WO2013182776A1 - Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel - Google Patents

Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel Download PDF

Info

Publication number
WO2013182776A1
WO2013182776A1 PCT/FR2013/051155 FR2013051155W WO2013182776A1 WO 2013182776 A1 WO2013182776 A1 WO 2013182776A1 FR 2013051155 W FR2013051155 W FR 2013051155W WO 2013182776 A1 WO2013182776 A1 WO 2013182776A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
beams
pillars
vessel
distribution panel
Prior art date
Application number
PCT/FR2013/051155
Other languages
French (fr)
Inventor
Florent OUVRARD
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020157000240A priority Critical patent/KR102051355B1/en
Priority to AU2013273358A priority patent/AU2013273358B2/en
Priority to CN201380026498.2A priority patent/CN104334956B/en
Publication of WO2013182776A1 publication Critical patent/WO2013182776A1/en
Priority to IN2337MUN2014 priority patent/IN2014MN02337A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0325Aerogel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0447Composition; Humidity
    • F17C2250/0452Concentration of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals

Definitions

  • the invention relates to the field of manufacturing sealed and thermally insulating vessels.
  • the present invention relates to tanks for the storage or transport of cold or hot liquids, for example tanks for the storage and / or transport of liquefied gas by sea.
  • LNG liquefied natural gas
  • a storage tank integrated in the hull of a vessel, whose walls comprise successively, in the direction of the thickness from the inside towards the outside of the tank, a barrier primary waterproofing barrier, a primary insulating barrier, a secondary watertight barrier and a secondary insulating barrier.
  • the insulating barriers consist of juxtaposed heat insulating elements.
  • Each insulating element comprises a heat insulating lining traversed by a plurality of pillars of small cross section as well as a cover panel carried by the pillars, and a bottom panel carrying the pillars.
  • the invention provides a sealed and thermally insulating tank integrated in a support structure for containing a fluid, in which a vessel wall comprises:
  • thermal insulation barrier retained on the load-bearing wall and carrying the sealing barrier, the thermal insulation barrier consisting of a plurality of elements heat insulating juxtaposed so as to form a support surface for the sealing barrier,
  • a heat-insulating element having a substantially parallelepipedal shape and comprising: a heat-insulating lining,
  • cover panel extending parallel to the vessel wall and carried by the pillars, the cover panel comprising:
  • such a tank may comprise one or more of the following characteristics.
  • the spacer element has a plurality of parallel beams extending parallel to the distribution panel and spaced apart from each other.
  • the spacer element has the form of a grid, said beams forming a first set of parallel beams and said grid comprising a second set of parallel beams, the first set and the second set crossing each other and two sets of beams defining a lower bearing surface bearing on the distribution panel and an upper bearing surface bearing on the upper panel.
  • the first set of beams and the second set of beams intersect at intersections, each pillar being each time positioned under an intersection of the grid.
  • the distribution panel has a rectangular shape and a set of beams extends in a direction oblique to the sides of the rectangular distribution panel.
  • the pillars are arranged in rows of pillars, a beam being positioned superimposed on a respective row of pillars.
  • the beams have a trapezoidal section, the bases of the trapezoidal section bearing respectively on the distribution panel and on the upper panel.
  • the beams are profiles having a U-shaped section, the base of the U being supported on one of the two panels among the distribution panel and the upper panel, wings extending from each branch of the U to the outside of the U and leaning on the other of the two panels among the distribution panel and the top panel.
  • the beams are sections having a U-shaped section, the base of the U extending between the top panel and the distribution panel, a first branch resting on the top panel and a second branch based on the distribution panel.
  • the beams are sections of rectangular section.
  • the beams have a width section oriented in a direction parallel to the distribution panel between 9 and 50mm.
  • the support element is a rigid insulating foam layer covering most of the distribution panel.
  • the spacer element comprises a honeycomb structure covering the distribution panel.
  • the spacer includes a fluid flow channel (38) extending between a first side of the heat insulator and a second side of the heat insulator.
  • the circulation channel is lined with a porous heat-insulating lining.
  • the cover panel further comprises an upper spacing member supported and fixed on the top panel,
  • the second upper panel being parallel to the distribution panel and fixed and supported by the upper spacer.
  • the pillars are arranged in rows of parallel pillars, the pillars of a row being positioned at a regular interval, the pillars of two adjacent rows being offset by half a gap in the direction of the row of pillars.
  • the thickness of the distribution panel and the thickness of the top panel in a direction perpendicular to the distribution panel are between 6.5 and 30mm and the thickness of the spacer element in the direction perpendicular to the Distribution panel is between 6.5 and 50mm.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • An idea underlying the invention is to provide a heat-insulating element for a sealed and thermally insulated tank having better structural characteristics by reinforcing the cover panel of such a heat-insulating element, the reinforcement being obtained by manufacturing the cover panel. using two panels kept spaced and rigidly connected to each other.
  • Certain aspects of the invention start from the idea of increasing the inertia, and therefore the rigidity of the cover, by increasing the thickness of the cover panel, while providing a heat-insulating element that offers a good compromise between the rigidity of the panel. cover and the weight and thermal resistance of the heat insulating element.
  • Some aspects of the invention start from the idea of providing fluid circulation channels within the cover panel to allow the circulation of inert gas within the heat insulating element and thus in a wall of the sealed tank and thermally insulated.
  • FIG. 1 is a fragmentary cutaway perspective view of a sealed and thermally insulating vessel wall in which heat-insulating elements according to embodiments of the invention may be employed.
  • FIG. 2 is a diagrammatic side view of a heat insulating element that may be included in the tank wall of FIG. 1 and the stresses and deformations to which it may be subjected.
  • FIG. 3 is a partially transparent perspective view of a heat insulating element having a reinforced cover panel.
  • FIGS. 4 to 7 are perspective views of variants of the heat insulating element shown in FIG.
  • FIGS. 8a to 8c are diagrammatic side schematic representations that can be implemented in the reinforced lid panel variant of FIG.
  • FIG. 9 is a schematic side view of a particular embodiment of the heat insulating element shown in FIG. 3 in which the heat insulating element comprises pillars having a variable section.
  • Figure 10 is a schematic side view of a heat insulating member in which the reinforced cover panel has three spaced panels.
  • Figure 11 is a schematic schematic representation of a tank vessel LNG tank and a loading / unloading terminal of the tank.
  • FIG. 12 is a diagrammatic side view of the box of FIG.
  • Figure 1 shows sealed and insulating walls of a vessel integrated in a carrying structure of a ship.
  • the bearing structure of the tank is constituted by the inner hull of a double-hulled vessel, whose wall is represented by the number 1. On each wall 1 of the supporting structure, a corresponding wall of the tank is made by superposition of, successively, a secondary insulation layer 2, a secondary watertight barrier 3, a primary insulation layer 4 and a primary watertight barrier 5 .
  • the primary insulation layer 4 and the secondary insulation layer 2 consist of heat-insulating elements and more particularly heat-insulated parallelepipedic boxes 6 and 7 juxtaposed in a regular pattern.
  • the primary caissons 7 and the secondary caissons 6 thus form a substantially flat surface which carries respectively the primary watertight barrier 5 and the secondary watertight barrier 3.
  • the primary watertight barrier 5 and the secondary watertight barrier 3 consist of parallel invar strakes 8 with raised edges, which are alternately arranged with elongate welding supports 9, also in invar. More specifically, the soldering supports 9 extend perpendicularly to the wall and are retained each time at the underlying insulation layer 2 or 4, for example by being housed in inverted T-shaped grooves 10 formed in lids panels 11 of the boxes 6 and 7. The raised edges of the strakes 8 are welded along the weld supports 9.
  • the primary insulating boxes 7 and the secondary insulating boxes 6 are held on the supporting structure by means of anchoring members 12.
  • the anchoring members 12 of the secondary insulating layer 2 are fixed to the wall tank 1 through studs 13 welded perpendicularly to the wall 1.
  • Figure 2 illustrates the structure of a box 15 which can be implemented in such a tank wall.
  • the box 15 has a bottom panel 16 on which are placed ladders 17 consisting of rows of pillars 18 extending perpendicularly to the bottom panel 16, a batten 19 and a beam 20. Each row of pillar 18 s presses the bottom panel 16 through the batten 19 and carries the beam 20 which supports the cover panel 11 and is attached thereto.
  • the assembly of the ladders 17 and their attachment to the panels is carried out using fastening elements, for example by stapling.
  • a heat-insulating lining 21 is disposed between the bottom panel 16 and the lid panel 11 and surrounds the pillars 18.
  • the beams 20 make it possible to stiffen the cover panel 11 and to restart the load when the panel is subjected to the stresses which are for example exerted by the fluid present inside the tank and which are schematized here by the arrows 22, by for example, these constraints may be due to the sloshing of the fluid in the tank.
  • the cover panel 11 tends to deform and warp between two scales 17, under the effect of pressure, along the curves schematized by the curves 24. This deformation tends to cause the rotation of the lateral beams located on each side of the median plane of the caisson 15. This rotation is illustrated by the lines 23.
  • the box 15 can be replaced by a reinforced box 30 as shown in Figure 3.
  • Such box 30 has a bottom panel 31 on which are attached slats 32.
  • a row of pillars 33 is positioned and fixed each time above a batten 32 corresponding.
  • a reinforced cover panel 34 is attached to the pillars 33.
  • the pillars 33 allow in particular the transmission of the stresses exerted on the cover panel 34 to the wall 1 and therefore have a compressive strength function.
  • a heat-insulating lining not shown, fills the space between the pillars and may for example consist of an insulating foam cast between the pillars 33 or a block of foam machined to fit the pillars 33.
  • the rows of successive pillars 33 are offset relative to each other.
  • the pillars 33 of the two successive rows 29 and 39 comprise pillars 33 spaced at the same regular spacing, however, the two rows of pillars 33 are offset in the direction of their length by half a spacing. Such an arrangement allows a good compromise between the number of pillars 33 in the box 30 and the good distribution of the load.
  • the reinforced cover panel 34 has an upper panel 35 and a lower panel 36 each having a thickness of 15mm and spaced apart by a series of parallel solid beams 37.
  • the beams 37 extend parallel to the longitudinal sides of the box 30.
  • a beam 37 is each time positioned along and at the Above a row of pillars 33.
  • the beams 37 have a rectangular section and a thickness of 15mm. However, these beams may also have a trapezoidal section.
  • the beams 37 and the panels 35 and 36 are rigidly connected, thus when the upper panel 35 is subjected to the stresses exerted by the fluid and tends to warp, the lower panel 36 works in tension which prevents the rotation of the beams 37.
  • the beams 37 being immobilized by the lower panel 36, the deformation of the upper panel 35 is attenuated.
  • FIG. 12 The tensile work of the panel 36 is illustrated in FIG. 12.
  • the panels 35 and 36 are fixed to the beams 37 by means of staples 90.
  • Two lateral beams 37 and a beam can be distinguished. 37 central.
  • Line 91 indicates the curve in which the top panel 35 tends to warp when subjected to compressive stresses 94.
  • the upper panel 35 exerts stresses on the beams 37 via the clips 90. These stresses tend to cause the rotation of the beams 37 as illustrated by the lines 92.
  • the lower panel 36 is also fixed to beams 37, thus, the rotation of the beams 37 is attenuated.
  • the rotation of the beams generates stresses on the lower panel 36 which causes the tensile work of the lower panel 36 between said beams 37 as represented by the arrows 93.
  • the lower panel 36 prevents the rotation of the beams through the staples 90.
  • the rotation of the beams 37 is reduced, and thus the bending of the underlying pillars 33 induced by this rotation is reduced.
  • the compressive stresses exerted on the heat-insulating element are better taken up by the pillars 33.
  • Such a reinforced cover panel structure 35 provides a cover 35 which has good rigidity and which effectively distributes the load in case of localized stress. Moreover, such a lid panel structure 35 can provide sealed and thermally insulating tanks with a good compromise between the thermomechanical performance and the cost of such a tank.
  • Each beam 37 is spaced from the other beams 37 so as to delimit a space between two beams 37 and between the panels 35 and 36. These spaces form channels 38 for circulating fluids between the sides of the heat insulating element.
  • the juxtaposition of heat-insulating element thus makes it possible to form a circuit in the wall of the tank in which it is possible to inject a neutral gas to neutralize the wall of the tank and thus avoid any risk of explosion in case of leakage in the presence of oxygen. Moreover, such a gas circuit makes it possible to detect leakage in the impervious barriers 3 and 5.
  • the beams 37 may be drilled or machined to provide passages allowing the flow of fluids between the different channels 38 and thus allow the flow of gases in several directions within the box 30.
  • a porous heat-insulating lining may be put in place in the channels 38.
  • a heat-insulating lining may for example consist of a glass wool layer, or expanded perlite.
  • the space between the beams 37 can be filled with an insulating foam if a fluid circulation circuit is not required in the reinforced panels 35.
  • the beams 37 may extend in a direction transverse to the longitudinal direction of the heat-insulating element.
  • the box described above can be manufactured in various ways.
  • the bottom panel 31, the slats 32 and the pillars 33 are assembled by stapling.
  • the heat-insulating lining 21 is then inserted or injected between the pillars.
  • the lower panel 36 is stapled to the pillars 33 in a manual or automated process, then the beams 37 are stapled to the lower panel 36. Any porous lagging is inserted between the beams 37, and the top panel 35 is finally stapled on the beams 37.
  • lagging 21 is a block of foam that is machined to make holes.
  • the pillars 33 are inserted into the holes, then the slats 32 and the bottom panel 31, stapled to the pillars 33.
  • the reinforced lid panel 34 is preassembled independently and pierced at the position of the pillars 33.
  • reinforced cover panel 34 is then positioned on the pillars 33 and screwed to the pillars 33 through the holes.
  • Figures 4 and 5 each have a box 40 and 41 similar to the box 30 in which the spacing between the lower panel 36 and the upper panel 35 is provided by a grid-like structure respectively 42 and 46.
  • the structure 42 has the form of a grid of a first set of beams 43 and a second set of beams 44, the beams 43 being parallel to a first side of the bottom panel and the beams 44 extending 43.
  • the beams 44 of the second set extend in line with the rows of pillars 29 and 39 whereas the beams 43 extend transversely with respect to the rows 29 and 39 while extending to the right of the pillars of several rows. 39 not shifted.
  • the grid has intersections 45 directly above pillars 33.
  • Beams 44 and beams 43 are each supported on both lower panel 36 and upper 35.
  • the grid 46 has crossings 47 located directly above the pillars 33.
  • the elements 48 constituting the grid 46 do not extend parallel to the sides of the box 41. Indeed, those they extend each time above a pillar 33 of each successive row 39 and 29 shifted.
  • the grids 40 and 41 can be made by an assembly of elongated parts, or by molding.
  • the elements spacing the lower panel 36 and the upper panel 35 are replaced by a honeycomb structure 49 which covers the bottom panel 36. Similar to the embodiments presented above the honeycomb structure 49 can be drilled or machined to make passages allowing the circulation of fluids and thus allow the circulation of gases within the box.
  • the element that holds the panels 35 and 36 spaced apart may be a layer of high density foam that covers the panel 35 and is adhered to the bottom panel 36 and the top panel 35.
  • Figure 7 is a variant 51 of the box 30 in which the solid beams 37 are replaced by metal profiles 52 formed or extruded.
  • a sectional view to appreciate the section of the metal section 52 is illustrated in Figure 8. a.
  • the metal profile 52 has a U-shaped portion 53 whose base of the U 54 is flat and rests on the lower panel 36.
  • Two wings 55 extend outwardly from the branches of the U is supported on the top panel 35.
  • Figures 8.b and 8.c show two other variants 56 and 57 of metal profiles that can be substituted for the metal section 52.
  • the position of the pillars is represented by a line 59.
  • the metal section 56 is a profile comprising a U-shaped section whose U 58 branches bear respectively on the lower panel 35 and the upper panel 36.
  • a profile 56 is positioned on each side of a pillar, so that the legs 58 of the two sections 56 thus positioned oppose each other.
  • the metal profile 57 has a substantially rectangular section.
  • the profiles can be made using composite materials extruded or formed.
  • the reinforced cover panels 34 shown above may be attached to any type of small section pillars.
  • the pillars 33 shown in Figures 3 to 7 are pillars with full rectangular section.
  • the section of the pillars can also be square or cylindrical.
  • the pillars may be hollow to increase their thermal resistance and possibly filled with an insulating material.
  • the pillars may have a section H.
  • Such pillars may be made by machining a pillar of rectangular section or the assembly of three plywood slats so as to form a section H-shaped pillar has a good compromise between rigidity, thermal resistance and weight of the pillar.
  • the pillars 60 represented in this figure have a section that varies according to the height. More specifically, the pillar 60 comprises a central cylindrical portion 61 located between two frustoconical portions 62. The bases of the frustoconical portions 62 are respectively supported on the panels 31 and 36. An increase in the section at the panels 31 and 36 allows better distribute the load in the pillars 60 and avoids the depression of the pillars 60 in the covers 31 and 36. In addition, a larger section at the panels 31 and 36 allows the pillar 60 to have good resistance to torque exerted by the covers 31 and 36 when they warp and therefore have a good resistance to bending.
  • the pillars 60 can be obtained for example using thermoplastic or thermosetting materials, possibly reinforced with fibers.
  • the distribution of the beams 37 or spacers relative to the pillars 33 may be different.
  • the beams 37 are not necessarily positioned at the right rows of pillars 29 and 39 but can be arranged between the rows of pillars 29 and 39.
  • a reinforced cover panel 34 consisting of two panels has been previously described. However, reinforced cover panels with additional panels can be implemented. Such a reinforced panel 63 is shown schematically in FIG.
  • the reinforced panel 63 comprises a first panel 64 resting on pillars
  • the beams 65 carry a second panel 66 which itself carries a second series of beams 67 superimposed on the first series of beams 65.
  • the second series of beams 67 supports an upper panel 68
  • the set of beams 65 and 67, panels 64, 68 and 68 and pillars 84 being rigidly connected.
  • the bending stresses are thus progressively taken up by the traction work of the second panel 66 and the first panel 64.
  • This recovery of the stresses in several stages makes it possible to greatly reduce the stresses of bending at the pillars 84 and allows a good distribution of the load exerted on the upper panel 68 to all the pillars 84.
  • the distribution of the beams 65 and 67 may be different.
  • the beams 65 and 67 are not necessarily superimposed and can alternate.
  • any type of heat seal 21 may be used to make the boxes described above.
  • a lining may for example consist of a block of machined foam, or a foam cast between the pillars. Such a foam can be reinforced or not.
  • the lining may consist of a nanoscale porosity material of airgel type. Aerogels can be packaged in different forms, for example in the form of powder, beads, nonwoven fibers, fabric, etc.
  • the fixing of the pillars, panels and spacers between the lower and upper panels can be achieved by screws. However, it is also possible to make their connection by gluing, stapling or nailing.
  • the panels, beams and pillars can be made of plywood or solid wood, for example at work, beech or fir. These elements can also be made of bamboo, composite material, plastic or metal.
  • the boxes presented above can be implemented in the primary insulation layer 4 and / or in the secondary insulation layer 2.
  • the reinforced lid panels of the boxes can, for example have a thickness of 45mm.
  • the vessel wall has a primary insulation layer 4 and a secondary insulation layer 2 in which the thickness of the reinforced liner panels is greater in the protective layer.
  • primary insulation 4 only in the secondary insulation layer 2.
  • the stresses exerted on the reinforced cover panels of the secondary insulation layer 2 are already partly distributed by the caissons of the primary insulation layer 4
  • the tanks described above can be used in different types installations such as land installations or in a floating structure such as a LNG tanker or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull of the vessel, and two thermally insulating barriers arranged respectively between the primary watertight barrier and secondary watertight barrier, and between secondary watertight barrier and double hull 72.
  • loading / unloading lines arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 11 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker 70 at great distance from the coast during the loading and unloading operations. unloading.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Fluidtight and thermally insulated tank for containing a fluid, in which a tank wall comprises: a sealing barrier, a thermal insulation barrier bearing the sealing barrier, the thermal insulation barrier being made up of a plurality of lagging elements (30) which are juxtaposed to form a support surface for the sealing barrier, a lagging element (30) having a substantially parallelepipedal shape and comprising: a lining of lagging, a plurality of pillars (33) passing through the lining of lagging, a cover panel (34) running parallel to the tank wall and supported by the pillars, the cover panel comprising: a spreader panel (36) fixed to the pillars and resting on the pillars, a spacer element comprising a plurality of beams (37) which are spaced apart and run parallel to the spreader panel, an upper panel (35) parallel to the spreader panel and fixed and supported by the spacer element.

Description

ELEMENT CALORIFUGE DE CUVE ETANCHE ET THERMIQUEMENT ISOLEE COMPORTANT UN PANNEAU DE COUVERCLE RENFORCE  THERMALLY INSULATED, THERMALLY INSULATED TANK-INSULATING ELEMENT COMPRISING A REINFORCED COVER PANEL
L'invention se rapporte au domaine de la fabrication de cuves étanches et thermiquement isolantes. En particulier, la présente invention se rapporte à des cuves destinées au stockage ou au transport de liquides froids ou chauds, par exemple des cuves pour le stockage et/ou le transport de gaz liquéfié par voie maritime. The invention relates to the field of manufacturing sealed and thermally insulating vessels. In particular, the present invention relates to tanks for the storage or transport of cold or hot liquids, for example tanks for the storage and / or transport of liquefied gas by sea.
Des cuves étanches et thermiquement isolantes peuvent être utilisées dans différentes industries pour stocker des produits chauds ou froids. Par exemple, dans le domaine de l'énergie, le gaz naturel liquéfié (GNL) est un liquide qui peut être stocké à pression atmosphérique à environ -163°C dans des cuves de stockage terrestres ou dans des cuves embarquées dans des structures flottantes.  Waterproof and thermally insulating vessels can be used in different industries to store hot or cold products. For example, in the energy field, liquefied natural gas (LNG) is a liquid that can be stored at atmospheric pressure at about -163 ° C in land-based storage tanks or tanks embedded in floating structures.
On connaît, par exemple d'après FR2877638, une cuve de stockage intégrée dans la coque d'un navire, dont les parois comportent successivement, dans le sens de l'épaisseur depuis l'intérieur vers l'extérieur de la cuve, une barrière étanche primaire, une barrière isolante primaire, une barrière étanche secondaire et une barrière isolante secondaire. Les barrières isolantes sont constituées d'éléments calorifuges juxtaposés. Chaque élément calorifuge comporte une garniture calorifuge traversée par une pluralité de piliers de petite section transversale ainsi qu'un panneau de couvercle porté par les piliers, et un panneau de fond portant les piliers.  It is known, for example from FR2877638, a storage tank integrated in the hull of a vessel, whose walls comprise successively, in the direction of the thickness from the inside towards the outside of the tank, a barrier primary waterproofing barrier, a primary insulating barrier, a secondary watertight barrier and a secondary insulating barrier. The insulating barriers consist of juxtaposed heat insulating elements. Each insulating element comprises a heat insulating lining traversed by a plurality of pillars of small cross section as well as a cover panel carried by the pillars, and a bottom panel carrying the pillars.
Toutefois lorsque les parois sont soumises aux contraintes exercées par un fluide stocké dans la cuve, par exemple à des contraintes hydrodynamiques, les panneaux et les piliers tendent à se déformer de manière inégale au sein d'un élément calorifuge. Ces déformations entraînent une répartition irrégulière de la charge qui doit être transmises par chacun des piliers dans l'élément calorifuge. De plus, cette déformation peut provoquer à la désolidarisation des pièces formants l'élément calorifuge.  However, when the walls are subjected to the stresses exerted by a fluid stored in the tank, for example to hydrodynamic stresses, the panels and the pillars tend to deform unequally within a heat insulating element. These deformations lead to an uneven distribution of the load that must be transmitted by each of the pillars in the insulating element. In addition, this deformation can cause the separation of the forming parts the heat insulating element.
Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante intégrée dans une structure porteuse pour contenir un fluide, dans laquelle une paroi de cuve comporte : According to one embodiment, the invention provides a sealed and thermally insulating tank integrated in a support structure for containing a fluid, in which a vessel wall comprises:
une paroi porteuse,  a load-bearing wall,
une barrière d'étanchéité,  a sealing barrier,
une barrière d'isolation thermique retenue sur la paroi porteuse et portant la barrière d'étanchéité, la barrière d'isolation thermique étant constituée d'une pluralité d'éléments calorifuges juxtaposés de manière à former une surface de support pour la barrière d'étanchéité, a thermal insulation barrier retained on the load-bearing wall and carrying the sealing barrier, the thermal insulation barrier consisting of a plurality of elements heat insulating juxtaposed so as to form a support surface for the sealing barrier,
un élément calorifuge présentant une forme sensiblement parallélépipédique et comportant : une garniture calorifuge, a heat-insulating element having a substantially parallelepipedal shape and comprising: a heat-insulating lining,
une pluralité de piliers traversant la garniture calorifuge perpendiculairement à la paroi de cuve,  a plurality of pillars passing through the heat-insulating liner perpendicular to the tank wall,
un panneau de couvercle s 'étendant parallèlement à la paroi de cuve et porté par les piliers, le panneau de couvercle comportant :  a cover panel extending parallel to the vessel wall and carried by the pillars, the cover panel comprising:
un panneau de répartition fixé sur le piliers et en appui sur les piliers,  a distribution panel fixed on the pillars and resting on the pillars,
un élément d'espacement en appui et fixé sur le panneau de répartition,  a spacer element supported and fixed on the distribution panel,
un panneau supérieur parallèle au panneau de répartition, fixé et supporté par l'élément d'espacement, le panneau supérieur reprenant les efforts de compression exercés sur l'élément calorifuge.  an upper panel parallel to the distribution panel, fixed and supported by the spacer element, the upper panel showing the compressive forces exerted on the heat-insulating element.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.  According to embodiments, such a tank may comprise one or more of the following characteristics.
Selon des modes de réalisation, l'élément d'espacement comporte une pluralité de poutres parallèles s 'étendant parallèlement au panneau de répartition et espacées les unes des autres.  According to embodiments, the spacer element has a plurality of parallel beams extending parallel to the distribution panel and spaced apart from each other.
Selon des modes de réalisation, l'élément d'espacement présente la forme d'une grille lesdites poutres formant un premier ensemble de poutres parallèles et ladite grille comportant un second ensemble de poutres parallèles, le premier ensemble et le second ensemble se croisant et les deux ensembles de poutres définissant une surface d'appui inférieure en appui sur le panneau de répartition et une surface de d'appui supérieure en appui sur le panneau supérieur.  According to embodiments, the spacer element has the form of a grid, said beams forming a first set of parallel beams and said grid comprising a second set of parallel beams, the first set and the second set crossing each other and two sets of beams defining a lower bearing surface bearing on the distribution panel and an upper bearing surface bearing on the upper panel.
Selon des modes de réalisation, le premier ensemble de poutres et le second ensemble de poutres s'entrecroisent au niveau d'intersections, chaque pilier étant à chaque fois positionné sous une intersection de la grille.  According to embodiments, the first set of beams and the second set of beams intersect at intersections, each pillar being each time positioned under an intersection of the grid.
Selon des modes de réalisation, le panneau de répartition présente une forme rectangulaire et un ensemble de poutres s'étend selon une direction oblique par rapport aux côtés du panneau de répartition rectangulaire.  According to embodiments, the distribution panel has a rectangular shape and a set of beams extends in a direction oblique to the sides of the rectangular distribution panel.
Selon des modes de réalisation, les piliers sont agencés en rangées de piliers, une poutre étant positionnée superposée à une rangée de piliers respective. Selon des modes de réalisation, les poutres présentent une section trapézoïdale, les bases de la section trapézoïdale étant en appui respectivement sur le panneau de répartition et sur le panneau supérieur. Selon des modes de réalisation, les poutres sont des profilés ayant une section en forme de U, la base du U étant en appui sur un des deux panneaux parmi le panneau de répartition et le panneau supérieur, des ailes s'étendant depuis chaque branche du U vers l'extérieur du U et s'appuyant sur l'autre des deux panneaux parmi le panneau de répartition et le panneau supérieur. According to embodiments, the pillars are arranged in rows of pillars, a beam being positioned superimposed on a respective row of pillars. According to embodiments, the beams have a trapezoidal section, the bases of the trapezoidal section bearing respectively on the distribution panel and on the upper panel. According to embodiments, the beams are profiles having a U-shaped section, the base of the U being supported on one of the two panels among the distribution panel and the upper panel, wings extending from each branch of the U to the outside of the U and leaning on the other of the two panels among the distribution panel and the top panel.
Selon des modes de réalisation, les poutres sont des profilés ayant une section en forme de U, la base du U s'étendant entre le panneau supérieur et le panneau de répartition, une première branche s'appuyant sur le panneau supérieur et une deuxième branche s'appuyant sur le panneau de répartition.  According to embodiments, the beams are sections having a U-shaped section, the base of the U extending between the top panel and the distribution panel, a first branch resting on the top panel and a second branch based on the distribution panel.
Selon des modes de réalisation, les poutres sont des profilés de section rectangulaire.  According to embodiments, the beams are sections of rectangular section.
Selon des modes de réalisation, les poutres présentent une section de largeur orientée selon une direction parallèle au panneau de répartition comprise entre 9 et 50mm.  According to embodiments, the beams have a width section oriented in a direction parallel to the distribution panel between 9 and 50mm.
Selon des modes de réalisation, l'élément de support est une couche de mousse isolante rigide recouvrant l'essentiel du panneau de répartition.  According to embodiments, the support element is a rigid insulating foam layer covering most of the distribution panel.
Selon des modes de réalisation, l'élément d'espacement comporte une structure de nid d'abeille recouvrant le panneau de répartition.  According to embodiments, the spacer element comprises a honeycomb structure covering the distribution panel.
Selon des modes de réalisation, l'élément d'espacement comporte, un canal de circulation (38) de fluide s'étendant entre un premier côté de l'élément calorifuge et un second côté de l'élément calorifuge.  In embodiments, the spacer includes a fluid flow channel (38) extending between a first side of the heat insulator and a second side of the heat insulator.
Selon des modes de réalisation, le canal de circulation est garni d'une garniture calorifuge poreuse.  According to embodiments, the circulation channel is lined with a porous heat-insulating lining.
Selon des modes de réalisation, le panneau de couvercle comporte en outre un élément d'espacement supérieur en appui et fixé sur le panneau supérieur,  According to embodiments, the cover panel further comprises an upper spacing member supported and fixed on the top panel,
et un second panneau supérieur, and a second upper panel,
le second panneau supérieur étant parallèle au panneau de répartition et fixé et supporté par l'élément d'espacement supérieur. the second upper panel being parallel to the distribution panel and fixed and supported by the upper spacer.
Selon des modes de réalisation, les piliers sont agencés en rangées de piliers parallèles, les piliers d'une rangée étant positionnés à un intervalle régulier, les piliers de deux rangées adjacentes étant décalés d'un demi-intervalle selon la direction de la rangée de piliers. According to embodiments, the pillars are arranged in rows of parallel pillars, the pillars of a row being positioned at a regular interval, the pillars of two adjacent rows being offset by half a gap in the direction of the row of pillars.
Selon des modes de réalisation, l'épaisseur du panneau de répartition et l'épaisseur du panneau supérieur selon une direction perpendiculaire au panneau de répartition sont comprises entre 6.5 et 30mm et l'épaisseur de l'élément d'espacement selon la direction perpendiculaire au panneau de répartition est comprise entre 6.5 et 50mm.  According to embodiments, the thickness of the distribution panel and the thickness of the top panel in a direction perpendicular to the distribution panel are between 6.5 and 30mm and the thickness of the spacer element in the direction perpendicular to the Distribution panel is between 6.5 and 50mm.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.  According to one embodiment, a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  According to one embodiment, the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
Une idée à la base de l'invention est de fournir un élément calorifuge pour une cuve étanche et thermiquement isolée présentant de meilleures caractéristiques structurelles en renforçant le panneau de couvercle d'un tel élément calorifuge, le renforcement étant obtenu en fabricant le panneau de couvercle à l'aide de deux panneaux maintenus espacés et reliés rigidement entre eux. An idea underlying the invention is to provide a heat-insulating element for a sealed and thermally insulated tank having better structural characteristics by reinforcing the cover panel of such a heat-insulating element, the reinforcement being obtained by manufacturing the cover panel. using two panels kept spaced and rigidly connected to each other.
Certains aspects de l'invention partent de l'idée d'augmenter l'inertie, et donc la rigidité du couvercle, en augmentant l'épaisseur du panneau de couvercle, tout en fournissant un élément calorifuge présentant un bon compromis entre la rigidité du panneau de couvercle et le poids et la résistance thermique de l'élément calorifuge. Certains aspects de l'invention partent de l'idée de fournir des canaux de circulation de fluide au sein du panneau de couvercle afin de permettre la circulation de gaz inerte au sein de l'élément calorifuge et donc dans une paroi de la cuve étanche et thermiquement isolée. Certain aspects of the invention start from the idea of increasing the inertia, and therefore the rigidity of the cover, by increasing the thickness of the cover panel, while providing a heat-insulating element that offers a good compromise between the rigidity of the panel. cover and the weight and thermal resistance of the heat insulating element. Some aspects of the invention start from the idea of providing fluid circulation channels within the cover panel to allow the circulation of inert gas within the heat insulating element and thus in a wall of the sealed tank and thermally insulated.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.
Sur ces dessins :  On these drawings:
• La figure 1 est une vue partielle en perspective écorchée d'une paroi de cuve étanche et thermiquement isolante dans laquelle des éléments calorifuges selon des modes de réalisation de l'invention peuvent être employés.  FIG. 1 is a fragmentary cutaway perspective view of a sealed and thermally insulating vessel wall in which heat-insulating elements according to embodiments of the invention may be employed.
• La figure 2 est une représentation schématique de côté d'un élément calorifuge qui peut être inclus dans la paroi de cuve de la figure 1 et des contraintes et déformations auxquelles il peut être soumis.  FIG. 2 is a diagrammatic side view of a heat insulating element that may be included in the tank wall of FIG. 1 and the stresses and deformations to which it may be subjected.
• La figure 3 est une vue en perspective partiellement en transparence d'un élément calorifuge présentant un panneau de couvercle renforcé.  FIG. 3 is a partially transparent perspective view of a heat insulating element having a reinforced cover panel.
• Les figures 4 à 7 sont des vues en perspective de variantes de l'élément calorifuge présenté dans la figure 3.  FIGS. 4 to 7 are perspective views of variants of the heat insulating element shown in FIG.
• Les figures 8a à 8c sont des représentations schématiques de côté de profilés pouvant être mise en place dans la variante de panneau de couvercle renforcé de la figure 6 FIGS. 8a to 8c are diagrammatic side schematic representations that can be implemented in the reinforced lid panel variant of FIG.
• La figure 9 est une représentation schématique de côté d'un mode de réalisation particulier de l'élément calorifuge présenté dans la figure 3 dans lequel l'élément calorifuge comporte des piliers présentant une section variable. FIG. 9 is a schematic side view of a particular embodiment of the heat insulating element shown in FIG. 3 in which the heat insulating element comprises pillars having a variable section.
• La figure 10 est une représentation schématique de côté d'un élément calorifuge dans lequel le panneau de couvercle renforcé comporte trois panneaux espacés.  Figure 10 is a schematic side view of a heat insulating member in which the reinforced cover panel has three spaced panels.
• La figure 11 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.  • Figure 11 is a schematic schematic representation of a tank vessel LNG tank and a loading / unloading terminal of the tank.
· La figure 12 représente schématiquement de côté le caisson de la figure 3. FIG. 12 is a diagrammatic side view of the box of FIG.
La figure 1 représente des parois étanches et isolantes d'une cuve intégrée dans une structure porteuse d'un navire.  Figure 1 shows sealed and insulating walls of a vessel integrated in a carrying structure of a ship.
La structure porteuse de la cuve est ici constituée par la coque interne d'un navire à double coque, dont on a représenté la paroi par le chiffre 1. Sur chaque paroi 1 de la structure porteuse, une paroi correspondante de la cuve est réalisée par superposition de, successivement, une couche d'isolation secondaire 2, une barrière étanche secondaire 3, une couche d'isolation primaire 4 et une barrière étanche primaire 5. The bearing structure of the tank is constituted by the inner hull of a double-hulled vessel, whose wall is represented by the number 1. On each wall 1 of the supporting structure, a corresponding wall of the tank is made by superposition of, successively, a secondary insulation layer 2, a secondary watertight barrier 3, a primary insulation layer 4 and a primary watertight barrier 5 .
La couche d'isolation primaire 4 et la couche d'isolation secondaire 2 sont constituées d'éléments calorifuges et plus particulièrement de caissons calorifuges parallélépipédiques 6 et 7 juxtaposés selon un motif régulier. Les caissons primaires 7 et les caissons secondaires 6 forment ainsi une surface sensiblement plane qui porte respectivement la barrière étanche primaire 5 et la barrière étanche secondaire 3.  The primary insulation layer 4 and the secondary insulation layer 2 consist of heat-insulating elements and more particularly heat-insulated parallelepipedic boxes 6 and 7 juxtaposed in a regular pattern. The primary caissons 7 and the secondary caissons 6 thus form a substantially flat surface which carries respectively the primary watertight barrier 5 and the secondary watertight barrier 3.
La barrière étanche primaire 5 et la barrière étanche secondaire 3 sont constituées de virures en invar 8 parallèles à bords relevés, qui sont disposées alternativement avec des supports de soudure 9 allongés, également en invar. Plus précisément, les supports de soudure 9 s'étendent perpendiculairement à la paroi et sont retenus à chaque fois à la couche d'isolation 2 ou 4 sous-jacente, par exemple en étant logés dans des rainures en forme de T inversé 10 ménagées dans des panneaux de couvercles 11 des caissons 6 et 7. Les bords relevés des virures 8 sont soudés le long des supports de soudures 9.  The primary watertight barrier 5 and the secondary watertight barrier 3 consist of parallel invar strakes 8 with raised edges, which are alternately arranged with elongate welding supports 9, also in invar. More specifically, the soldering supports 9 extend perpendicularly to the wall and are retained each time at the underlying insulation layer 2 or 4, for example by being housed in inverted T-shaped grooves 10 formed in lids panels 11 of the boxes 6 and 7. The raised edges of the strakes 8 are welded along the weld supports 9.
Les caissons isolant primaires 7 et les caissons isolants secondaires 6 sont maintenus sur la structure porteuse par l'intermédiaire d'organes d'ancrage 12. En particulier, les organes d'ancrages 12 de la couche isolante secondaire 2 sont fixés à la paroi de cuve 1 par l'intermédiaire de goujons 13 soudés perpendiculairement à la paroi 1.  The primary insulating boxes 7 and the secondary insulating boxes 6 are held on the supporting structure by means of anchoring members 12. In particular, the anchoring members 12 of the secondary insulating layer 2 are fixed to the wall tank 1 through studs 13 welded perpendicularly to the wall 1.
La figure 2 illustre la structure d'un caisson 15 qui peut être mis en œuvre dans une telle paroi de cuve.  Figure 2 illustrates the structure of a box 15 which can be implemented in such a tank wall.
Le caisson 15 présente un panneau de fond 16 sur lequel sont placés des échelles 17 constituées de rangées de piliers 18 s 'étendant perpendiculairement au panneau de fond 16, d'une latte 19 et d'une poutre 20. Chaque rangée de pilier 18 s'appuie sur le panneau de fond 16 par l'intermédiaire de la latte 19 et porte la poutre 20 qui supporte le panneau de couvercle 11 et est fixée à celui-ci. L'assemblage des échelles 17 et leur fixation sur les panneaux est réalisée à l'aide d'éléments de fixation, par exemple par agrafage. Une garniture calorifuge 21 est disposée entre le panneau de fond 16 et le panneau de couvercle 11 et entoure les piliers 18.  The box 15 has a bottom panel 16 on which are placed ladders 17 consisting of rows of pillars 18 extending perpendicularly to the bottom panel 16, a batten 19 and a beam 20. Each row of pillar 18 s presses the bottom panel 16 through the batten 19 and carries the beam 20 which supports the cover panel 11 and is attached thereto. The assembly of the ladders 17 and their attachment to the panels is carried out using fastening elements, for example by stapling. A heat-insulating lining 21 is disposed between the bottom panel 16 and the lid panel 11 and surrounds the pillars 18.
Les poutres 20 permettent de rigidifier le panneau de couvercle 11 et de repartir la charge lorsque le panneau est soumis aux contraintes qui sont par exemple exercées par le fluide présent à l'intérieur de la cuve et qui sont schématisés ici par les flèches 22, par exemple, ces contraintes peuvent être dues au ballotement du fluide dans la cuve. Toutefois, lorsque l'élément calorifuge est soumis à ces contraintes, le panneau de couvercle 11 tend à se déformer et à gauchir entre deux échelles 17, sous l'effet de la pression, selon les courbes schématisées par les courbes 24. Cette déformation tend à provoquer la rotation des poutres 20 latérales située de chaque côté du plan médian du caisson 15. Cette rotation est illustrée par les lignes 23. Cette déformation et cette rotation entraine donc la flexion des piliers 18 latéraux situés sur les échelles de chaque côté du plan médian de l'élément calorifuge 15 vers l'extérieur du caisson, tel que cela est illustré par la courbe 25. Le pilier est donc fragilisé par ce fléchissement 25, qui s'ajoute aux contraintes de compression exercées sur les piliers 18. The beams 20 make it possible to stiffen the cover panel 11 and to restart the load when the panel is subjected to the stresses which are for example exerted by the fluid present inside the tank and which are schematized here by the arrows 22, by for example, these constraints may be due to the sloshing of the fluid in the tank. However, when the heat-insulating element is subjected to these constraints, the cover panel 11 tends to deform and warp between two scales 17, under the effect of pressure, along the curves schematized by the curves 24. This deformation tends to cause the rotation of the lateral beams located on each side of the median plane of the caisson 15. This rotation is illustrated by the lines 23. This deformation and this rotation thus causes the bending of the lateral pillars 18 located on the scales on each side of the plane. median of the insulating element 15 towards the outside of the box, as shown by the curve 25. The pillar is thus weakened by this deflection 25, which is added to the compressive stresses exerted on the pillars 18.
Les éléments de fixation entre les poutres et les différents éléments du caisson 15 sont ainsi fortement sollicités, ce qui peut provoquer leur désolidarisation. De plus, cette déformation provoque une mauvaise répartition de la charge au travers des piliers 18. En effet, comme cela est représenté par les flèches 26 et 27, la charge 26 exercée par les piliers au centre du caisson 15 est plus beaucoup plus importante que la charge 27 exercée par les piliers 20 latéraux.  The fasteners between the beams and the various elements of the box 15 are thus strongly stressed, which can cause their separation. In addition, this deformation causes a poor distribution of the load through the pillars 18. Indeed, as represented by the arrows 26 and 27, the load 26 exerted by the pillars in the center of the box 15 is much larger than the load 27 exerted by the lateral pillars 20.
Pour palier à ces inconvénients, le caisson 15 peut être remplacé par un caisson renforcé 30 tel qu'illustré dans la figure 3. Un tel caisson 30 comporte un panneau de fond 31 sur lequel sont fixées des lattes 32. Une rangée de piliers 33 est positionnée et fixées à chaque fois au dessus d'une latte 32 correspondante. Un panneau de couvercle renforcé 34 est attaché sur les piliers 33. Les piliers 33 permettent notamment la transmission des contraintes exercées sur le panneau de couvercle 34 à la paroi 1 et ont donc une fonction de résistance à la compression. Une garniture calorifuge, non représentée, remplie l'espace entre les piliers et peut par exemple être constituée d'une mousse isolante coulée entre les piliers 33 ou un bloc de mousse usiné pour s'adapter aux piliers 33.  To overcome these disadvantages, the box 15 can be replaced by a reinforced box 30 as shown in Figure 3. Such box 30 has a bottom panel 31 on which are attached slats 32. A row of pillars 33 is positioned and fixed each time above a batten 32 corresponding. A reinforced cover panel 34 is attached to the pillars 33. The pillars 33 allow in particular the transmission of the stresses exerted on the cover panel 34 to the wall 1 and therefore have a compressive strength function. A heat-insulating lining, not shown, fills the space between the pillars and may for example consist of an insulating foam cast between the pillars 33 or a block of foam machined to fit the pillars 33.
Les rangées de piliers 33 successives sont décalées les unes par rapport aux autre. The rows of successive pillars 33 are offset relative to each other.
En effet, les piliers 33 des deux rangées successives 29 et 39 comportent des piliers 33 espacés selon un même espacement régulier, toutefois, les deux rangées de piliers 33 sont décalées dans le sens de leur longueur d'un demi-espacement. Une telle disposition permet un bon compromis entre le nombre de piliers 33 dans le caisson 30 et la bonne répartition de la charge. Indeed, the pillars 33 of the two successive rows 29 and 39 comprise pillars 33 spaced at the same regular spacing, however, the two rows of pillars 33 are offset in the direction of their length by half a spacing. Such an arrangement allows a good compromise between the number of pillars 33 in the box 30 and the good distribution of the load.
Le panneau de couvercle renforcé 34 comporte un panneau supérieur 35 et un panneau inférieur 36 chacun présentant une épaisseur de 15mm et espacés par une série de poutres pleines 37 parallèles. En particulier, les poutres 37 s'étendent parallèlement aux côtés longitudinaux du caisson 30. Une poutre 37 est à chaque fois positionnée le long et au dessus d'une rangée de piliers 33. Les poutres 37 présentent une section rectangulaire et une épaisseur de 15mm. Toutefois, ces poutres peuvent aussi présenter une section trapézoïdale. Les poutres 37 et les panneaux 35 et 36 sont liés rigidement, ainsi lorsque le panneau supérieur 35 est soumis aux contraintes exercées par le fluide et tend à gauchir, le panneau inférieur 36 travaille en traction ce qui empêche la rotation des poutres 37. Par ailleurs, les poutres 37 étant immobilisées par le panneau inférieur 36, la déformation du panneau supérieur 35 est atténuée. The reinforced cover panel 34 has an upper panel 35 and a lower panel 36 each having a thickness of 15mm and spaced apart by a series of parallel solid beams 37. In particular, the beams 37 extend parallel to the longitudinal sides of the box 30. A beam 37 is each time positioned along and at the Above a row of pillars 33. The beams 37 have a rectangular section and a thickness of 15mm. However, these beams may also have a trapezoidal section. The beams 37 and the panels 35 and 36 are rigidly connected, thus when the upper panel 35 is subjected to the stresses exerted by the fluid and tends to warp, the lower panel 36 works in tension which prevents the rotation of the beams 37. Moreover , the beams 37 being immobilized by the lower panel 36, the deformation of the upper panel 35 is attenuated.
Le travail en traction du panneau 36 est illustré dans la figure 12. Dans cette figure, on voit que les panneaux 35 et 36 sont fixés aux poutres 37 à l'aide d'agrafes 90. On peut distinguer deux poutres 37 latérales et une poutre 37 centrale. La ligne 91 indique la courbe selon laquelle le panneau supérieur 35 tend à gauchir lorsqu'il est soumis à des contraintes de compression 94. Lorsque le panneau supérieur 35 tend à se déformer entre une poutre 37 centrale et une poutre 37 latérale selon la ligne 91, le panneau supérieur 35 exerce des contraintes sur les poutres 37 par l'intermédiaire des agrafes 90. Ces contraintes tendent à provoquer la rotation des poutres 37 comme cela est illustré par les lignes 92. Or, le panneau inférieur 36 est lui aussi fixé aux poutres 37, ainsi, la rotation des poutres 37 est atténuée. En effet, la rotation des poutres génère des contraintes sur le panneau inférieur 36 qui provoque le travail en traction du panneau inférieur 36 entre lesdites poutres 37 comme cela est représenté par les flèches 93. En d'autres termes, le panneau inférieur 36 empêche la rotation des poutres par l'intermédiaire des agrafes 90. De cette manière, la rotation des poutres 37 est réduite, et donc la flexion des piliers 33 sous jacents induite par cette rotation est réduite. Ainsi, les contraintes de compression exercées sur l'élément calorifuge sont mieux reprises par les piliers 33.  The tensile work of the panel 36 is illustrated in FIG. 12. In this figure, it can be seen that the panels 35 and 36 are fixed to the beams 37 by means of staples 90. Two lateral beams 37 and a beam can be distinguished. 37 central. Line 91 indicates the curve in which the top panel 35 tends to warp when subjected to compressive stresses 94. When the top panel 35 tends to deform between a central beam 37 and a lateral beam 37 along line 91 , the upper panel 35 exerts stresses on the beams 37 via the clips 90. These stresses tend to cause the rotation of the beams 37 as illustrated by the lines 92. Now, the lower panel 36 is also fixed to beams 37, thus, the rotation of the beams 37 is attenuated. Indeed, the rotation of the beams generates stresses on the lower panel 36 which causes the tensile work of the lower panel 36 between said beams 37 as represented by the arrows 93. In other words, the lower panel 36 prevents the rotation of the beams through the staples 90. In this way, the rotation of the beams 37 is reduced, and thus the bending of the underlying pillars 33 induced by this rotation is reduced. Thus, the compressive stresses exerted on the heat-insulating element are better taken up by the pillars 33.
Une telle structure de panneau de couvercle renforcé 35 permet d'obtenir un couvercle 35 qui présente une bonne rigidité et qui répartit de manière efficace la charge en cas de contrainte localisée. Par ailleurs, une telle structure de panneau de couvercle 35 permet de fournir des cuves étanches et thermiquement isolantes présentant un bon compromis entre les performances thermomécaniques et le coût d'une telle cuve.  Such a reinforced cover panel structure 35 provides a cover 35 which has good rigidity and which effectively distributes the load in case of localized stress. Moreover, such a lid panel structure 35 can provide sealed and thermally insulating tanks with a good compromise between the thermomechanical performance and the cost of such a tank.
Chaque poutre 37 est espacée des autres poutres 37 de manière à délimiter un espace entre deux poutres 37 et entre les panneaux 35 et 36. Ces espaces forment des canaux 38 de circulation pour les fluides entre les côtés de l'élément calorifuge. La juxtaposition d'élément calorifuge permet ainsi de former un circuit dans la paroi de la cuve dans lequel il est possible d'injecter un gaz neutre pour neutraliser la paroi de la cuve et ainsi éviter tout risque d'explosion en cas de fuite en présence d'oxygène. Par ailleurs, un tel circuit gaz permet la détection de fuite dans les barrières étanches 3 et 5. Each beam 37 is spaced from the other beams 37 so as to delimit a space between two beams 37 and between the panels 35 and 36. These spaces form channels 38 for circulating fluids between the sides of the heat insulating element. The juxtaposition of heat-insulating element thus makes it possible to form a circuit in the wall of the tank in which it is possible to inject a neutral gas to neutralize the wall of the tank and thus avoid any risk of explosion in case of leakage in the presence of oxygen. Moreover, such a gas circuit makes it possible to detect leakage in the impervious barriers 3 and 5.
Eventuellement, les poutres 37 peuvent être percées ou usinées pour réaliser des passages permettant la circulation de fluides entre les différents canaux 38 et ainsi permettre la circulation des gaz dans plusieurs directions au sein du caisson 30.  Optionally, the beams 37 may be drilled or machined to provide passages allowing the flow of fluids between the different channels 38 and thus allow the flow of gases in several directions within the box 30.
Pour améliorer les capacités de résistance thermique du caisson isolant 30, une garniture calorifuge poreuse peut être mise en place dans les canaux 38. Une telle garniture calorifuge peut par exemple consister en une couche de laine de verre, ou de la perlite expansée.  In order to improve the thermal resistance capabilities of the insulating box 30, a porous heat-insulating lining may be put in place in the channels 38. Such a heat-insulating lining may for example consist of a glass wool layer, or expanded perlite.
Dans d'autre mode de réalisation, l'espace entre les poutres 37 peut être comblé à l'aide d'une mousse isolante si un circuit de circulation de fluide n'est pas nécessaire dans les panneaux renforcé 35.  In another embodiment, the space between the beams 37 can be filled with an insulating foam if a fluid circulation circuit is not required in the reinforced panels 35.
Dans d'autre mode de réalisations les poutres 37 peuvent s'étendre selon une direction transversale par rapport à la direction longitudinale de l'élément calorifuge.  In another embodiment, the beams 37 may extend in a direction transverse to the longitudinal direction of the heat-insulating element.
Le caisson décrit ci-dessus peut être fabriqué de diverses manières. Par exemple dans un premier procédé, le panneau de fond 31, les lattes 32 et les piliers 33 sont assemblés par agrafage. La garniture calorifuge 21 est ensuite insérée ou injectée entre les piliers. Le panneau inférieur 36 est agrafé aux piliers 33 dans un processus manuel ou automatisé, puis les poutres 37 sont agrafées au panneau inférieur 36. L'éventuelle garniture calorifuge poreuse est insérée entre les poutres 37, et le panneau supérieur 35 est enfin agrafé sur les poutres 37.  The box described above can be manufactured in various ways. For example in a first method, the bottom panel 31, the slats 32 and the pillars 33 are assembled by stapling. The heat-insulating lining 21 is then inserted or injected between the pillars. The lower panel 36 is stapled to the pillars 33 in a manual or automated process, then the beams 37 are stapled to the lower panel 36. Any porous lagging is inserted between the beams 37, and the top panel 35 is finally stapled on the beams 37.
Dans un autre procédé, la garniture calorifuge 21 est un bloc de mousse qui est usiné pour réaliser des trous. Les piliers 33 sont insérés dans les trous, puis les lattes 32 et le panneau de fond 31, agrafés aux piliers 33. Le panneau de couvercle renforcé 34 est pré- assemblé de manière indépendante et percé au niveau de la position des piliers 33. Le panneau de couvercle renforcé 34 est ensuite positionné sur les piliers 33 et vissé aux piliers 33 au travers des perçages.  In another method, lagging 21 is a block of foam that is machined to make holes. The pillars 33 are inserted into the holes, then the slats 32 and the bottom panel 31, stapled to the pillars 33. The reinforced lid panel 34 is preassembled independently and pierced at the position of the pillars 33. reinforced cover panel 34 is then positioned on the pillars 33 and screwed to the pillars 33 through the holes.
D'autre variantes du panneau de couvercle renforcé 34 vont maintenant être décrite en référence aux figures 4 à 8.  Other variants of the reinforced lid panel 34 will now be described with reference to Figures 4 to 8.
Les figures 4 et 5 présentent chacune un caisson 40 et 41 similaire au caisson 30 dans lequel l'espacement entre le panneau inférieur 36 et le panneau supérieur 35 est assuré par une structure en forme de grille respectivement 42 et 46.  Figures 4 and 5 each have a box 40 and 41 similar to the box 30 in which the spacing between the lower panel 36 and the upper panel 35 is provided by a grid-like structure respectively 42 and 46.
La structure 42 présente la forme d'un quadrillage d'un premier ensemble de poutres 43 et un second ensemble de poutres 44, les poutres 43 étant parallèles à un premier côté du panneau inférieur et les poutres 44 s 'étendant
Figure imgf000012_0001
aux poutres 43. Les poutres 44 du second ensemble s'étendent au droit des rangées de piliers 29 et 39 alors que les poutres 43 s'étendent transversalement par rapport aux rangées 29 et 39 tout en s'étendant au droit des piliers de plusieurs rangées 39 non décalées. Ainsi, la grille présente des intersections 45 directement au dessus de piliers 33. Les poutres 44 et les poutres 43 sont chacune en appui à la fois sur le panneau inférieur 36 et supérieur 35.
The structure 42 has the form of a grid of a first set of beams 43 and a second set of beams 44, the beams 43 being parallel to a first side of the bottom panel and the beams 44 extending
Figure imgf000012_0001
43. The beams 44 of the second set extend in line with the rows of pillars 29 and 39 whereas the beams 43 extend transversely with respect to the rows 29 and 39 while extending to the right of the pillars of several rows. 39 not shifted. Thus, the grid has intersections 45 directly above pillars 33. Beams 44 and beams 43 are each supported on both lower panel 36 and upper 35.
De manière analogue, la grille 46 présente des croisements 47 situés directement au dessus des piliers 33. Toutefois, dans ce mode de réalisation, les éléments 48 constituant la grille 46 ne s'étendent pas parallèlement aux côtés du caisson 41. En effet, ceux-ci s'étendent à chaque fois au dessus d'un pilier 33 de chaque rangée 39 et 29 successive décalée.  Similarly, the grid 46 has crossings 47 located directly above the pillars 33. However, in this embodiment, the elements 48 constituting the grid 46 do not extend parallel to the sides of the box 41. Indeed, those they extend each time above a pillar 33 of each successive row 39 and 29 shifted.
Les grilles 40 et 41 peuvent être réalisées par un assemblage de pièces allongées, ou par moulage.  The grids 40 and 41 can be made by an assembly of elongated parts, or by molding.
D'autres variantes du caisson 30 sont présentées dans les figures 6 et 7.  Other variants of the box 30 are shown in FIGS. 6 and 7.
Dans le caisson 50 de la figure 6, les éléments espaçant le panneau inférieur 36 et le panneau supérieur 35 sont remplacés par une structure en nid d'abeilles 49 qui recouvre le panneau inférieur 36. De manière similaire aux modes de réalisations présentés ci-dessus la structure en nid d'abeilles 49 peut être percée ou usinée pour réaliser des passages permettant la circulation de fluides et ainsi permettre la circulation des gaz au sein du caisson.  In the box 50 of Figure 6, the elements spacing the lower panel 36 and the upper panel 35 are replaced by a honeycomb structure 49 which covers the bottom panel 36. Similar to the embodiments presented above the honeycomb structure 49 can be drilled or machined to make passages allowing the circulation of fluids and thus allow the circulation of gases within the box.
Alternativement, l'élément qui maintient les panneaux 35 et 36 espacés peut être une couche de mousse haute densité qui recouvre le panneau 35 et qui est collée sur le panneau inférieur 36 et le panneau supérieur 35.  Alternatively, the element that holds the panels 35 and 36 spaced apart may be a layer of high density foam that covers the panel 35 and is adhered to the bottom panel 36 and the top panel 35.
La figure 7 est une variante 51 du caisson 30 dans laquelle les poutres pleines 37 sont remplacées par des profilés métalliques 52 formés ou extradés. Une vue en coupe permettant d'apprécier la section du profilé métallique 52 est illustrée sur la figure 8. a. Le profilé métallique 52 présente une partie en forme de U 53 dont la base du U 54 est plane et s'appuie sur le panneau inférieur 36. Deux ailes 55 s'étendent vers l'extérieur des branches du U est s'appuient sur le panneau supérieur 35.  Figure 7 is a variant 51 of the box 30 in which the solid beams 37 are replaced by metal profiles 52 formed or extruded. A sectional view to appreciate the section of the metal section 52 is illustrated in Figure 8. a. The metal profile 52 has a U-shaped portion 53 whose base of the U 54 is flat and rests on the lower panel 36. Two wings 55 extend outwardly from the branches of the U is supported on the top panel 35.
Les figures 8.b et 8.c présentent deux autres variantes 56 et 57 de profilés métalliques qui peuvent se substituer au profilé métallique 52. Dans les figures 8. a à 8.c, la position des piliers est représentée par une ligne 59.  Figures 8.b and 8.c show two other variants 56 and 57 of metal profiles that can be substituted for the metal section 52. In Figures 8. a to 8.c, the position of the pillars is represented by a line 59.
En particulier, le profilé métallique 56 est un profilé comportant une section en forme de U dont les branches du U 58 s'appuient respectivement sur le panneau inférieur 35 et le panneau supérieur 36. Un profilé 56 est positionné de chaque côté d'un pilier, de manière à ce que les branches 58 des deux profilés 56 ainsi positionnés s'opposent. Ainsi, un espace est ménagé entre les deux profilés 56 et permet de fixer le panneau inférieur 36 sur les piliers 33 lorsque les profilés 56 sont déjà attachés au panneau inférieur 36. Le profilé métallique 57 présente quant à lui une section sensiblement rectangulaire. In particular, the metal section 56 is a profile comprising a U-shaped section whose U 58 branches bear respectively on the lower panel 35 and the upper panel 36. A profile 56 is positioned on each side of a pillar, so that the legs 58 of the two sections 56 thus positioned oppose each other. Thus, a space is provided between the two profiles 56 and makes it possible to fix the lower panel 36 on the pillars 33 when the profiles 56 are already attached to the lower panel 36. The metal profile 57 has a substantially rectangular section.
De manière alternative, les profilés peuvent être réalisés à l'aide de matériaux composites extradés ou formés.  Alternatively, the profiles can be made using composite materials extruded or formed.
Les panneaux de couvercle renforcés 34 présentés ci-dessus peuvent être fixés à tout type de piliers de petite section. Par exemple, les piliers 33 présentés dans les figures 3 à 7 sont des piliers à section rectangulaire pleine. La section des piliers peut aussi être carrée ou cylindrique. Alternativement, les piliers peuvent être creux pour augmenter leur résistance thermique et éventuellement rempli d'un matériau isolant. Dans d'autres modes de réalisation, les piliers peuvent présenter une section en H. De tels piliers peuvent être réalisés par l'usinage d'un pilier de section rectangulaire ou par l'assemblage de trois lattes en contreplaqué de manière à former une section en forme de H. Un pilier à section en H présente un bon compromis entre la rigidité, la résistance thermique et le poids du pilier.  The reinforced cover panels 34 shown above may be attached to any type of small section pillars. For example, the pillars 33 shown in Figures 3 to 7 are pillars with full rectangular section. The section of the pillars can also be square or cylindrical. Alternatively, the pillars may be hollow to increase their thermal resistance and possibly filled with an insulating material. In other embodiments, the pillars may have a section H. Such pillars may be made by machining a pillar of rectangular section or the assembly of three plywood slats so as to form a section H-shaped pillar has a good compromise between rigidity, thermal resistance and weight of the pillar.
Un autre type de pilier est représenté schématiquement dans la figure 9. En effet, les piliers 60 représentés dans cette figure présentent une section qui varie en fonction de la hauteur. Plus précisément, le pilier 60 comporte une portion cylindrique centrale 61 située entre deux portions tronconiques 62. Les bases des portions tronconiques 62 sont respectivement en appui sur les panneaux 31 et 36. Une augmentation de la section au niveau des panneaux 31 et 36 permet de mieux répartir la charge dans les piliers 60 et évite l'enfoncement des piliers 60 dans les couvercles 31 et 36. De plus, une section plus importante au niveau des panneaux 31 et 36 permet au pilier 60 de présenter une bonne résistance au couple exercé par les couvercles 31 et 36 lors de leur gauchissement et donc de présenter une bonne résistance à la flexion.  Another type of pillar is shown diagrammatically in FIG. 9. Indeed, the pillars 60 represented in this figure have a section that varies according to the height. More specifically, the pillar 60 comprises a central cylindrical portion 61 located between two frustoconical portions 62. The bases of the frustoconical portions 62 are respectively supported on the panels 31 and 36. An increase in the section at the panels 31 and 36 allows better distribute the load in the pillars 60 and avoids the depression of the pillars 60 in the covers 31 and 36. In addition, a larger section at the panels 31 and 36 allows the pillar 60 to have good resistance to torque exerted by the covers 31 and 36 when they warp and therefore have a good resistance to bending.
Les piliers 60 peuvent être obtenus par exemple à l'aide de matériaux thermoplastiques ou thermodurcissables, éventuellement renforcés de fibres.  The pillars 60 can be obtained for example using thermoplastic or thermosetting materials, possibly reinforced with fibers.
Bien entendu, la répartition des poutres 37 ou des éléments d'espacement par rapport aux piliers 33 peut être différente. Par exemple les poutres 37 ne sont pas nécessairement positionnées au droit des rangées de piliers 29 et 39 mais peuvent être disposées entre les rangées de piliers 29 et 39. On a décrit précédemment un panneau de couvercle renforcé 34 composé de deux panneaux. Toutefois, des panneaux de couvercle renforcés comprenant des panneaux supplémentaires peuvent être mis en oeuvre. Un tel panneau renforcé 63 est schématisé dans la figure 10. Of course, the distribution of the beams 37 or spacers relative to the pillars 33 may be different. For example the beams 37 are not necessarily positioned at the right rows of pillars 29 and 39 but can be arranged between the rows of pillars 29 and 39. A reinforced cover panel 34 consisting of two panels has been previously described. However, reinforced cover panels with additional panels can be implemented. Such a reinforced panel 63 is shown schematically in FIG.
Le panneau renforcé 63, comprend un premier panneau 64 en appui sur des piliers The reinforced panel 63 comprises a first panel 64 resting on pillars
84, et supportant une première série de poutres 65. Les poutres 65 portent un deuxième panneau 66 qui lui-même porte une deuxième série de poutres 67 superposée à la première série de poutres 65. La deuxième série de poutres 67 soutient un panneau supérieur 68. L'ensemble des poutres 65 et 67, panneaux 64, 68 et 68 et piliers 84 étant reliés rigidement. Comme cela est illustré par les lignes 69, 82 et 83, les contraintes de flexion sont ainsi progressivement reprises par le travail en traction du second panneau 66 et du premier panneau 64. Cette reprise des contraintes en plusieurs étages permet de fortement réduire les contraintes de flexions au niveau des piliers 84 et permet une bonne répartition de la charge exercée sur le panneau supérieur 68 vers l'ensemble des piliers 84. Bien entendu, la répartition des poutres 65 et 67 peut être différente. Par exemple les poutres 65 et 67 ne sont pas nécessairement superposées et peuvent alternées. 84, and supporting a first series of beams 65. The beams 65 carry a second panel 66 which itself carries a second series of beams 67 superimposed on the first series of beams 65. The second series of beams 67 supports an upper panel 68 The set of beams 65 and 67, panels 64, 68 and 68 and pillars 84 being rigidly connected. As illustrated by the lines 69, 82 and 83, the bending stresses are thus progressively taken up by the traction work of the second panel 66 and the first panel 64. This recovery of the stresses in several stages makes it possible to greatly reduce the stresses of bending at the pillars 84 and allows a good distribution of the load exerted on the upper panel 68 to all the pillars 84. Of course, the distribution of the beams 65 and 67 may be different. For example the beams 65 and 67 are not necessarily superimposed and can alternate.
Tout type de garniture calorifuge 21 peut être utilisé pour réaliser les caissons décrits ci-dessus. Typiquement, une telle garniture peut par exemple consister en un bloc de mousse usiné, ou une mousse coulée entre les piliers. Une telle mousse peut être renforcée ou non. Alternativement, la garniture peut être constituée d'un matériau à porosité d'ordre de grandeur nanométrique de type aérogel. Les aérogels peuvent être conditionnés sous différentes formes, par exemple sous la forme de poudre, de billes, de fibres non tissées, de tissu, etc. Any type of heat seal 21 may be used to make the boxes described above. Typically, such a lining may for example consist of a block of machined foam, or a foam cast between the pillars. Such a foam can be reinforced or not. Alternatively, the lining may consist of a nanoscale porosity material of airgel type. Aerogels can be packaged in different forms, for example in the form of powder, beads, nonwoven fibers, fabric, etc.
La fixation des piliers, panneaux et éléments d'espacement entre les panneaux inférieur et supérieur peut être réalisée par des vis. Toutefois, il est aussi possible de réaliser leur liaison par collage, agrafage ou clouage.  The fixing of the pillars, panels and spacers between the lower and upper panels can be achieved by screws. However, it is also possible to make their connection by gluing, stapling or nailing.
Les panneaux, poutres et piliers peuvent être réalisés en contreplaqué ou en bois massif, par exemple en boulot, hêtre ou sapin. Ces éléments peuvent aussi être réalisés en bambou, en matériau composites, en plastique ou en métal.  The panels, beams and pillars can be made of plywood or solid wood, for example at work, beech or fir. These elements can also be made of bamboo, composite material, plastic or metal.
Les caissons présentés ci-dessus peuvent être mis en œuvre dans la couche d'isolation primaire 4 et/ou dans la couche d'isolation secondaire 2. Les panneaux de couvercle renforcés des caissons peuvent, par exemple présenter une épaisseur de 45mm. Toutefois, dans certains modes de réalisation de la paroi de cuve, la paroi de cuve présente une couche d'isolation primaire 4 et une couche d'isolation secondaire 2 dans lesquelles l'épaisseur des panneaux de couvercles renforcés est plus importante dans la couche d'isolation primaire 4 que dans la couche d'isolation secondaire 2. En effet, les contraintes exercées sur les panneaux de couvercle renforcés de la couche d'isolation secondaire 2 sont déjà en partie réparties par les caissons de la couche d'isolation primaire 4. Ainsi, il est possible d'utiliser un panneau de couvercle renforcé moins rigide et donc moins épais dans la couche d'isolation secondaire 2 par rapport la couche d'isolation primaire 4. Les cuves décrites ci-dessus peuvent être utilisées dans différents types d'installations telles que des installations terrestres ou dans un ouvrage flottant comme un navire méthanier ou autre. The boxes presented above can be implemented in the primary insulation layer 4 and / or in the secondary insulation layer 2. The reinforced lid panels of the boxes can, for example have a thickness of 45mm. However, in some embodiments of the vessel wall, the vessel wall has a primary insulation layer 4 and a secondary insulation layer 2 in which the thickness of the reinforced liner panels is greater in the protective layer. primary insulation 4 only in the secondary insulation layer 2. In fact, the stresses exerted on the reinforced cover panels of the secondary insulation layer 2 are already partly distributed by the caissons of the primary insulation layer 4 Thus, it is possible to use a reinforced rigid cover panel and therefore less thick in the secondary insulation layer 2 with respect to the primary insulation layer 4. The tanks described above can be used in different types installations such as land installations or in a floating structure such as a LNG tanker or other.
En référence à la figure 11 , une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque du navire, et deux barrières thermiquement isolantes agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire, et entre la barrière étanche secondaire et la double coque 72.  Referring to Figure 11, a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull of the vessel, and two thermally insulating barriers arranged respectively between the primary watertight barrier and secondary watertight barrier, and between secondary watertight barrier and double hull 72.
De manière connue en soi, des canalisations de chargement/déchargement disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriés, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.  In a manner known per se, loading / unloading lines arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
La figure 11 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. FIG. 11 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73. The movable arm 74 can be adapted to all gauges of LNG carriers . A connection pipe (not shown) extends inside the tower 78. The loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77. liquefied gas storage tanks 80 and connecting lines 81 connected by the underwater line 76 to the loading or unloading station 75. The underwater line 76 allows the transfer liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker 70 at great distance from the coast during the loading and unloading operations. unloading.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.  In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.  Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
L'usage du verbe «comporter», «comprendre» ou «inclure» et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou «une» pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.  The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.  In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante intégrée dans une structure porteuse pour contenir un fluide, dans laquelle une paroi de cuve comporte : une paroi porteuse (1),  1. Sealed and thermally insulating vessel integrated in a supporting structure for containing a fluid, in which a vessel wall comprises: a carrier wall (1),
une barrière d'étanchéité (3, 5),  a sealing barrier (3, 5),
une barrière d'isolation thermique (2, 4) retenue sur la paroi porteuse et portant la barrière d'étanchéité, la barrière d'isolation thermique étant constituée d'une pluralité d'éléments calorifuges (6, 7, 30, 40, 41, 50, 51) juxtaposés de manière à former une surface de support pour la barrière d'étanchéité,  a thermal insulation barrier (2, 4) retained on the supporting wall and carrying the sealing barrier, the thermal insulation barrier consisting of a plurality of heat-insulating elements (6, 7, 30, 40, 41 , 50, 51) juxtaposed to form a support surface for the sealing barrier,
un élément calorifuge présentant une forme sensiblement parallélépipédique et comportant : une garniture calorifuge (21), a heat-insulating element having a substantially parallelepipedal shape and comprising: a heat-insulating lining (21),
une pluralité de piliers (33, 60) traversant la garniture calorifuge perpendiculairement à la paroi de cuve,  a plurality of pillars (33, 60) passing through the lagging insert perpendicular to the vessel wall,
un panneau de couvercle (34) s 'étendant parallèlement à la paroi de cuve et porté par les piliers, le panneau de couvercle comportant :  a cover panel (34) extending parallel to the vessel wall and carried by the pillars, the cover panel comprising:
un panneau de répartition (36, 64) fixé sur les piliers et en appui sur les piliers, un élément d'espacement en appui et fixé sur le panneau de répartition, l'élément d'espacement comportant une pluralité de poutres (37, 43, 44, 52, 56, 57, 65) espacées les unes des autres et s 'étendant parallèlement au panneau de répartition,  a distribution panel (36, 64) fixed on the pillars and resting on the pillars, a spacer element supported and fixed on the distribution panel, the spacer having a plurality of beams (37, 43 , 44, 52, 56, 57, 65) spaced from each other and extending parallel to the distribution panel,
un panneau supérieur (35, 66) parallèle au panneau de répartition, fixé et supporté par la pluralité de poutres, le panneau supérieur reprenant les efforts de compression exercés sur l'élément calorifuge.  an upper panel (35, 66) parallel to the distribution panel, fixed and supported by the plurality of beams, the upper panel showing the compressive forces exerted on the heat insulating element.
2. Cuve selon la revendication 1, dans laquelle les poutres (37, 43) de ladite pluralité de poutres sont parallèles.  The vessel of claim 1, wherein the beams (37, 43) of said plurality of beams are parallel.
3. Cuve selon la revendication 1 ou 2, dans laquelle l'élément d'espacement présente la forme d'une grille (42, 46), lesdites poutres formant un premier ensemble de poutres (43) parallèles et ladite grille comportant un second ensemble de poutres (44) parallèles, le premier ensemble et le second ensemble se croisant et les deux ensembles de poutres définissant une surface d'appui inférieure en appui sur le panneau de répartition (36) et une surface de d'appui supérieure en appui sur le panneau supérieur (35).  3. Tank according to claim 1 or 2, wherein the spacer has the form of a grid (42, 46), said beams forming a first set of parallel beams (43) and said grid comprising a second set of beams (44) parallel, the first set and the second assembly intersecting and the two sets of beams defining a lower bearing surface resting on the distribution panel (36) and a bearing surface of upper support on the upper panel (35).
4. Cuve selon la revendication 3, dans laquelle le premier ensemble de poutres et le second ensemble de poutres s'entrecroisent au niveau d'intersections (45), chaque pilier (33, 60) étant à chaque fois positionné sous une intersection de la grille. 4. A vessel according to claim 3, wherein the first set of beams and the second set of beams intersect at intersections (45), each pillar (33, 60) being each time positioned at an intersection of the wire rack.
5. Cuve selon la revendication 3 ou 4, dans laquelle le panneau de répartition présente une forme rectangulaire et un ensemble de poutres (43, 44) s'étend selon une direction oblique par rapport aux côtés du panneau de répartition rectangulaire. 5. A vessel according to claim 3 or 4, wherein the distribution panel has a rectangular shape and a set of beams (43, 44) extends in a direction oblique to the sides of the rectangular distribution panel.
6. Cuve selon l'une des revendications 2 à 5, dans laquelle les piliers sont agencés en rangées de piliers (29, 39), une poutre étant positionnée superposée à une rangée de piliers respective.  6. Tank according to one of claims 2 to 5, wherein the pillars are arranged in rows of pillars (29, 39), a beam being positioned superimposed on a row of pillars respectively.
7. Cuve selon l'une des revendications 2 à 6, dans laquelle les poutres présentent une section trapézoïdale, les bases de la section trapézoïdale étant en appui respectivement sur le panneau de répartition (36) et sur le panneau supérieur (35).  7. Tank according to one of claims 2 to 6, wherein the beams have a trapezoidal section, the bases of the trapezoidal section bearing respectively on the distribution panel (36) and on the upper panel (35).
8. Cuve selon l'une des revendications 2 à 6, dans laquelle les poutres sont des profilés (52) ayant une section en forme de U, la base du U (54) étant en appui sur un des deux panneaux parmi le panneau de répartition et le panneau supérieur, des ailes (55) s'étendant depuis chaque branche du U vers l'extérieur du U et s'appuyant sur l'autre des deux panneaux parmi le panneau de répartition et le panneau supérieur.  8. Tank according to one of claims 2 to 6, wherein the beams are sections (52) having a U-shaped section, the base of the U (54) being supported on one of the two panels among the panel of distribution and the upper panel, wings (55) extending from each branch of the U to the outside of the U and resting on the other of the two panels among the distribution panel and the upper panel.
9. Cuve selon l'une des revendications 2 à 6, dans laquelle les poutres sont des profilés ayant une section en forme de U (56), la base du U s'étendant entre le panneau supérieur et le panneau de répartition, une première branche s'appuyant sur le panneau supérieur (35) et une deuxième branche s'appuyant sur le panneau de répartition (36).  9. Tank according to one of claims 2 to 6, wherein the beams are sections having a U-shaped section (56), the base of the U extending between the top panel and the distribution panel, a first branch resting on the upper panel (35) and a second branch resting on the distribution panel (36).
10. Cuve selon l'une des revendications 2 à 6, dans laquelle les poutres sont des profilés (57) de section rectangulaire.  10. Tank according to one of claims 2 to 6, wherein the beams are sections (57) of rectangular section.
11. Cuve étanche selon l'une des revendications 1 à 10, dans laquelle les poutres présentent une section de largeur orientée selon une direction parallèle au panneau de répartition comprise entre 9 et 50mm.  11. Sealed tank according to one of claims 1 to 10, wherein the beams have a width section oriented in a direction parallel to the distribution panel between 9 and 50mm.
12. Cuve selon l'une des revendications 1 à 11, dans laquelle l'élément d'espacement comporte un canal de circulation (38) de fluide s'étendant entre un premier côté de l'élément calorifuge et un second côté de l'élément calorifuge.  Tank according to one of Claims 1 to 11, in which the spacer element comprises a fluid circulation channel (38) extending between a first side of the heat-insulating element and a second side of the heat-insulating element. heat insulating element.
13. Cuve selon la revendication 12, dans laquelle le canal de circulation (38) est garni d'une garniture calorifuge poreuse.  13. The cell of claim 12, wherein the circulation channel (38) is lined with a porous insulating lining.
14. Cuve étanche selon l'une des revendications 1 à 13, dans laquelle le panneau de couvercle comporte en outre un élément d'espacement supérieur (67) en appui et fixé sur le panneau supérieur (66),  Watertight vessel according to one of claims 1 to 13, wherein the cover panel further comprises an upper spacer (67) supported and fixed on the upper panel (66),
et un second panneau supérieur (68), and a second upper panel (68),
le second panneau supérieur étant parallèle au panneau de répartition (65) et fixé et supporté par l'élément d'espacement supérieur (67). the second upper panel being parallel to the distribution panel (65) and fixed and supported by the upper spacer (67).
15. Cuve étanche selon l'une des revendications 1 à 14, dans laquelle les piliers sont agencés en rangées de piliers parallèles (29, 39), les piliers d'une rangée étant positionnés à un intervalle régulier, les piliers de deux rangées adjacentes étant décalés d'un demi-intervalle selon la direction de la rangée de pilier. 15. Sealed tank according to one of claims 1 to 14, wherein the pillars are arranged in rows of parallel pillars (29, 39), the pillars of a row being positioned at a regular interval, the pillars of two adjacent rows being offset by half a gap in the direction of the pillar row.
16. Cuve étanche selon l'une des revendications précédentes, dans laquelle l'épaisseur du panneau de répartition et l'épaisseur du panneau supérieur (35, 36, 64, 66, 68) selon une direction perpendiculaire au panneau de répartition sont comprises entre 6.5 et 30mm et l'épaisseur de l'élément d'espacement (37, 42, 43, 49, 52, 56, 57, 65) selon la direction perpendiculaire au panneau de répartition est comprise entre 6.5 et 50mm.  Watertight vessel according to one of the preceding claims, wherein the thickness of the distribution panel and the thickness of the top panel (35, 36, 64, 66, 68) in a direction perpendicular to the distribution panel are between 6.5 and 30mm and the thickness of the spacer element (37, 42, 43, 49, 52, 56, 57, 65) in the direction perpendicular to the distribution panel is between 6.5 and 50mm.
17. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l'une des revendications 1 à 16 disposée dans la double coque.  17. Ship (70) for the transport of a cold liquid product, the vessel comprising a double hull (72) and a tank (71) according to one of claims 1 to 16 disposed in the double hull.
18. Utilisation d'un navire (70) selon la revendication 17, dans laquelle on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71) pour effectuer le chargement ou déchargement du navire.  The use of a vessel (70) according to claim 17, wherein a cold liquid product is conveyed through insulated pipes (73, 79, 76, 81) to or from a floating or land storage facility (77). to or from the vessel (71) for loading or unloading the vessel.
19. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 17, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  19. Transfer system for a cold liquid product, the system comprising a ship (70) according to claim 17, insulated pipes (73, 79, 76, 81) arranged to connect the tank (71) installed in the hull. the vessel to a floating or land storage facility (77) and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
PCT/FR2013/051155 2012-06-07 2013-05-24 Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel WO2013182776A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157000240A KR102051355B1 (en) 2012-06-07 2013-05-24 Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel
AU2013273358A AU2013273358B2 (en) 2012-06-07 2013-05-24 Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel
CN201380026498.2A CN104334956B (en) 2012-06-07 2013-05-24 For comprising the insulating barrier element of the water-proof insulating container of a reinforcement cover plate
IN2337MUN2014 IN2014MN02337A (en) 2012-06-07 2014-11-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255316 2012-06-07
FR1255316A FR2991660B1 (en) 2012-06-07 2012-06-07 THERMALLY INSULATED, THERMALLY INSULATED TANK-INSULATING ELEMENT COMPRISING A REINFORCED COVER PANEL

Publications (1)

Publication Number Publication Date
WO2013182776A1 true WO2013182776A1 (en) 2013-12-12

Family

ID=47002977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051155 WO2013182776A1 (en) 2012-06-07 2013-05-24 Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel

Country Status (6)

Country Link
KR (1) KR102051355B1 (en)
CN (1) CN104334956B (en)
AU (1) AU2013273358B2 (en)
FR (1) FR2991660B1 (en)
IN (1) IN2014MN02337A (en)
WO (1) WO2013182776A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008164A1 (en) * 2013-07-02 2015-01-09 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATING TANK FOR STORAGE OF A FLUID
FR3030014A1 (en) * 2014-12-15 2016-06-17 Gaztransport Et Technigaz INSULATING BLOCK SUITABLE FOR MAKING AN INSULATING WALL IN A WATERPROOF TANK
WO2017207904A1 (en) 2016-06-01 2017-12-07 Gaztransport Et Technigaz Thermally-insulating sealed tank incorporated into a polyhedron-shaped load-bearing structure
WO2017207938A1 (en) 2016-06-01 2017-12-07 Gaztransport Et Technigaz Insulating block and thermally-insulating sealed tank built into a polyhedral load-bearing structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2068995A5 (en) * 1969-11-29 1971-09-03 Bridgestone Liquefied Gas Co
DE2441392A1 (en) * 1974-08-29 1976-03-18 Ishikawajima Harima Heavy Ind Ship insulated tank for liquid gas - with support ribs braced by insulation filling and wood strut framework
FR2877638A1 (en) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFYING ELEMENTS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502148B1 (en) * 1969-11-29 1975-01-23
FR2798902B1 (en) * 1999-09-29 2001-11-23 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A VESSEL CARRIER STRUCTURE AND METHOD OF MANUFACTURING INSULATING BOXES FOR USE IN THIS TANK
FR2877637B1 (en) * 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa WATERPROOF AND THERMALLY INSULATED TUBE WITH JUXTAPOSES
KR101122292B1 (en) * 2008-06-19 2012-03-21 삼성중공업 주식회사 Insulation strusture of lng carrier cargo tank and method for constructing the same
KR20100069375A (en) * 2008-12-16 2010-06-24 삼성중공업 주식회사 Insulation panel for lng tank
FR2944087B1 (en) * 2009-04-03 2011-04-08 Gaztransp Et Technigaz IMPROVEMENT FOR A WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED IN A CARRIER STRUCTURE
KR101053123B1 (en) * 2009-07-15 2011-08-02 강림인슈 주식회사 Insulation panel assembly for liquefied gas storage tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2068995A5 (en) * 1969-11-29 1971-09-03 Bridgestone Liquefied Gas Co
DE2441392A1 (en) * 1974-08-29 1976-03-18 Ishikawajima Harima Heavy Ind Ship insulated tank for liquid gas - with support ribs braced by insulation filling and wood strut framework
FR2877638A1 (en) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa THERMALLY INSULATED AND THERMALLY INSULATED TANK WITH COMPRESSION-RESISTANT CALORIFYING ELEMENTS

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008164A1 (en) * 2013-07-02 2015-01-09 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATING TANK FOR STORAGE OF A FLUID
WO2015001240A3 (en) * 2013-07-02 2015-04-02 Gaztransport Et Technigaz Sealed and thermally insulating tank for storing a fluid
KR20170099949A (en) * 2014-12-15 2017-09-01 가즈트랑스포르 에 떼끄니가즈 Insulating unit suitable for making an insulating wall in a sealed tank
WO2016097578A2 (en) 2014-12-15 2016-06-23 Gaztransport Et Technigaz Insulating unit suitable for making an insulating wall in a sealed tank
WO2016097578A3 (en) * 2014-12-15 2016-11-17 Gaztransport Et Technigaz Insulating unit suitable for making an insulating wall in a sealed tank
WO2017103500A1 (en) 2014-12-15 2017-06-22 Gaztransport Et Technigaz Insulating block suitable for manufacturing an insulating wall in a sealed tank
FR3030014A1 (en) * 2014-12-15 2016-06-17 Gaztransport Et Technigaz INSULATING BLOCK SUITABLE FOR MAKING AN INSULATING WALL IN A WATERPROOF TANK
CN107257900A (en) * 2014-12-15 2017-10-17 气体运输技术公司 Isolation block suitable for the isolation wall in seal groove is made
CN108700257A (en) * 2014-12-15 2018-10-23 气体运输技术公司 It is suitble to the insulating unit of the thermal wall in manufacture hermetically sealed can
CN107257900B (en) * 2014-12-15 2019-12-24 气体运输技术公司 Insulating block suitable for forming an insulating wall in a sealing groove
KR102422517B1 (en) * 2014-12-15 2022-07-19 가즈트랑스포르 에 떼끄니가즈 Insulating unit suitable for making an insulating wall in a sealed tank
WO2017207904A1 (en) 2016-06-01 2017-12-07 Gaztransport Et Technigaz Thermally-insulating sealed tank incorporated into a polyhedron-shaped load-bearing structure
WO2017207938A1 (en) 2016-06-01 2017-12-07 Gaztransport Et Technigaz Insulating block and thermally-insulating sealed tank built into a polyhedral load-bearing structure

Also Published As

Publication number Publication date
AU2013273358B2 (en) 2017-04-06
AU2013273358A1 (en) 2015-01-15
FR2991660B1 (en) 2014-07-18
CN104334956A (en) 2015-02-04
IN2014MN02337A (en) 2015-08-14
CN104334956B (en) 2016-08-24
FR2991660A1 (en) 2013-12-13
KR20150028285A (en) 2015-03-13
KR102051355B1 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
EP3362732B1 (en) Sealed and thermally insulating tank
EP2739896B1 (en) Insulating block for manufacturing a tank wall
WO2017103500A1 (en) Insulating block suitable for manufacturing an insulating wall in a sealed tank
FR2978748A1 (en) SEALED AND THERMALLY INSULATED TANK
WO2014096600A1 (en) Sealed, thermally insulating vessel
WO2017207938A1 (en) Insulating block and thermally-insulating sealed tank built into a polyhedral load-bearing structure
EP2880356B1 (en) Sealed and thermally insulating tank wall comprising spaced-apart support elements
FR3049678A1 (en) THERMALLY INSULATING EDGE BLOCK FOR THE MANUFACTURE OF A TANK WALL
WO2021074435A1 (en) Sealed and thermally insulating tank
WO2017207904A1 (en) Thermally-insulating sealed tank incorporated into a polyhedron-shaped load-bearing structure
WO2012123656A1 (en) Insulating block for producing a tight wall of a tank
EP3425260A1 (en) Sealed and thermally insulating vessel comprising an angle bar
EP3425261B1 (en) Sealed and thermally insulating vessel
WO2015001240A2 (en) Sealed and thermally insulating tank for storing a fluid
WO2020039134A1 (en) Thermally insulating and leaktight tank wall
WO2019239048A1 (en) Thermally insulating sealed tank
WO2017174938A1 (en) Thermally-insulating sealed tank
EP2986885B1 (en) Tight and thermally insulating vessel
WO2013182776A1 (en) Lagging element for a fluidtight and thermally insulated tank comprising a reinforced lid panel
WO2019239053A1 (en) Fluid-tight vessel provided with an undulating joint element
WO2023067026A1 (en) Sealed and thermally insulating tank
EP4179248A1 (en) Guiding structure for a tower for loading/unloading a tank intended for storing and/or transporting liquefied gas
FR3135773A1 (en) WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO A SUPPORT STRUCTURE
FR3110952A1 (en) Self-supporting body suitable for the support and thermal insulation of a waterproof membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157000240

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013273358

Country of ref document: AU

Date of ref document: 20130524

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13728489

Country of ref document: EP

Kind code of ref document: A1