EP2733229B1 - Fil machine présentant une résistance supérieure à la rupture différée par hydrogène, son procédé de fabrication, boulon à haute résistance utilisant ledit fil et procédé de fabrication du boulon - Google Patents
Fil machine présentant une résistance supérieure à la rupture différée par hydrogène, son procédé de fabrication, boulon à haute résistance utilisant ledit fil et procédé de fabrication du boulon Download PDFInfo
- Publication number
- EP2733229B1 EP2733229B1 EP12814354.2A EP12814354A EP2733229B1 EP 2733229 B1 EP2733229 B1 EP 2733229B1 EP 12814354 A EP12814354 A EP 12814354A EP 2733229 B1 EP2733229 B1 EP 2733229B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wire rod
- bolt
- precipitate
- delayed fracture
- fracture resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0093—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Definitions
- the present disclosure relates to a wire rod used for automobile engine bolts and the like, and more particularly, to a wire rod having improved hydrogen delayed fracture resistance, a method for manufacturing the same, a high strength bolt using the same, and a method for manufacturing the bolt.
- the drawn wire after performing wire drawing intended for sizing, through low temperature annealing, the drawn wire may be subjected to spheroidizing heat treatment, bolt-forming, quenching and tempering processes to finally obtain a steel having a single-phase structure composed of tempered martensite.
- strength of the bolt may be determined depending on composing, quenching, tempering and heat treatment processes performed thereon.
- the wire rod as a raw material needs to have as little strength as possible in order to facilitate bolt-forming.
- alloying elements in particular, carbon elements
- DBTT brittle transition temperature
- work hardening may be increased, causing disadvantages in bolt-forming and a separate softening heat treatment may be required.
- Bolts manufactured as described above may generally have a tempered martensite structure in which carbide precipitates are distributed in grain boundaries or grains and the basic material thereof has precipitates distributed in lath martensite.
- a main factor hindering the high strengthening of the basic material may be a degradation in delayed fracture resistance due to the introduction of hydrogen, and it has been known because the introduced hydrogen may deteriorate the strength of grain boundaries.
- an operation for improving delayed fracture resistance may be required.
- improvements in delayed fracture resistance may be unavoidably required to increase critical delayed fracture strength, and to this end, a method of generating precipitates capable of trapping diffusible hydrogen or controlling a microstructure by adding certain elements while maximally suppressing phosphorus (P) and sulfur (S) brominating austenitic grain boundaries, and the like may be present.
- the related art technologies for improving hydrogen delayed fracture resistance may include 1) corrosion suppression in steel, 2) minimization of an amount of introduced hydrogen, 3) suppression of diffusible hydrogen contributing to delayed fracture, 4) the use of steel having a high concentration of limited diffusible hydrogen contained therein, 5) minimization of tensile stress, 6) stress concentration reduction, 7) miniaturization of austenite grain boundary size, and the like.
- a method of achieving improvements in hydrogen delayed fracture resistance a method of implementing a high degree of alloying, or a surface coating method or a plating method for preventing the introduction of external hydrogen has been mainly used.
- a technology of improving delayed fracture characteristics of a high strength wire rod having a tensile strength of 1600 MPa or greater, using complete pearlite is present.
- 0.2 wt% or more of chromium needs to be added in order to improve tensile strength through wire drawing and to secure drawability during wire drawing intended for sizing after the production of a wire rod, and lead patenting for isothermal transformation may necessarily be required.
- such a technology may have disadvantages such as high manufacturing costs and complex processes and have limitations such as the requirement for excessively precise rolling and cooling conditions at the time of manufacturing steel.
- the tensile strength may be secured without a final heat treatment, unlike in other technologies.
- the technology basically aims at improving hydrogen delayed fracture resistance by adding a great quantity of molybdenum (Mo), it may be disadvantageous in terms of high manufacturing costs.
- Document JP55884960 A relates to a high strength bolt having a tensile strength ⁇ 120 kg/mm 2 and superior delayed rupture resistance.
- An aspect of the present disclosure provides a wire rod having superior hydrogen delayed fracture resistance while securing ultrahigh strength through a heat treatment, and a method for manufacturing the same.
- An aspect of the present disclosure also provides a high strength bolt having superior hydrogen delayed fracture resistance using the wire rod, and a method for manufacturing the same.
- a wire rod according to claim 1 having superior hydrogen delayed fracture resistance and having a composition consisting of C: 0.3 to 0.7 wt%, Si: 0.05 to 2.0 wt%, Mn: 0.7 to 1.5 wt%, La: 30 to 70ppm, Ni : 0.01 to 0.1%, the balance being Fe and inevitable impurities.
- a method for manufacturing a wire rod having superior hydrogen delayed fracture resistance including: heating a steel having a composition consisting of C: 0.3 to 0.7 wt%, Si: 0.05 to 2.0 wt%, Mn: 0.7 to 1.5 wt%, La: 30 to 70ppm, Ni: 0.01 to 0.1%, the balance being Fe and inevitable impurities to a temperature of Ae3+150°C to Ae3+250°C; cooling the heated steel at a rate of 5 to 15°C/s and rolling the steel at a temperature of Ae3+50°C to Ae3+150°C to manufacture a wire rod; and cooling the rolled wire rod to 600 °C or less at a rate of 0.5 to 3°C/s.
- a bolt having a composition consisting of C: 0.3 to 0.7 wt%, Si: 0.05 to 2.0 wt%, Mn: 0.7 to 1.5 wt%, La: 30 to 70ppm, Ni: 0.01 to 0.1%, the balance being Fe and inevitable impurities, and having a tensile strength of 1200 MPa or greater and superior hydrogen delayed fracture resistance, as defined in claim 6.
- a method for manufacturing a bolt having superior hydrogen delayed fracture resistance including: heating a steel having a composition consisting of C: 0.3 to 0.7 wt%, Si: 0.05 to 2.0 wt%, Mn: 0.7 to 1.5 wt%, La: 30 to 70ppm, Ni : 0.01 to 0.1%, the balance being Fe and inevitable impurities to a temperature of Ae3+150°C to Ae3+250°C; cooling the heated steel at a rate of 5 to 15°C/s and rolling the steel at a temperature of Ae3+50°C to Ae3+150°C to manufacture a wire rod; cooling the rolled wire rod to 600°C or less at a rate of 0.5 to 3°C/s; and bolt-forming using the cooled wire rod; performing a heat treatment on the formed bolt at a temperature of 850 to 950°C; and performing quenching after the heat treatment, and then performing tempering at a temperature of 300
- the wire rod according to the present disclosure may be a high strength wire rod used for the coupling of automobile components or used in such automobile components, and the method of manufacturing the wire rod may be advantageous in that a wire rod having high strength of 1200 MPa to 2000 MPa and superior hydrogen delayed fracture resistance, even in a case in which a tiny amount of lanthanum and nickel is added or even in a case in which a martensite microstructure is present after the final heat treatment, may be manufactured with low manufacturing costs.
- the stability of a steel structure may be increased due to a reinforcement of coupling force and a reduction of vacancies in a coupling part at the time of coupling the bolts, and an amount of steel used may be reduced due to a decrease in the number of coupled bolts.
- the development of the wire rod for bolts as described above may contribute to lightening of the automobile components. Due to the lightening of automobile components, various automobile assembling device designs may be enabled and compactness of automobile assembling devices may be allowed.
- a wire rod according to an exemplary embodiment of the present disclosure will be described in detail.
- a compositional range of the wire rod according to the exemplary embodiment of the present disclosure will be described (hereinafter, referred to as weight percentage (wt%)).
- Carbon (C) is included in the wire rod in an amount of 0.3 to 0.7 wt%.
- carbon (C) is included in an amount exceeding 0.7 wt%, although the wire rod may be frequently used in the form of a high carbon wire rod formed using common cold wire drawing, in a case in which the wire rod is subjected to a heat treatment suggested in the exemplary embodiment of the present disclosure, film shaped carbides may be frequently eluted in austenite grain boundaries to thereby deteriorate hydrogen delayed fracture resistance.
- an amount of carbon (C) exceeding 0.7 wt% is not preferable.
- carbon (C) when carbon (C) is included in an amount less than 0.3 wt%, since tensile strength of a bolt may be insufficiently secured through quenching and tempering heat treatments, carbon (C) is added in an amount of 0.3 wt% or greater in order to secure a sufficient degree of strength.
- Silicon (Si) is included in the wire rod in an amount of 0.05 to 2.0 wt%.
- silicon (Si) is included in an amount exceeding 2.0 wt%, a work hardening phenomenon may be rapidly generated during a cold forging process for manufacturing bolts to deteriorate processability.
- silicon (Si) is included in an amount less than 0.05 wt%, a sufficient degree of strength may not be secured and spheroidization of cementite may also be adversely affected.
- Manganese (Mn) is included in the wire rod in an amount of 0.7 to 1.5 wt%.
- Manganese (Mn) an element forming a substitutional solid solution in a base structure to perform solid solution reinforcement, may be very useful in high tension bolt characteristics.
- Mn manganese
- a heterogeneous structure caused by manganese segregation may have a negative influence on bolt characteristics, rather than having solid solution reinforcement effects.
- the segregation area may be barely affected by the manganese segregation, but tensile strength of a final product may not be secured through solid solution reinforcement. That is, when manganese (Mn) is included in an amount less than 0.7 wt%, improvements in quenching and permanent deformation resistance may be insufficient due to insufficient solid solution reinforcement.
- Nickel (Ni) is included in the wire rod in an amount of 0.01 to 0.1 wt%.
- Nickel (Ni) may be a very important element forming a compound within a grain boundary, together with lanthanum (La).
- La lanthanum
- nickel (Ni) is included in an amount less than 0.01 wt%, an effective compound, in particular, precipitates, may not be completely generated, thereby leading to an inability to improve hydrogen delayed fracture resistance.
- nickel (Ni) is included in an amount exceeding 0.1 wt%, the amount of the remaining austenite may be increased to degrade impact toughness and manufacturing costs may be increased due to an excessive amount of nickel.
- Lanthanum (La) is included in the wire rod in an amount of 30 to 70 ppm.
- Lanthanum (La) may be a very important element forming a compound within a grain boundary, together with Nickel (Ni) and decreasing phosphorous and sulfur segregated in the grain boundary.
- Ni Nickel
- lanthanum (La) is included in an amount less than 30ppm, the compound may not be effectively formed and the removal of phosphorus and sulfur segregated in the grain boundary may not be facilitated.
- the securing of tensile strength may be enabled but superior hydrogen delayed fracture resistance may not be expected.
- the upper limit of the amount of added lanthanum may be 70ppm.
- the balance of the composition is iron (Fe) and inevitable impurities.
- the wire rod according to the exemplary embodiment of the present invention includes a lanthanum (La)-based, a nickel (Ni)-based, or a LaNi-based precipitate.
- Types of the precipitate are not particularly limited, and examples thereof may include LaNi 5 , LaPO 4 , La 2 O 2 S.
- the precipitate may be formed in a grain or a grain boundary of a microstructure and trap hydrogen introduced into the grain or the grain boundary to prevent the introduced hydrogen from deteriorating strength of the grain boundary, thereby improving hydrogen delayed fracture resistance.
- FIG. 1 schematically illustrates a state in which precipitates are distributed by observing the microstructure of the wire rod according to the exemplary embodiment of the present disclosure. As illustrated in FIG. 1 , it may be confirmed that precipitates of LaNi 5 , LaPO 4 , and La 2 O 2 S are distributed in a grain or a grain boundary of the microstructure, and a compound of LaNi 5 H 6 is present due to the trapping of hydrogen.
- FIG. 2 schematically illustrates hydrogen trapping effects using a molybdenum (Mo) precipitate according to the related art, and the molybdenum (Mo) precipitate may be intended to trap introduced hydrogen within an interface between the precipitate and a grain to thereby improve hydrogen delayed fracture resistance.
- Mo molybdenum
- the precipitate according to the exemplary embodiment of the present disclosure may allow for the formation of a compound (for example, LaNi 5 H 6 ) including introduced hydrogen, rather than confining the hydrogen to a surface of the precipitate, such that hydrogen present in steel may be completely confined to thereby improve hydrogen delayed fracture resistance.
- a defect in which hydrogen is separated from the surface of the precipitate may be present, but such a defect may be fundamentally extinct, such that superior hydrogen delayed fracture resistance may be obtained, in the embodiment of the present disclosure.
- FIG. 4 illustrates a crystal structure of LaNi 5 H 6 of FIG. 3 , and it can be confirmed that the compound of LaNi 5 H 6 may have a structure capable of storing a considerable amount of hydrogen therein.
- the aspect ratio of the precipitate is 1.2 to 2.0.
- the aspect ratio of the precipitate is less than 1.2, the securing of the compound may rarely be allowed due to the crystal structure.
- the aspect ratio of the precipitate exceeds 2.0, the precipitate may be easily broken.
- continuity thereof with a base may be deficient and micro-voids may be generated, thereby causing defects.
- breakage of the wire rod may be caused and expected hydrogen delayed fracture resistance may not be secured.
- a circular-equivalent diameter of the precipitate may be 100 to 400nm.
- the diameter is less than 100nm, the size of the precipitate may be excessively small, an amount of hydrogen trapped in the precipitate may be reduced, whereby effective hydrogen trapping effects may not be secured.
- the diameter exceeds 400nm, and is significantly large, since the number of precipitates distributed per unit area may be reduced, a decrease in a surface area of the precipitates in the overall steel may result, thereby reducing hydrogen trapping effects, the upper limit of the diameter of the precipitate may be 400 nm.
- steel satisfying the composition described above is heated to a temperature of Ae3+150°C to Ae3+250°C.
- the heating to the temperature may be intended to maintain an austenite single phase, and in a range of the temperature, austenite grain coarsening may not be generated and the remaining segregation, carbides and inclusions may be effectively dissolved.
- the temperature exceeds Ae3+250°C, an austenite grain may be significantly coarse, such that a final microstructure formed after cooling may be highly coarse, resulting in an inability to secure a high strength wire rod having a high degree of toughness.
- the heating temperature is less than Ae3+150°C, heating effects may not be obtained and consequently, the heating temperature is Ae3+150°C to Ae3+250°C.
- the heating may be undertaken for 30 minutes to one and a half hours. When the heating is performed for less than 30 minutes, the entire temperature may not be uniform. When the heating is performed for more than one and a half hours, possibility that the austenite grain may be coarse may be higher and productivity may be significantly reduced.
- the heated steel is cooled and is subjected to hot rolling.
- the cooling is performed at a cooling rate of 5 to 15°C/s and the rolling is performed at a temperature of Ae3+50°C to Ae3+150°C, to thereby manufacture a wire rod.
- the cooling may be intended to perform controlling aiming at minimizing the transformation of the microstructure.
- productivity may be decreased, an additional device may be required in order to maintain a slow cooling rate, and further, strength and toughness of the wire rod may be deteriorated after the hot rolling, similarly to the case in which the heating is maintained for long hours.
- the cooling rate exceeds 15°C/s, since driving force of the transformation in steel before the rolling may be increased, the possibility that a new microstructure may emerge during the rolling may be increased, such that a lower rolling temperature may need to be reset.
- the rolling temperature may be a temperature at which the emergence of a microstructure caused by the transformation during the rolling may be inhibited, recrystallization may not be generated, and only sizing rolling may be enabled.
- the rolling temperature is less than Ae3+50°C, it may be close to the dynamic recrystallization temperature, such that the securing of the microstructure may be unavailable and general soft ferrite may be highly secured.
- the rolling temperature is greater than Ae3+150°C, since reheating may be required after the cooling, the upper limit of the rolling temperature may be set as described above.
- the wire rod manufactured through the rolling as described above is cooled to 600 °C or less at a cooling rate of 0.5 to 3°C/s.
- the cooling rate may refer to a cooling rate at which the diffusion of carbon may be suppressed by the addition of manganese, and the wire rod may be effectively generated while pearlite is incompletely generated and a sufficient area fraction is secured.
- the cooling rate is less than 0.5°C/s, the cooling rate may be extremely low, thereby degrading productivity to a degree to which actual work becomes infeasible.
- the cooling rate exceeds 3°C/s hardenability may be improved due to overlapping effects of the added elements, such that ferrite-pearlite transformation may be delayed and a low temperature structure such as martensite or bainite may be generated.
- the bolt manufactured using the wire rod according to the embodiment of the present disclosure may have ultrahigh strength and at the same time, may have superior hydrogen delayed fracture resistance due to the precipitate.
- the bolt according to the exemplary embodiment of the present disclosure has an ultrahigh strength of 1200 MPa or greater and at the same time, ⁇ superior hydrogen delayed fracture resistance.
- the manufacturing method of a wire rod having tensile strength of 1200 MPa or greater may be performed according to the following operations.
- bolt-forming is performed using the wire rod according to the embodiment of the present disclosure, and a heat treatment is performed on the formed bolt at a temperature of 850 to 950°C.
- the heat treatment may be intended to achieve homogenization of the structure through austenizing.
- the temperature is less than 850°C, a sufficient amount of homogenization may not be performed, while when the temperature is greater than 950°C, no further effects derived from an increase in temperature may be secured and ductility may be deteriorated due to the coarsening of grains.
- the upper limit of the temperature is 950°C.
- the structure homogenized through rapid cooling may form a low temperature transformation structure such as a martensite structure to thereby improve strength of the bolt.
- the tempering is intended to control strength and improve brittleness by removing residual stress generated due to the rapid cooling.
- the temperature is less than 300°C, sufficient removal of residual stress may be difficult and rather, brittleness may be generated as a temper brittleness phenomenon.
- the temperature is 300°C or greater.
- the temperature exceeds 500°C, the strength may be reduced due to an excessive heat treatment, thereby leading to an inability to secure a required level of strength.
- the tempering is undertaken at a temperature of 300 to 500°C.
- the method for manufacturing the bolt may be intended to secure a required level of strength by applying a common heat treatment thereto.
- the common heat treatment may be applied by controlling time and temperature in order to secure strength required by a person having ordinary skill in the art and the present disclosure is not particularly limited thereto.
- Comparative examples 9 and 11 have sufficient strength and hydrogen delayed fracture resistance, but are not preferable in terms of economical feasibility due to the addition of an excessive amount of La and Ni, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Claims (10)
- Fil machine présentant une résistance à la rupture supérieure différée par hydrogène et ayant une composition constituée par C : 0,3 à 0,7 % en poids, Si : 0,05 à 2,0 % en poids, Mn : 0,7 à 1,5 % en poids, La : 30 à 70 ppm, Ni : 0,01 à 0,1 %, le solde étant du Fe et des impuretés inévitables,
sachant que le fil machine inclut un précipité à base de lanthane (La), à base de nickel (Ni), ou à base de LaNi,
sachant que le rapport d'aspect du précipité est de 1,2 sur 2,0. - Le fil machine de la revendication 1, sachant qu'un diamètre équivalent circulaire moyen du précipité est de 100 à 400 nm.
- Le fil machine de la revendication 1 ou 2, sachant que le précipité est au moins l'un de LaNi5, LaPO4 et La202S.
- Procédé de fabrication d'un fil machine présentant une résistance à la rupture supérieure différée par hydrogène, le procédé comprenant :le chauffage d'un acier ayant une composition constituée par C : 0,3 à 0,7 % en poids, Si : 0,05 à 2,0 % en poids, Mn : 0,7 à 1,5 % en poids, La : 30 à 70 ppm, Ni : 0,01 à 0,1 %, le solde étant du Fe et des impuretés inévitables, à une température de Ae3+150°C à Ae3+250°C ;le refroidissement de l'acier chauffé à une cadence de 5 à 15°C/s et le laminage de l'acier à une température de Ae3+50°C à Ae3+150°C pour fabriquer un fil machine ; etle refroidissement du fil machine laminé à 600°C ou moins à une cadence de 0,5 à 3°C/s, sachant qu'un précipité à base de lanthane (La), à base de nickel (Ni), ou à base de LaNi est formé, sachant que le rapport d'aspect du précipité est de 1,2 sur 2,0.
- Le procédé de la revendication 4, sachant que le chauffage est effectué pendant 30 minutes à une heure et demie.
- Boulon ayant une composition constituée par C : 0,3 à 0,7 % en poids, Si : 0,05 à 2,0 % en poids, Mn : 0,7 à 1,5 % en poids, La : 30 à 70 ppm, Ni : 0,01 à 0,1 %, le solde étant du Fe et des impuretés inévitables, et présentant une résistance à la traction de 1200 MPa ou plus et une résistance à la rupture supérieure différée par hydrogène,
sachant qu'une microstructure du boulon inclut un précipité à base de lanthane (La), à base de nickel (Ni), ou à base de LaNi ayant un rapport d'aspect de 1,2 sur 2,0. - Le boulon de la revendication 6, sachant qu'un diamètre équivalent circulaire moyen du précipité est de 100 à 400 nm.
- Le boulon de la revendication 6 ou 7, sachant que le précipité est au moins l'un de LaNi5, LaPO4 et La2O2S.
- Procédé de fabrication d'un boulon présentant une résistance à la traction de 1200 MPa ou plus et une résistance à la rupture supérieure différée par hydrogène, le procédé comprenant :le chauffage d'un acier ayant une composition constituée par C : 0,3 à 0,7 % en poids, Si : 0,05 à 2,0 % en poids, Mn : 0,7 à 1,5 % en poids, La : 30 à 70 ppm, Ni : 0,01 à 0,1 %, le solde étant du Fe et des impuretés inévitables, à une température de Ae3+150°C à Ae3+250°C ;le refroidissement de l'acier chauffé à une cadence de 5 à 15°C/s et le laminage de l'acier à une température de Ae3+50°C à Ae3+150°C pour fabriquer un fil machine ; etle refroidissement du fil machine laminé à 600°C ou moins à une cadence de 0,5 à 3°C/s, sachant qu'un précipité à base de lanthane (La), à base de nickel (Ni), ou à base de LaNi ayant un rapport d'aspect de 1,2 sur 2,0 est formé ; etle formage de boulon au moyen du fil machine laminé ;l'exécution d'un traitement thermique sur le boulon formé à une température de 850 à 950°C ; etl'exécution d'une trempe après le traitement thermique, puis l'exécution d'un revenu à une température de 300 à 500°C.
- Le procédé de la revendication 9, sachant que le chauffage est effectué pendant 30 minutes à une heure et demie.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110070206A KR101325317B1 (ko) | 2011-07-15 | 2011-07-15 | 수소지연파괴 저항성이 우수한 선재와 그 제조방법 및 이를 이용한 고강도 볼트와 그 제조방법 |
PCT/KR2012/003757 WO2013012161A1 (fr) | 2011-07-15 | 2012-05-14 | Fil machine présentant une résistance supérieure à la rupture différée par hydrogène, son procédé de fabrication, boulon à haute résistance utilisant ledit fil et procédé de fabrication du boulon |
Publications (4)
Publication Number | Publication Date |
---|---|
EP2733229A1 EP2733229A1 (fr) | 2014-05-21 |
EP2733229A4 EP2733229A4 (fr) | 2015-04-08 |
EP2733229B1 true EP2733229B1 (fr) | 2016-04-06 |
EP2733229B9 EP2733229B9 (fr) | 2016-07-13 |
Family
ID=47558306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12814354.2A Not-in-force EP2733229B9 (fr) | 2011-07-15 | 2012-05-14 | Fil machine présentant une résistance supérieure à la rupture différée par hydrogène, son procédé de fabrication, boulon à haute résistance utilisant ledit fil et procédé de fabrication du boulon |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140150934A1 (fr) |
EP (1) | EP2733229B9 (fr) |
JP (1) | JP5826383B2 (fr) |
KR (1) | KR101325317B1 (fr) |
CN (1) | CN103649354B (fr) |
WO (1) | WO2013012161A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103820726A (zh) * | 2014-03-17 | 2014-05-28 | 河南赛诺米特种设备有限公司 | 一种疲劳强度较高螺栓的制造方法 |
JP6601284B2 (ja) * | 2016-03-11 | 2019-11-06 | 日本製鉄株式会社 | 高強度ボルト |
WO2019117519A1 (fr) | 2017-12-11 | 2019-06-20 | 한국기계연구원 | Alliage à entropie élevée, procédé de fabrication correspondant et tige pour boulons utilisant cet alliage |
JPWO2021193057A1 (fr) | 2020-03-27 | 2021-09-30 | ||
KR102696643B1 (ko) * | 2024-05-07 | 2024-08-19 | 김태수 | 수소연료전지용 인코넬볼트 제조방법 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5884960A (ja) * | 1981-11-13 | 1983-05-21 | Kawasaki Steel Corp | 耐遅れ破壊性にすぐれた高張力鋼 |
JPH06145889A (ja) * | 1992-11-11 | 1994-05-27 | Daido Steel Co Ltd | 快削鋼 |
JP2932943B2 (ja) * | 1993-11-04 | 1999-08-09 | 株式会社神戸製鋼所 | 高耐食性高強度ばね用鋼材 |
JPH08170149A (ja) * | 1994-12-16 | 1996-07-02 | Kobe Steel Ltd | 耐食性高強度極細鋼線用線材、耐食性高強度極細鋼線及びその製造方法 |
JP2001164337A (ja) * | 1999-12-09 | 2001-06-19 | Nippon Steel Corp | 遅れ破壊特性の優れた高張力鋼材及びその製造方法 |
WO2001046485A1 (fr) * | 1999-12-22 | 2001-06-28 | Nippon Steel Corporation | Tige de fil metallique de haute resistance a patentage direct, et son procede de production |
JP3940270B2 (ja) * | 2000-04-07 | 2007-07-04 | 本田技研工業株式会社 | 耐遅れ破壊性および耐リラクセーション特性に優れた高強度ボルトの製造方法 |
JP2005206853A (ja) * | 2004-01-20 | 2005-08-04 | Kobe Steel Ltd | 伸線加工性に優れた高炭素鋼線材およびその製造方法 |
JP2007002294A (ja) * | 2005-06-23 | 2007-01-11 | Kobe Steel Ltd | 伸線性および疲労特性に優れた鋼線材並びにその製造方法 |
JP4718359B2 (ja) * | 2005-09-05 | 2011-07-06 | 株式会社神戸製鋼所 | 伸線性と疲労特性に優れた鋼線材およびその製造方法 |
KR100723186B1 (ko) * | 2005-12-26 | 2007-05-29 | 주식회사 포스코 | 지연파괴저항성이 우수한 고강도 볼트 및 그 제조기술 |
KR101022068B1 (ko) * | 2006-03-30 | 2011-03-17 | 가부시키가이샤 고베 세이코쇼 | 신선성과 피로 특성이 우수한 고탄소강 선재용 강의 제조 방법 |
JP4069150B2 (ja) * | 2006-03-30 | 2008-04-02 | 株式会社神戸製鋼所 | 伸線性と疲労特性に優れた高炭素鋼線材用鋼の製造方法 |
JP4799392B2 (ja) * | 2006-12-19 | 2011-10-26 | 株式会社神戸製鋼所 | 疲労特性に優れた鋼線材の製造方法 |
JP5121282B2 (ja) * | 2007-04-03 | 2013-01-16 | 株式会社神戸製鋼所 | 高速冷間加工用鋼及びその製造方法、並びに高速冷間加工部品およびその製造方法 |
JP4826542B2 (ja) * | 2007-05-01 | 2011-11-30 | 住友金属工業株式会社 | ボルト用鋼およびそれを用いた橋梁 |
KR20090071164A (ko) * | 2007-12-27 | 2009-07-01 | 주식회사 포스코 | 노치 인성이 우수한 내지연파괴 고강도 볼트 및 그 제조방법 |
KR101253852B1 (ko) * | 2009-08-04 | 2013-04-12 | 주식회사 포스코 | 고인성 비조질 압연재, 신선재 및 그 제조방법 |
-
2011
- 2011-07-15 KR KR1020110070206A patent/KR101325317B1/ko active IP Right Grant
-
2012
- 2012-05-14 US US14/232,805 patent/US20140150934A1/en not_active Abandoned
- 2012-05-14 JP JP2014520107A patent/JP5826383B2/ja not_active Expired - Fee Related
- 2012-05-14 WO PCT/KR2012/003757 patent/WO2013012161A1/fr active Application Filing
- 2012-05-14 EP EP12814354.2A patent/EP2733229B9/fr not_active Not-in-force
- 2012-05-14 CN CN201280035144.XA patent/CN103649354B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2013012161A1 (fr) | 2013-01-24 |
KR101325317B1 (ko) | 2013-11-08 |
JP5826383B2 (ja) | 2015-12-02 |
JP2014525987A (ja) | 2014-10-02 |
CN103649354B (zh) | 2016-07-06 |
US20140150934A1 (en) | 2014-06-05 |
KR20130009248A (ko) | 2013-01-23 |
EP2733229A4 (fr) | 2015-04-08 |
EP2733229B9 (fr) | 2016-07-13 |
EP2733229A1 (fr) | 2014-05-21 |
CN103649354A (zh) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2641987B1 (fr) | Matériau en acier à résistance élevée qui présente une excellente ténacité à des températures ultra-basses et procédé de production de ce dernier | |
EP2096184B1 (fr) | Fil d'acier pour ressort excellent en termes de propriété de fatigue et de propriété d'étirement | |
EP2053140B1 (fr) | Feuilles d'acier très résistantes et procédés de production de celles-ci | |
EP1347069B1 (fr) | Acier ressorts haute r sistance et fil d'acier ressorts | |
EP3653736B1 (fr) | Bande d'acier laminée à chaud et procédé de fabrication | |
JP4842407B2 (ja) | 低温焼鈍用鋼線及びその製造方法 | |
EP1746176B1 (fr) | Articles formes en acier avec résistance à la rupture retardée et resistance à la rupture 1600MPa ou plus et procédé de leur prodution | |
JP5257082B2 (ja) | 低温焼鈍後の冷間鍛造性に優れた鋼線材及びその製造方法並びに冷間鍛造性に優れた鋼線材の製造方法 | |
WO2011142356A1 (fr) | Tôle d'acier à haute résistance et son procédé de production | |
EP2423344B1 (fr) | Fil machine en acier de résistance et de solidité élevées, et son procédé de fabrication | |
EP4159886A1 (fr) | Acier biphasé à ultra haute résistance et son procédé de fabrication | |
EP3699310B1 (fr) | Tôle d'acier contenant du nickel | |
EP3647455B1 (fr) | Tôle d'acier biphasé recuit laminé à froid et son procédé de fabrication | |
EP2733229B1 (fr) | Fil machine présentant une résistance supérieure à la rupture différée par hydrogène, son procédé de fabrication, boulon à haute résistance utilisant ledit fil et procédé de fabrication du boulon | |
JP2019516018A (ja) | 降伏比に優れた超高強度高延性鋼板及びその製造方法 | |
CN104451436A (zh) | 贝氏体-马氏体-奥氏体复相耐磨钢板及制造方法 | |
JP2004204263A (ja) | 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材とその製造方法 | |
EP3971307A1 (fr) | Tuyau en acier soudé par résistance électrique pour stabilisateur creux | |
KR102348529B1 (ko) | 가공성이 우수한 고강도 강판 및 그 제조방법 | |
WO2013095008A1 (fr) | Fil de tige et fil d'acier pour ressort à résistance élevée à la corrosion, fil d'acier pour ressort et procédé de fabrication de ressort | |
EP3901308B1 (fr) | Tôle d'acier à haute résistance ayant une excellente ductilité et une excellente aptitude au façonnage, et son procédé de fabrication | |
KR20150001469A (ko) | 고강도 냉연강판 및 그 제조 방법 | |
EP3988682A1 (fr) | Fil machine et fil d'acier pour ressort à haute résistance, et procédé de fabrication associé | |
KR102321287B1 (ko) | 가공성이 우수한 고강도 강판 및 그 제조방법 | |
JPH11270531A (ja) | 遅れ破壊特性の優れた高強度ボルトおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150305 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/00 20060101AFI20150227BHEP Ipc: C22C 38/04 20060101ALI20150227BHEP Ipc: C21D 9/00 20060101ALI20150227BHEP Ipc: C22C 38/08 20060101ALI20150227BHEP Ipc: C22C 38/02 20060101ALI20150227BHEP Ipc: C22C 38/12 20060101ALI20150227BHEP Ipc: C21D 8/06 20060101ALI20150227BHEP Ipc: C21D 9/52 20060101ALI20150227BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/08 20060101ALI20151026BHEP Ipc: C21D 8/06 20060101ALI20151026BHEP Ipc: C22C 38/04 20060101ALI20151026BHEP Ipc: C21D 9/52 20060101ALI20151026BHEP Ipc: C21D 9/00 20060101ALI20151026BHEP Ipc: C22C 38/00 20060101AFI20151026BHEP Ipc: C22C 38/02 20060101ALI20151026BHEP Ipc: C22C 38/12 20060101ALI20151026BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151110 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 787924 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012016838 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 787924 Country of ref document: AT Kind code of ref document: T Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160808 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012016838 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170131 |
|
26N | No opposition filed |
Effective date: 20170110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160514 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160706 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190520 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012016838 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |