EP2739895B1 - Sealed, thermally-insulating vessel - Google Patents

Sealed, thermally-insulating vessel Download PDF

Info

Publication number
EP2739895B1
EP2739895B1 EP12744110.3A EP12744110A EP2739895B1 EP 2739895 B1 EP2739895 B1 EP 2739895B1 EP 12744110 A EP12744110 A EP 12744110A EP 2739895 B1 EP2739895 B1 EP 2739895B1
Authority
EP
European Patent Office
Prior art keywords
tank
layer
lagging
foam
tank according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12744110.3A
Other languages
German (de)
French (fr)
Other versions
EP2739895A1 (en
Inventor
Pierre Jolivet
Sébastien DELANOE
Gery Canler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP2739895A1 publication Critical patent/EP2739895A1/en
Application granted granted Critical
Publication of EP2739895B1 publication Critical patent/EP2739895B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks arranged in a bearing structure for containing a cold fluid, in particular to membrane tanks for containing liquefied gases.
  • Sealed and thermally insulating tanks are known arranged in the hull of a ship for the transport of a liquefied natural gas (LNG) with a high methane content.
  • LNG liquefied natural gas
  • Such a tank is disclosed for example in FR-A-2867831 .
  • a primary insulating barrier and a secondary insulating barrier are formed in a modular form using juxtaposed wooden parallelepiped boxes.
  • the crates are filled with an expanded perlite insulation or aerogels.
  • FR-A-2798902 discloses another LNG tank arranged in the hull of a ship in which a primary insulating barrier and a secondary insulating barrier each consist of a single layer of caissons filled with low density foam blocks in the range of 33 to 40 kg / m3 glued to wooden plywood spacers.
  • the invention provides a sealed and thermally insulating tank arranged in a supporting structure for containing a fluid, in which a wall of the tank comprises at least one sealed barrier and at least one insulating barrier disposed between the sealed barrier. and the supporting structure, in which the insulating barrier comprises a first set of heat insulating elements juxtaposed to form a first layer and a second set of heat insulating elements juxtaposed to form a second layer located between the first layer and the supporting structure, a heat insulating element of the first layer comprising in each case a box filled with an insulating packing consisting essentially of mineral or organic wool, aerogels or low-density polymer foam, or other non-rigid insulating materials, a heat insulating element of the second layer comprising in each case a block of high density polymer foam.
  • the insulating barrier comprises a first set of heat insulating elements juxtaposed to form a first layer and a second set of heat insulating elements juxtaposed to form a second layer located between
  • such a tank may comprise one or more of the following provisions.
  • the low density polymer foam has a density of less than 50 kg / m3.
  • the low density polymer foam may be selected from the group consisting of polyurethane foam and polyvinyl chloride foam.
  • the high density polymer foam has a density greater than 100 kg / m3.
  • the high density polymer foam may be selected from the group consisting of polyurethane foam and glass fiber reinforced polyurethane foam.
  • the insulating lining of the heat insulating element of the first layer further comprises anti-convection strips, for example strips of paper or synthetic film, on which the mineral wool is glued to reduce the convection in the box.
  • a heat insulating element of the first layer and a heat insulating element of the second layer each have the same dimensions in a plane of the tank wall and are arranged in an aligned manner, and integral retaining members of the supporting structure are arranged at the corners of the aligned heat-insulating elements and cooperate with edge pieces of the heat-insulating elements of the first layer to retain the aligned heat-insulating elements of the two layers of the insulating barrier against the supporting structure, a heat-insulating element of the second layer each comprising rigid battens extending in the direction of the thickness of the block of high density polymer foam at the corners of the block of high density polymer foam to resume the efforts of the retaining members.
  • the heat insulating element of the first layer and the heat insulating element of the second aligned layer are fixed one on the other and form a prefabricated insulating module.
  • the heat insulating element of the second layer comprises a plywood cover panel attached to the foam block.
  • the cover panel may include an inner fir wood ply and an outer birch ply. Birch wood has better mechanical strength than fir wood, which is better thermal insulator. This combination thus offers a compromise advantageous as regards the properties of mechanical strength and thermal insulation.
  • cords of mastic placed on a lower surface of the heat insulating element of the second layer bear against the supporting structure so as to compensate for flatness defects of the carrier structure.
  • the heat insulating element of the second layer comprises a rigid bottom panel fixed under the foam block, the cords of mastic being fixed on the bottom panel.
  • the casing of the heat insulating element of the first layer comprises a bottom panel, lateral sails fixed to said bottom panel and protruding perpendicularly from one side of the bottom panel to delimit the outline of a internal space of the box, a plurality of mutually parallel internal partitions perpendicular to said bottom panel which extend between the side walls so as to divide said interior space into a plurality of compartments in which the heat-insulating lining is arranged, and a panel of lid supported and fixed on an upper edge of the side walls and internal partitions parallel to the bottom panel and at a distance thereof to close the interior space of the box.
  • an internal wall of the box comprises a hollow structure consisting of two walls fixed to one another spaced apart and parallel by means of spacers arranged between the two walls.
  • the wall of the tank comprises successively a primary waterproof membrane intended to be in contact with the fluid, a primary insulating barrier, secondary waterproof membrane and secondary insulating barrier, wherein the first layer and the second layer of heat insulating elements form the secondary insulating barrier between the secondary waterproof membrane and the supporting structure.
  • the first layer is thinner than the second layer, which is advantageous when relatively expensive materials are used in the first layer.
  • the primary insulating barrier consists of juxtaposed heat insulating elements, a heat insulating element of the primary insulating barrier comprising in each case a box filled with an insulating packing consisting essentially of mineral wool or perlite.
  • the edges of the heat insulating elements of the primary insulating barrier are substantially aligned with the edges of the heat insulating elements of the secondary insulating barrier, and the integral retaining members of the supporting structure are arranged at the corners of the heat-insulating elements and cooperate with edge pieces of the heat-insulating elements of the primary insulating barrier and the secondary insulating barrier to retain the heat-insulating elements of the primary insulating barrier. against the secondary waterproof membrane and the heat insulating elements of the secondary insulating barrier against the supporting structure.
  • the or each sealed membrane comprises parallel metal sheet strips whose longitudinal edges are raised projecting inwardly of the tank and parallel welding wings retained on the underlying thermal insulation barrier and projecting inwardly from the vessel each between two strips of sheet metal to form a sealed welded joint with the adjacent raised longitudinal edges.
  • Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier, a floating unit of Storage and Regasification (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating unit of Storage and Regasification
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • An idea underlying the invention is to design a tank wall structure with advantageous properties as to thermal insulation, mechanical strength and cost.
  • Some aspects of the invention start from the idea of choosing and positioning materials in the vessel wall structure according to temperature ranges where the thermal properties of these materials are the best.
  • the invention starts from the observation that a cold fluid tank has relatively cooler wall portions located towards the inside of the tank in the direction of the thickness of the wall and relatively warmer wall portions located towards the outside of the tank.
  • Some aspects of the invention start from the idea of designing an insulating barrier structure from selected materials for their compatibility with cryogenic conditions, particularly in the field of LNG, their extended life and relatively low cost.
  • Certain aspects of the invention start from the idea of selecting relatively little or very little rigid materials, typically having a rigidity below 0.9 MPa in compression at room temperature, but good thermal insulators for filling caissons carrying an intermediate insulation layer, exploited for example in a temperature range of about -80 ° C to -110 ° C .
  • the figure 1 represents the evolution of the thermal conductivity as a function of temperature over a temperature range from about -162 ° C (LNG at atmospheric pressure) to about 20 ° C for a selection of suitable materials for the construction of a tank of LNG.
  • the most appropriate materials from the point in terms of cost and safety of use in a LNG ship are generally mineral wool, including glass wool, polyurethane (PU) and polyvinyl chloride (PVC) foams with high and low density, possibly with embedded glass fibers, and perlite. Other polymeric foams are also conceivable.
  • Table 1 shows the characteristic stiffness values according to the thickness direction of a foam block, for foams of different natures and densities.
  • Table 1 Foam type Density kg / m3 Z stiffness in MPa COULD 50 0.4 PVC 35 0.35 PVC 60 0.7 to 0.8 C.99 C.99 C.99 C.99 C.99 HARM 10 0.8
  • the high density foams 95 and 98 provide structural rigidity for using these materials as structural components, with or without stiffer reinforcing elements.
  • Materials such as mineral wools and aerogels offer zero or negligible stiffness but can be used as a liner in a rigid box capable of resuming the pressure forces.
  • organic wools for example synthetic or natural fibers, for example cellulose wadding, which have characteristics similar to mineral wools and can be used under the same conditions as these.
  • Aerogels are an optimal choice in terms of thermal conductivity when one accepts their generally higher cost. This is particularly acceptable on a relatively thin layer.
  • the figure 2 represents a sealed and thermally insulating wall in broken perspective to show the structure of this wall.
  • Such a structure can be implemented on large surfaces having various orientations, for example to cover bottom, ceiling and side walls of a tank.
  • the orientation of the figure 1 is not exhaustive in this respect.
  • the tank wall is attached to the wall of a load-bearing structure 1.
  • the term “above” a position located closer to the inside of the tank and “below” a position located closer to the structure carrier 1, regardless of the orientation of the vessel wall relative to the earth's gravity field.
  • the vessel wall comprises a secondary insulating barrier 2, a secondary impermeable barrier (not shown) retained on the top 3 of the secondary insulating barrier 2, a primary insulating barrier 4 retained on the secondary watertight barrier 2 and a primary impermeable barrier not shown retained on the top 5 of the primary insulating barrier 4.
  • the secondary insulating barrier 2 consists of a plurality of parallelepipedal secondary insulating modules 6 which are arranged side by side, so as to substantially cover the inner surface of the carrier structure 1.
  • a secondary insulating module consists of two parts: a block of foam 10 in the lower part close to the supporting structure 1 and a wooden box 11 filled with a non-structural seal in the upper part.
  • the foam block 10 is shown on the figure 3 . It is made of high density polymer foam, especially in the rigid foam 98 which has its most interesting thermal properties between -50 ° C and 20 ° C. It has an overall shape of rectangular parallelepiped with cut edges 12 in the corners to pass fasteners which will be described below.
  • the cutting of the insulating block 10 is optimized so as to limit as far as possible the thermal chimneys present between the foam blocks.
  • the only games present are the mounting sets and the passages of the fasteners in the corners.
  • mastic cords (not shown) are installed between the supporting structure 1 and the lower surface of the blocks 10. These cords of mastic are for example glued on the lower surface of the blocks 10. They do not adhere to the support structure 1 due to the establishment of a kraft paper not shown between the carrier structure 1 and the sealant.
  • the foam block 10 is provided with corner pillars 27 to take back part of the compressive load in use and thus limit crushing and creep of the foam.
  • the foam block 10 may also be provided with a cover panel 13 and / or a bottom panel 14, for example plywood.
  • the bottom panel 14 is for example wood plywood 9mm thick. Such a panel allows a better distribution of the compressive stresses, a better hold of the cords of mastic and limits the local deterioration of the foam.
  • the compressive stresses applied by the cords of mastic to the insulation are due to the static and dynamic pressure of the LNG of the tank.
  • the use of the bottom panel 14 which distributes these stresses makes it possible to position the cords of mastic relatively freely with respect to the edges of the foam blocks 10.
  • the cords of mastic may be corrugated cords as described in FIG. FR-A1-2931535 .
  • the bottom panel 14 may also be made of composite material resistant to bending and shearing.
  • the assembly between the bottom panel 14 and the foam block 10 is made by gluing.
  • the cover panel 13 adhered to the upper part of the foam block 10 also serves, where appropriate, to distribute the compressive stresses.
  • the casing 11 located in the upper part of the secondary insulating module 6 is represented on the figure 5 without its cover panel 18, visible on the figure 2 .
  • the casing 11 comprises the cover panel 18, for example 9mm plywood, a bottom panel 17 also made of 9mm plywood, external plywood sails 16 and internal anti-collapse partitions. 15.
  • the internal partitions 15 are plywood sails
  • the internal partitions 115 are hollow structures comprising spacing elements 20 sandwiched between two planar channels 21. Such a hollow structure allows better mechanical strength.
  • the interior space of the box 11 is filled with a not shown insulating lining made of glass wool or low density PVC foam.
  • insulating lining made of glass wool or low density PVC foam.
  • anti-convective elements are preferably integrated, for example in the form of sheets of paper on which the glass wool is glued.
  • the box 11 with its lining can be entirely prefabricated.
  • the bottom wall of the boxes 11 protrudes laterally on the two short sides of the box 11, so that in each corner of the box, on this projecting portion, are fixed cleats 9 which cooperate with the fasteners of the boxes 30.
  • the secondary insulating module 6 can be provided in the form of a prefabricated element in which the foam block 10 is bonded to the caisson 11. This bonding must at least hold during the installation. installation of insulating modules. Indeed, once installed, it is not necessary that this bonding is durable because the anchoring of the insulating barrier is achieved by the fasteners 30.
  • a fastener 30 comprises a bushing 22 whose base is welded to the supporting structure 1 at a position corresponding to a clearance at the corners of four adjacent foam blocks.
  • the bushing 22 carries a first rod 23 screwed to it.
  • the rod 23 passes between the adjacent modules 6.
  • a metal support plate 24 is mounted on the rod 23 to clamp the cleats 9 of the box 11 against the supporting structure 1 by means of a nut.
  • a piece of plywood 25 is mounted on plate 24 of as a spacer between the plate 24 and an upper plate 26 and reduce the thermal bridge to the carrier structure. The height of this arrangement is determined so that the upper plate 26 comes flush with the cover panels 18 of the boxes 11.
  • the compression force applied by the fixing member 30 to the insulating module 6 is entirely taken up by the corner pillars 27.
  • the cover panels 18 of the insulating boxes 11 further comprise a pair of parallel grooves 31 in substantially inverted T-shape to receive welding wings in the shape of a square.
  • the portion of the welding flanges projecting towards the top of the panels 18 allows the anchoring of the secondary sealing barrier not shown.
  • the secondary sealing barrier consists of a plurality of Invar strakes with raised edges, having a thickness of the order of 0.7 mm. The raised edges of each strake are welded to the aforementioned welding wings.
  • the primary insulating barrier 4 which consists of a plurality of primary insulating boxes 33.
  • Each primary insulating box 33 consists of a rectangular parallelepiped box made of plywood, which is filled non-structural insulating material such as perlite or glass wool.
  • the primary insulating boxes 33 also comprise internal partitions, a bottom panel and a top panel 5.
  • the top panel 5 has two grooves 35 in the general shape of inverted T, to also receive a welding flange (not shown) on which are welded the raised edges of the strakes of the primary sealing barrier.
  • the gap between two grooves 31 or 35 of the same box 11 or 33 corresponds to the width of a strake.
  • the gap between the grooves and the adjacent edge of the same box corresponds to the half-width of a strake, so that a strake comes to overlap two adjacent boxes.
  • the bottom panel of the primary insulating box 33 overflows on its short sides, so that cleats 34 abut the protruding portion of the bottom panel to cooperate with the fasteners 30.
  • Line 41 of the figure 7 represents the secondary watertight barrier and the line 42 represents the interface between the caisson 11 and the foam block 10.
  • the caisson 11 operates in a temperature range [-110 ° C., -80 ° C. in which the thermal properties of the glass wool 94 or the low density PVC foam 97 are optimal.
  • the foam block 10 is largely in a temperature range [-50 ° C, 5 ° C] in which the thermal properties of the high-density PU foam 98 are optimal. This results in a very good thermal behavior of the tank which limits the natural evaporation (boil-off) of LNG.
  • Airgel is an insulating material that can be packaged in various forms, for example powder, blanquette of synthetic fibers loaded with powder, spherical agglomerates (beads).
  • the techniques described above for making a sealed and insulated wall can be used in different types of tanks, for example to form the wall of an LNG tank in a land installation or in a floating structure such as a LNG tank or other.
  • a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the figure 5 represents an example of a marine terminal including a loading and unloading station 75, an underwater pipe 76 and a Installation on land 77.
  • the loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the mobile arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all the LNG carriers.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Description

L'invention se rapporte au domaine des cuves étanches et thermiquement isolantes agencées dans une structure porteuse pour contenir un fluide froid, notamment aux cuves à membrane pour contenir des gaz liquéfiés.The invention relates to the field of sealed and thermally insulating tanks arranged in a bearing structure for containing a cold fluid, in particular to membrane tanks for containing liquefied gases.

On connaît des cuves étanches et thermiquement isolantes agencées dans la coque d'un navire pour le transport d'un gaz naturel liquéfié (GNL) à forte teneur en méthane. Une telle cuve est divulguée par exemple dans FR-A-2867831 . Dans cette cuve connue, une barrière isolante primaire et une barrière isolante secondaire sont constituées sous une forme modulaire à l'aide de caisses parallélépipédiques en bois juxtaposées. Les caisses sont remplies d'une garniture calorifuge de perlite expansée ou de matériaux aérogels.Sealed and thermally insulating tanks are known arranged in the hull of a ship for the transport of a liquefied natural gas (LNG) with a high methane content. Such a tank is disclosed for example in FR-A-2867831 . In this known tank, a primary insulating barrier and a secondary insulating barrier are formed in a modular form using juxtaposed wooden parallelepiped boxes. The crates are filled with an expanded perlite insulation or aerogels.

FR-A-2798902 divulgue une autre cuve de GNL agencée dans la coque d'un navire dans laquelle une barrière isolante primaire et une barrière isolante secondaire sont constituées chacune d'une unique couche de caissons remplis de blocs de mousse à basse densité de l'ordre de 33 à 40 kg/m3 collés à des entretoises en bois contreplaqué. FR-A-2798902 discloses another LNG tank arranged in the hull of a ship in which a primary insulating barrier and a secondary insulating barrier each consist of a single layer of caissons filled with low density foam blocks in the range of 33 to 40 kg / m3 glued to wooden plywood spacers.

Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante agencée dans une structure porteuse pour contenir un fluide, dans laquelle une paroi de la cuve comporte au moins une barrière étanche et au moins une barrière isolante disposée entre la barrière étanche et la structure porteuse,
dans laquelle la barrière isolante comporte un premier ensemble d'éléments calorifuges juxtaposés pour former une première couche et un deuxième ensemble d'éléments calorifuges juxtaposés pour former une deuxième couche située entre la première couche et la structure porteuse,
un élément calorifuge de la première couche comportant à chaque fois un caisson rempli d'une garniture d'isolation essentiellement constituée de laine minérale ou organique, d'aérogels ou de mousse polymère à basse densité, ou d'autres matériaux isolants peu rigides,
un élément calorifuge de la deuxième couche comportant à chaque fois un bloc de mousse polymère à haute densité.
According to one embodiment, the invention provides a sealed and thermally insulating tank arranged in a supporting structure for containing a fluid, in which a wall of the tank comprises at least one sealed barrier and at least one insulating barrier disposed between the sealed barrier. and the supporting structure,
in which the insulating barrier comprises a first set of heat insulating elements juxtaposed to form a first layer and a second set of heat insulating elements juxtaposed to form a second layer located between the first layer and the supporting structure,
a heat insulating element of the first layer comprising in each case a box filled with an insulating packing consisting essentially of mineral or organic wool, aerogels or low-density polymer foam, or other non-rigid insulating materials,
a heat insulating element of the second layer comprising in each case a block of high density polymer foam.

Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des dispositions suivantes.According to embodiments, such a tank may comprise one or more of the following provisions.

Selon un mode de réalisation, la mousse polymère à basse densité présente une densité inférieure à 50kg/m3. En particulier, la mousse polymère à basse densité peut être choisie parmi le groupe consistant en la mousse de polyuréthane et la mousse de polychlorure de vinyle.According to one embodiment, the low density polymer foam has a density of less than 50 kg / m3. In particular, the low density polymer foam may be selected from the group consisting of polyurethane foam and polyvinyl chloride foam.

Selon un mode de réalisation, la mousse polymère à haute densité présente une densité supérieure à 100kg/m3. En particulier, la mousse polymère à haute densité peut être choisie parmi le groupe consistant en la mousse de polyuréthane et la mousse de polyuréthane renforcée de fibres de verre.According to one embodiment, the high density polymer foam has a density greater than 100 kg / m3. In particular, the high density polymer foam may be selected from the group consisting of polyurethane foam and glass fiber reinforced polyurethane foam.

Selon un mode de réalisation, la garniture d'isolation de l'élément calorifuge de la première couche comporte en outre des bandes anti-convection, par exemple des bandes de papier ou de film synthétique, sur lesquelles la laine minérale est collée pour diminuer la convection dans le caisson.According to one embodiment, the insulating lining of the heat insulating element of the first layer further comprises anti-convection strips, for example strips of paper or synthetic film, on which the mineral wool is glued to reduce the convection in the box.

Selon un mode de réalisation, un élément calorifuge de la première couche et un élément calorifuge de la deuxième couche ont à chaque fois les mêmes dimensions dans un plan de la paroi de cuve et sont disposés de manière alignée, et des organes de retenue solidaires de la structure porteuse sont agencés au niveau des coins des éléments calorifuges alignés et coopèrent avec des pièces de bord des éléments calorifuges de la première couche pour retenir les éléments calorifuges alignés des deux couches de la barrière isolante contre la structure porteuse, un élément calorifuge de la deuxième couche comportant à chaque fois des tasseaux rigides s'étendant dans le sens de l'épaisseur du bloc de mousse polymère à haute densité au niveau des coins du bloc de mousse polymère à haute densité pour reprendre les efforts des organes de retenue.According to one embodiment, a heat insulating element of the first layer and a heat insulating element of the second layer each have the same dimensions in a plane of the tank wall and are arranged in an aligned manner, and integral retaining members of the supporting structure are arranged at the corners of the aligned heat-insulating elements and cooperate with edge pieces of the heat-insulating elements of the first layer to retain the aligned heat-insulating elements of the two layers of the insulating barrier against the supporting structure, a heat-insulating element of the second layer each comprising rigid battens extending in the direction of the thickness of the block of high density polymer foam at the corners of the block of high density polymer foam to resume the efforts of the retaining members.

Selon un mode de réalisation, l'élément calorifuge de la première couche et l'élément calorifuge de la deuxième couche alignés sont fixés l'un sur l'autre et forment un module isolant préfabriqué.According to one embodiment, the heat insulating element of the first layer and the heat insulating element of the second aligned layer are fixed one on the other and form a prefabricated insulating module.

Selon un mode de réalisation, l'élément calorifuge de la deuxième couche comporte un panneau de couvercle en contreplaqué fixé sur le bloc de mousse. En particulier, le panneau de couvercle peut comporter un pli interne en bois de sapin et un pli externe en bois de bouleau. Le bois de bouleau présente une meilleure résistance mécanique que le bois de sapin, lequel s'avère meilleur isolant thermique. Cette combinaison offre ainsi un compromis avantageux quant aux propriétés de résistance mécanique et d'isolation thermique.According to one embodiment, the heat insulating element of the second layer comprises a plywood cover panel attached to the foam block. In particular, the cover panel may include an inner fir wood ply and an outer birch ply. Birch wood has better mechanical strength than fir wood, which is better thermal insulator. This combination thus offers a compromise advantageous as regards the properties of mechanical strength and thermal insulation.

Selon un mode de réalisation, des cordons de mastic disposés sur une surface inférieure de l'élément calorifuge de la deuxième couche sont en appui contre la structure porteuse de manière à compenser des défauts de planéité de la structure porteuse.According to one embodiment, cords of mastic placed on a lower surface of the heat insulating element of the second layer bear against the supporting structure so as to compensate for flatness defects of the carrier structure.

Selon un mode de réalisation, l'élément calorifuge de la deuxième couche comporte un panneau de fond rigide fixé sous le bloc de mousse, les cordons de mastic étant fixés sur le panneau de fond.According to one embodiment, the heat insulating element of the second layer comprises a rigid bottom panel fixed under the foam block, the cords of mastic being fixed on the bottom panel.

Selon un mode de réalisation, le caisson de l'élément calorifuge de la première couche comporte un panneau de fond, des voiles latéraux fixés audit panneau de fond et faisant saillie perpendiculairement d'un côté du panneau de fond pour délimiter le contour d'un espace intérieur du caisson, une pluralité de cloisons internes mutuellement parallèles et perpendiculaires audit panneau de fond qui s'étendent entre les voiles latéraux de manière à diviser ledit espace intérieur en une pluralité de compartiments dans lesquels la garniture calorifuge est disposée, et un panneau de couvercle supporté et fixé sur un bord supérieur des voiles latéraux et des cloisons internes parallèlement au panneau de fond et à distance de celui-ci pour fermer l'espace intérieur du caisson.According to one embodiment, the casing of the heat insulating element of the first layer comprises a bottom panel, lateral sails fixed to said bottom panel and protruding perpendicularly from one side of the bottom panel to delimit the outline of a internal space of the box, a plurality of mutually parallel internal partitions perpendicular to said bottom panel which extend between the side walls so as to divide said interior space into a plurality of compartments in which the heat-insulating lining is arranged, and a panel of lid supported and fixed on an upper edge of the side walls and internal partitions parallel to the bottom panel and at a distance thereof to close the interior space of the box.

Selon un mode de réalisation, une cloison interne du caisson comporte une structure creuse constituée de deux parois fixées l'une à l'autre de manière espacée et parallèle par l'intermédiaire de pièces d'espacement disposées entre les deux parois.According to one embodiment, an internal wall of the box comprises a hollow structure consisting of two walls fixed to one another spaced apart and parallel by means of spacers arranged between the two walls.

Selon un mode de réalisation, la paroi de la cuve comporte successivement une membrane étanche primaire destinée à être en contact avec le fluide, une barrière isolante primaire, une membrane étanche secondaire et une barrière isolante secondaire,
dans laquelle la première couche et la deuxième couche d'éléments calorifuge forment la barrière isolante secondaire entre la membrane étanche secondaire et la structure porteuse. De préférence, la première couche est moins épaisse que la deuxième couche, ce qui est avantageux lorsqu'on emploie des matériaux relativement onéreux dans la première couche.
According to one embodiment, the wall of the tank comprises successively a primary waterproof membrane intended to be in contact with the fluid, a primary insulating barrier, secondary waterproof membrane and secondary insulating barrier,
wherein the first layer and the second layer of heat insulating elements form the secondary insulating barrier between the secondary waterproof membrane and the supporting structure. Preferably, the first layer is thinner than the second layer, which is advantageous when relatively expensive materials are used in the first layer.

Selon un mode de réalisation, la barrière isolante primaire est constituée d'éléments calorifuges juxtaposés, un élément calorifuge de la barrière isolante primaire comportant à chaque fois un caisson rempli d'une garniture d'isolation essentiellement constituée de laine minérale ou de perlite.According to one embodiment, the primary insulating barrier consists of juxtaposed heat insulating elements, a heat insulating element of the primary insulating barrier comprising in each case a box filled with an insulating packing consisting essentially of mineral wool or perlite.

Selon un mode de réalisation dans ce cas, les bords des éléments calorifuges de la barrière isolante primaire sont sensiblement alignés avec les bords des éléments calorifuges de la barrière isolante secondaire,
et les organes de retenue solidaires de la structure porteuse sont agencés au niveau des coins des éléments calorifuges et coopèrent avec des pièces de bord des éléments calorifuges de la barrière isolante primaire et de la barrière isolante secondaire pour retenir les éléments calorifuges de la barrière isolante primaire contre la membrane étanche secondaire et les éléments calorifuges de la barrière isolante secondaire contre la structure porteuse.
According to one embodiment in this case, the edges of the heat insulating elements of the primary insulating barrier are substantially aligned with the edges of the heat insulating elements of the secondary insulating barrier,
and the integral retaining members of the supporting structure are arranged at the corners of the heat-insulating elements and cooperate with edge pieces of the heat-insulating elements of the primary insulating barrier and the secondary insulating barrier to retain the heat-insulating elements of the primary insulating barrier. against the secondary waterproof membrane and the heat insulating elements of the secondary insulating barrier against the supporting structure.

Selon un mode de réalisation, la ou chaque membrane étanche comporte des bandes de tôle métallique parallèles dont les bords longitudinaux sont relevés en saillie vers l'intérieur de la cuve et des ailes de soudure parallèles retenues sur la barrière d'isolation thermique sous-jacente et faisant saillie vers l'intérieur de la cuve à chaque fois entre deux bandes de tôle pour former un joint soudé étanche avec les bords longitudinaux relevés adjacents.According to one embodiment, the or each sealed membrane comprises parallel metal sheet strips whose longitudinal edges are raised projecting inwardly of the tank and parallel welding wings retained on the underlying thermal insulation barrier and projecting inwardly from the vessel each between two strips of sheet metal to form a sealed welded joint with the adjacent raised longitudinal edges.

Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier, a floating unit of Storage and Regasification (FSRU), a floating production and remote storage unit (FPSO) and others.

Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.According to one embodiment, a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.

Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.

Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.

Une idée à la base de l'invention est de concevoir une structure de paroi de cuve offrant des propriétés avantageuses quant à l'isolation thermique, la résistance mécanique et le prix de revient. Certains aspects de l'invention partent de l'idée de choisir et positionner des matériaux dans la structure de paroi de cuve en fonction des gammes de températures où les propriétés thermiques de ces matériaux sont les meilleures. Notamment, l'invention part du constat qu'une cuve de fluide froid présente des portions de paroi relativement plus froides situées vers l'intérieur de la cuve dans le sens de l'épaisseur de la paroi et des portions de paroi relativement plus chaudes situées vers l'extérieur de la cuve. Certains aspects de l'invention partent de l'idée de concevoir une structure de barrière isolante à partir de matériaux choisis pour leur compatibilité avec des conditions cryogéniques, notamment dans le domaine du GNL, leur durée de vie étendue et leur coût relativement faible.An idea underlying the invention is to design a tank wall structure with advantageous properties as to thermal insulation, mechanical strength and cost. Some aspects of the invention start from the idea of choosing and positioning materials in the vessel wall structure according to temperature ranges where the thermal properties of these materials are the best. In particular, the invention starts from the observation that a cold fluid tank has relatively cooler wall portions located towards the inside of the tank in the direction of the thickness of the wall and relatively warmer wall portions located towards the outside of the tank. Some aspects of the invention start from the idea of designing an insulating barrier structure from selected materials for their compatibility with cryogenic conditions, particularly in the field of LNG, their extended life and relatively low cost.

Certains aspects de l'invention partent de l'idée de sélectionner des matériaux relativement peu ou très peu rigides, typiquement présentant une rigidité en-dessous de 0,9 MPa en compression à température ambiante, mais bon isolants thermiques pour remplir des caissons réalisant une couche d'isolation intermédiaire, exploitée par exemple dans une gamme de température d'environ -80°C à -110°C.Certain aspects of the invention start from the idea of selecting relatively little or very little rigid materials, typically having a rigidity below 0.9 MPa in compression at room temperature, but good thermal insulators for filling caissons carrying an intermediate insulation layer, exploited for example in a temperature range of about -80 ° C to -110 ° C .

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.

Sur ces dessins :

  • La figure 1 est un graphique représentant la conductivité thermique À en fonction de la température pour une sélection de matériaux utilisables dans une paroi de cuve de GNL.
  • La figure 2 est une vue partielle en perspective d'une paroi de cuve étanche et isolante.
  • La figure 3 est une vue en perspective d'un bloc de mousse de la paroi de la figure 1.
  • La figure 4 est une vue en perspective d'un élément calorifuge comportant le bloc de mousse de la figure 3.
  • La figure 5 est une vue en perspective d'un caisson isolant de la paroi de la figure 1.
  • La figure 6 est une vue en perspective d'un ensemble de cloisons de séparation utilisables dans une variante du caisson de la figure 5.
  • La figure 7 est un graphique représentant un profil de température pouvant être obtenu dans la paroi de cuve de la figure 2.
  • La figure 8 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
On these drawings:
  • The figure 1 is a graph showing the thermal conductivity λ as a function of temperature for a selection of materials usable in an LNG tank wall.
  • The figure 2 is a partial perspective view of a sealed and insulating tank wall.
  • The figure 3 is a perspective view of a block of foam from the wall of the figure 1 .
  • The figure 4 is a perspective view of a heat insulating element comprising the foam block of the figure 3 .
  • The figure 5 is a perspective view of an insulating box from the wall of the figure 1 .
  • The figure 6 is a perspective view of a set of partition walls usable in a variant of the box of the figure 5 .
  • The figure 7 is a graph representing a temperature profile that can be obtained in the tank wall of the figure 2 .
  • The figure 8 is a cutaway schematic representation of a tank of LNG tanker and a loading / unloading terminal of this tank.

La figure 1 représente l'évolution de la conductivité thermique en fonction de la température sur une plage de température allant d'environ -162°C (GNL à pression atmosphérique) à environ 20°C pour une sélection de matériaux appropriés pour la construction d'une cuve de GNL. Les matériaux les plus appropriés du point de vue du coût et de la sécurité d'utilisation dans un navire méthanier sont généralement les laines minérales, notamment laine de verre, les mousses polymères de polyuréthane (PU) et de polychlorure de vinyle (PVC) à haute et à basse densité, éventuellement avec des fibres de verre noyées, et la perlite. D'autres mousses polymères sont aussi envisageables.The figure 1 represents the evolution of the thermal conductivity as a function of temperature over a temperature range from about -162 ° C (LNG at atmospheric pressure) to about 20 ° C for a selection of suitable materials for the construction of a tank of LNG. The most appropriate materials from the point in terms of cost and safety of use in a LNG ship are generally mineral wool, including glass wool, polyurethane (PU) and polyvinyl chloride (PVC) foams with high and low density, possibly with embedded glass fibers, and perlite. Other polymeric foams are also conceivable.

Sur la figure 1, les matériaux suivants sont indiqués :

  • 91 : perlite de densité 50kg/m3
  • 92 : perlite de densité 60kg/m3
  • 93 : perlite de densité 55kg/m3
  • 94 : laine de verre de densité 35kg/m3
  • 95 : mousse PU renforcée de densité 130kg/m3, traitée avec du dioxyde de carbone
  • 96 : mousse PU de densité 45kg/m3
  • 97 : mousse PVC de densité 35 kg/m3
  • 98 : mousse PU rigide renforcée de fibres de verre de densité 130 kg/m3, traitée avec un gaz fréon
  • 99 : aérogels en poudre de densité 80 kg/m3.
On the figure 1 the following materials are indicated:
  • 91: density perlite 50kg / m3
  • 92: perlite of density 60kg / m3
  • 93: density perlite 55kg / m3
  • 94: 35kg / m3 density glass wool
  • 95: reinforced PU foam with a density of 130kg / m3, treated with carbon dioxide
  • 96: 45kg / m3 density PU foam
  • 97: PVC foam with a density of 35 kg / m3
  • 98: Rigid PU foam reinforced with glass fibers of density 130 kg / m3, treated with Freon gas
  • 99: aerogels in powder density 80 kg / m3.

Hormis les aérogels dont les propriétés isolantes sont les meilleures sur toute la plage de température considérée, On constate que pour une température comprise entre -163°C et -130°C (point A), le coefficient de conduction thermique de la laine de verre 94 est le plus faible de tous les matériaux indiqués. Entre -130°C et -5°C (point B), les propriétés thermo-conductrices de la mousse PVC 97 sont les plus basses. Entre -5°C et 20°C, la mousse rigide 98 offre la plus faible conductivité thermique.Apart from the aerogels whose insulating properties are the best over the entire temperature range considered, it is found that for a temperature between -163 ° C and -130 ° C (point A), the heat conduction coefficient of the glass wool 94 is the lowest of all the materials indicated. Between -130 ° C and -5 ° C (point B), the thermo-conductive properties of the PVC 97 foam are the lowest. Between -5 ° C and 20 ° C, the rigid foam 98 has the lowest thermal conductivity.

En raison du coût relativement plus élevé de la mousse PVC, il peut être envisagé d'exclure ce matériau de la sélection indiquée. On lui préférera alors la laine de verre 94 qui apparaît comme le deuxième meilleur matériau de la sélection indiquée entre -130°C et -50°C (point C). Entre -50°C et -5°C, on préférera alors la mousse rigide 98 qui constitue le deuxième meilleur matériau sur cette plage, hormis les aérogels.Due to the relatively higher cost of PVC foam, it may be considered to exclude this material from the indicated selection. It will then prefer the glass wool 94 which appears as the second best material of the selection indicated between -130 ° C and -50 ° C (point C). Between -50 ° C and -5 ° C, we will prefer the rigid foam 98 which is the second best material on this beach, except for aerogels.

Le tableau 1 présente les valeurs caractéristiques de rigidité selon la direction d'épaisseur d'un bloc de mousse, pour des mousses de différentes natures et densités. Tableau 1 Type de mousse Densité kg/m3 Rigidité Z en MPa PU 50 0,4 PVC 35 0,35 PVC 60 0,7 à 0,8 PU 130 1,4 PU 110 1 PU 90 0,75 Table 1 shows the characteristic stiffness values according to the thickness direction of a foam block, for foams of different natures and densities. Table 1 Foam type Density kg / m3 Z stiffness in MPa COULD 50 0.4 PVC 35 0.35 PVC 60 0.7 to 0.8 COULD 130 1.4 COULD 110 1 COULD 90 0.75

Parmi les matériaux indiqués ci-dessus, les mousses à haute densité 95 et 98 offrent une rigidité structurelle permettant d'employer ces matériaux en tant que composants structurels, avec ou sans éléments de renforcement plus rigides. Des matériaux tels que les laines minérales et les aérogels offrent une rigidité nulle ou négligeable mais peuvent être employés en tant que garniture dans un caisson rigide apte à reprendre les efforts de pression.Of the materials listed above, the high density foams 95 and 98 provide structural rigidity for using these materials as structural components, with or without stiffer reinforcing elements. Materials such as mineral wools and aerogels offer zero or negligible stiffness but can be used as a liner in a rigid box capable of resuming the pressure forces.

Il existe aussi des laines organiques, par exemple en fibres synthétiques ou naturelles, par exemple ouate de cellulose, qui présentent des caractéristiques similaires aux laines minérales et peuvent être employées dans les mêmes conditions que celles-ci.There are also organic wools, for example synthetic or natural fibers, for example cellulose wadding, which have characteristics similar to mineral wools and can be used under the same conditions as these.

Les aérogels constituent un choix optimal en termes de conductivité thermique dès lors qu'on accepte leur coût généralement plus élevé. Ceci est en particulier acceptable sur une couche de relativement faible épaisseur.Aerogels are an optimal choice in terms of thermal conductivity when one accepts their generally higher cost. This is particularly acceptable on a relatively thin layer.

En référence à la figure 2, on décrit maintenant un exemple de réalisation d'une structure de paroi de cuve qui exploite les considérations ci-dessus pour offrir un compromis intéressant entre isolation thermique, prix de revient, résistance mécanique et facilité d'installation.With reference to the figure 2 an example embodiment of a tank wall structure is now described which makes use of the above considerations to offer an interesting compromise between thermal insulation, cost price, mechanical strength and ease of installation.

La figure 2 représente une paroi étanche et thermiquement isolante en perspective écorchée pour montrer la structure de cette paroi. Une telle structure peut être mise en oeuvre sur des surfaces étendues ayant diverses orientations, par exemple pour recouvrir des parois de fond, de plafond et de côté d'un réservoir. L'orientation de la figure 1 n'est donc pas limitative à cet égard.The figure 2 represents a sealed and thermally insulating wall in broken perspective to show the structure of this wall. Such a structure can be implemented on large surfaces having various orientations, for example to cover bottom, ceiling and side walls of a tank. The orientation of the figure 1 is not exhaustive in this respect.

La paroi de cuve est attachée à la paroi d'une structure porteuse 1. Par convention, on appellera « au-dessus » une position située plus près de l'intérieur du réservoir et « en dessous » une position située plus près de la structure porteuse 1, quelle que soit l'orientation de la paroi de cuve par rapport au champ de gravité terrestre.The tank wall is attached to the wall of a load-bearing structure 1. By convention, the term "above" a position located closer to the inside of the tank and "below" a position located closer to the structure carrier 1, regardless of the orientation of the vessel wall relative to the earth's gravity field.

La paroi de cuve comporte une barrière isolante secondaire 2, une barrière étanche secondaire non représentée retenue sur le dessus 3 de la barrière isolante secondaire 2, une barrière isolante primaire 4 retenue sur la barrière étanche secondaire 2 et une barrière étanche primaire non représentée retenue sur le dessus 5 de la barrière isolante primaire 4.The vessel wall comprises a secondary insulating barrier 2, a secondary impermeable barrier (not shown) retained on the top 3 of the secondary insulating barrier 2, a primary insulating barrier 4 retained on the secondary watertight barrier 2 and a primary impermeable barrier not shown retained on the top 5 of the primary insulating barrier 4.

La barrière isolante secondaire 2 est constituée d'une pluralité de modules isolants secondaires parallélépipédiques 6 qui sont disposés côte à côte, de manière à recouvrir sensiblement la surface interne de la structure porteuse 1. Un module isolant secondaire est constitué de deux parties : un bloc de mousse 10 dans la partie inférieure proche de la structure porteuse 1 et un caisson en bois 11 rempli d'une garniture non structurelle dans la partie supérieure.The secondary insulating barrier 2 consists of a plurality of parallelepipedal secondary insulating modules 6 which are arranged side by side, so as to substantially cover the inner surface of the carrier structure 1. A secondary insulating module consists of two parts: a block of foam 10 in the lower part close to the supporting structure 1 and a wooden box 11 filled with a non-structural seal in the upper part.

Le bloc de mousse 10 est représenté sur la figure 3. Il est réalisé en mousse polymère à haute densité, notamment dans la mousse rigide 98 qui à ses propriétés thermiques les plus intéressantes entre -50°C et 20°C. Il présente une forme globale de parallélépipède rectangle avec des pans coupés 12 dans les coins pour laisser passer des organes de fixation qui seront décrits plus bas. Ainsi, la découpe du bloc isolant 10 est optimisée de façon à limiter au maximum les cheminées thermiques présentes entre les blocs de mousse. De préférence, les seuls jeux présents sont les jeux de montage et les passages des organes de fixation dans les coins.The foam block 10 is shown on the figure 3 . It is made of high density polymer foam, especially in the rigid foam 98 which has its most interesting thermal properties between -50 ° C and 20 ° C. It has an overall shape of rectangular parallelepiped with cut edges 12 in the corners to pass fasteners which will be described below. Thus, the cutting of the insulating block 10 is optimized so as to limit as far as possible the thermal chimneys present between the foam blocks. Preferably, the only games present are the mounting sets and the passages of the fasteners in the corners.

Pour permettre la planéité des membranes étanches, des cordons de mastic non représentés sont installés entre la structure porteuse 1 et la surface inférieure des blocs 10. Ces cordons de mastic sont par exemple collés sur la surface inférieure des blocs 10. Ils n'adhèrent pas à la structure porteuse 1 en raison de la mise en place d'un papier kraft non représenté entre la structure porteuse 1 et le mastic.To allow the flatness of the waterproof membranes, mastic cords (not shown) are installed between the supporting structure 1 and the lower surface of the blocks 10. These cords of mastic are for example glued on the lower surface of the blocks 10. They do not adhere to the support structure 1 due to the establishment of a kraft paper not shown between the carrier structure 1 and the sealant.

Selon un mode de réalisation représenté sur la figure 4, le bloc de mousse 10 est muni de piliers d'angle 27 pour reprendre une partie de la charge de compression en service et ainsi limiter l'écrasement et le fluage de la mousse. Optionnellement, le bloc de mousse 10 peut aussi être muni d'un panneau de couvercle 13 et/ou d'un panneau de fond 14, par exemple ne bois contreplaqué.According to an embodiment shown on the figure 4 , the foam block 10 is provided with corner pillars 27 to take back part of the compressive load in use and thus limit crushing and creep of the foam. Optionally, the foam block 10 may also be provided with a cover panel 13 and / or a bottom panel 14, for example plywood.

Le panneau de fond 14 est par exemple ne bois contreplaqué de 9mm d'épaisseur. Un tel panneau permet une meilleure répartition des contraintes de compression, une meilleure tenue des cordons de mastic et limite la détérioration locale de la mousse. Les contraintes de compression appliquées par les cordons de mastic à l'isolation sont dues à la pression statique et dynamique du GNL de la cuve. L'utilisation du panneau de fond 14 qui répartir ces contraintes permet de positionner assez librement les cordons de mastic par rapport aux bords des blocs de mousse 10. Selon un mode de réalisation, les cordons de mastic peuvent être des cordons ondulés tels que décrits dans FR-A1-2931535 .The bottom panel 14 is for example wood plywood 9mm thick. Such a panel allows a better distribution of the compressive stresses, a better hold of the cords of mastic and limits the local deterioration of the foam. The compressive stresses applied by the cords of mastic to the insulation are due to the static and dynamic pressure of the LNG of the tank. The use of the bottom panel 14 which distributes these stresses makes it possible to position the cords of mastic relatively freely with respect to the edges of the foam blocks 10. According to one embodiment, the cords of mastic may be corrugated cords as described in FIG. FR-A1-2931535 .

Le panneau de fond 14 peut être aussi fait dans matériau composite résistant à la flexion et au cisaillement. L'assemblage entre le panneau de fond 14 et le bloc de mousse 10 est réalisé par collage.The bottom panel 14 may also be made of composite material resistant to bending and shearing. The assembly between the bottom panel 14 and the foam block 10 is made by gluing.

Le panneau de couvercle 13 collé sur la partie supérieure du bloc de mousse 10 sert aussi, le cas échéant, à répartir les contraintes de compression.The cover panel 13 adhered to the upper part of the foam block 10 also serves, where appropriate, to distribute the compressive stresses.

Le caisson 11 situé dans la partie supérieure du module isolant secondaire 6 est représenté sur la figure 5 sans son panneau de couvercle 18, visible sur la figure 2. Le caisson 11 comporte le panneau de couvercle 18, par exemple en contre-plaqué de 9mm, un panneau de fond 17 également en contre-plaqué de 9mm, des voiles externes 16 en contre-plaqué ainsi que des cloisons internes anti-effondrement 15. Sur la figure 5, les cloisons internes 15 sont des voiles en contre-plaquéThe casing 11 located in the upper part of the secondary insulating module 6 is represented on the figure 5 without its cover panel 18, visible on the figure 2 . The casing 11 comprises the cover panel 18, for example 9mm plywood, a bottom panel 17 also made of 9mm plywood, external plywood sails 16 and internal anti-collapse partitions. 15. On the figure 5 , the internal partitions 15 are plywood sails

Dans une variante esquissée sur la figure 6, les cloisons internes 115 sont des structures creuses comportant des éléments d'espacement 20 pris en sandwich entre deux voies plans 21. Une telle structure creuse permet une meilleure tenue mécanique.In a variant sketched on the figure 6 , the internal partitions 115 are hollow structures comprising spacing elements 20 sandwiched between two planar channels 21. Such a hollow structure allows better mechanical strength.

L'espace intérieur du caisson 11 est rempli d'une garniture isolante non représentée constituée de laine de verre ou de mousse PVC à basse densité. Dans le cas de la laine de verre, des éléments anti-convectifs sont préférentiellement intégrés, par exemple sous la forme de feuilles de papier sur lesquels la laine de verre est collée. Le caisson 11 avec sa garniture peut être entièrement préfabriqué.The interior space of the box 11 is filled with a not shown insulating lining made of glass wool or low density PVC foam. In the case of glass wool, anti-convective elements are preferably integrated, for example in the form of sheets of paper on which the glass wool is glued. The box 11 with its lining can be entirely prefabricated.

Comme visible sur la Figure 5, la paroi de fond des caissons 11 déborde latéralement sur les deux petits côtés du caisson 11, de façon que dans chaque angle du caisson, sur cette partie débordante, soient fixés des tasseaux 9 qui coopèrent avec les organes de fixation des caissons 30.As visible on the Figure 5 , the bottom wall of the boxes 11 protrudes laterally on the two short sides of the box 11, so that in each corner of the box, on this projecting portion, are fixed cleats 9 which cooperate with the fasteners of the boxes 30.

De façon à faciliter la construction de la paroi de cuve, le module isolant secondaire 6 peut être fourni sous la forme d'un élément préfabriqué dans lequel le bloc de mousse 10 est collé au caisson 11. Ce collage doit au minimum tenir lors de l'installation des modules isolants. En effet, une fois posé, il n'est pas nécessaire que ce collage soit durable car l'ancrage de la barrière isolante est réalisé par les organes de fixation 30.In order to facilitate the construction of the tank wall, the secondary insulating module 6 can be provided in the form of a prefabricated element in which the foam block 10 is bonded to the caisson 11. This bonding must at least hold during the installation. installation of insulating modules. Indeed, once installed, it is not necessary that this bonding is durable because the anchoring of the insulating barrier is achieved by the fasteners 30.

De retour sur la figure 2, on voit que les organes de fixation 30 sont positionnés au niveau des coins des modules isolants secondaires 6 à raison de quatre organes de fixation 30 par module 6. Un organe de fixation 30 comprend une douille 22 dont la base est soudée à la structure porteuse 1 en une position qui correspond à un dégagement au niveau des coins de quatre blocs de mousse 10 adjacents. La douille 22 porte une première tige 23 vissée à celle-ci. La tige 23 passe entre les modules 6 adjacents. Une platine métallique d'appui 24 est montée sur la tige 23 pour serrer les tasseaux 9 du caisson 11 contre la structure porteuse 1 au moyen d'un écrou. Une pièce en bois contre-plaqué 25 est montée sur platine 24 de façon à servir d'entretoise entre la platine 24 et une platine supérieure 26 et à réduire le pont thermique vers la structure porteuse. La hauteur de cet agencement est déterminée de façon que la platine supérieure 26 vienne affleurer au niveau des panneaux de couvercle 18 des caissons 11.Back on the figure 2 it can be seen that the fasteners 30 are positioned at the corners of the secondary insulating modules 6 at the rate of four fasteners 30 per module 6. A fastener 30 comprises a bushing 22 whose base is welded to the supporting structure 1 at a position corresponding to a clearance at the corners of four adjacent foam blocks. The bushing 22 carries a first rod 23 screwed to it. The rod 23 passes between the adjacent modules 6. A metal support plate 24 is mounted on the rod 23 to clamp the cleats 9 of the box 11 against the supporting structure 1 by means of a nut. A piece of plywood 25 is mounted on plate 24 of as a spacer between the plate 24 and an upper plate 26 and reduce the thermal bridge to the carrier structure. The height of this arrangement is determined so that the upper plate 26 comes flush with the cover panels 18 of the boxes 11.

Au niveau des coins du bloc de mousse 10, l'effort de compression appliqué par l'organe de fixation 30 au module isolant 6 est entièrement repris par les piliers d'angle 27.At the corners of the foam block 10, the compression force applied by the fixing member 30 to the insulating module 6 is entirely taken up by the corner pillars 27.

Les panneaux de couvercle 18 des caissons isolants 11 comportent, en outre, une paire de rainures parallèles 31 en forme sensiblement de T inversé pour recevoir des ailes de soudure en forme d'équerre. La partie des ailes de soudure qui fait saillie vers le dessus des panneaux 18 permet l'ancrage de la barrière d'étanchéité secondaire non représentée. La barrière d'étanchéité secondaire est constituée d'une pluralité de virures d'Invar à bords relevés, ayant une épaisseur de l'ordre de 0,7 mm. Les bords relevés de chaque virure sont soudés aux ailes de soudure précitées.The cover panels 18 of the insulating boxes 11 further comprise a pair of parallel grooves 31 in substantially inverted T-shape to receive welding wings in the shape of a square. The portion of the welding flanges projecting towards the top of the panels 18 allows the anchoring of the secondary sealing barrier not shown. The secondary sealing barrier consists of a plurality of Invar strakes with raised edges, having a thickness of the order of 0.7 mm. The raised edges of each strake are welded to the aforementioned welding wings.

Sur la barrière d'étanchéité secondaire est montée la barrière isolante primaire 4 qui est constituée d'une pluralité de caissons isolants primaires 33. Chaque caisson isolant primaire 33 est constitué d'une boite parallélépipédique rectangle réalisée en bois contre-plaqué, qui est remplie de matière isolante non structurelle comme de la perlite ou de la laine de verre. Les caissons isolants primaires 33 comportent également des cloisons internes, un panneau de fond et un panneau de dessus 5. Le panneau de dessus 5 comporte deux rainures 35 en forme générale de T inversé, pour recevoir également une aile de soudure (non représentée) sur laquelle sont soudés les bords relevés des virures de la barrière d'étanchéité primaire. L'écart entre deux rainures 31 ou 35 d'un même caisson 11 ou 33 correspond à la largeur d'une virure. L'écart entre les rainures et le bord adjacent du même caisson correspond à la demi-largeur d'une virure, de façon qu'une virure vienne chevaucher deux caissons adjacents.On the secondary sealing barrier is mounted the primary insulating barrier 4 which consists of a plurality of primary insulating boxes 33. Each primary insulating box 33 consists of a rectangular parallelepiped box made of plywood, which is filled non-structural insulating material such as perlite or glass wool. The primary insulating boxes 33 also comprise internal partitions, a bottom panel and a top panel 5. The top panel 5 has two grooves 35 in the general shape of inverted T, to also receive a welding flange (not shown) on which are welded the raised edges of the strakes of the primary sealing barrier. The gap between two grooves 31 or 35 of the same box 11 or 33 corresponds to the width of a strake. The gap between the grooves and the adjacent edge of the same box corresponds to the half-width of a strake, so that a strake comes to overlap two adjacent boxes.

En outre, le panneau de fond du caisson isolant primaire 33 déborde sur ses petits côtés, façon que des tasseaux 34 viennent en appui sur la partie débordante du panneau de fond pour coopérer avec les organes de fixation 30.In addition, the bottom panel of the primary insulating box 33 overflows on its short sides, so that cleats 34 abut the protruding portion of the bottom panel to cooperate with the fasteners 30.

En référence à la figure 7, on a simulé le profil de température dans une paroi de cuve de GNL conçue comme sur la figure 2, pour les dimensions suivantes :

  • Epaisseur de l'isolation primaire : 230mm
  • Epaisseur de l'isolation secondaire : 300 mm, dont caisson 11: 125 mm et bloc de mousse 10 : 175 mm
With reference to the figure 7 , the temperature profile was simulated in an LNG tank wall designed as on the figure 2 , for the following dimensions:
  • Thickness of primary insulation: 230mm
  • Thickness of the secondary insulation: 300 mm, of which box 11: 125 mm and block of foam 10: 175 mm

Ces épaisseurs des barrières d'isolation sont avantageuses en ce qu'elles respectent les dimensions de conceptions antérieures et sont donc compatibles avec des éléments disponibles sur le marché, tels que les systèmes d'ancrage, les membranes d'étanchéités ainsi que les différentes zones singulières que sont les dièdres et trièdres des cuves.These thicknesses of the insulation barriers are advantageous in that they respect the dimensions of prior designs and are therefore compatible with elements available on the market, such as anchoring systems, sealing membranes and the different zones. singular that are the dihedra and trihedrons of the vats.

La ligne 41 de la figure 7 représente la barrière étanche secondaire et la ligne 42 représente l'interface entre le caisson 11 et le bloc de mousse 10. On voit que dans cet exemple, le caisson 11 travaille dans une plage de température [-110°C, -80°C] dans laquelle les propriétés thermiques de la laine de verre 94 ou la mousse PVC basse densité 97 sont optimales. De même, le bloc de mousse 10 se situe en grande partie dans une plage de température [-50°C, 5°C] dans laquelle les propriétés thermiques de la mousse PU haute densité 98 sont optimales. Il en résulte un très bon comportement thermique de la cuve qui limite l'évaporation naturelle (boil-off) de GNL.Line 41 of the figure 7 represents the secondary watertight barrier and the line 42 represents the interface between the caisson 11 and the foam block 10. It can be seen that in this example, the caisson 11 operates in a temperature range [-110 ° C., -80 ° C. in which the thermal properties of the glass wool 94 or the low density PVC foam 97 are optimal. Similarly, the foam block 10 is largely in a temperature range [-50 ° C, 5 ° C] in which the thermal properties of the high-density PU foam 98 are optimal. This results in a very good thermal behavior of the tank which limits the natural evaporation (boil-off) of LNG.

Les combinaisons de matériaux suivantes sont en particulier envisagées pour réaliser la structure de paroi de la figure 2 : Garniture du caisson 33 Garniture du caisson 11 nature du bloc 10 Exemple 1 Laine de verre Laine de verre Mousse PU renforcée haute densité Exemple 2 Laine de verre Mousse PVC basse densité Mousse PU renforcée haute densité Exemple 3 Perlite Laine de verre Mousse PU renforcée haute densité Exemple 4 Perlite Mousse PVC basse densité Mousse PU renforcée haute densité Exemple 5 Perlite Aérogel Mousse PU renforcée haute densité Exemple 6 Laine de verre Aérogel Mousse PU renforcée haute densité In particular, the following combinations of materials are envisaged to achieve the wall structure of the figure 2 : Upholstery 33 Casing trim 11 nature of block 10 Example 1 Glass wool Glass wool High density reinforced PU foam Example 2 Glass wool Low density PVC foam High density reinforced PU foam Example 3 perlite Glass wool High density reinforced PU foam Example 4 perlite Low density PVC foam High density reinforced PU foam Example 5 perlite airgel High density reinforced PU foam Example 6 Glass wool airgel High density reinforced PU foam

Les aérogel sont des matériaux isolants qui peuvent être conditionnés sous différentes formes, par exemple poudre, blanquette de fibres synthétiques chargée de poudre, agglomérats sphériques (billes).Airgel is an insulating material that can be packaged in various forms, for example powder, blanquette of synthetic fibers loaded with powder, spherical agglomerates (beads).

Les techniques décrites ci-dessus pour réaliser une paroi étanche et isolée peuvent être utilisées dans différents types de réservoirs, par exemple pour constituer la paroi d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.The techniques described above for making a sealed and insulated wall can be used in different types of tanks, for example to form the wall of an LNG tank in a land installation or in a floating structure such as a LNG tank or other.

En référence à la figure 5, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.With reference to the figure 5 , a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.

De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.In a manner known per se, loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.

La figure 5 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.The figure 5 represents an example of a marine terminal including a loading and unloading station 75, an underwater pipe 76 and a Installation on land 77. The loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the mobile arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can connect to the loading / unloading pipes 73. The movable arm 74 can be adapted to all the LNG carriers. A connection pipe (not shown) extends inside the tower 78. The loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77. liquefied gas storage tanks 80 and connecting lines 81 connected by the underwater line 76 to the loading or unloading station 75. The underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, telle que définie par les revendications. L'usage du verbe « comporter », «comprendre» ou «inclure» et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention as defined by the claims. The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.

Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims (18)

  1. Sealed and thermally insulated tank arranged in a bearing structure (1) to contain a cold fluid,
    in which the wall of the tank comprises in succession a primary sealing membrane intended to be in contact with the fluid, a primary insulating barrier (4), a secondary sealing membrane and a secondary insulating barrier (2) arranged between the secondary sealing membrane and the bearing structure,
    in which the secondary insulating barrier (2) comprises a first set of lagging elements (11) which are juxtaposed to form a first layer, one lagging element (11) of the first layer comprising a box structure filled with an insulating packing, the insulating packing essentially consisting of a material chosen from the group consisting of mineral wools, organic wools, low-density polymer foams and aerogels,
    characterized in that the secondary insulating barrier further comprises a second set of lagging elements (10) which are juxtaposed to form a second layer situated between the first layer and the bearing structure,
    one lagging element (10) of the second layer comprising each time a block of high-density polymer foam.
  2. Tank according to Claim 1, in which the low-density polymer foam has a density lower than 50 kg/m3.
  3. Tank according to Claim 1 or 2, in which the low-density polymer foam is chosen from the group consisting of polyurethane foam and polyvinyl chloride foam.
  4. Tank according to one of Claims 1 to 3, in which the high-density polymer foam has a density higher than 100 kg/m3.
  5. Tank according to one of Claims 1 to 4, in which the high-density polymer foam is chosen from the group consisting of polyurethane foam and glass-fibre-reinforced polyurethane foam.
  6. Tank according to one of Claims 1 to 5, in which the insulating packing of the lagging element (11) of the first layer further comprises anti-convection strips to which the mineral wool is bonded in order to reduce convection in the box structure.
  7. Tank according to one of Claims 1 to 6, in which one lagging element (11) of the first layer and one lagging element (10) of the second layer each have the same dimensions in a plane of the tank wall and are arranged aligned, and in which retaining members (30) secured to the bearing structure are arranged at the corners of the aligned lagging elements and collaborate with edge pieces (9) of the lagging elements of the first layer to hold the aligned lagging elements of the two layers of the insulating barrier against the bearing structure (1), one lagging element of the second layer (10) comprising each time rigid cleats (27) extending in the direction of the thickness of the block of high-density polymer foam at the corners of the block of high-density polymer foam to react the loads of the retaining members.
  8. Tank according to Claim 7, in which the lagging element of the aligned first layer and the lagging element of the aligned second layer are fixed together and form a prefabricated insulating module (6).
  9. Tank according to one of Claims 1 to 8, in which the lagging element of the second layer comprises a cover panel (13) of plywood fixed to the block of foam, the cover panel comprising an inner ply of pine wood and an outer ply of birch wood.
  10. Tank according to one of Claims 1 to 9, in which beads of mastic arranged along a lower surface of the lagging element (10) of the second layer rest against the bearing structure (1) to compensate for any defective flatness of the bearing structure.
  11. Tank according to Claim 10, in which the lagging element of the second layer comprises a rigid bottom panel (14) fixed under the block of foam, the beads of mastic being fixed to the bottom panel.
  12. Tank according to one of Claims 1 to 11, in which the box structure of the lagging element of the first layer comprises a bottom panel (17), lateral sheets (16) fixed to the said bottom panel and projecting at right angles from one side of the bottom panel to delimit the outline of an interior space of the box structure, a plurality of internal partitions (15, 115) which are mutually parallel and are perpendicular to the said bottom panel and extend between the lateral sheets in order to divide the said interior space into a plurality of compartments in which the lagging packing is placed, and a cover panel (18) supported and fixed on an upper edge of the lateral sheets and of the internal partitions parallel to the bottom panel and some distance away therefrom in order to close the interior space of the box structure.
  13. Tank according to Claim 12, in which an internal partition of the box structure comprises a hollow structure (115) consisting of two walls (21) fixed together so that they are spaced apart and parallel by spacer pieces (20) arranged between the two walls.
  14. Tank according to one of Claims 1 to 13, in which the primary insulating barrier consists of juxtaposed lagging elements (33), a lagging element of the primary insulating barrier comprising a box structure filled with an insulating packing essentially consisting of mineral wool or perlite.
  15. Tank according to one of Claims 1 to 14, in which the or each sealing membrane comprises parallel strips of sheet metal, the longitudinal edges of which are turned up to project towards the inside of the tank and parallel welding flanges held on the underlying thermally insulating barrier (3, 5) and projecting towards the inside of the tank, each time between two sheet metal strips to form a sealed welded joint with the adjacent turned-up longitudinal edges.
  16. Ship (70) for transporting a cold liquid product, the ship comprising a double hull (72) and a tank (71) according to one of Claims 1 to 15 arranged inside the double hull.
  17. Method of using a ship (70) according to Claim 16, in which a cold liquid product is carried through insulated pipes (73, 79, 76, 81) from or to a floating or on-shore storage facility (77) to or from the tank of the ship (71) in order to load or to offload from the ship.
  18. Transfer system for transferring a cold liquid product, the system comprising a ship (70) according to Claim 16, insulated pipes (73, 79, 76, 81) arranged in such a way as to connect the tank (71) installed in the hull of the ship to a floating or on-shore storage facility (77), and a pump for forcing a stream of cold liquid product through the insulated pipes from or to the floating or on-shore storage facility to or from the tank of the ship.
EP12744110.3A 2011-08-01 2012-07-26 Sealed, thermally-insulating vessel Active EP2739895B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157024A FR2978748B1 (en) 2011-08-01 2011-08-01 SEALED AND THERMALLY INSULATED TANK
PCT/FR2012/051768 WO2013017781A1 (en) 2011-08-01 2012-07-26 Sealed, thermally-insulating vessel

Publications (2)

Publication Number Publication Date
EP2739895A1 EP2739895A1 (en) 2014-06-11
EP2739895B1 true EP2739895B1 (en) 2017-09-27

Family

ID=46639636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12744110.3A Active EP2739895B1 (en) 2011-08-01 2012-07-26 Sealed, thermally-insulating vessel

Country Status (8)

Country Link
EP (1) EP2739895B1 (en)
JP (1) JP6356602B2 (en)
KR (1) KR101863989B1 (en)
CN (1) CN103748401B (en)
AU (1) AU2012291901B2 (en)
ES (1) ES2647100T3 (en)
FR (1) FR2978748B1 (en)
WO (1) WO2013017781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417816A (en) * 2017-10-20 2020-07-14 气体运输技术公司 Sealed thermally insulated tank with several zones

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004508B1 (en) * 2013-04-11 2016-10-21 Gaztransport Et Technigaz INSULATING BLOCK FOR THE MANUFACTURE OF A WATERPROOF AND INSULATED TANK WALL
FR3017924B1 (en) * 2014-02-21 2016-08-26 Gaztransport Et Technigaz METHOD AND SYSTEM FOR INERTING A WALL OF A STORAGE TANK OF A LIQUEFIED FUEL GAS
FR3022971B1 (en) * 2014-06-25 2017-03-31 Gaztransport Et Technigaz SEALED AND INSULATING TANK AND METHOD OF MAKING SAME
CN105523309B (en) * 2014-09-29 2018-09-25 江南造船(集团)有限责任公司 A kind of insulation system of Type B independent liquid cargo tank on liquefied gas carrier
CN104443282B (en) * 2014-10-24 2017-10-31 上海交通大学 Type B independence LNG cargo tank heat insulation layer mechanism for installing and fixing means
FR3030014B1 (en) * 2014-12-15 2017-10-13 Gaztransport Et Technigaz INSULATING BLOCK SUITABLE FOR MAKING AN INSULATING WALL IN A WATERPROOF TANK
FR3039248B1 (en) * 2015-07-24 2017-08-18 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATING TANK WITH A REINFORCING PIECE
FR3039499B1 (en) * 2015-07-29 2018-12-07 Gaztransport Et Technigaz METHOD FOR CONTROLLING A PUMPING DEVICE CONNECTED TO A THERMALLY INSULATING BARRIER OF A STORAGE TANK OF A LIQUEFIED GAS
CN105156877B (en) * 2015-08-17 2017-08-11 江苏兰宇保温科技有限公司 A kind of preparation method of tank body heat-insulation layer
FR3052227B1 (en) * 2016-06-01 2018-12-07 Gaztransport Et Technigaz THERMALLY INSULATING INSULATING BLOCK AND TANK INTEGRATED INTO A POLYEDRIATE CARRIER STRUCTURE
KR101894935B1 (en) * 2016-06-24 2018-09-04 삼성중공업(주) Liquefied gas storage tank, method of manufacturing the same, and apparatus for manufacturing insulation member
CN106272749A (en) * 2016-10-14 2017-01-04 南京林业大学 The preparation method of LNG ship plywood
CN106347575A (en) * 2016-10-14 2017-01-25 南京林业大学 Birch plywood-based insulating heat insulation box for liquefied natural gas (LNG) ship
FR3059653B1 (en) * 2016-12-01 2019-05-17 Gaztransport Et Technigaz DEVICE FOR CONSTRUCTING AN INSULATING BLOCK STRUCTURE
CN106516017B (en) * 2016-12-21 2019-03-12 上海交通大学 The adiabatic system and its building method of LNG carrier Type B cargo tank
FR3069903B1 (en) * 2017-08-07 2019-08-30 Gaztransport Et Technigaz SEALED AND THEMIALLY INSULATING TANK
FR3070745B1 (en) * 2017-09-04 2019-09-06 Gaztransport Et Technigaz SEALED AND THERMALLY INSULATING TANK WITH ANTI-CONVICTIVE FILLING ELEMENT
FR3070747B1 (en) * 2017-09-04 2021-01-08 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATING TANK WITH ANTI-CONVECTIVE COVER STRIP
WO2019077253A1 (en) 2017-10-20 2019-04-25 Gaztransport Et Technigaz Sealed and thermally insulating tank with several areas
CN107792299B (en) * 2017-10-23 2019-05-14 上海交通大学 Film-type liquid natural gas carrier insulated cabinet and its building method
WO2019108344A1 (en) 2017-11-28 2019-06-06 Dow Global Technologies Llc Insulation boxes
FR3084645B1 (en) * 2018-08-06 2021-01-15 Gaztransport Et Technigaz CORNER STRUCTURE FOR A WATERPROOF AND THERMALLY INSULATION TANK
KR102158648B1 (en) * 2018-12-20 2020-09-23 대우조선해양 주식회사 Insulation wall securing device for lng storage tank
FR3090810B1 (en) * 2018-12-21 2021-01-01 Gaztransport Et Technigaz Anchoring system for sealed and thermally insulating tank

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103794U (en) * 1983-12-21 1985-07-15 ニチアス株式会社 Insulated wall of cryogenic fluid storage tank
FR2586082B1 (en) * 1985-08-06 1988-07-08 Gaz Transport WATERPROOF AND THERMALLY INSULATING TANK AND VESSEL COMPRISING SAME
FR2781557B1 (en) * 1998-07-24 2000-09-15 Gaz Transport & Technigaz IMPROVEMENT FOR A WATERPROOF AND THERMALLY INSULATING TANK WITH PREFABRICATED PANELS
FR2798358B1 (en) * 1999-09-14 2001-11-02 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A VESSEL CARRIER STRUCTURE WITH SIMPLIFIED ANGLE STRUCTURE
FR2798902B1 (en) * 1999-09-29 2001-11-23 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A VESSEL CARRIER STRUCTURE AND METHOD OF MANUFACTURING INSULATING BOXES FOR USE IN THIS TANK
NO312715B2 (en) * 1999-10-27 2002-06-24 Statoil Asa System for offshore transmission of liquefied natural gas
FR2867831B1 (en) 2004-03-17 2006-05-19 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
JP4616279B2 (en) * 2004-12-08 2011-01-19 コリア ガス コーポレイション Storage tank for liquefied natural gas and method for producing the same
FR2931535B1 (en) * 2008-05-21 2010-08-20 Gaztransp Et Technigaz BONDING FIXING OF INSULATION BLOCKS FOR LIQUEFIED GAS STORAGE TANK USING CORRUGATED CORDS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417816A (en) * 2017-10-20 2020-07-14 气体运输技术公司 Sealed thermally insulated tank with several zones
CN111417816B (en) * 2017-10-20 2021-12-28 气体运输技术公司 Sealed thermally insulated tank with several zones

Also Published As

Publication number Publication date
AU2012291901A1 (en) 2014-03-06
KR101863989B1 (en) 2018-07-05
JP2014524547A (en) 2014-09-22
CN103748401A (en) 2014-04-23
JP6356602B2 (en) 2018-07-11
WO2013017781A1 (en) 2013-02-07
FR2978748A1 (en) 2013-02-08
AU2012291901B2 (en) 2015-10-29
ES2647100T3 (en) 2017-12-19
EP2739895A1 (en) 2014-06-11
KR20140050705A (en) 2014-04-29
FR2978748B1 (en) 2014-10-24
CN103748401B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
EP2739895B1 (en) Sealed, thermally-insulating vessel
EP3362732B1 (en) Sealed and thermally insulating tank
WO2017103500A1 (en) Insulating block suitable for manufacturing an insulating wall in a sealed tank
WO2014096600A1 (en) Sealed, thermally insulating vessel
WO2021239712A1 (en) Anchoring device intended to retain insulating blocks
EP3473915B1 (en) Sealed and thermally insulating vessel
EP3114387B1 (en) Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner
FR2973098A1 (en) Fluid-tight tank for conveying liquefied natural gas (LNG), has secondary insulation barrier whose heat insulation element is maintained with respect to resistance structure
WO2019012236A1 (en) Thermally-insulating sealed tank
WO2019077253A1 (en) Sealed and thermally insulating tank with several areas
WO2017207938A1 (en) Insulating block and thermally-insulating sealed tank built into a polyhedral load-bearing structure
WO2013017773A2 (en) Insulating block for manufacturing a tank wall
FR2972719A1 (en) INSULATING BLOCK FOR THE MANUFACTURE OF A SEALED TANK WALL
WO2017207904A1 (en) Thermally-insulating sealed tank incorporated into a polyhedron-shaped load-bearing structure
WO2014167206A1 (en) Insulating block for producing a sealed and insulated tank wall
FR3072758B1 (en) SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
WO2014020257A2 (en) Sealed and thermally insulating tank wall comprising spaced-apart support elements
WO2013182776A1 (en) Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel
WO2023227551A1 (en) Sealed and thermally insulating tank integrated into a load-bearing structure
WO2023067026A1 (en) Sealed and thermally insulating tank
WO2023001678A1 (en) Storage installation for liquefied gas
EP3526512B1 (en) Thermally insulating sealed tank
FR3112379A1 (en) Guide structure for a loading/unloading tower for a tank intended for the storage and/or transport of liquefied gas
FR3110952A1 (en) Self-supporting body suitable for the support and thermal insulation of a waterproof membrane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ S.A.

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 932288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012037815

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2647100

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 932288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012037815

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

26N No opposition filed

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012037815

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180726

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180726

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 12

Ref country code: ES

Payment date: 20230807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 12