Stirling cycle. Apart from valves, such a device is devoid of moving mechanical part. It is in other words a "pump motor” of simple operation, reliable and easy to implement.
  • a fluidyne comprises a hot cylinder 6 and a cold cylinder 7 containing a liquid fraction and a gas fraction and joined by their base and containing a fluid.
  • the assembly constitutes, for example, a U-shaped tube.
  • the upper ends of the hot and cold cylinders are joined by a regenerator R essentially comprising a pipe providing for the communication of the gaseous fraction of the hot and cold cylinders 6, 7.
  • the hot cylinder 6 is also in fluid communication with a pumping tube T equipped with a chamber 8 provided with two valves 9 and 10 between which the fluid coming from the hot cylinder 6 is brought.
  • the hot cylinder 6 is in heat exchange relation with a hot source.
  • the gaseous fraction present in the hot cylinder 6 expands by exerting pressure on the liquid column and is transferred by the regenerator R to the gaseous fraction present in the cold cylinder 7 by exerting a pressure on the column of liquid present in this cold cylinder.
  • the gas cools down, its volume decreases and consequently its pressure drops. This pressure drop causes an elevation of the fluid level in the cold cylinder 7 and consequently a transfer of gas to the gaseous fraction of the hot source.
  • such a column is equipped with a fluidyne to enable active fluid circulation in the fluidic circuit. closed loop and this with high reliability.
  • the diphasic loop, subjected to gravity, is completed by a fluidyne.
  • the system therefore comprises a small circuit constituting a fluidyne whose pressure fluctuates with a short thermal time constant and use of a small section gas connection, that is to say calibrated and a closed loop power circuit of increased dimensions whose pressure varies less rapidly and equipped with two nonreturn valves .
  • the cooling system illustrated in FIG. 7 indeed comprises a two-phase loop 12 comprising a closed-loop fluidic circuit 13 equipped with an evaporator 14 and a condenser 15 respectively in heat exchange relation with a hot source Se and a source. cold SF.
  • the hot source is constituted by a transistor, for example an IGBT transistor, or by the hot part of an electrical box.
  • the evaporator vaporises the fluid, for example water flowing in the fluid circuit 1 3, by taking heat from the heat source and supplies the gas flowing in a gas line 1 6 of the fluid circuit 13 to the fluid.
  • condenser 15 at which the gas is liquefied by delivering calories to the cold source SF.
  • the fluidyne designated by the general reference numeral 1 8, is in turn formed as a bypass 19 whose input is connected to the output of the fluidic circuit 13 at the outlet of the condenser 15 and whose output is connected. upstream of the evaporator 14, considering the circulation of the fluid in the closed circuit 13.
  • the closed bypass circuit 19 comprises a first liquid / gas column 20 in heat exchange relation with the hot source S c and a second liquid / gas column 21 in heat exchange relation with cold source SF connected by a gas line 22.
  • the second liquid / gas column and the condenser 15 are in heat exchange relation with two respective cold sources SFI and SF 2 .
  • Check valves such as 23, for example ball, valve, are provided in the closed loop fluid circuit 1 3, between the connection zone of the condenser 1 5 and the branch of the branch bypass circuit, on the one hand, and between the connection zone of the evaporator 14 and the connection zone of the bypass circuit 19 to the closed fluid circuit 13, on the other hand.
  • the operation of the fluidyne 1 8 is identical to the operation described above with reference to FIGS. 4 to 6.
  • the water present in the columns Water 20 and 21 adopt an oscillating movement and put in check the water suction and discharge valves 22 thus ensuring a pumping of the water in the closed circuit 1 3.
  • This provides an active circulation of the fluid in the circuit 13 and in a particularly reliable arrangement insofar as it has no moving parts.
  • the two-phase loop uses a single fluid in two different states, liquid or gas.
  • the fluidyne uses a liquid and a gas, the liquid does not condense and the gas does not vaporize or little.
  • These fluids can be of various kinds. For example, water, water vapor or air may be used.
  • the liquid fluid acts as a piston and must remain liquid. It is therefore the gas present in the gas pipe 22 which expands.
  • an inert gas such as nitrogen may be used in the gas line 22, possibly maintained at a relatively cooler temperature to avoid any condensation.
  • the cooling system comprises a two-phase loop and a fluidyne which ensures active circulation. It would also be possible, alternatively, to provide the cooling system with several two-phase loops, for example the number of 3 or any number of such loops, associated with a common fluidyne for synchronous pumping or each associated with a fluidyne.
  • the topology of the cooling system circuits can be adapted, in particular as regards the length of the pipes, or the position of the connection zones of the fluidyne to the cooling circuit.
  • the position of the warm / warm areas can also be adapted, being close to or away from the hot source.
  • heat exchangers used to connect the condenser or the evaporator with the liquid / gas columns of the fluidyne in a heat exchange relation may, if necessary, be integrated into the columns in order to increase the integration of the two-phase loop and the fluidyne.
  • liquid surfaces in the hot and cold cylinders of the fluidyne are at the same level which, in an aircraft, can constrain their distance and their relative position.
  • the invention also applies to a loop circuit containing a fluid having a single phase.
  • the cooling system comprises a fluidyne 25 similar to the fluidyne described with reference to 5, and a closed circuit 26 having two valves 27 located on either side of the connection zone of the fluidyne to the fluidyne. closed circuit 26.
  • the hot cylinder 28 of the fluidyne is here integrated with a heat exchanger 29, itself in heat exchange relation with a hot source Se.
  • the cold cylinder 29 is as for associated with a heat exchanger 29 in heat exchange relationship with a cold source SF and the fluid circuit 26 is in heat exchange relationship with a cold source via an exchanger 29 'here integrated with the vessel expansion.
  • an expansion vessel 30 is provided on the closed cooling circuit of the two-phase loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Ce système de refroidissement d'une source chaude comprend un circuit (12) en boucle fermée contenant un fluide ayant une ou plusieurs phases et comprenant une zone relativement chaude et au moins une zone relativement froide et des moyens de transfert du fluide entre la zone relativement chaude et ladite zone relativement froide, les zones relativement chaude et relativement froide ayant chacune un échangeur de chaleur en relation d'échange thermique avec une source chaude et avec une source froide, respectivement. Les moyens de transfert comportent une fluidyne (18).

Description

Système de refroidissement de source chaude
La présente invention concerne, de manière générale, un système de refroidissement de source chaude.
Dans une app lication particulièrement intéressante, l' invention concerne un système de refroidissement d'une source chaude constitué par exemple par un transistor, tel qu'un transistor IGBT (pour « insulated gâte bipo lar transistor », en langue anglaise) ou un boîtier électrique, notamment embarqué à bord d' aéronefs .
Plus particulièrement, l 'invention concerne un système de refroidissement d'une source chaude fondé sur l'utilisation d 'un circuit en boucle fermée contenant un fluide ayant une ou plusieurs phases.
Un tel circuit en boucle fermée constitue un système de refroidissement d'une source chaude sous l ' effet d'une source froide éloignée par l' intermédiaire d' échangeurs de chaleurs en relation d' échange thermique avec la source chaude et avec la source froide, respectivement.
Il peut s ' agir d'un circuit en boucle contenant un fluide ayant une seule phase. En se référant à la figure 1 , un circuit 1 de fluide à une seule phase comprend une zone 2 relativement chaude en relation d' échange thermique avec une source chaude Se et une zone 3 relativement froide en relation d' échange thermique avec une source chaude S F, dotées chacune d'un échangeur de chaleur, et constitue un système de refroidissement qui utilise principalement le transfert de chaleur par conduction du fluide dans le système. Le fluide se déplace par pompage actif dans le circuit au moyen d'une pompe P .
Il peut encore s ' agir d'une boucle diphasique, c ' est-à-dire contenant un fluide ayant deux phases. Une boucle diphasique est un système qui utilise principalement les chaleurs latentes de changement d' état gaz-liquide d'un fluide qui se déplace par pompage actif ou par circulation passive auto-entretenue. Une boucle diphasique utilise un fluide qui se présente dans deux états différents, à savoir liquide et gaz. On a représenté sur les figures 2 et 3 , sur lesquelles des éléments identiques à ceux de la figure 1 portent les mêmes signes de référence, un schéma de principe d'une boucle diphasique.
Comme on le voit sur ces figures, une boucle diphasique comporte un circuit de fluide 1 en boucle fermée comprenant une partie chaude 2 équipée d'un évaporateur E qui prélève de la chaleur en provenance d'une source chaude Sc (flèche F l ) et une partie froide
3 dotée d'un condenseur C qui délivre de la chaleur à une source froide Sf (flèche F2) .
Au contact de la chaleur délivrée par la source chaude Sc, le fluide circulant dans le circuit 1 se vaporise dans l ' évaporateur. La vapeur circulant dans le circuit est ensuite délivrée au condenseur. Le liquide en sortie du condenseur est ensuite amené vers l ' évaporateur. Comme représenté, le circuit peut être doté d'un réservoir de contrôle
4 et d'un isolateur 5.
Comme indiqué précédemment, la circulation du fluide dans le circuit de fluide en boucle fermée 1 peut être soit passive, soit active en utilisant une pompe .
L 'utilisation d'une pompe est avantageuse dans la mesure où elle augmente la vitesse de circulation du fluide. Toutefois, la fiabilité d'un système de refroidissement utilisant une pompe n' est plus compatible avec les exigences requises dans certains domaines, en particulier dans le domaine de l ' aéronautique.
L 'utilisation d'un circuit fluidique en boucle fermée ayant une circulation passive auto-entretenue améliore considérablement la fiabilité. Toutefois, la vitesse de circulation du fluide n' est plus suffisante.
Le but de l' invention est donc de palier ces inconvénients et de fournir un système de refroidissement d'une source chaude capable de garantir une vitesse de circulation d'un fluide de refroidissement dans un circuit fluidique en boucle fermée tout en conservant une fiabilité relativement importante. L 'invention a donc pour objet un système de refroidissement d'une source chaude comprenant un circuit en boucle fermée contenant un fluide ayant une ou plusieurs phases et comprenant une zone relativement chaude et au moins une zone relativement froide et des moyens de transfert du fluide entre la zone relativement chaude et ladite zone relativement froide, les zones relativement chaude et relativement froide ayant chacune un échangeur de chaleur en relation d' échange thermique avec une source chaude et avec une source froide, respectivement.
Selon une caractéristique générale de ce système, les moyens de transfert comportent une fluidyne.
La fluidyne permet d' augmenter la vitesse de circulation du fluide dans le circuit sans utiliser de pompe et en conservant dès lors une fiabilité élevée.
En outre, la fluidyne comporte un circuit de dérivation en communication avec le circuit en boucle fermée et comprenant une première co lonne de liquide/gaz en relation d' échange thermique avec la source chaude et une deuxième co lonne de liquide/gaz en relation d' échange thermique avec la source froide .
Le circuit fermé de dérivation comporte en outre une conduite de gaz entre lesdites première et deuxième colonnes de liquide/gaz.
Selon encore une autre caractéristique, le circuit en boucle fermée comporte deux clapets anti-retour placés respectivement en amont et en aval des zones de raccordement du circuit de dérivation au circuit fluidique en boucle fermée .
Dans un mode de réalisation, le circuit de fluide contient un fluide à deux phases, et comporte un évaporateur et un condenseur, l ' évaporateur et le condenseur étant respectivement en relation d' échange thermique avec la source chaude et la source froide .
En variante, le circuit de fluide contient un fluide à une phase et comporte un vase d' expansion.
Dans un mode de mise en œuvre, la source chaude est un transistor, tel qu'un transistor IGBT ou un boîtier électrique. D ' autres buts, caractéristiques et avantages de l 'invention apparaîtront à la lecture de la description suivante, donnée à titre d' exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
- les figures 1 à 3 , dont il a déj à été fait mention, illustrent la constitution et le principe de fonctionnement d'un circuit de refroidissement contenant un fluide ayant une phase et deux phases, respectivement ;
- les figures 4, 5 , et 6 sont des schémas illustrant la structure et le principe de fonctionnement d'une fluidyne ; et
les figures 7 et 8 sont des schémas synoptiques de modes de réalisation d'un système de refroidissement d'une source chaude conforme à l 'invention.
On se référera tout d' abord aux figures 4 , 5 , et 6 qui illustrent la structure générale et le principe de fonctionnement d'une fluidyne.
Une fluidyne est un moteur de pompage de fluide basé sur le cycle de Stirling. Hormis des clapets, un tel dispositif est dépourvu de pièce mécanique en mouvement. Il s ' agit en d' autres termes d 'une « motopompe » de fonctionnement simple, fiable et facile à mettre en œuvre.
Comme on le voit, une fluidyne comporte un cylindre chaud 6 et un cylindre froid 7 contenant une fraction liquide et une fraction gazeuse et réunis par leur base et contenant un fluide. L ' ensemble constitue, par exemple, un tube en U. Les extrémités supérieures des cylindres chaud et froid sont réunies par un régénérateur R comprenant essentiellement une conduite assurant la mise en communication de la fraction gazeuse des cylindres chaud et froid 6, 7.
Le cylindre chaud 6 est par ailleurs en communication fluidique avec un tube T de pompage équipé d'une chambre 8 dotée de deux clapets 9 et 10 entre lesquels est amené le fluide issu du cylindre chaud 6. Le cylindre chaud 6 est en relation d' échange thermique avec une source chaude. Lors du chauffage, la fraction gazeuse présente dans le cylindre chaud 6 se dilate en exerçant une pression sur la co lonne de liquide et est transférée par le régénérateur R vers la fraction gazeuse présente dans le cylindre froid 7 en exerçant une pression sur la co lonne de liquide présente dans ce cylindre froid. Au contact de la source froide, le gaz se refroidit, son vo lume diminue et par conséquent sa pression baisse. Cette chute de pression provoque une élévation du niveau de fluide dans le cylindre froid 7 et par conséquent un transfert de gaz vers la fraction gazeuse de la source chaude.
En d' autres termes, lors du chauffage de la source chaude, la dilatation résultante de la fraction gazeuse provoque une diminution du niveau de fluide dans la co lonne chaude 6 et une poussée du fluide vers le tube de sortie T qui est refoulé, par le clapet anti-retour 10, vers la sortie de ce tube. Au contraire, l ' augmentation de pression dans le cylindre froid sous l ' effet du transfert de gaz chauffé provoque un rétablissement du niveau initial de liquide dans le tube chaud et une aspiration consécutive du fluide par le tube de sortie T à travers le clapet 9. En d' autres termes, lorsque la température est suffisante pour assurer le déséquilibre des co lonnes d' eau dans le cylindre chaud et dans le cylindre froid, les co lonnes d' eau prennent un mouvement oscillant et mettent en j eu les deux clapets d' aspiration et de refoulement d' eau 9 et 10. On notera que les modèles industriels de fluidyne sont capables de pomper environ 4,5 litres à la minute, à une hauteur de 2,5 mètres .
En se référant maintenant à la figure 7, dans le but d' améliorer la fiabilité et les performances d'une colonne diphasique, on équip e une telle co lonne d'une fluidyne afin de permettre une circulation active de fluide dans le circuit fluidique en boucle fermée et ce avec une fiabilité élevée.
En d' autres termes, la boucle diphasique, soumise à la gravité, est complétée par une fluidyne. Le système comporte dès lors un petit circuit constituant une fluidyne dont la pression fluctue avec une constante de temps thermique courte et utilisation d 'une liaison de gaz de petite section, c ' est-à-dire calibrée et un circuit de puissance en boucle fermée de dimensions accrues dont la pression varie moins vite et équipé de deux clapets anti-retour.
Le système de refroidissement illustré à la figure 7 comporte en effet une boucle diphasique 12 comportant un circuit fluidique en boucle fermée 13 équipé en évaporateur 14 et d'un condenseur 1 5 respectivement en relation d' échange thermique avec une source chaude Se et une source froide S F .
Par exemple, la source chaude est constituée par un transistor, par exemp le un transistor IGBT, ou par la partie chaude d'un boîtier électrique.
En fonctionnement, l ' évaporateur vaporise le fluide, par exemple de l ' eau qui circule dans le circuit fluidique 1 3 , en prélevant des calories à la source chaude et fournit le gaz circulant dans une conduite de gaz 1 6 du circuit fluidique 13 au condenseur 15 au niveau duquel le gaz se liquéfie en délivrant des calories à la source froide S F .
La fluidyne, désignée par la référence numérique générale 1 8 , est quant à elle réalisée sous la forme d'une dérivation 19 dont l ' entrée est raccordée à la sortie du circuit fluidique 13 , en sortie du condenseur 15 et dont la sortie est raccordée en amont de l ' évaporateur 14 , en considérant la circulation du fluide dans le circuit fermé 13.
Le circuit fermé de dérivation 19 comporte une première co lonne de liquide/gaz 20 en relation d' échange thermique avec la source chaude Sc et une deuxième co lonne de liquide/gaz 21 en relation d' échange thermique avec source froide S F reliées par une conduite de gaz 22.
On notera que si la longueur de la conduite de gaz est supérieure à une distance prédéfinie par exemple de 50 cm, la deuxième co lonne de liquide/gaz et le condenseur 15 sont en relation d' échange thermique avec deux sources froides respectives S F I et S F2. Des clapets anti-retour, tels que 23 , par exemple à bille, à clapet, sont prévus dans le circuit fluidique en boucle fermée 1 3 , entre la zone de raccordement du condenseur 1 5 et la zone de branchement du circuit fermé de dérivation, d'une part, et entre la zone de raccordement de l ' évaporateur 14 et la zone de raccordement du circuit 19 de dérivation au circuit fluidique fermé 13 , d' autre part.
Le fonctionnement de la fluidyne 1 8 est identique au fonctionnement décrit précédemment en référence aux figures 4 à 6. En d' autres termes, sous l ' effet de la chaleur prélevée à partir de la source chaude, l ' eau présente dans les colonnes d' eau 20 et 21 adopte un mouvement oscillant et met en j eu les clapets d' aspiration et de refoulement d' eau 22 assurant de la sorte un pompage de l ' eau dans le circuit fermé 1 3.
On obtient ainsi une circulation active du fluide dans le circuit 13 et ce dans un agencement particulièrement fiable dans la mesure où il ne comporte aucune pièce mobile.
On notera que la boucle diphasique utilise un seul fluide dans deux états différents, liquide ou gaz. La fluidyne utilise un liquide et un gaz, le liquide ne se condensant pas et le gaz ne se vaporisant pas ou peu.
Ces fluides peuvent être de diverses natures. On pourra par exemple utiliser de l ' eau, de la vapeur d' eau ou de l ' air.
Par ailleurs, dans le circuit de dérivation de la fluidyne, le fluide liquide agit comme un piston et doit donc rester liquide. C ' est donc le gaz présent dans la conduite de gaz 22 qui se dilate.
Avantageusement, on pourra utiliser un gaz inerte tel que de l ' azote dans la conduite de gaz 22, éventuellement maintenue à une température relativement plus froide pour éviter toute condensation.
On notera enfin que l' invention n' est pas limitée au mode de réalisation qui vient d' être décrit.
En effet, dans le mode de réalisation de la figure 7, le système de refroidissement comporte une boucle diphasique et une fluidyne qui assure une circulation active. Il serait également possible, en variante, de doter le système de refroidissement de plusieurs boucles diphasiques, par exemple au nombre de 3 ou un nombre quelconque de telles boucles, associées à une fluidyne commune pour assurer un pompage synchrone ou associées chacune à une fluidyne.
En outre, la topologie des circuits du système de refroidissement peut être adaptée, en particulier en ce qui concerne la longueur des conduites, ou la position des zones de raccordement de la fluidyne au circuit de refroidissement. La position des zones tièdes/chaudes peut également être adaptée, en étant rapprochées ou éloignées de la source chaude.
Par ailleurs, des échangeurs de chaleurs utilisés pour mettre en relation d' échange thermique le condenseur ou l ' évaporateur avec les co lonnes de liquide/gaz de la fluidyne peuvent le cas échéant être intégrés aux co lonnes afin d' augmenter l 'intégration de la boucle diphasique et de la fluidyne.
Il serait également possible de prévoir un système d ' amorçage de la fluidyne, ou de prévoir des capteurs de diverses natures, par exemple de température, de pression, ou d' état liquide/gazeux pour surveiller le fonctionnement du système de refroidissement.
On notera en outre que les surfaces de liquide dans les cylindres chaud et froid de la fluidyne sont au même niveau ce qui, dans un aéronef, peut contraindre leur éloignement et leur position relative.
On notera enfin que, selon un autre mode de réalisation visib le sur la figure 8 , l' invention s ' applique également à un circuit en boucle contenant un fluide ayant une seule phase.
Dans ce mode de réalisation, le système de refroidissement comporte une fluidyne 25 similaire à la fluidyne décrite en référence à 5 , et un circuit fermé 26 doté de deux clapets 27 situés de part et d' autre de la zone de raccordement de la fluidyne au circuit fermé 26.
Comme on le voit, le cylindre chaud 28 de la fluidyne est ici intégré à un échangeur de chaleur 29, lui-même en relation d' échange thermique avec une source chaude Se. Le cylindre froid 29 est quant à lui associé à un échangeur de chaleur 29 en relation d' échange thermique avec une source froide S F et le circuit de fluide 26 est en relation d' échange thermique avec une source froide par l' intermédiaire d'un échangeur 29 ' ici intégré au vase d' expansion. Dans ce mode de réalisation, un vase d' expansion 30 est prévu sur le circuit fermé de refroidissement de la boucle diphasique.

Claims

REVENDICATIONS
1 . Système de refroidissement d'une source chaude comprenant un circuit ( 12) en boucle fermée contenant un fluide ayant une ou plusieurs phases et comprenant une zone relativement chaude et au moins une zone relativement froide et des moyens de transfert du fluide entre la zone relativement chaude et ladite zone relativement froide, les zones relativement chaude et relativement froide ayant chacune un échangeur de chaleur en relation d' échange thermique avec une source chaude et avec une source froide, respectivement, caractérisé en ce que les moyens de transfert comportent une fluidyne ( 1 8) .
2. Système selon la revendication 1 , dans lequel la fluidyne comporte un circuit de dérivation en communication avec le circuit en boucle fermée et comprenant une première co lonne de liquide/gaz (20) en relation d' échange thermique avec la source chaude et une deuxième co lonne de liquide/gaz (21 ) en relation d' échange thermique avec la source froide.
3. Système selon la revendication 2, dans lequel le circuit de dérivation comporte une conduite de gaz ( 19) entre lesdites première et deuxième colonnes de liquide/gaz.
4. Système selon l 'une des revendications 2 et 3 , dans lequel le circuit en boucle fermée comporte deux clapets anti-retour (22) placés respectivement en amont et en aval des zones de raccordement du circuit de dérivation au circuit en boucle fermée.
5. Système selon l'une quelconque des revendications 1 à 4 , dans lequel le circuit de fluide contient un fluide à deux phases, et comportant un évaporateur ( 14) et un condenseur ( 15), l ' évaporateur et le condenseur étant respectivement en relation d' échange thermique avec la source chaude et la source froide.
6. Système selon l'une quelconque des revendications 1 à 4 , dans lequel le circuit de fluide contient un fluide à une phase et comporte un vase d' expansion (30) . 7, Système selon l'une quelconque des revendications 1 à 6 , lequel la source chaude est un transistor tel qu 'un transistor ou un boîtier électrique.
PCT/EP2015/052576 2014-02-13 2015-02-09 Système de refroidissement de source chaude WO2015121179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451106A FR3017451B1 (fr) 2014-02-13 2014-02-13 Systeme de refroidissement de source chaude
FR1451106 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015121179A1 true WO2015121179A1 (fr) 2015-08-20

Family

ID=50624784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/052576 WO2015121179A1 (fr) 2014-02-13 2015-02-09 Système de refroidissement de source chaude

Country Status (2)

Country Link
FR (1) FR3017451B1 (fr)
WO (1) WO2015121179A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568277A (en) * 2017-11-10 2019-05-15 Longcroft Engineering Ltd Improved pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501122A (en) * 1983-08-25 1985-02-26 Chicago Bridge & Iron Company Liquid piston heat pump
JPS6179843A (ja) * 1984-09-28 1986-04-23 Aisin Seiki Co Ltd 液式スタ−リング機関用ク−ラ
US5127369A (en) * 1991-05-21 1992-07-07 Goldshtik Mikhail A Engine employing rotating liquid as a piston

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501122A (en) * 1983-08-25 1985-02-26 Chicago Bridge & Iron Company Liquid piston heat pump
JPS6179843A (ja) * 1984-09-28 1986-04-23 Aisin Seiki Co Ltd 液式スタ−リング機関用ク−ラ
US5127369A (en) * 1991-05-21 1992-07-07 Goldshtik Mikhail A Engine employing rotating liquid as a piston

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568277A (en) * 2017-11-10 2019-05-15 Longcroft Engineering Ltd Improved pump

Also Published As

Publication number Publication date
FR3017451B1 (fr) 2016-02-19
FR3017451A1 (fr) 2015-08-14

Similar Documents

Publication Publication Date Title
EP2802834B1 (fr) Dispositif de refroidissement adapte a la regulation thermique d'une source de chaleur d'un satellite, procede de realisation du dispositif de refroidissement et satellite associes
EP2956729B1 (fr) Dispositif de transport de chaleur à fluide diphasique
EP0832411A1 (fr) Boucle a pompage capillaire de transport de chaleur
FR3042857B1 (fr) Chaudiere thermodynamique a compresseur thermique
FR2965905A1 (fr) Systeme de transfert de chaleur.
FR3019854A1 (fr) Dispositif de stockage et de restitution d'energie calorifique par un fluide caloporteur sous pression constante
EP3612769B1 (fr) Chaudière thermodynamique à co2 et compresseur thermique
EP2520889B1 (fr) Dispositif et systeme de transfert de la chaleur
FR3041703B1 (fr) Dispositif de degivrage pour levre d’entree d’air de nacelle de turboreacteur d’aeronef
WO2015121179A1 (fr) Système de refroidissement de source chaude
EP3250870B1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
EP3438422B1 (fr) Dispositif et procédé de régulation de la charge fluidique en circulation dans un système basé sur un cycle de rankine
WO2012101384A1 (fr) Dispositif de refroidissement pour systeme electronique de puissance dans un vehicule
EP2556309B1 (fr) Dispositif de refroidissement a dephasage passif
FR3059355B1 (fr) Installation de production d'energie electrique, d'energie mecanique et/ou de froid
CA2974154A1 (fr) Systeme thermodynamique
WO2011023900A1 (fr) Dispositif de refroidissement pour système électronique de puissance dans un véhicule
WO2023233116A1 (fr) Dispositif autonome de refroidissement d'un processus industriel, notamment d'un centre de traitement de données, et centre de traitement de données utilisant ledit dispositif
FR3003314A1 (fr) Boucle fluide diphasique a pompage mecanique
WO2018178015A1 (fr) Système thermodynamique, notamment mettant en œuvre un cycle thermodynamique de rankine
EP3722703A1 (fr) Machine thermodynamique de type thermofrigopompe et procede de fonctionnement
WO2017092922A1 (fr) Système thermodynamique
FR3002598A1 (fr) Systemes de pompage d'un fluide a pomper utilisant de l'energie sous forme thermique pour faire fonctionner le systeme de pompage.
FR2783312A1 (fr) Boucle fluide a pompage capillaire
FR2494821A1 (en) Pump and mechanical to thermal energy converter - uses fluid medium to transmit energy mechanically and to generate heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15703570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15703570

Country of ref document: EP

Kind code of ref document: A1