EP3114387B1 - Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner - Google Patents

Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner Download PDF

Info

Publication number
EP3114387B1
EP3114387B1 EP15709264.4A EP15709264A EP3114387B1 EP 3114387 B1 EP3114387 B1 EP 3114387B1 EP 15709264 A EP15709264 A EP 15709264A EP 3114387 B1 EP3114387 B1 EP 3114387B1
Authority
EP
European Patent Office
Prior art keywords
vessel
deflection element
channels
elbow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15709264.4A
Other languages
German (de)
French (fr)
Other versions
EP3114387A1 (en
Inventor
Yannick DUBOIS
Sébastien DELANOE
Bruno Deletre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3114387A1 publication Critical patent/EP3114387A1/en
Application granted granted Critical
Publication of EP3114387B1 publication Critical patent/EP3114387B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/002Storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0325Aerogel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a cryogenic fluid.
  • LNG liquefied natural gas
  • these tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • sealed and thermally insulating vessels for the storage of liquefied natural gas comprising a plurality of walls, each tank wall having a multilayer structure presenting successively, in the direction of the thickness, since exterior to interior, a load-bearing structure formed by the double hull of a vessel and defining the general shape of the vessel, a secondary heat-insulating barrier retained at the load-bearing structure, a secondary waterproofing membrane resting against the barrier thermally insulating secondary, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied natural gas contained in the tank.
  • the thermally insulating barriers comprise insulating elements resting on the supporting structure or on the secondary sealing membrane and a gaseous phase. It is known to maintain the gas phase of one and / or the other of the thermally insulating barriers under an absolute pressure lower than the ambient atmospheric pressure, that is to say to a negative relative pressure, in order to increase the insulating power of said thermally insulating barriers.
  • a such a method is, for example, described in the French patent application FR 2535831 .
  • the document US4116150 is another example disclosing an angle arrangement of a sealed and insulating tank.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank having a thermally insulating barrier in which the pressure losses are limited and not exhibiting insulation defects.
  • the flow of gas at the corners of the tank is favored.
  • the bent channels in the thickness direction of the walls of the tank, the bent channels substantially follow the isothermal lines within the thermally insulating barrier so that the natural and forced convection is limited within the chamber. deflection element.
  • such a deflection element can promote the flow of gas within the thermally insulating barrier without locally creating insulation defects.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for transporting a fluid comprises a double hull and a said tank disposed in the double hull.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank of the vessel. ship.
  • the invention also provides a transfer system for a fluid, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating or ground storage facility. and a pump for driving a fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • Some aspects of the invention start from the idea of promoting the flow of gas between the different walls of a tank. Certain aspects of the invention start from the idea of promoting the circulation of gas between the walls of a tank in order to facilitate the placement of a thermally insulating barrier under negative relative pressures, particularly low, of the order of 10. at 1000 Pa. Some aspects of the invention start from the idea of facilitating the flow of inert gas within a thermally insulating barrier. Some aspects of the invention start from the idea of facilitating the pumping of a fluid present within a thermally insulating barrier in the event of a leakage of the carrier structure or of a sealing membrane.
  • the pumping of a fluid present in the thermally insulating barrier may in particular be necessary to drain the water, returned to the thermally insulating barrier, in case of damage to the double hull of the ship.
  • gas a nitrogen-ammonia mixture, tracer gases such as Helium, Nidron or others
  • FIG. 1 there is shown an angle structure of a sealed and thermally insulating tank for storing a fluid.
  • Such an angle structure is particularly suitable for a membrane cell as described, for example, in the document FR2683786 .
  • the general structure of such a tank is well known and has a polyhedral shape.
  • the wall of the tank comprises, from the outside to the inside of the tank, a supporting structure 1, a secondary heat-insulating barrier comprising heat insulating elements formed of insulating boxes juxtaposed on the support structure and anchored thereto by means of secondary holding members, a secondary sealing membrane carried by the insulating boxes of the secondary thermally insulating barrier, a primary thermally insulating barrier comprising heat insulating elements formed of insulating boxes juxtaposed and anchored to the secondary sealing membrane by means of primary retention and a primary waterproofing membrane carried by the insulating boxes and intended to be in contact with the cryogenic fluid contained in the tank.
  • the supporting structure 1 may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties.
  • the supporting structure may in particular be formed by the hull or the double hull of a ship.
  • the carrying structure comprises a plurality of walls defining the general shape of the tank.
  • the primary and secondary sealing membranes are, for example, constituted by a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges to parallel welding supports held on the insulating boxes.
  • the metal strakes are, for example, made of Invar®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2 ⁇ 10 -6 and 2 ⁇ 10 -6 K -1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 -6 K -1 .
  • the insulating boxes have a general shape of rectangular parallelepiped.
  • the insulating boxes have a bottom panel and a cover panel parallel, spaced in the direction of thickness of the insulating box.
  • Bearing elements extend in the direction of thickness of the insulating block and are fixed, on the one hand, to the bottom panel and, on the other hand, to the cover panel and allow to resume the compression forces.
  • the bottom and lid panels, the peripheral partitions and the support elements are for example made of wood or composite thermoplastic material.
  • the insulating boxes have peripheral partitions. At least two opposite peripheral partitions are provided with holes allowing the flow of gas, through the insulating boxes, to circulate an inert gas and / or to place the gas phase contained in the thermally insulating barriers in depression, it is that is to say under a negative relative pressure.
  • a heat insulating lining is housed inside the insulating boxes.
  • the heat-insulating lining is, for example, made of glass wool, cotton wool or a polymeric foam, such as polyurethane foam, polyethylene foam or polyvinyl chloride foam or a material granular or powdery - such as perlite, vermiculite or glass wool - or a nanoporous airgel material.
  • a connecting ring 2 for anchoring the primary and secondary sealing membranes to the supporting structure 1 at the angles between the transverse and longitudinal walls of the vessel.
  • the connecting ring 2 extends here along an intersection between a first wall 3 and a second wall 4.
  • the connecting ring 2 is formed of an assembly of several welded sheets.
  • the sheets of the connecting ring 2 are, for example, made of invar ®.
  • the connecting ring 2 is fixed, by means of connecting plates 9, 10, 11, 12, with two flanges 5, 6 perpendicular to the supporting structure 1 of the first wall 3 and with two perpendicular flanges 7, 8 to the supporting structure 1 of the second wall 4.
  • the connecting ring 2 comprises primary anchoring surfaces 13, 14 intended to receive metal strakes of the primary waterproofing membrane and secondary anchoring surfaces 15, 16 for receiving metal strakes of the secondary sealing membrane.
  • the structure of such a connecting ring 2 is described in particular in the patent application. FR2549575 or in the French patent application FR2724623 .
  • the connecting ring 2 and the connecting plates 9, 10, 11, 12 of the connecting ring 2 to the supporting structure 1 here define four parallelepiped-shaped spaces in which heat-insulating corner elements 17 are accommodated. ensure the continuity of the insulation of the primary and secondary thermally insulating barriers at the connecting ring 2. Only the heat-insulating corner elements 17 of the primary thermally insulating barrier are visible on the Figures 1 and 2 .
  • the heat-insulating corner elements 17 may be formed of blocks of insulating polymer foam or be formed of insulating boxes as described above.
  • the sheets of the connecting ring 2 have, at the level of the primary thermally insulating barrier, openings 18 allowing the flow of gas between the primary thermally insulating barrier of the first wall 3 and the primary thermally insulating barrier of the second wall 4.
  • the openings 18 having a generally rectangular shape whose angles have circular profiles of leaves.
  • the openings 18 are of circular geometry in order to limit the stress concentrations and not to penalize the fatigue strength of the connecting ring 2.
  • the primary thermally insulating barrier comprises, at the level of the angle arrangement, deflection elements 19.
  • the deflection elements 19 are housed inside the connecting ring 2 and arranged vis-à-vis openings 18 formed in the connecting ring 2.
  • the deflection elements 19 are associated with the heat-insulating corner elements 17.
  • the deflection elements 19 can be housed in a housing of complementary size formed in the heat-insulating corner elements 17 or be disposed in interstices extending between two adjacent heat insulating corner members 17.
  • the deflection elements 19 aim to direct the gas flow through the connecting ring 2, between the primary thermal insulation barriers of the first and second walls 3, 4 of the tank.
  • the deflection element 19 has a rectangular parallelepiped shape.
  • the deflection element 19 has a first face 20a opposite to the supporting structure 1 of the second wall 4 and a second face 20b opposite to the supporting structure 1 of the first wall 3.
  • the first face 20a is disposed opposite the primary thermally insulating barrier of the first wall 3
  • the second face 20b is disposed vis-à-vis the primary thermally insulating barrier of the second wall 4.
  • the deflection member 19 comprises a plurality of bent channels 21 extending between the first and second faces 20a, 20b and thereby allowing the flow of gas between the primary thermally insulating barriers of the first and second walls 3, 4.
  • the deflection element 19 comprises, in a cutting plane orthogonal to the intersection between the first and second walls 3, 4, a series of bent channels 21 regularly spaced in the thickness direction of the walls 3, 4 of the tank.
  • the bent channels 21 are thus substantially parallel to the isothermal lines inside the thermally insulating barrier.
  • the bent channels 21 thus make it possible to stratify the gas flow through the deflection element 19 which makes it possible to limit the convection.
  • each series of bent channels 21 comprises at least four bent channels, advantageously at least ten bent channels, and preferably at least twenty bent channels.
  • the deflection element 19 comprises an array of bent channels having a plurality of series of bent channels 21, the series being spaced from each other in a direction parallel to the edge formed at the intersection between the first and the second walls 3, 4.
  • the bent channels 21 have an arcuate shape whose radius of curvature is increasing from the inside to the outside of the tank.
  • the arcuate channels 21 of the same series have a common center of curvature which is located on a bisector of the angle formed at the intersection between the first and second walls 3, 4.
  • the center curvature of the arcuate channels 21 may in particular have a radius of curvature whose center corresponds to the edge between the first and the second faces 20a, 20b of the deflection element 19.
  • the deflection member 19 comprises between the arcuate channels 20 having the largest radius of curvature and a third face 20c of the deflection member 19, opposite the first face 20a, and a fourth face 20d, opposite on the second face 20b, a housing 22 lined with a heat-insulating lining.
  • the heat-insulating lining occupying this housing 22 is, for example, glass wool, an airgel or a polymer foam, such as a polyurethane or chlorinated polyvinyl foam.
  • the bent channels 21 have a small section, typically less than 5 cm 2 , generally of the order of 0.25 to 1 cm 2 .
  • the section of the cranked channels can have many forms: circular, square, rectangular, ovoid or others.
  • the section of the bent channels has a larger dimension in the direction parallel to the angle of the tank than in the direction of thickness of a wall of the tank.
  • the largest dimension of the section is oriented in the direction of the isotherms while the smallest dimension is oriented according to the thermal gradient.
  • the bent channels 21 may comprise a first portion 21a parallel to the first wall 3 and a second portion 21b parallel to the second wall 4 and communicating with the first portion 21a.
  • the deflection element 19 is formed of a stack of plates which are stacked against each other in a direction perpendicular to the first face 20a or the second face 20b.
  • the plates each comprise a plurality of cells which, when the plates are stacked, form the bent channels 21 described above.
  • the cells may be formed during the injection operation of the plates or by a subsequent machining operation.
  • Such plates may in particular be made of polymeric materials having good mechanical characteristics and good thermal insulation characteristics, such as polyethylene (PE), polypropylene (PP) or Polyether-imide (PEI), for example, optionally reinforced with fibers, such as glass fibers.
  • PE polyethylene
  • PP polypropylene
  • PEI Polyether-imide
  • the deflection element 19 may comprise a stack 23 of plates stacked against each other in a direction perpendicular to the fifth and sixth faces 20e, 20f of the deflection element 19, each having a common edge with the first and the second. second faces 20a, 20b of the deflection member 19. At least a portion of the stacked plates have on at least one of their face bent grooves which when the plates are stacked form the bent channels 21 described above.
  • flat carrier plates formed of a material having superior mechanical strength to the plates having the bent grooves are each interposed between two plates having the bent grooves. Such an embodiment is advantageous in that it makes it possible to use materials, which are particularly suitable for producing bent grooves, while obtaining a deflection element 19 having good mechanical holding characteristics thanks to the insertion of the plates. flat carriers.
  • the plates having the bent grooves are made of a polymer material chosen from polymers such as expanded polystyrene and thermoplastic materials such as polyethylene (PE), polypropylene (PP) or polyether-imide (PEI), optionally reinforced with fibers. , such as glass fibers.
  • the bent grooves may in particular be made during the injection molding of the plates, or by subsequent stamping or machining operations.
  • the deflection element comprises a stack 23 of plates
  • said plates are fixed to each other by any appropriate means, by gluing, thermoplastic welding, clipping or mechanical connection reported, for example.
  • panels of insulating material 24, 25 may be attached to the third face 20c of the deflection element 19, opposite the first face 20a, and against the fourth face 20d, opposite the second face 20b.
  • the panels of insulating material 24, 25 may in particular be vacuum insulating panels, commonly referred to as "vacuum insulating panels" in the English language.
  • vacuum insulating panels generally comprise a nanoporous core sealingly encapsulated and placed in depression.
  • the invention is not limited to deflection elements 19 formed of a stack of plates and that it is also possible to make such deflection elements 19 equipped with a plurality of bent channels 21 by any another suitable method and in particular by three-dimensional printing methods.
  • the deflection element 19 is formed of an insulating polymer foam in which the bent channels 21 have been machined in the mass.
  • the insulating polymer foam may especially be chosen from thermoplastic foams such as polyethylene foams, polypropylene foams or thermosetting foams such as polyurethane.
  • the deflection element 19 is formed of a material having good thermal insulation characteristics.
  • the figure 7 illustrates more particularly the gas flow within the corner arrangement of the secondary thermal insulation barrier.
  • the connecting plates 9, 10, 11, 12 of the connecting ring 2 to the supporting structure 1 define three spaces of the secondary thermally insulating barrier in which heat-insulating corner elements 28, 29, 30 are arranged.
  • the heat insulating corner elements are insulating boxes comprising a peripheral wall provided with holes 31 for the flow of gas through the insulating boxes.
  • the space adjacent to the angle of the tank is equipped with a deflection element 19, similar to the deflection element described above.
  • the other two spaces are, in turn, equipped with connecting elements 32, 33 which have a plurality of gas flow channels 34 opening towards bent channels 21 of the deflection element 19.
  • the gas flow channels 34 of the connecting elements 32, 33 are also arranged opposite holes provided in the peripheral walls of the adjacent insulating boxes.
  • the connecting elements 32, 33 are integrated in a housing of complementary size formed in the heat-insulating corner elements 28, 29.
  • the flow channels 34 of the connecting element 33 extend substantially parallel to the first wall 3 whereas, in the space bordering the heat barrier secondary insulation of the second wall 4, the flow channels 34 of the connecting element 32 extend substantially parallel to the second wall.
  • the connecting elements 32, 33 are provided with openings 35 passing through said connecting elements 32, 33 in a direction parallel to the edge formed at the intersection between the first and the second walls 3, 4 to allow a flow of gas along the angle of the tank.
  • FIGS. 8 to 12 illustrate an angle structure that is particularly suitable for membrane tanks of a second type, te! as described for example in the document FR 2691520 .
  • the secondary heat-insulating barrier comprises a plurality of heat-insulated panels anchored to the supporting structure 1 by means of resin beads and studs welded to the supporting structure 1. Interstices disposed between the heat-insulating panels are lined with polyester wool. glass and provide gas flow passages through the secondary thermally insulating barrier. Similarly, the spacings between the resin beads, between the carrier structure and the heat insulating panel, provide gas flow spaces.
  • the heat-insulating panels are, for example, constituted by a layer of insulating polymer foam sandwiched between two plywood boards adhered to said layer of foam.
  • the insulating polymer foam may in particular be a polyurethane-based foam.
  • the heat-insulating panels of the secondary membrane are covered with a secondary sealing membrane formed of a composite material comprising an aluminum foil sandwiched between two sheets of fiberglass fabric.
  • the primary thermally insulating barrier comprises heat insulating panels having a structure identical to that of the heat insulating panels of the secondary thermally insulating barrier. In order to allow the flow of gas within the primary barrier, interstices are arranged between the heat insulating panels.
  • the primary waterproofing membrane is obtained by assembling a plurality of metal plates, welded to each other along their edges, and having corrugations extending in two perpendicular directions.
  • the metal plates are, for example, made of stainless steel sheet or aluminum, shaped by folding or stamping.
  • the corner structure illustrated on the figure 8 , comprises two heat-insulating panels 36, 37 having an external face fixed against the supporting structure.
  • the heat-insulating panels 36, 37 are connected to each other, for example by gluing, via their beveled lateral edge.
  • the heat-insulating panels 36, 37 thus form a corner of the secondary thermal insulation barrier.
  • a flexible waterproof membrane 38 rests on the heat-insulating panels 36, 37 and makes it possible to guarantee the continuity of the sealing of the secondary waterproofing membrane at the angle of the tank.
  • the corner structure comprises a plurality of insulating blocks 39, 40 of the primary thermal insulation barrier fixed on the flexible waterproof membrane 38.
  • Angle connectors 41 of insulating material such as a polymer foam, are disposed between the edges adjacent to the tank angle of two insulating blocks 39, 40 and thus ensures a continuity of the thermal insulation at the angle of the tank.
  • insulating joint elements 42 are inserted between the insulating blocks 39, 40.
  • metal angles 43 of primary sealing barrier rest on the insulating blocks 39, 40.
  • the metal angles 43 have two wings which are each parallel to one of the walls of the tank.
  • the wings having studs 44 welded on their inner face.
  • the studs 44 make it possible to anchor a welding equipment during the welding of the primary waterproofing membrane elements on the metal angles 43.
  • the primary thermally insulating barrier comprises at the corner structure, deflection members 45 providing gas flow through the corner arrangement of the primary thermal insulation barrier.
  • the deflection elements 45 are each inserted between two pairs of insulating blocks 39,40.
  • the deflection element 45 shown on the Figures 8, 10 and 11 is a bent-shaped element which has an array of bent channels 47 which extend between a first face 20a of the deflection element 45 disposed at its opposite end to the second wall 4 and a second face 20b of the element of deflection 45 disposed at its end opposite the first wall 1.
  • the first face 20a and the second face 20b of the deflection member 45 are each arranged opposite a gas flow gap formed between two heat-insulating panels of the primary thermally insulating barrier.
  • the bent channels 47 have a first portion 47a extending parallel to the first wall 3 and a second portion 47b extending parallel to the second wall 4. In the embodiment shown in FIG. figure 11 both portions 47a, 47b communicate with each other via an arcuate portion.
  • the deflection element 47 comprises in a cutting plane orthogonal to the intersection between the first and second walls 3, 4, a series of bent channels 47 regularly spaced in the thickness direction. walls 3, 4 of the tank so that the bent channels 47 substantially follow the isotherms of the tank at its angle.
  • bent-shaped insulating elements 48 are disposed on either side of the deflection element 47 while a third bent-shaped insulating element 49 rests on the face directed towards the inside of the cell of the element deflection 47.
  • the secondary thermally insulating barrier also comprises at the angle structure, deflection elements 46 ensuring the flow of gas through the angle arrangement of the secondary thermal insulation barrier.
  • the deflection elements 46 are inserted in housings formed in the heat-insulating panels 36, 37.
  • first face 20a and the second face 20b of the deflection elements 46 will advantageously be arranged vis-à-vis gas flow interstices formed between the heat insulating panels of the insulation barrier secondary heat.
  • the deflection element 46 shown in detail on the figure 12 is formed in two straight portions 46a, 46b.
  • Each of the rectilinear portions 46a, 46b comprises channels 50 parallel to one of the walls 3, 4 of the tank.
  • the rectilinear portions 46a, 46b each have a beveled edge and are placed end-to-end via their beveled edge.
  • the channels 50 of one of the rectilinear portions 46a, 46b open towards the channels 50 of the other straight portion 46a, 46b so as to form bent channels.
  • the deflection element 46 in a version not shown, can be adapted to different angles of 90 °.
  • a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the figure 13 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges LNG carriers.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • Underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the LNG ship 70 at a great distance from the coast during operations loading and unloading.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Description

Domaine techniqueTechnical area

L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.The invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a cryogenic fluid.

Des cuves étanches et thermiquement isolées à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d'un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l'ouvrage flottant.Watertight and thermally insulated membrane tanks are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at about -162 ° C. These tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.

Arrière-plan technologiqueTechnological background

Dans l'état de la technique, il est connu des cuves étanches et thermiquement isolantes pour le stockage de gaz naturel liquéfié comprenant une pluralité de parois, chaque paroi de cuve présentant une structure multicouche présentant successivement, dans le sens de l'épaisseur, depuis l'extérieur vers l'intérieur, une structure porteuse formée par la double coque d'un navire et définissant la forme générale de la cuve, une barrière thermiquement isolante secondaire retenue à la structure porteuse, une membrane d'étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.In the state of the art, sealed and thermally insulating vessels are known for the storage of liquefied natural gas comprising a plurality of walls, each tank wall having a multilayer structure presenting successively, in the direction of the thickness, since exterior to interior, a load-bearing structure formed by the double hull of a vessel and defining the general shape of the vessel, a secondary heat-insulating barrier retained at the load-bearing structure, a secondary waterproofing membrane resting against the barrier thermally insulating secondary, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the liquefied natural gas contained in the tank.

Les barrières thermiquement isolantes comportent des éléments isolants reposant sur la structure porteuse ou sur la membrane d'étanchéité secondaire et une phase gazeuse. Il est connu de maintenir la phase gazeuse de l'une et/ou l'autre des barrières thermiquement isolantes sous une pression absolue inférieure à la pression atmosphérique ambiante, c'est-à-dire à une pression relative négative, afin d'augmenter le pouvoir isolant desdites barrières thermiquement isolantes. Un tel procédé est, par exemple, décrit dans la demande de brevet français FR 2535831 . Le document US4116150 constitue un autre exemple divulguant un arrangement d'angle d'une cuve étanche et isolante. Il est toutefois difficile de placer la phase gazeuse d'une barrière thermiquement isolante à de très faibles pressions, de l'ordre de 100 Pa absolu, dans un temps relativement court, en raison des pertes de charges importantes générées à l'intérieur d'une barrière thermiquement isolante et notamment des importantes pertes de charges locales au niveau des zones d'angle de la cuve.The thermally insulating barriers comprise insulating elements resting on the supporting structure or on the secondary sealing membrane and a gaseous phase. It is known to maintain the gas phase of one and / or the other of the thermally insulating barriers under an absolute pressure lower than the ambient atmospheric pressure, that is to say to a negative relative pressure, in order to increase the insulating power of said thermally insulating barriers. A such a method is, for example, described in the French patent application FR 2535831 . The document US4116150 is another example disclosing an angle arrangement of a sealed and insulating tank. However, it is difficult to place the gaseous phase of a thermally insulating barrier at very low pressures, of the order of 100 Pa absolute, in a relatively short time, because of the significant losses of charges generated inside. a thermally insulating barrier and in particular significant local losses in the corner areas of the tank.

Ce problème est, en outre, particulièrement délicat à résoudre dans la mesure où une augmentation de la section des espaces d'écoulement de la phase gazeuse visant à diminuer les pertes de charges conduit à créer localement des zones de convection qui nuisent à l'efficacité de l'isolation thermique et sont susceptibles de mettre en péril l'intégrité de navire en créant localement des zones froides au niveau de la structure porteuse.This problem is, in addition, particularly difficult to solve insofar as an increase in the section of the flow spaces of the gaseous phase to reduce the pressure losses leads to locally creating convection zones which are detrimental to the efficiency thermal insulation and are likely to jeopardize the integrity of the ship by creating cold zones locally at the level of the supporting structure.

Résumésummary

Une idée à la base de l'invention est de proposer une cuve étanche et thermiquement isolante comportant une barrière thermiquement isolante dans laquelle les pertes de charges sont limitées et ne présentant pas de défauts d'isolation.An idea underlying the invention is to provide a sealed and thermally insulating tank having a thermally insulating barrier in which the pressure losses are limited and not exhibiting insulation defects.

Selon un mode de réalisation, l'invention fournit une cuve étanche et thermiquement isolante de stockage d'un fluide, ladite cuve comportant une pluralité de parois, chaque paroi présentant successivement, dans une direction d'épaisseur de la paroi de cuve, depuis l'extérieur vers l'intérieur de la cuve, une structure porteuse externe, une barrière thermiquement isolante retenue à la structure porteuse et une membrane d'étanchéité supportée par ladite barrière thermiquement isolante,
ladite barrière thermiquement isolante comportant :

  • une pluralité d'éléments calorifuges disposés le long des parois de la cuve, agencés pour permettre un écoulement de fluide, tel que du gaz, au sein de ladite barrière thermiquement isolante ; et
  • un arrangement d'angle, disposé à l'intersection entre une première et une deuxième parois de la cuve, l'arrangement d'angle comportant :
  • un élément de déflexion comportant une première face opposée à la structure porteuse de la deuxième paroi, une deuxième face opposée à la structure porteuse de la première paroi et une pluralité de canaux coudés s'étendant entre la première face et la deuxième face de l'élément de déflexion pour permettre l'écoulement de fluide, tel que du gaz, au travers de l'arrangement d'angle, la pluralité de canaux coudés comportant au moins une série de canaux coudés espacés les uns des autres dans la direction d'épaisseur des première et deuxième parois de la cuve.
According to one embodiment, the invention provides a sealed and thermally insulating tank for storing a fluid, said tank comprising a plurality of walls, each wall presenting successively, in a thickness direction of the vessel wall, since exterior to the interior of the vessel, an external supporting structure, a thermally insulating barrier retained to the supporting structure and a sealing membrane supported by said thermally insulating barrier,
said thermally insulating barrier comprising:
  • a plurality of heat insulating elements disposed along the walls of the tank, arranged to allow a flow of fluid, such as gas, within said thermally insulating barrier; and
  • an angle arrangement disposed at the intersection between a first and a second wall of the vessel, the angle arrangement comprising:
  • a deflection element having a first face opposite the supporting structure of the second wall, a second face opposite to the supporting structure of the first wall and a plurality of bent channels extending between the first face and the second face of the deflection member for permitting the flow of fluid, such as gas, through the angle arrangement, the plurality of bent channels having at least one series of bent channels spaced from each other in the thickness direction first and second walls of the tank.

Ainsi, grâce à la présence de l'élément de déflexion à l'intersection entre deux parois de la cuve, la circulation de gaz au niveau des angles de la cuve est favorisée. De plus, en répartissant les canaux coudés dans la direction d'épaisseur des parois de la cuve, les canaux coudés suivent sensiblement les lignes isothermes au sein de la barrière thermiquement isolante de telle sorte que la convection naturelle et forcée est limitée au sein de l'élément de déflexion.Thus, thanks to the presence of the deflection element at the intersection between two walls of the tank, the flow of gas at the corners of the tank is favored. Moreover, by distributing the bent channels in the thickness direction of the walls of the tank, the bent channels substantially follow the isothermal lines within the thermally insulating barrier so that the natural and forced convection is limited within the chamber. deflection element.

Dès lors, un tel élément de déflexion permet de favoriser l'écoulement de gaz au sein de la barrière thermiquement isolante sans pour autant créer localement de défauts d'isolation.Therefore, such a deflection element can promote the flow of gas within the thermally insulating barrier without locally creating insulation defects.

Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes :

  • la pluralité d'éléments calorifuges disposés le long des parois de la cuve définit des passages d'écoulement de fluide au sein de la barrière thermiquement isolante, la première face de l'élément de déflexion communiquant avec un ou plusieurs des passages d'écoulement de fluide définis par la pluralité d'éléments calorifuges disposés le long de la première paroi et la deuxième face de l'élément de déflexion communiquant avec un ou plusieurs des passages d'écoulement de fluide définis par la pluralité d'éléments calorifuges disposés le long de la seconde paroi.
  • l'élément de déflexion comporte une pluralité de séries de canaux coudés espacés les uns des autres dans la direction d'épaisseur des première et deuxième parois de la cuve, lesdites séries étant espacées les unes des autres dans une direction parallèle à une ligne d'intersection entre la première et la deuxième parois de la cuve.
  • la série de canaux coudés espacés les uns des autres dans la direction d'épaisseur des parois de la cuve comporte au moins quatre canaux coudés, avantageusement au moins dix canaux coudés, et de préférence au moins vingt canaux coudés.
  • les canaux coudés présentent une section inférieure à 5 cm2, de préférence de l'ordre de 0.25 à 1 cm2
  • la section des canaux coudés présente une dimension plus grande selon une direction parallèle à l'angle de la cuve que selon une direction d'épaisseur d'une paroi de la cuve.
  • les canaux coudés comportent chacun une première portion s'étendant parallèlement à la première paroi et une deuxième portion, s'étendant parallèlement à la deuxième paroi, communiquant avec la première portion.
  • les canaux coudés présentent une forme arquée, les canaux coudés ayant de l'intérieur vers l'extérieur de la cuve, des rayons de courbures croissants.
  • l'élément de déflexion comporte en outre une troisième face, parallèle et opposée à la première face, et une quatrième face, parallèle et opposée à la deuxième face, l'élément de déflexion comportant, entre le canal coudé de forme arquée présentant le plus grand rayon de courbure et les troisième et quatrième faces, un logement garni d'une garniture calorifuge.
  • l'élément de déflexion comporte un empilement de plaques qui sont empilées les unes contre les autres selon une direction perpendiculaire à la première ou à la seconde face, les plaques comportant chacune une pluralité d'alvéoles qui définissent une portion des canaux coudés. Les plaques peuvent notamment être obtenues par injection de matériau polymère.
  • l'élément de déflexion comporte un empilement de plaques qui sont empilées les unes contre les autres selon une direction perpendiculaire à une face de l'élément de déflexion ayant une arête commune à la première et à la deuxième face, au moins une partie des plaques empilées étant équipées, sur au moins une de leur faces, de rainures coudées conformées pour former les canaux coudés.
  • l'empilement de plaques comporte, dans une variante de réalisation, une pluralité de plaques porteuses planes intercalées entre deux plaques équipées de rainures coudées.
  • l'élément de déflexion présente une forme de parallélépipède rectangle.
  • l'élément de déflexion en forme de parallélépipède rectangle est associé avec au moins un élément de jonction comportant une pluralité de canaux rectilignes parallèles à l'une des première et seconde parois et débouchant en vis-à-vis des canaux coudés de l'élément de déflexion.
  • l'élément de jonction présente des ouvertures traversant ledit élément de jonction selon une direction parallèle à l'arête formée à l'intersection entre la première et la deuxième parois de la cuve.
  • l'élément de déflexion présente une forme coudée.
  • l'élément de déflexion de forme coudée comporte deux parties rectilignes présentant chacune un bord biseauté et raccordées l'une à l'autre via leur bord biseauté.
  • l'arrangement d'angle comporte des éléments d'angles calorifuges et dans laquelle l'élément de déflexion est associé aux éléments d'angle calorifuges.
  • l'élément de déflexion est réalisé dans un matériau polymère choisi parmi le polystyrène expansé, le polyuréthane, la mousse de polyuréthane, le polyéthylène, la mousse de polyéthylène, le polypropylène, la mousse de polypropylène, le polyamide, le polycarbonate ou le Polyéther-imide. L'élément de déflexion peut également être réalisé dans d'autres matériaux thermoplastiques, optionnellement renforcés de fibres. Un tel matériau devra être susceptible d'être injecté lorsque élément de déflexion est formé d'un empilement de plaques injectées.
  • chaque paroi de cuve présente successivement, dans une direction d'épaisseur de la cuve, depuis l'extérieur vers l'intérieur de la cuve, une structure porteuse externe, une barrière thermiquement isolante secondaire, retenue à la structure porteuse, une membrane d'étanchéité secondaire supportée par ladite barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d'étanchéité secondaire et une membrane d'étanchéité primaire destinée à être en contact avec le fluide stocké dans la cuve, chacune des barrières thermiquement isolantes primaire et secondaire comportant un dit arrangement d'angle comportant un élément de déflexion.
According to embodiments, such a tank may comprise one or more of the following characteristics:
  • the plurality of heat insulating elements disposed along the walls of the tank defines fluid flow passages within the thermally insulating barrier, the first face of the deflection member communicating with one or more of the flow passages of the fluid defined by the plurality of heat insulating elements disposed along the first wall and the second face of the deflection member communicating with one or more of the fluid flow passages defined by the plurality of heat insulating elements disposed along the the second wall.
  • the deflection member comprises a plurality of series of angled channels spaced apart from one another in the thickness direction of the first and second walls of the vessel, said series being spaced from each other in a direction parallel to a line of intersection between the first and second walls of the tank.
  • the series of bent channels spaced apart from each other in the wall thickness direction of the vessel comprises at least four bent channels, preferably at least ten bent channels, and preferably at least twenty bent channels.
  • the bent channels have a section less than 5 cm 2 , preferably of the order of 0.25 to 1 cm 2
  • the section of the bent channels has a larger dimension in a direction parallel to the angle of the tank than in a thickness direction of a wall of the tank.
  • the bent channels each comprise a first portion extending parallel to the first wall and a second portion extending parallel to the second wall, communicating with the first portion.
  • the bent channels have an arcuate shape, the bent channels having from the inside towards the outside of the tank, increasing radii of curvature.
  • the deflection element further comprises a third face, parallel and opposite to the first face, and a fourth face, parallel and opposite to the second face, the deflection element comprising, between the curved arcuate channel presenting the most large radius of curvature and the third and fourth faces, a housing lined with a heat insulating pad.
  • the deflection member comprises a stack of plates which are stacked against each other in a direction perpendicular to the first or second face, the plates each having a plurality of cells which define a portion of the bent channels. The plates can in particular be obtained by injection of polymer material.
  • the deflection element comprises a stack of plates which are stacked against each other in a direction perpendicular to a face of the deflection element having an edge common to the first and second faces, at least a part of the plates stacked being equipped, on at least one of their faces, bent grooves shaped to form the bent channels.
  • the stack of plates comprises, in an alternative embodiment, a plurality of flat carrier plates interposed between two plates provided with bent grooves.
  • the deflection element has a rectangular parallelepiped shape.
  • the rectangular parallelepipedal deflection element is associated with at least one junction element having a plurality of rectilinear channels parallel to one of the first and second walls and opening towards the cranked channels of the element deflection.
  • the joining element has openings through said connecting element in a direction parallel to the edge formed at the intersection between the first and second walls of the vessel.
  • the deflection element has a bent shape.
  • the bent deflection element has two straight portions each having a beveled edge and connected to each other via their beveled edge.
  • the corner arrangement has heat-insulating corner elements and wherein the deflection member is associated with the heat-insulating corner elements.
  • the deflection element is made of a polymeric material selected from expanded polystyrene, polyurethane, polyurethane foam, polyethylene, polyethylene foam, polypropylene, polypropylene foam, polyamide, polycarbonate or polyether imide. The deflection element may also be made of other thermoplastic materials, optionally reinforced with fibers. Such a material must be capable of being injected when the deflection element is formed of a stack of injected plates.
  • each tank wall has successively, in a direction of thickness of the tank, from the outside to the inside of the tank, an external carrying structure, a secondary heat-insulating barrier, retained at the carrying structure, a membrane of secondary seal supported by said secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane for contact with the stored fluid in the tank, each of the primary and secondary thermally insulating barriers comprising a said angle arrangement comprising a deflection element.

Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.

Selon un mode de réalisation, un navire pour le transport d'un fluide comporte une double coque et une cuve précitée disposée dans la double coque.According to one embodiment, a vessel for transporting a fluid comprises a double hull and a said tank disposed in the double hull.

Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank of the vessel. ship.

Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a fluid, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating or ground storage facility. and a pump for driving a fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.

Certains aspects de l'invention partent de l'idée de favoriser la circulation de gaz entre les différentes parois d'une cuve. Certains aspects de l'invention partent de l'idée de favoriser la circulation de gaz entre les parois d'une cuve afin de faciliter le placement d'une barrière thermiquement isolante sous des pressions relatives négatives, particulièrement faibles, de l'ordre de 10 à 1000 Pa. Certains aspects de l'invention partent de l'idée de faciliter la circulation de gaz inerte au sein d'une barrière thermiquement isolante. Certains aspects de l'invention partent de l'idée de faciliter le pompage d'un fluide présent au sein d'une barrière thermiquement isolante en cas de défaut d'étanchéité de la structure porteuse ou d'une membrane d'étanchéité. En effet, le pompage d'un fluide présent au sein de la barrière thermiquement isolante peut notamment être nécessaire pour vidanger l'eau, rentré dans la barrière thermiquement isolante, en cas d'avarie de la double coque du navire. Certains aspects de l'invention partent de l'idée de faciliter les phases de test d'étanchéité d'une membrane d'étanchéité lors desquelles l'on fait circuler du gaz (un mélange azote-ammoniac, des gaz traceurs tels que le Hélium, le Nidron ou autres) dans la barrière thermiquement isolante afin de détecter des défauts d'étanchéité.Some aspects of the invention start from the idea of promoting the flow of gas between the different walls of a tank. Certain aspects of the invention start from the idea of promoting the circulation of gas between the walls of a tank in order to facilitate the placement of a thermally insulating barrier under negative relative pressures, particularly low, of the order of 10. at 1000 Pa. Some aspects of the invention start from the idea of facilitating the flow of inert gas within a thermally insulating barrier. Some aspects of the invention start from the idea of facilitating the pumping of a fluid present within a thermally insulating barrier in the event of a leakage of the carrier structure or of a sealing membrane. Indeed, the pumping of a fluid present in the thermally insulating barrier may in particular be necessary to drain the water, returned to the thermally insulating barrier, in case of damage to the double hull of the ship. Some aspects of the invention start from the idea of facilitating the phases of leak test of a sealing membrane in which gas (a nitrogen-ammonia mixture, tracer gases such as Helium, Nidron or others) is circulated in the thermally insulating barrier in order to detect leaks.

Brève description des figuresBrief description of the figures

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.

  • Les figures 1 et 2 sont des vues partielles, partiellement éclatée, en perspective d'une structure d'angle équipée d'éléments de déflexion, selon un premier mode de réalisation, pour une cuve étanche et thermiquement isolante de stockage d'un fluide.
  • La figure 3 est une représentation schématique d'un élément de déflexion, selon un mode de réalisation.
  • La figure 4 est une vue éclatée, en perspective d'un élément de déflexion comportant un empilement de plaques.
  • La figure 5 est une vue, en coupe, d'un élément de déflexion d'un arrangement d'angle de barrière thermiquement isolante primaire.
  • La figure 6 est une vue en perspective d'un élément de déflexion.
  • La figure 7 est une vue en coupe illustrant un élément de déflexion associé avec des éléments de jonction au niveau d'un arrangement d'angle de barrière thermiquement isolante secondaire.
  • La figure 8 est une vue en perspective d'une structure d'angle, selon un second mode de réalisation, équipée d'éléments de déflexion.
  • Les figures 9 et 10 sont des vues détaillées de la figure 8.
  • La figure 11 est une vue de la structure d'angle de la figure 7, en coupe dans un plan transversal passant par un élément de déflexion de la barrière thermiquement isolante primaire.
  • La figure 12 est une vue de la structure d'angle de la figure 7, en coupe dans un plan transversal passant par un élément de déflexion de la barrière thermiquement isolante secondaire.
  • La figure 13 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.
  • The Figures 1 and 2 are partial views, partially exploded, in perspective of an angle structure equipped with deflection elements, according to a first embodiment, for a sealed and thermally insulating tank for storing a fluid.
  • The figure 3 is a schematic representation of a deflection element, according to one embodiment.
  • The figure 4 is an exploded view, in perspective of a deflection element comprising a stack of plates.
  • The figure 5 is a sectional view of a deflection element of a primary thermally insulating barrier angle arrangement.
  • The figure 6 is a perspective view of a deflection element.
  • The figure 7 is a sectional view illustrating a deflection member associated with junction elements at a secondary thermally insulating barrier angle arrangement.
  • The figure 8 is a perspective view of an angle structure, according to a second embodiment, equipped with deflection elements.
  • The Figures 9 and 10 are detailed views of the figure 8 .
  • The figure 11 is a view of the corner structure of the figure 7 , in section in a transverse plane passing through a deflection element of the primary thermally insulating barrier.
  • The figure 12 is a view of the corner structure of the figure 7 , in section in a transverse plane passing through a deflection element of the secondary thermally insulating barrier.
  • The figure 13 is a cutaway schematic representation of a tank of LNG tanker and a loading / unloading terminal of this tank.

Description détaillée de modes de réalisationDetailed description of embodiments

Sur la figure 1, on a représenté une structure d'angle d'une cuve étanche et thermiquement isolante de stockage d'un fluide. Une telle structure d'angle est notamment adaptée pour une cuve à membranes telle que décrite, par exemple, dans le document FR2683786 .On the figure 1 , there is shown an angle structure of a sealed and thermally insulating tank for storing a fluid. Such an angle structure is particularly suitable for a membrane cell as described, for example, in the document FR2683786 .

La structure générale d'une telle cuve est bien connue et présente une forme polyédrique. La paroi de la cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une structure porteuse 1, une barrière thermiquement isolante secondaire comportant des éléments calorifuges formés de caisses isolantes juxtaposées sur la structure porteuse et ancrées à celle-ci par des organes de retenue secondaires, une membrane d'étanchéité secondaire portée par les caisses isolantes de la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire comportant des éléments calorifuges formés de caisses isolantes juxtaposées et ancrées à la membrane d'étanchéité secondaire par des organes de retenue primaires et une membrane d'étanchéité primaire, portée par les caisses isolantes et destinée à être en contact avec le fluide cryogénique contenu dans la cuve.The general structure of such a tank is well known and has a polyhedral shape. The wall of the tank comprises, from the outside to the inside of the tank, a supporting structure 1, a secondary heat-insulating barrier comprising heat insulating elements formed of insulating boxes juxtaposed on the support structure and anchored thereto by means of secondary holding members, a secondary sealing membrane carried by the insulating boxes of the secondary thermally insulating barrier, a primary thermally insulating barrier comprising heat insulating elements formed of insulating boxes juxtaposed and anchored to the secondary sealing membrane by means of primary retention and a primary waterproofing membrane carried by the insulating boxes and intended to be in contact with the cryogenic fluid contained in the tank.

La structure porteuse 1 peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse peut notamment être formée par la coque ou la double coque d'un navire. La structure porteuse comporte une pluralité de parois définissant la forme générale de la cuve.The supporting structure 1 may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties. The supporting structure may in particular be formed by the hull or the double hull of a ship. The carrying structure comprises a plurality of walls defining the general shape of the tank.

Les membranes d'étanchéité primaire et secondaire sont, par exemple, constituées d'une nappe continue de virures métalliques à bords relevés, lesdites virures étant soudées par leurs bords relevés sur des supports de soudure parallèles maintenus sur les caisses isolantes. Les virures métalliques sont, par exemple, réalisées en Invar ® : c'est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1,2.10-6 et 2.10-6 K-1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l'ordre de 7.10-6 K-1.The primary and secondary sealing membranes are, for example, constituted by a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges to parallel welding supports held on the insulating boxes. The metal strakes are, for example, made of Invar®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2 × 10 -6 and 2 × 10 -6 K -1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 -6 K -1 .

Les caisses isolantes présentent une forme générale de parallélépipède rectangle. Les caisses isolantes comportent un panneau de fond et un panneau de couvercle parallèles, espacés selon la direction d'épaisseur de la caisse isolante. Des éléments porteurs s'étendent dans la direction d'épaisseur du bloc isolant et sont fixés, d'une part, au panneau de fond et, d'autre part, au panneau de couvercle et permettent de reprendre les efforts de compression. Les panneaux de fond et de couvercle, les cloisons périphériques et les éléments porteurs sont par exemple réalisés en bois ou en matériau thermoplastique composite.The insulating boxes have a general shape of rectangular parallelepiped. The insulating boxes have a bottom panel and a cover panel parallel, spaced in the direction of thickness of the insulating box. Bearing elements extend in the direction of thickness of the insulating block and are fixed, on the one hand, to the bottom panel and, on the other hand, to the cover panel and allow to resume the compression forces. The bottom and lid panels, the peripheral partitions and the support elements are for example made of wood or composite thermoplastic material.

Les caisses isolantes comportent des cloisons périphériques. Au moins deux cloisons périphériques opposées sont munies de perçages permettant l'écoulement de gaz, au travers des caisses isolantes, afin de faire circuler un gaz inerte et/ou de placer la phase gazeuse contenue dans les barrières thermiquement isolantes en dépression, c'est-à-dire sous une pression relative négative.The insulating boxes have peripheral partitions. At least two opposite peripheral partitions are provided with holes allowing the flow of gas, through the insulating boxes, to circulate an inert gas and / or to place the gas phase contained in the thermally insulating barriers in depression, it is that is to say under a negative relative pressure.

Une garniture calorifuge est logée à l'intérieur des caisses isolantes. La garniture calorifuge est, par exemple, constituée de laine de verre, d'ouate ou d'une mousse polymère, telle que de la mousse de polyuréthane, de la mousse de polyéthylène ou de la mousse de polychlorure de vinyle ou d'un matériau granulaire ou pulvérulent - tel que la perlite, la vermiculite ou la laine de verre - ou un matériau nanoporeux de type aérogel.A heat insulating lining is housed inside the insulating boxes. The heat-insulating lining is, for example, made of glass wool, cotton wool or a polymeric foam, such as polyurethane foam, polyethylene foam or polyvinyl chloride foam or a material granular or powdery - such as perlite, vermiculite or glass wool - or a nanoporous airgel material.

On observe sur la figure 1, un anneau de raccordement 2 permettant d'ancrer les membranes d'étanchéité primaire et secondaire à la structure porteuse 1 au niveau des angles entre les parois transversales et longitudinales de la cuve. L'anneau de raccordement 2 s'étend ici le long d'une intersection entre une première paroi 3 et une deuxième paroi 4. L'anneau de raccordement 2 est formé d'un assemblage de plusieurs tôles soudées. Les tôles de l'anneau de raccordement 2 sont, par exemple, réalisées en invar ®. L'anneau de raccordement 2 est fixé, par l'intermédiaire de tôles de liaison 9, 10, 11, 12, à deux ailes 5, 6 perpendiculaires à la structure porteuse 1 de la première paroi 3 et à deux ailes 7, 8 perpendiculaires à la structure porteuse 1 de la deuxième paroi 4. L'anneau de raccordement 2 comporte des surfaces d'ancrage primaires 13, 14 destinées à recevoir des virures métalliques de la membrane d'étanchéité primaire et des surfaces d'ancrage secondaires 15, 16 destinées à recevoir des virures métalliques de la membrane d'étanchéité secondaire. La structure d'un tel anneau de raccordement 2 est notamment décrite dans la demande de brevet FR2549575 ou dans la demande de brevet français FR2724623 .We observe on the figure 1 , a connecting ring 2 for anchoring the primary and secondary sealing membranes to the supporting structure 1 at the angles between the transverse and longitudinal walls of the vessel. The connecting ring 2 extends here along an intersection between a first wall 3 and a second wall 4. The connecting ring 2 is formed of an assembly of several welded sheets. The sheets of the connecting ring 2 are, for example, made of invar ®. The connecting ring 2 is fixed, by means of connecting plates 9, 10, 11, 12, with two flanges 5, 6 perpendicular to the supporting structure 1 of the first wall 3 and with two perpendicular flanges 7, 8 to the supporting structure 1 of the second wall 4. The connecting ring 2 comprises primary anchoring surfaces 13, 14 intended to receive metal strakes of the primary waterproofing membrane and secondary anchoring surfaces 15, 16 for receiving metal strakes of the secondary sealing membrane. The structure of such a connecting ring 2 is described in particular in the patent application. FR2549575 or in the French patent application FR2724623 .

L'anneau de raccordement 2 et les tôles de liaison 9, 10, 11, 12 de l'anneau de raccordement 2 à la structure porteuse 1 définissent ici quatre espaces de forme parallélépipédiques dans lesquels sont logés des éléments d'angle calorifuges 17 permettant d'assurer la continuité de l'isolation des barrières thermiquement isolantes primaire et secondaire au niveau de l'anneau de raccordement 2. Seuls les éléments d'angle calorifuges 17 de la barrière thermiquement isolante primaire sont visibles sur les figures 1 et 2.The connecting ring 2 and the connecting plates 9, 10, 11, 12 of the connecting ring 2 to the supporting structure 1 here define four parallelepiped-shaped spaces in which heat-insulating corner elements 17 are accommodated. ensure the continuity of the insulation of the primary and secondary thermally insulating barriers at the connecting ring 2. Only the heat-insulating corner elements 17 of the primary thermally insulating barrier are visible on the Figures 1 and 2 .

Les éléments d'angle calorifuges 17 peuvent être formés de blocs de mousse polymère isolante ou être formés de caisses isolantes telles que décrites précédemment.The heat-insulating corner elements 17 may be formed of blocks of insulating polymer foam or be formed of insulating boxes as described above.

On remarquera que les tôles de l'anneau de raccordement 2 présentent, au niveau de la barrière thermiquement isolante primaire, des ouvertures 18 permettant l'écoulement de gaz entre la barrière thermiquement isolante primaire de la première paroi 3 et la barrière thermiquement isolante primaire de la deuxième paroi 4. Dans le mode de réalisation illustré sur la figure 1, les ouvertures 18 présentant une forme générale rectangulaire dont les angles présentent des congés de profil circulaire. Dans le mode de réalisation illustré sur la figure 2, les ouvertures 18 sont de géométrie circulaire afin de limiter les concentrations de contrainte et ne pas pénaliser la tenue en fatigue de l'anneau de raccordement 2.It will be noted that the sheets of the connecting ring 2 have, at the level of the primary thermally insulating barrier, openings 18 allowing the flow of gas between the primary thermally insulating barrier of the first wall 3 and the primary thermally insulating barrier of the second wall 4. In the embodiment illustrated on the figure 1 , the openings 18 having a generally rectangular shape whose angles have circular profiles of leaves. In the embodiment illustrated on the figure 2 the openings 18 are of circular geometry in order to limit the stress concentrations and not to penalize the fatigue strength of the connecting ring 2.

Comme illustré sur les figures 1 et 2, la barrière thermiquement isolante primaire comporte, au niveau de l'arrangement d'angle, des éléments de déflexion 19. Les éléments de déflexion 19 sont logés à l'intérieur de l'anneau de raccordement 2 et disposés en vis-à-vis des ouvertures 18 ménagées dans l'anneau de raccordement 2. Les éléments de déflexion 19 sont associés aux éléments d'angle calorifuges 17. Les éléments de déflexion 19 peuvent être logés dans un logement de taille complémentaire ménagé dans les éléments d'angle calorifuges 17 ou être disposés dans les interstices s'étendant entre deux éléments d'angle calorifuges 17 adjacents.As illustrated on Figures 1 and 2 , the primary thermally insulating barrier comprises, at the level of the angle arrangement, deflection elements 19. The deflection elements 19 are housed inside the connecting ring 2 and arranged vis-à-vis openings 18 formed in the connecting ring 2. The deflection elements 19 are associated with the heat-insulating corner elements 17. The deflection elements 19 can be housed in a housing of complementary size formed in the heat-insulating corner elements 17 or be disposed in interstices extending between two adjacent heat insulating corner members 17.

Les éléments de déflexion 19 visent à diriger l'écoulement gazeux au travers de l'anneau de raccordement 2, entre les barrières d'isolation thermique primaires de la première et de la deuxième parois 3, 4 de la cuve.The deflection elements 19 aim to direct the gas flow through the connecting ring 2, between the primary thermal insulation barriers of the first and second walls 3, 4 of the tank.

La structure d'un tel élément de déflexion 19 est notamment illustrée sur les figures 5 et 6. L'élément de déflexion 19 présente une forme de parallélépipède rectangle. L'élément de déflexion 19 présente une première face 20a opposée à la structure porteuse 1 de la deuxième paroi 4 et une deuxième face 20b opposée à la structure porteuse 1 de la première paroi 3. En d'autres termes, la première face 20a est disposé en vis-à-vis de la barrière thermiquement isolante primaire de la première paroi 3 et la deuxième face 20b est disposée en vis-à-vis de la barrière thermiquement isolante primaire de la deuxième paroi 4. L'élément de déflexion 19 comporte une pluralité de canaux coudés 21 s'étendant entre la première et la deuxième faces 20a, 20b et permettant ainsi l'écoulement de gaz entre les barrières thermiquement isolantes primaires des première et seconde parois 3, 4.The structure of such a deflection element 19 is particularly illustrated on the figures 5 and 6 . The deflection element 19 has a rectangular parallelepiped shape. The deflection element 19 has a first face 20a opposite to the supporting structure 1 of the second wall 4 and a second face 20b opposite to the supporting structure 1 of the first wall 3. In other words, the first face 20a is disposed opposite the primary thermally insulating barrier of the first wall 3 and the second face 20b is disposed vis-à-vis the primary thermally insulating barrier of the second wall 4. The deflection member 19 comprises a plurality of bent channels 21 extending between the first and second faces 20a, 20b and thereby allowing the flow of gas between the primary thermally insulating barriers of the first and second walls 3, 4.

L'élément de déflexion 19 comporte, dans un plan de coupe orthogonale à l'intersection entre la première et la deuxième parois 3, 4, une série de canaux coudés 21 régulièrement espacés dans la direction d'épaisseur des parois 3, 4 de la cuve. Les canaux coudés 21 sont ainsi sensiblement parallèles aux lignes isothermes à l'intérieur de la barrière thermiquement isolante. Les canaux coudés 21 permettent donc de stratifier l'écoulement gazeux au travers de l'élément de déflexion 19 ce qui permet de limiter la convection. Afin d'opérer une stratification thermique satisfaisante de l'écoulement gazeux, chaque série de canaux coudés 21 comporte au moins quatre canaux coudés, avantageusement au moins dix canaux coudés, et de préférence au moins vingt canaux coudés.The deflection element 19 comprises, in a cutting plane orthogonal to the intersection between the first and second walls 3, 4, a series of bent channels 21 regularly spaced in the thickness direction of the walls 3, 4 of the tank. The bent channels 21 are thus substantially parallel to the isothermal lines inside the thermally insulating barrier. The bent channels 21 thus make it possible to stratify the gas flow through the deflection element 19 which makes it possible to limit the convection. In order to effect a satisfactory thermal stratification of the gas flow, each series of bent channels 21 comprises at least four bent channels, advantageously at least ten bent channels, and preferably at least twenty bent channels.

Comme illustré sur la figure 6, l'élément de déflexion 19 comporte un réseau de canaux coudés comportant une pluralité de séries de canaux coudés 21, les séries étant espacés les unes des autres dans une direction parallèle à l'arête formée à l'intersection entre la première et la deuxième parois 3, 4.As illustrated on the figure 6 the deflection element 19 comprises an array of bent channels having a plurality of series of bent channels 21, the series being spaced from each other in a direction parallel to the edge formed at the intersection between the first and the second walls 3, 4.

Dans les modes de réalisation des figures 5 et 6, les canaux coudés 21 présentent une forme arquée dont le rayon de courbure est croissant en allant de l'intérieur vers l'extérieur de la cuve. Les canaux 21 de forme arquée d'une même série présentent un centre de courbure commun qui est situé sur une bissectrice de l'angle formé à l'intersection entre la première et la deuxième parois 3, 4. Le centre de courbure des canaux 21 de forme arquée peuvent notamment présenter un rayon de courbure dont le centre correspond à l'arête entre la première et la deuxième faces 20a, 20b de l'élément de déflexion 19.In the embodiments of figures 5 and 6 , the bent channels 21 have an arcuate shape whose radius of curvature is increasing from the inside to the outside of the tank. The arcuate channels 21 of the same series have a common center of curvature which is located on a bisector of the angle formed at the intersection between the first and second walls 3, 4. The center curvature of the arcuate channels 21 may in particular have a radius of curvature whose center corresponds to the edge between the first and the second faces 20a, 20b of the deflection element 19.

Dans le mode de réalisation de la figure 5, l'élément de déflexion 19 comporte entre les canaux 20 de forme arquée présentant le rayon de courbure le plus important et une troisième face 20c de l'élément de déflexion 19, opposée à la première face 20a, et une quatrième face 20d, opposée à la deuxième face 20b, un logement 22 garni d'une garniture calorifuge. La garniture calorifuge occupant ce logement 22 est par exemple de la laine de verre, un aérogel ou une mousse polymère, telle qu'une mousse en polyuréthane ou en polyvinyle chloré.In the embodiment of the figure 5 , the deflection member 19 comprises between the arcuate channels 20 having the largest radius of curvature and a third face 20c of the deflection member 19, opposite the first face 20a, and a fourth face 20d, opposite on the second face 20b, a housing 22 lined with a heat-insulating lining. The heat-insulating lining occupying this housing 22 is, for example, glass wool, an airgel or a polymer foam, such as a polyurethane or chlorinated polyvinyl foam.

Les canaux coudés 21 présentent une faible section, typiquement inférieure à 5 cm2, généralement de l'ordre de 0.25 à 1 cm2.The bent channels 21 have a small section, typically less than 5 cm 2 , generally of the order of 0.25 to 1 cm 2 .

La section des canaux coudés peut présenter de nombreuses formes : circulaire, carré, rectangulaire, ovoïde ou autres. De manière avantageuse, la section des canaux coudés présente une dimension plus grande selon la direction parallèle à l'angle de la cuve que selon la direction d'épaisseur d'une paroi de la cuve. Ainsi, la dimension la plus grande de la section est orientée dans la direction des isothermes alors que la dimension la plus faible est orientée selon le gradient thermique.The section of the cranked channels can have many forms: circular, square, rectangular, ovoid or others. Advantageously, the section of the bent channels has a larger dimension in the direction parallel to the angle of the tank than in the direction of thickness of a wall of the tank. Thus, the largest dimension of the section is oriented in the direction of the isotherms while the smallest dimension is oriented according to the thermal gradient.

Dans un mode de réalisation alternatif, illustré de manière schématique sur la figure 3, les canaux coudés 21 peuvent, comporter une première portion 21a parallèle à la première paroi 3 et une deuxième portion 21b parallèle à la deuxième paroi 4 et communiquant avec la première portion 21a.In an alternative embodiment, schematically illustrated in the figure 3 the bent channels 21 may comprise a first portion 21a parallel to the first wall 3 and a second portion 21b parallel to the second wall 4 and communicating with the first portion 21a.

Selon une variante de réalisation, non illustrée, l'élément de déflexion 19 est formé d'un empilement de plaques qui sont empilées les unes contre les autres selon une direction perpendiculaire à la première face 20a ou à la seconde face 20b. Les plaques comportent chacune une pluralité d'alvéoles qui, lorsque les plaques sont empilées, forment les canaux coudées 21 décrits précédemment. Les alvéoles peuvent être formées lors de l'opération d'injection des plaques ou par une opération ultérieure d'usinage. De telles plaques peuvent notamment être réalisées dans des matériaux polymères présentant de bonnes caractéristiques mécaniques et de bonnes caractéristiques d'isolation thermique, tels que le polyéthylène (PE), le polypropylène (PP) ou le Polyéther-imide (PEI), par exemple, optionnellement renforcés de fibres, telles que des fibres de verre.According to an alternative embodiment, not illustrated, the deflection element 19 is formed of a stack of plates which are stacked against each other in a direction perpendicular to the first face 20a or the second face 20b. The plates each comprise a plurality of cells which, when the plates are stacked, form the bent channels 21 described above. The cells may be formed during the injection operation of the plates or by a subsequent machining operation. Such plates may in particular be made of polymeric materials having good mechanical characteristics and good thermal insulation characteristics, such as polyethylene (PE), polypropylene (PP) or Polyether-imide (PEI), for example, optionally reinforced with fibers, such as glass fibers.

Selon une autre variante de réalisation, illustré sur la figure 4, l'élément de déflexion 19 peut comporter un empilement 23 de plaques empilées les unes contre les autres selon une direction perpendiculaires aux cinquième et sixième faces 20e, 20f de l'élément de déflexion 19, ayant chacune une arête commune avec la première et la deuxième faces 20a, 20b de l'élément de déflexion 19. Au moins une partie des plaques empilées comportent sur au moins une de leur face des rainures coudées qui lorsque les plaques sont empilées forment les canaux coudés 21 décrits précédemment. Selon une variante, des plaques porteuses planes formées d'un matériau présentant une tenue mécanique supérieure aux plaques présentant les rainures coudées sont chacune intercalées entre deux plaques présentant les rainures coudées. Un tel mode de réalisation est avantageux en ce qu'il permet d'utiliser des matériaux, particulièrement appropriées pour la réalisation des rainures coudées, tout en obtenant un élément de déflexion 19 ayant de bonnes caractéristiques mécaniques de tenue grâce à l'insertion des plaques porteuses planes.According to another variant embodiment, illustrated on the figure 4 , the deflection element 19 may comprise a stack 23 of plates stacked against each other in a direction perpendicular to the fifth and sixth faces 20e, 20f of the deflection element 19, each having a common edge with the first and the second. second faces 20a, 20b of the deflection member 19. At least a portion of the stacked plates have on at least one of their face bent grooves which when the plates are stacked form the bent channels 21 described above. According to a variant, flat carrier plates formed of a material having superior mechanical strength to the plates having the bent grooves are each interposed between two plates having the bent grooves. Such an embodiment is advantageous in that it makes it possible to use materials, which are particularly suitable for producing bent grooves, while obtaining a deflection element 19 having good mechanical holding characteristics thanks to the insertion of the plates. flat carriers.

Les plaques présentant les rainures coudées sont réalisées en matériau polymère choisi parmi les polymères tels que le polystyrène expansé et les matériaux thermoplastiques tels que le polyéthylène (PE), le polypropylène (PP) ou le Polyéther-imide (PEI), optionnellement renforcés de fibres, telles que des fibres de verre. Les rainures coudées peuvent notamment être réalisées lors du moulage par injection des plaques, ou par des opérations ultérieures d'estampage ou d'usinage.The plates having the bent grooves are made of a polymer material chosen from polymers such as expanded polystyrene and thermoplastic materials such as polyethylene (PE), polypropylene (PP) or polyether-imide (PEI), optionally reinforced with fibers. , such as glass fibers. The bent grooves may in particular be made during the injection molding of the plates, or by subsequent stamping or machining operations.

Lorsque l'élément de déflexion comporte un empilement 23 de plaques, lesdites plaques sont fixées les unes aux autres par tout moyen approprié, par collage, soudage thermoplastique, clipsage ou liaison mécanique rapporté, par exemple.When the deflection element comprises a stack 23 of plates, said plates are fixed to each other by any appropriate means, by gluing, thermoplastic welding, clipping or mechanical connection reported, for example.

Par ailleurs, notons que dans le mode de réalisation représenté sur la figure 6, des panneaux de matériau isolant 24, 25 peuvent être rapportés contre la troisième face 20c de l'élément de déflexion 19, opposée à la première face 20a, et contre la quatrième face 20d, opposée à la deuxième face 20b. Les panneaux de matériau isolant 24, 25 peuvent notamment être des panneaux isolants sous vide, couramment désigné par le sigle VIP pour « vacuum insulating panels » en langue anglaise. De tels panneaux isolants sous vide comportent généralement une âme nanoporeuse encapsulée de manière étanche et placée en dépression.Moreover, note that in the embodiment shown on the figure 6 panels of insulating material 24, 25 may be attached to the third face 20c of the deflection element 19, opposite the first face 20a, and against the fourth face 20d, opposite the second face 20b. The panels of insulating material 24, 25 may in particular be vacuum insulating panels, commonly referred to as "vacuum insulating panels" in the English language. Such vacuum insulating panels generally comprise a nanoporous core sealingly encapsulated and placed in depression.

Notons également que l'invention n'est pas limitée à des éléments de déflexion 19 formés d'un empilement de plaques et qu'il est également possible de réaliser de tels éléments de déflexion 19 équipés d'une pluralité de canaux coudés 21 par tout autre procédé approprié et notamment par des procédés d'impression tridimensionnelle.Note also that the invention is not limited to deflection elements 19 formed of a stack of plates and that it is also possible to make such deflection elements 19 equipped with a plurality of bent channels 21 by any another suitable method and in particular by three-dimensional printing methods.

En particulier, dans une variante de réalisation, l'élément de déflexion 19 est formée d'une mousse polymère isolante dans laquelle les canaux coudés 21 ont été usinés dans la masse. La mousse polymère isolante peut notamment être choisie parmi les mousses thermoplastiques telles que les mousses de polyéthylène, de polypropylène ou les mousses thermodurcissables telles que le polyuréthane. Ainsi, l'élément de déflexion 19 est formé dans un matériau présentant de bonnes caractéristiques d'isolation thermique.In particular, in an alternative embodiment, the deflection element 19 is formed of an insulating polymer foam in which the bent channels 21 have been machined in the mass. The insulating polymer foam may especially be chosen from thermoplastic foams such as polyethylene foams, polypropylene foams or thermosetting foams such as polyurethane. Thus, the deflection element 19 is formed of a material having good thermal insulation characteristics.

La figure 7 illustre plus particulièrement l'écoulement gazeux au sein de l'arrangement d'angle de la barrière d'isolation thermique secondaire. Les tôles de liaison 9, 10, 11, 12 de l'anneau de raccordement 2 à la structure porteuse 1 définissent trois espaces de la barrière thermiquement isolante secondaire dans lesquelles sont disposés des éléments d'angle calorifuges 28, 29, 30. Dans le mode de réalisation représenté sur la figure 7, les éléments d'angle calorifuges sont des caisses isolantes comportant une cloison périphérique munie de perçages 31 permettant l'écoulement de gaz, au travers des caisses isolantes.The figure 7 illustrates more particularly the gas flow within the corner arrangement of the secondary thermal insulation barrier. The connecting plates 9, 10, 11, 12 of the connecting ring 2 to the supporting structure 1 define three spaces of the secondary thermally insulating barrier in which heat-insulating corner elements 28, 29, 30 are arranged. embodiment shown on the figure 7 , the heat insulating corner elements are insulating boxes comprising a peripheral wall provided with holes 31 for the flow of gas through the insulating boxes.

L'espace adjacent à l'angle de la cuve est équipé d'un élément de déflexion 19, similaire à l'élément de déflexion décrit précédemment. Les deux autres espaces sont, quant à eux, équipés d'éléments de jonction 32, 33 qui présentent une pluralité de canaux 34 d'écoulement du gaz débouchant en vis-à-vis de canaux coudés 21 de l'élément de déflexion 19. Les canaux 34 d'écoulement du gaz des éléments de jonction 32, 33 sont également disposés en vis-à-vis de perçages ménagées dans les cloisons périphériques des caisses isolantes adjacentes. Les éléments de jonction 32, 33 sont intégrés dans un logement de taille complémentaire ménagé dans les éléments d'angle calorifuges 28, 29.The space adjacent to the angle of the tank is equipped with a deflection element 19, similar to the deflection element described above. The other two spaces are, in turn, equipped with connecting elements 32, 33 which have a plurality of gas flow channels 34 opening towards bent channels 21 of the deflection element 19. The gas flow channels 34 of the connecting elements 32, 33 are also arranged opposite holes provided in the peripheral walls of the adjacent insulating boxes. The connecting elements 32, 33 are integrated in a housing of complementary size formed in the heat-insulating corner elements 28, 29.

Dans l'espace bordant la barrière thermiquement isolante secondaire de la première paroi 3, les canaux d'écoulement 34 de l'élément de jonction 33 s'étendent sensiblement parallèlement à la première paroi 3 alors que, dans l'espace bordant la barrière thermiquement isolante secondaire de la seconde paroi 4, les canaux d'écoulement 34 de l'élément de jonction 32 s'étendent sensiblement parallèlement à la seconde paroi.In the space bordering the secondary thermally insulating barrier of the first wall 3, the flow channels 34 of the connecting element 33 extend substantially parallel to the first wall 3 whereas, in the space bordering the heat barrier secondary insulation of the second wall 4, the flow channels 34 of the connecting element 32 extend substantially parallel to the second wall.

En outre, dans le mode de réalisation représenté, les éléments de jonction 32, 33 sont pourvus d'ouvertures 35 traversant lesdits éléments de jonction 32, 33 selon une direction parallèle à l'arête formée à l'intersection entre la première et la seconde parois 3, 4 afin de permettre un écoulement de gaz le long de l'angle de la cuve.In addition, in the embodiment shown, the connecting elements 32, 33 are provided with openings 35 passing through said connecting elements 32, 33 in a direction parallel to the edge formed at the intersection between the first and the second walls 3, 4 to allow a flow of gas along the angle of the tank.

Les figures 8 à 12 illustrent une structure d'angle qui est notamment adaptée pour les cuves à membranes d'un second type, te! que décrite par exemple dans le document FR 2691520 .The Figures 8 to 12 illustrate an angle structure that is particularly suitable for membrane tanks of a second type, te! as described for example in the document FR 2691520 .

Dans une telle cuve, la barrière thermiquement isolante secondaire comporte une pluralité de panneaux calorifuges ancrés sur la structure porteuse 1 au moyen de cordons de résine et de goujons soudés sur la structure porteuse 1. Des interstices disposés entre les panneaux calorifuges sont garnis de laine de verre et ménagent des passages d'écoulement du gaz au travers de la barrière thermiquement isolante secondaire. De même, les espacements entre les cordons de résine, entre la structure porteuse et le panneau calorifuge, ménagent des espaces d'écoulement de gaz. Les panneaux calorifuges sont, par exemple, constitués d'une couche de mousse polymère isolante prise en sandwich entre deux plaques de bois contreplaqué collées sur ladite couche de mousse. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne.In such a tank, the secondary heat-insulating barrier comprises a plurality of heat-insulated panels anchored to the supporting structure 1 by means of resin beads and studs welded to the supporting structure 1. Interstices disposed between the heat-insulating panels are lined with polyester wool. glass and provide gas flow passages through the secondary thermally insulating barrier. Similarly, the spacings between the resin beads, between the carrier structure and the heat insulating panel, provide gas flow spaces. The heat-insulating panels are, for example, constituted by a layer of insulating polymer foam sandwiched between two plywood boards adhered to said layer of foam. The insulating polymer foam may in particular be a polyurethane-based foam.

Les panneaux calorifuges de la membrane secondaire sont recouverts d'une membrane d'étanchéité secondaire formée d'un matériau composite comportant une feuille d'aluminium prise en sandwich entre deux feuilles de tissu en fibres de verre.The heat-insulating panels of the secondary membrane are covered with a secondary sealing membrane formed of a composite material comprising an aluminum foil sandwiched between two sheets of fiberglass fabric.

La barrière thermiquement isolante primaire comporte des panneaux calorifuges présentant une structure identique à celle des panneaux calorifuges de la barrière thermiquement isolante secondaire. Afin de permettre l'écoulement du gaz au sein de la barrière primaire, des interstices sont agencés entre les panneaux calorifuges.The primary thermally insulating barrier comprises heat insulating panels having a structure identical to that of the heat insulating panels of the secondary thermally insulating barrier. In order to allow the flow of gas within the primary barrier, interstices are arranged between the heat insulating panels.

La membrane d'étanchéité primaire est obtenue par assemblage d'une pluralité de plaques métalliques, soudées les unes aux autres le long de leurs bords, et comportant des ondulations s'étendant selon deux directions perpendiculaires. Les plaques métalliques sont, par exemple, réalisées en tôle d'acier inoxydable ou d'aluminium, mise en forme par pliage ou par emboutissage.The primary waterproofing membrane is obtained by assembling a plurality of metal plates, welded to each other along their edges, and having corrugations extending in two perpendicular directions. The metal plates are, for example, made of stainless steel sheet or aluminum, shaped by folding or stamping.

La structure d'angle, illustrée sur la figure 8, comporte deux panneaux calorifuges 36, 37 présentant une face externe fixée contre la structure porteuse. Les panneaux calorifuges 36, 37 sont raccordés l'un à l'autre, par exemple par collage, via leur bord latéral biseauté. Les panneaux calorifuges 36, 37 forment ainsi un coin de la barrière d'isolation thermique secondaire.The corner structure, illustrated on the figure 8 , comprises two heat-insulating panels 36, 37 having an external face fixed against the supporting structure. The heat-insulating panels 36, 37 are connected to each other, for example by gluing, via their beveled lateral edge. The heat-insulating panels 36, 37 thus form a corner of the secondary thermal insulation barrier.

Une membrane étanche souple 38 repose sur les panneaux calorifuges 36, 37 et permet de garantir la continuité de l'étanchéité de la membrane d'étanchéité secondaire à l'angle de la cuve.A flexible waterproof membrane 38 rests on the heat-insulating panels 36, 37 and makes it possible to guarantee the continuity of the sealing of the secondary waterproofing membrane at the angle of the tank.

Par ailleurs, la structure d'angle comporte une pluralité de blocs isolants 39, 40 de la barrière d'isolation thermique primaire fixés sur la membrane étanche souple 38. Des raccords d'angle 41 en matière isolante, tel qu'une mousse polymère, sont disposés entre les bords adjacents à l'angle de cuve de deux blocs isolants 39, 40 et permet ainsi d'assurer une continuité de l'isolation thermique au niveau de l'angle de la cuve. De même, des éléments isolants de jointure 42 sont insérés entre les blocs isolants 39, 40.Furthermore, the corner structure comprises a plurality of insulating blocks 39, 40 of the primary thermal insulation barrier fixed on the flexible waterproof membrane 38. Angle connectors 41 of insulating material, such as a polymer foam, are disposed between the edges adjacent to the tank angle of two insulating blocks 39, 40 and thus ensures a continuity of the thermal insulation at the angle of the tank. Similarly, insulating joint elements 42 are inserted between the insulating blocks 39, 40.

Par ailleurs, des cornières métalliques 43 de barrière d'étanchéité primaire reposent sur les blocs isolants 39, 40. Les cornières métalliques 43 présentent deux ailes qui sont chacune parallèle à l'une des parois de la cuve. Les ailes présentant des goujons 44 soudés sur leur face interne. Les goujons 44 permettent d'ancrer un équipement de soudage lors du soudage des éléments de membrane d'étanchéité primaire sur les cornières métalliques 43.Moreover, metal angles 43 of primary sealing barrier rest on the insulating blocks 39, 40. The metal angles 43 have two wings which are each parallel to one of the walls of the tank. The wings having studs 44 welded on their inner face. The studs 44 make it possible to anchor a welding equipment during the welding of the primary waterproofing membrane elements on the metal angles 43.

La barrière thermiquement isolante primaire comporte au niveau de la structure d'angle, des éléments de déflexion 45 assurant l'écoulement de gaz au travers l'arrangement d'angle de la barrière d'isolation thermique primaire. Les éléments de déflexion 45 sont chacun insérés entre deux paires de blocs isolants 39,40.The primary thermally insulating barrier comprises at the corner structure, deflection members 45 providing gas flow through the corner arrangement of the primary thermal insulation barrier. The deflection elements 45 are each inserted between two pairs of insulating blocks 39,40.

L'élément de déflexion 45, représenté sur les figures 8, 10 et 11 est un élément de forme coudée qui présente un réseau de canaux coudés 47 qui s'étendent entre une première face 20a de l'élément de déflexion 45 disposée à son extrémité opposée à la seconde paroi 4 et une seconde face 20b de l'élément de déflexion 45 disposée à son extrémité opposée à la première paroi 1.The deflection element 45, shown on the Figures 8, 10 and 11 is a bent-shaped element which has an array of bent channels 47 which extend between a first face 20a of the deflection element 45 disposed at its opposite end to the second wall 4 and a second face 20b of the element of deflection 45 disposed at its end opposite the first wall 1.

La première face 20a et la deuxième face 20b de l'élément de déflexion 45 sont chacune disposées en vis-à-vis d'un interstice d'écoulement de gaz ménagé entre deux panneaux calorifuges de la barrière thermiquement isolante primaire.The first face 20a and the second face 20b of the deflection member 45 are each arranged opposite a gas flow gap formed between two heat-insulating panels of the primary thermally insulating barrier.

Les canaux coudés 47 présentent une première portion 47a s'étendant parallèlement à la première paroi 3 et une seconde portion 47b s'étendant parallèlement à la seconde paroi 4. Dans le mode de réalisation représenté sur la figure 11, les deux portions 47a, 47b communiquent l'une avec l'autre via une portion arquée.The bent channels 47 have a first portion 47a extending parallel to the first wall 3 and a second portion 47b extending parallel to the second wall 4. In the embodiment shown in FIG. figure 11 both portions 47a, 47b communicate with each other via an arcuate portion.

Comme dans les modes de réalisation précédent, l'élément de déflexion 47 comporte dans un plan de coupe orthogonale à l'intersection entre la première et la deuxième parois 3, 4, une série de canaux coudés 47 régulièrement espacés dans la direction d'épaisseur des parois 3, 4 de la cuve de telle sorte que les canaux coudées 47 suivent sensiblement les isothermes de la cuve au niveau de son angle.As in the previous embodiments, the deflection element 47 comprises in a cutting plane orthogonal to the intersection between the first and second walls 3, 4, a series of bent channels 47 regularly spaced in the thickness direction. walls 3, 4 of the tank so that the bent channels 47 substantially follow the isotherms of the tank at its angle.

Par ailleurs, comme représenté sur la figure 8, des éléments isolants de forme coudée 48 sont disposés de part et d'autre de l'élément de déflexion 47 alors qu'un troisième élément isolant de forme coudée 49 repose sur la face dirigée vers l'intérieur de la cuve de l'élément de déflexion 47.Moreover, as represented on the figure 8 , bent-shaped insulating elements 48 are disposed on either side of the deflection element 47 while a third bent-shaped insulating element 49 rests on the face directed towards the inside of the cell of the element deflection 47.

Enfin, comme représenté sur les figures 8 et 12, la barrière thermiquement isolante secondaire comporte également au niveau de la structure d'angle, des éléments de déflexion 46 assurant l'écoulement de gaz à travers l'arrangement d'angle de la barrière d'isolation thermique secondaire. Les éléments de déflexion 46 sont insérés dans des logements ménagés dans les panneaux calorifuges 36, 37.Finally, as represented on figures 8 and 12 , the secondary thermally insulating barrier also comprises at the angle structure, deflection elements 46 ensuring the flow of gas through the angle arrangement of the secondary thermal insulation barrier. The deflection elements 46 are inserted in housings formed in the heat-insulating panels 36, 37.

Comme dans le mode de réalisation précédent, la première face 20a et la deuxième face 20b des éléments de déflexion 46 seront avantageusement disposés en vis-à-vis d'interstices d'écoulement de gaz formés entre les panneaux calorifuges de la barrière d'isolation thermique secondaire.As in the previous embodiment, the first face 20a and the second face 20b of the deflection elements 46 will advantageously be arranged vis-à-vis gas flow interstices formed between the heat insulating panels of the insulation barrier secondary heat.

L'élément de déflexion 46, représenté de manière détaillée sur la figure 12, est formé en deux parties rectilignes 46a, 46b. Chacune des parties rectilignes 46a, 46b comporte des canaux 50 parallèles à l'une des parois 3, 4 de la cuve. Les parties rectilignes 46a, 46b présentent chacune un bord biseauté et sont mises bout-à-bout via leur bord biseauté. Les canaux 50 d'une des parties rectilignes 46a, 46b débouchent en vis-à-vis des canaux 50 de l'autre partie rectiligne 46a, 46b de sorte à former des canaux coudés.The deflection element 46, shown in detail on the figure 12 is formed in two straight portions 46a, 46b. Each of the rectilinear portions 46a, 46b comprises channels 50 parallel to one of the walls 3, 4 of the tank. The rectilinear portions 46a, 46b each have a beveled edge and are placed end-to-end via their beveled edge. The channels 50 of one of the rectilinear portions 46a, 46b open towards the channels 50 of the other straight portion 46a, 46b so as to form bent channels.

L'élément de déflexion 46, dans une version non représentée, peut être réalisé de manière adaptée à des angles différents de 90°.The deflection element 46, in a version not shown, can be adapted to different angles of 90 °.

En référence à la figure 13, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.With reference to the figure 13 , a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship. The wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.

De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.In a manner known per se, loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.

La figure 13 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.The figure 13 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77. The loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73. The movable arm 74 can be adapted to all gauges LNG carriers. A connection pipe (not shown) extends inside the tower 78. The loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77. liquefied gas storage tanks 80 and connecting lines 81 connected by underwater pipe 76 to the loading or unloading station 75. Underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the LNG ship 70 at a great distance from the coast during operations loading and unloading.

Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, telle que définie par les revendications.Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention as defined by the claims.

L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps.

Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims (22)

  1. A sealed and insulating vessel for the storage of a fluid, the said vessel comprising a plurality of walls (3, 4), each wall having in succession, through the thickness of the wall of the vessel from the outside to the inside of the vessel, an outer load-bearing structure (1), a thermally insulating barrier attached to the load-bearing structure and a sealing membrane supported by the said thermally insulating barrier,
    the said thermally insulating barrier comprising:
    - a plurality of lagging elements located along the walls of the vessel, arranged so as to define passages for the flow of gas within the said thermally insulating barrier; and
    - a corner arrangement located at the intersection between the first and the second walls (3, 4) of the vessel, the said vessel being characterized in that the corner arrangement comprises:
    - a deflection element (19, 45, 46) having a first surface (20a) opposite to the load-bearing structure of the second wall (4) and communicating with one or more of the passages for the flow of fluid defined by the plurality of lagging elements located along the first wall (3), a second surface (20b) opposite the load-bearing structure of the first wall (3) and communicating with one or more of the passages for the flow of fluid defined by the plurality of lagging elements located along the second wall (4) and a plurality of elbow channels (21, 47, 50) extending between the first surface (20a) and the second surface (20b) of the deflection element (19, 45, 46) to allow fluid to flow across the corner arrangement, the plurality of elbow channels (21, 47, 50) comprising at least one set of elbow channels spaced apart from each other through the thickness of the first and second walls (3, 4) of the vessel.
  2. The vessel as claimed in claim 1, in which the deflection element comprises a plurality of sets of elbow channels (21, 47, 50) spaced apart from each other through the thickness of the first and second walls (3, 4) of the vessel, the said sets being spaced apart from each other in a direction parallel to a line of intersection between the first and second walls (3, 4) of the vessel.
  3. The vessel as claimed in claim 1 or 2, in which the set of elbow channels (21, 47, 50) which are spaced apart from each other through the thickness of the walls of the vessel comprise at least four elbow channels.
  4. The vessel as claimed in any one of claims 1 to 3, in which the elbow channels (21, 47, 50) have a cross-sectional area of less than 5 cm2.
  5. The vessel as claimed in any one of claims 1 to 4, in which the cross section of the elbow channels (21, 47, 50) has a larger dimension in a direction parallel to the corner of the vessel than along a direction of the thickness of a wall (3, 4) of the vessel.
  6. The vessel as claimed in claim 1 or 5, in which the elbow channels (21, 47, 50) each comprise a first portion (21a, 47a) extending parallel to the first wall (3) and a second portion (21b, 47b) extending parallel to the second wall (4) and communicating with the first portion (21a, 47a).
  7. The vessel as claimed in any one of claims 1 to 6, in which the elbow channels (21) are of arched shape, the elbow channels (21) having radii of curvature which increase from the inside to the outside of the vessel.
  8. The vessel as claimed in claim 7, in which the deflection element (19) further comprises a third surface (20c), parallel and opposite to the first surface (20a), and a fourth surface (20d) parallel and opposite to the second surface (20b), and in which the deflection element (19) comprises a housing (22) lined with a lagging lining between the elbow channel of arched shape (21) having the greatest radius of curvature and the third and fourth surfaces (20c, 20d).
  9. The vessel as claimed in any one of claims 1 to 8, in which the deflection element (19) comprises a stack of plates stacked against each other in a direction perpendicular to the first surface (20a) or the second surface (20b), the plates each incorporating a plurality of spaces defining a portion of the elbow channels (21).
  10. The vessel as claimed in any one of claims 1 to 9, in which the deflection element (19) comprises a stack (23) of plates stacked against each other in a direction perpendicular to one surface (20e, 20f) of the deflection element (19) having a common edge between the first surface (20a) and the second surface (20b), and in which at least some of the stacked plates are provided on at least one of those surfaces with elbow grooves shaped to form the elbow channels (21).
  11. The vessel as claimed in claim 10, in which the stack (23) of plates comprises a plurality of flat load-bearing plates placed between two plates fitted with elbow grooves.
  12. The vessel as claimed in any one of claims 1 to 11, in which the deflection element (19) is in the shape of a rectangular parallelepiped.
  13. The vessel as claimed in claim 12, in which the deflection element (19) in the shape of a rectangular parallelepiped is associated with at least one junction element (32, 33) comprising a plurality of straight channels (34) parallel to one of the first and second walls (3, 4) and opening opposite the elbow channels (21) of the deflection element (19).
  14. The vessel as claimed in claim 13, in which the junction element (32, 33) has openings (35) crossing the said junction element (32, 33) in a direction parallel to the edge formed at the intersection between the first and the second walls (3, 4) of the vessel.
  15. The vessel as claimed in any one of claims 1 to 11, in which the deflection element (45, 46) is of an elbow shape.
  16. The vessel as claimed in claim 15, in which the elbow-shaped deflection element (46) has two straight parts (46a, 46b) each having a beveled edge and connected to each other via their beveled edges.
  17. The vessel as claimed in any one of claims 1 to 16, in which the corner arrangement comprises lagging corner elements (17, 28, 29, 30, 36, 37, 39, 40) and in which the deflection element (19, 45, 46) is associated with the lagging corner elements (17, 28, 29, 30, 36, 37, 39, 40).
  18. The vessel as claimed in any one of claims 1 to 17, in which the deflection element (19, 45, 46) is made of a polymer material selected from expanded polystyrene, polyurethane, polyurethane foam, polyethylene, polyethylene foam, polypropylene, polypropylene foam, polyamide, polycarbonate or polyetherimide.
  19. The vessel as claimed in any one of claims 1 to 18, in which each wall of the vessel (3, 4) has in succession, through the thickness of the vessel from the outside to the inside of the vessel, an outer load-bearing structure (1), a secondary thermally insulating barrier attached to the load-bearing structure (1), a secondary sealing membrane supported by the said secondary thermally insulating barrier, a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane intended to be in contact with the fluid stored in the vessel, each of the primary and secondary thermally insulating barriers incorporating a said corner arrangement comprising a deflection element (19, 45, 46).
  20. A ship (70) for the transport of a fluid, the ship comprising a double hull (72) and a vessel (71) as claimed in any one of claims 1 to 19 located within the double hull.
  21. A process for the loading or unloading of a ship (70) as claimed in claim 20, in which a fluid is passed through insulated piping (73, 79, 76, 81) to or from a floating or onshore (77) storage facility to or from the vessel (71) on the ship.
  22. A transfer system for a fluid, the system comprising a ship (70) as claimed in claim 20, insulated piping (73, 79, 76, 81) arranged in such a way as to connect the vessel (71) installed in the hull of the ship to a floating or onshore storage facility (77) and a pump to drive fluid through the insulated piping to or from the floating or onshore storage facility to or from the vessel on the ship.
EP15709264.4A 2014-03-04 2015-02-17 Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner Active EP3114387B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451771A FR3018338B1 (en) 2014-03-04 2014-03-04 SEALED AND INSULATING TANK WITH A DEFLECTION ELEMENT FOR GAS FLOW AT AN ANGLE
PCT/FR2015/050380 WO2015132498A1 (en) 2014-03-04 2015-02-17 Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner

Publications (2)

Publication Number Publication Date
EP3114387A1 EP3114387A1 (en) 2017-01-11
EP3114387B1 true EP3114387B1 (en) 2017-11-15

Family

ID=50513346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15709264.4A Active EP3114387B1 (en) 2014-03-04 2015-02-17 Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner

Country Status (7)

Country Link
EP (1) EP3114387B1 (en)
JP (1) JP6496748B2 (en)
KR (1) KR102285763B1 (en)
CN (1) CN106164564B (en)
AU (1) AU2015226021B2 (en)
FR (1) FR3018338B1 (en)
WO (1) WO2015132498A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043348A1 (en) * 2017-09-04 2019-03-07 Gaztransport Et Technigaz Sealed and thermally insulating vessel having an anti-convective filler plate
FR3070747B1 (en) * 2017-09-04 2021-01-08 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATING TANK WITH ANTI-CONVECTIVE COVER STRIP
FR3082593B1 (en) * 2018-06-13 2020-06-19 Gaztransport Et Technigaz WATERPROOF TANK PROVIDED WITH A CORRUGATED JUNCTION ELEMENT
FR3084645B1 (en) * 2018-08-06 2021-01-15 Gaztransport Et Technigaz CORNER STRUCTURE FOR A WATERPROOF AND THERMALLY INSULATION TANK
FR3086031B1 (en) * 2018-09-18 2020-09-11 Gaztransport Et Technigaz LIQUEFIED GAS STORAGE INSTALLATION
FR3099538B1 (en) * 2019-07-31 2022-06-10 Gaztransport Et Technigaz Watertight and thermally insulated tank for floating structure
FR3102138B1 (en) * 2019-10-17 2022-05-20 Gaztransport Et Technigaz Connection beam for a watertight and thermally insulating liquefied gas storage tank
FR3114138B1 (en) * 2020-09-11 2023-05-12 Gaztransport Et Technigaz Watertight and thermally insulated tank

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381843A (en) * 1966-05-06 1968-05-07 Exxon Research Engineering Co Insulation system
US4116150A (en) * 1976-03-09 1978-09-26 Mcdonnell Douglas Corporation Cryogenic insulation system
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
FR2462336A1 (en) * 1979-07-27 1981-02-13 Gaz Transport Tank for transporting liquefied gases by sea - incorporates fluid tightness and insulating barriers simply realised, necessitating only small sweeping nitrogen flow
FR2813111B1 (en) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz WATERPROOF AND THERMALLY INSULATING TANK IMPROVED LONGITUDINAL AREAS
FR2867831B1 (en) * 2004-03-17 2006-05-19 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
KR100902405B1 (en) 2007-08-23 2009-06-11 한명섭 Apparatus of Pressing corner part of 2nd Barrier of LNG cargocontainment
FR2961580B1 (en) * 2010-06-17 2012-07-13 Gaztransport Et Technigaz WATERPROOF AND INSULATED TANK WITH SUPPORT FOOT
FR2973098B1 (en) * 2011-03-22 2014-05-02 Gaztransp Et Technigaz SEALED AND THERMALLY INSULATED TANK
CN103133863B (en) * 2013-01-16 2016-03-02 中国五环工程有限公司 Liquefied gas at low temp holds jar structure entirely
KR101584574B1 (en) * 2014-06-03 2016-01-12 대우조선해양 주식회사 Corner panel for using cryogenic fluid storage tank and cryogenic fluid insulation system with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2015226021A1 (en) 2016-09-08
FR3018338A1 (en) 2015-09-11
FR3018338B1 (en) 2016-03-25
JP6496748B2 (en) 2019-04-03
WO2015132498A1 (en) 2015-09-11
AU2015226021B2 (en) 2019-03-28
KR102285763B1 (en) 2021-08-04
EP3114387A1 (en) 2017-01-11
CN106164564B (en) 2018-03-27
JP2017512284A (en) 2017-05-18
KR20160146667A (en) 2016-12-21
CN106164564A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
EP3114387B1 (en) Sealed and insulating vessel comprising a deflection element allowing the flow of gas at a corner
EP3320256B1 (en) Sealed and thermally insulated tank having a secondary sealing membrane equipped with a corner arrangement with corrugated metal sheets
EP3250849B1 (en) Apparatus for storing and transporting a cryogenic fluid on-board a ship
EP2739895B1 (en) Sealed, thermally-insulating vessel
EP3283813B1 (en) Tank equipped with a wall having a specific zone through which a through-element passes
EP3679289B1 (en) Sealed and thermally insulating tank with anti-convective filling element
WO2020030871A1 (en) Corner structure for a sealed, thermally insulated tank
EP3365592B1 (en) Vessel including insulating corner blocks provided with stress relief slots
FR2978749A1 (en) INSULATING BLOCK FOR THE MANUFACTURE OF A TANK WALL
FR3070746A1 (en) SEALED AND THERMALLY INSULATING TANK WITH AN ANTI-CONVECTIVE FILLING PLATE
WO2012123656A1 (en) Insulating block for producing a tight wall of a tank
EP3596383B1 (en) Thermally insulating sealed tank comprising a reinforcing insulating plug
WO2020193665A1 (en) Thermally insulating sealed tank
FR3014085A1 (en) SELF-CONDUCTING BODY FOR THE THERMAL INSULATION OF A STORAGE TANK FOR A FLUID
FR3085199A1 (en) WATERPROOF AND THERMALLY INSULATING TANK WALL
FR3072760A1 (en) SEALED AND THERMALLY INSULATING TANK WITH SEVERAL ZONES
EP3017234A2 (en) Lagging element suited to the creation of an insulating barrier in a sealed and insulating tank
CA3128100A1 (en) Insulating block intended for thermally insulating a storage tank
WO2021094493A1 (en) Sealed and thermally insulating tank having anti-convection insulating seals
FR3108383A1 (en) Sealed and thermally insulating tank
WO2021013856A1 (en) Sealing membrane for a sealed fluid storage tank
FR3112587A1 (en) Watertight and thermally insulated tank
FR3118118A1 (en) Sealed and thermally insulating tank comprising a bridging element
FR3118119A1 (en) Watertight and thermally insulating tank comprising a wave shutter
FR3135126A1 (en) Tank wall crossed by a sealed fluid evacuation pipe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 946639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015006048

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 946639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015006048

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015006048

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150217

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230227

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612