EP2731269A1 - Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb - Google Patents

Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb Download PDF

Info

Publication number
EP2731269A1
EP2731269A1 EP13178916.6A EP13178916A EP2731269A1 EP 2731269 A1 EP2731269 A1 EP 2731269A1 EP 13178916 A EP13178916 A EP 13178916A EP 2731269 A1 EP2731269 A1 EP 2731269A1
Authority
EP
European Patent Office
Prior art keywords
voltage
branch
transmission
potential
potential side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13178916.6A
Other languages
English (en)
French (fr)
Other versions
EP2731269B1 (de
Inventor
Reinhard Herzer
Matthias Rossberg
Bastian Vogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semikron GmbH and Co KG
Semikron Elektronik GmbH and Co KG
Original Assignee
Semikron GmbH and Co KG
Semikron Elektronik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semikron GmbH and Co KG, Semikron Elektronik GmbH and Co KG filed Critical Semikron GmbH and Co KG
Publication of EP2731269A1 publication Critical patent/EP2731269A1/de
Application granted granted Critical
Publication of EP2731269B1 publication Critical patent/EP2731269B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/003Changing the DC level

Definitions

  • the invention describes a drive circuit with a transmission circuit for transmitting a signal across a potential barrier, as used in driver circuits of power semiconductor modules.
  • the prior art is in particular formed by DE 10 2010 018 997 A1 , This discloses a drive circuit with transmission circuit for transmitting a signal from a primary side with first ground potential to at least one secondary side with respective second ground potential with a transformer with capacitive coupling between the primary and the secondary side.
  • the transformer has two branches, an ON transmission branch and an OFF transmission branch, which in turn each have a first and a second sub-branch, wherein the capacitive coupling between the primary and secondary side is carried out at each sub-branch by high-voltage capacitors.
  • the local signal in each transmission branch, the local signal generates a current flow through a first HV capacitor of a first partial branch and an inverse current flow through a second HV capacitor of a second partial branch.
  • This respective current flow is detected on the secondary side and fed to an evaluation circuit common to both sub-branches, which reconstructs the primary-side input signal on the secondary side.
  • the invention has the object of developing the known transmission circuit such that signal can also be transmitted across potential barriers, in which the voltage difference between a first potential side and a second potential side is higher than the dielectric strength of a single high-voltage capacitor and a method for operating such Specify transmission circuit.
  • the invention comprises a drive circuit with a transmission circuit for transmitting a signal across a potential barrier, from a first potential side with first ground potential to a second potential side with second ground potential, with a capacitive transfer device with capacitive coupling between the first and the second potential side, wherein the transmission means exactly one or two branches, thus only an ON transmission branch or an ON transmission branch and an OFF transmission branch, which in turn each have a first and a second sub-branch, wherein the capacitive coupling between the first and second potential side at each sub-branch by a series circuit a plurality of first and second high-voltage capacitors is formed, which in turn each form a series circuit with an associated capacitor on the second potential side, wherein within the respective Consequentlysu ngszweiges the signal is applied directly to a first sub-branch and a second inverter to a second sub-branch and wherein at two branches a signal at the input directly to the ON-transmission branch and via a first inverter at the OFF transmission branch.
  • each of the intermediate potentials of balancing and associated high-voltage capacitors are connected by means of a Zener diode compensation circuit.
  • the Zener diode compensation circuit is formed as two each of the two Zener diodes, which are connected to each other with their anodes or their cathodes and their cathodes or anodes on the one hand to the respective intermediate potential of Symmetri fürskondensatoren and on the other hand with the associated intermediate potential the high-voltage capacitors are connected.
  • the voltage limiting circuit having an upper and a lower terminal, a series circuit of other Zener diodes and a parallel-connected voltage limiting transistor whose source to the lower terminal, the drain to the upper terminal of the voltage limiting circuit and the gate on the one hand with the Cathode of the first Zener diode of the series circuit and on the other hand via a resistor, is connected to the anode of the first Zener diode of the series circuit.
  • the total potential difference from a first potential side with a first ground potential to a second potential side with a second ground potential is greater than the withstand voltage of the high-voltage capacitors and if, at the same time or alternatively, this total potential difference is greater than the insulation resistance of the second potential side to the substrate, it proves to be Drive circuit as advantageous when the respective components are arranged on a plurality of electrically insulated substrates each monolithically integrated. In this case, it is furthermore advantageous if the center of a zener diode compensation circuit is electrically conductively connected to the base potential.
  • the respective components are arranged on two substrates and in this case the components of the first potential side the first substrate are arranged and those of the second potential side are arranged on the second substrate.
  • the respective components can be arranged on more than two substrates and in this case the components of the first potential side can be arranged on a first substrate and those of the second potential side can be arranged on a second substrate, and high-voltage capacitors and associated voltage-limiting circuits can be arranged on their own further substrates.
  • the respective substrates are arranged within a multi-chip module.
  • the method according to the invention comprises an input signal on a first potential side, which is applied directly to an ON transmission branch at the input of the transmission device, wherein in each transmission branch the signal there is a current flow through a first high-voltage capacitor of a first partial branch and an inverse current flow through a second high-voltage capacitor of a second partial branch generated, this respective current flow detected on the secondary side and a two sub-branches common evaluation circuit is reconstructed, which reconstructs the input signal on the second potential side and wherein a voltage limiting circuit in combination with a Zener diode compensation circuit limits the falling over the respective high-voltage capacitors sub-voltage.
  • a primary-side input signal at the input of the transmission device is applied directly to an ON transmission branch and inverted to an OFF transmission branch.
  • all essential parts of the transmission device for one or two branches are identical from a first potential side to a second potential side.
  • all statements relating to the transmission from one potential side to a second that is to say the primary side to the secondary side, are equally equivalent for the opposite direction, ie from the secondary side to the primary side, even if the respective examples are different embodiments demonstrate.
  • This half-bridge circuit 70 has a TOP 72 and a BOT circuit breaker 74, here in each case as an IGBT with anti-parallel switched diode are formed.
  • the BOT circuit breaker 74 is at the reference potential gnd_bot the BOT secondary side, which is almost equal to the reference potential gnd_pri the primary side of the drive circuit 10 in applications with smallönsinduktditeen.
  • the drive circuit 10 itself has a drive logic 20 with a pulse generating circuit 22, a forward transformer 30, so a transmission device from the primary to the secondary side, with downstream TOP secondary side 40 and a second forward transformer 50 with downstream BOT secondary side 60, wherein the respective forward transformers are designed as capacitive transformers according to the prior art.
  • FIG. 2 shows a block diagram with relevant parts of a monolithically integrated drive circuit according to the invention with a forward transformer 80 having an ON transmission branch 82, a basically identical OFF transmission branch 83, and a transmission signal branches downstream of these common signal evaluation circuit 84.
  • the signal to be transmitted is applied to the ON transmission branch 82 directly and to the OFF transmission branch 83 by means of an upstream first inverter INV1.
  • the forward transformer thus transmits, within the drive circuit, the signal from the primary side with the first potential gnd_pri to the secondary side with the second potential gnd_sec.
  • a reverse transformer 90 so a transmission device from the secondary to the primary side, the reverse transformer is basically constructed to be complementary to the forward transformer.
  • the reverse transformer serves as an example for the transmission of sensor or status signals from the secondary to the primary side.
  • the reverse transformer 90 is analogous to the forward transformer 80 from an ON transmission branch 92, however, has no OFF transmission branch 93 on.
  • it has a downstream signal evaluation circuit 94 which is not absolutely necessary in some embodiments. For the primary-side evaluation of some signals generated on the TOP secondary side, it is not necessary to transmit this signal in full length to the primary side, it may be sufficient here a short transmission pulse or a repetitive sequence of short transmission pulses. Therefore, the OFF transmission branch was omitted here.
  • FIG. 3 shows a basic circuit of a forward transformer 80, consisting of a first inverter INV1, an ON transmission branch 82 and an identical OFF transmission branch 83 and a Signalauswerteschari 84. Since both transmission branches are identically constructed, only the ON transmission branch is shown in detail, the following general statements apply to both transmission branches.
  • the primary-side circuit part has two bridge circuits M1, M2 and M3, M4, each having one transistor M1, M3 of the n-channel type and one M2, M4 of the p-channel type.
  • the source terminals of the n-channel transistors (M1, M3) are connected to the primary-side reference potential gnd_pri and the sources of the p-channel transistors M2, M4 are connected to the primary-side supply voltage vdd_pri.
  • the gate terminals of the transistors of the first bridge circuit M1, M2 are connected directly to the input IN of the forward transformer 80.
  • the gate terminals of the transistors of the second bridge circuit M3, M4 are connected to the output of a second inverter INV2 whose input is connected to the input IN of the forward transformer 80.
  • the series connection of the HV capacitors C1x is connected on the one hand to the output a1 of the first bridge circuit M1, M2 and on the other hand to a first secondary-side node a2.
  • the first bridge circuit M1, M2, the series connection of the HV capacitors C1x and the first secondary-side node a2 form with the wiring of the first sub-branch.
  • the second sub-branch is basically constructed identically and differs from the first only in the wiring of the second secondary-side node b2.
  • the wiring of the secondary-side nodes a2, b2 is formed as follows and connected to a first comparator COMP1.
  • the first terminal of further capacitors C2, C4 is connected to an associated node a2, b2, while the second terminal is connected to the supply voltage of the secondary side vdd_hs.
  • the secondary-side node a2 is connected to the inverting input IN- of the first comparator COMP1.
  • the secondary-side node b2 is connected to the non-inverting input IN + of the first comparator COMP1.
  • the resistors R1, R2 and R3, R4 each form a voltage divider between the supply voltage of the secondary side vdd_hs and the reference potential of the secondary gnd_hs whose center is connected to the associated node a2, b2.
  • Parallel to the voltage dividers a series connection of two Zener diodes Z1, Z2 and Z3, Z4 and a resistor R5 or R6 is connected and the center of this respective circuit is in turn connected to the node.
  • the output OUT_ON of the first comparator COMP1 is at the same time the output of the corresponding ON transmission branch 82 and is connected to the associated input of the signal evaluation circuit 84.
  • the sum of the breakdown voltages of the HV capacitors C1x, C3x connected in series is greater than the maximum potential difference between the secondary-side supply voltage vdd_sek and the primary-side reference potential gnd_pri.
  • the transmission branch is in the steady state.
  • the potentials at the secondary-side nodes a2, b2, based on the secondary-side reference potential gnd_sek, are then determined by the voltage divider R1, R2 or R3, R4 and by the level of the secondary-side supply voltage vdd_sek.
  • the voltage dividers are designed such that in stationary equilibrium the potential at the first secondary-side node a2 is slightly higher, for example 200mV, than the potential at the second secondary-side node b2. This ensures that the first comparator COMP1 is driven in stationary equilibrium such that its output OUT_ON remains at a LOW state "OFF".
  • the voltage divider R1, R2 and R3, R4 are designed such that the potentials at the secondary-side nodes a2, b2 correspond to approximately half of the secondary-side supply voltage vdd_sek.
  • the further components Z1, R5, Z2, or Z3, Z4, R6 of the wiring of the secondary-side nodes a2, b2 limit a possible tearing of the potentials occurring at voltage transients at these nodes a2, b2 each to one upper and a lower value.
  • the zener voltage of the zener diodes Z1..Z4 is in each case selected such that the potentials at the secondary-side nodes a2, b2 can only assume values within a specific voltage window
  • the voltage divides according to the capacitive voltage divider rule on the series-connected capacitors of the respective transmission branch.
  • n-1 intermediate potentials are generated.
  • the varying voltage divides approximately uniformly over the nodes X1x and a2 or X3x and b2, so that over each capacitor a voltage drops, which is approximately the nth part corresponds to the currently applied voltage between vdd_sek and gnd_pri.
  • the voltage division produced by the capacitors remains even after the decay of the voltage change over time, because the capacitors hold the stored charge.
  • the signal transmission according to the invention by charge transfer to the HV capacitors C1x, C3x via a transmission branch takes place independently of whether the reference potential gnd_sec of the secondary side is higher, equal or lower than the reference potential gnd_pri of the primary side.
  • the reference potential of the primary side gnd_pri is an example of earth potential (0V). Square wave signals were chosen as signal form.
  • the first n-channel transistor M1 With a positive signal edge at the input IN, the first n-channel transistor M1 is turned on and the first p-channel transistor M2 is turned off. Accordingly, the potential at the first primary-side node a1 transiently decreases from a voltage near the primary-side supply voltage vdd_pri to a voltage near ground potential gnd_pri.
  • a negative signal edge is applied to the second bridge circuit M3, M4 by the second inverter INV2, whereby the second n-channel transistor M3 is turned off and the second p-channel transistor M4 is turned on.
  • the potential at the second primary-side node b1 rises transiently from a voltage near ground potential gnd_pri to a voltage near the primary-side supply potential vdd_pri.
  • a current IC3 flows via the HV capacitors C31, C32 from the primary side to the secondary side and pulls up the potential at the secondary-side node b2, for example by 400 mV (cf. Fig. 5 , Section I).
  • the potential at the secondary-side node a2 is now lower than at the secondary-side node b2, whereby the output of the forward transformer OUT_ON assumes the value HIGH "on”.
  • the potentials at the secondary-side nodes according to the ohmic-capacitive node impedance approach their static value exponentially with the time constant (cf. Fig. 5 , Section II).
  • the time constant of the exponential decay process in section II Ta2 or Tb2 summarizes all ohmic and capacitive components involved in the transhipment of the respective nodes a2 and b2, respectively. As long as no switch-off edge appears at the input IN, the discharge proceeds independently until the static ground state (cf.
  • the negative edge of the signal at the input IN does not cause an output signal of the ON transmission branch 82 (cf. Figure 5 Rather, this generates an unillustrated corresponding signal at the OFF transmission branch 83. Should the steady state equilibrium not yet be reached, a negative signal edge leads directly to a LOW level at the output OUT_ON of the first comparator COMP1 (cf. Fig. 5 , Section VI). Likewise, a positive edge of the signal at the input IN always leads to a HIGH level at the output OUT_ON of the ON transmission branch 82, regardless of whether a steady state equilibrium has already been established at the secondary-side nodes a2, b2. Each edge at the input IN thus always leads to a correlating switching state at the output OUT_ON, if this is not already present. Thus high-frequency pulse sequences can also be transmitted.
  • the transmission of a signal from the primary to the secondary side via a forward transformer can be summarized as follows.
  • a positive pulse of certain length is generated at the output OUT_ON of the ON transmission branch 82, which is detected by the signal evaluation circuit 84.
  • the output OUT of the forward transformer 80 is set to a switch-on state, for example HIGH, which is also present at the output OUT_ON after the end of the signal.
  • the output OUT_OFF of the OFF transmission branch 83 remains LOW.
  • a negative Input signal edge is generated at the output OUT_OFF of the OFF transmission branch 83, a positive pulse of a certain length, which is also detected by the signal evaluation circuit 84.
  • the output OUT of the forward transformer 82 is reset.
  • the output OUT_ON of the ON transmission branch 82 remains LOW.
  • the signal at the input IN is transmitted in full length and transferred to the TOP secondary side 40.
  • the outputs of the transmission branches OUT_ON, OUT_OF) remain in the LOW state or are reset to the LOW state.
  • the stored state at the output OUT of the forward transformer 80 is maintained.
  • the discharge time constant at nodes a2 and b2 must be high enough. This is determined by the resistive and capacitive loading at nodes a2 and b2.
  • the majority of the required capacitive loading of the nodes a2 and b2 is preferably to be realized by the low-voltage capacitors C2 and C4, since they have a much smaller area requirement per unit capacitance compared to the HV capacitors of the circuit.
  • the capacitive coupling between primary and secondary side should be kept as low as possible. Therefore, the o.g.
  • Condition C1ges / C2 C3ges / C4 ⁇ 1 to be satisfied. Since, due to the production, not all series-connected capacitors of a transmission branch have the same capacitance value, an uneven voltage distribution inevitably results at the intermediate potential nodes X11 to X1n-1 or X31 to X3n-1. In order to avoid exceeding the voltage across the dielectric strength on one or more HV capacitors, it is necessary to limit the voltage across them.
  • FIG. 4 shows analogously to FIG. 3 the basic circuit of the reverse transformer 90 according to the invention, which is designed here only as ON transmission branch 92.
  • the reference numerals correspond to those of FIG. 3 each appended "r" to indicate reverse transmission.
  • the basic circuit of a forward transformer branch is determined according to FIG. 3 in the Embodiment after FIG. 6 additionally expanded.
  • the intermediate potential nodes X11 and X31 are each connected to the common node Y via two Zener diodes connected in series with opposite polarity, which in turn forms the midpoint of a further capacitive voltage divider with balancing capacitors (C5, C6) between vdd_pri and vdd_sek.
  • the transmission circuit includes a voltage limiting circuit across each HV capacitor, exemplified in FIG Fig.
  • a voltage limiting transistor also designed as a high-voltage transistor, HV5, HV6 is connected in each case, wherein the drain is connected to the upper terminal and the source to the lower terminal of the respective voltage limiting circuit.
  • the voltage limiting circuit is completed by a resistor R5, R6 whose first terminal is connected to the gate of the voltage limiting transistor HV5, HV6 and the cathode of the lowest Zener diode Z51, Z61 and whose second terminal is connected to the lower terminal of the voltage limiting circuit.
  • the gate of the respective voltage limiting transistor HV5, HV6 is connected on the one hand to the cathode of the first Zener diode Z51 or Z61 of the series circuit and on the other hand via a resistor R5 or R6 to the anode of the first Zener diode Z51 or Z61 of the series circuit.
  • the operation of the circuit extension in the embodiment according to Fig. 6 is as follows.
  • the HV capacitors C5 and C6 form another capacitive voltage divider between the primary and secondary side. With the same dimensioning of the HV capacitors C5 and C6, there is a rapid increase in the voltage between the primary-side and the secondary-side reference potential half the voltage between the primary and secondary side at node Y a.
  • the capacitive voltage division in the transmission branches is such that at the nodes X11 or X31 without extended connection, a voltage value different than that of a zener voltage of the Zener diodes Z1a2, Z1b2 or Z3a2, Z3b2 would be set at node Y, then exceeds the corresponding Zener diode Z1a2 or Z1b2 or Z3a2 or Z3b2 their zener voltage and it flows a balancing current between the nodes X11 and X31 and Y via the in-break Zener diode and the other in-going Zener diode.
  • the voltage at node Y and indirectly via Z1a2, Z1b2 or Z3a2, Z3b2 is also limited to nodes X11 and X31.
  • the limiting voltage Uclamp of the y series Zener diodes of the respective voltage limiting circuit must be smaller than the permissible voltages at the HV capacitors C5 and C6, C11 and C12, C31 and C32 and the voltage limiting transistors HV5 and HV6.
  • Fig. 7 represents a further embodiment of the transformer according to the invention, with which it is possible to transmit signals over a high potential barrier, which is greater than the dielectric strength in a single monolithic integrated circuit.
  • the respective withstand voltage is determined, on the one hand, by the breakdown voltage of the integrated transmission circuits which are at Conventional topologies of the breakdown voltage of the high-voltage component used (integrated high-voltage transistor) is determined, and on the other by the dielectric strength of the insulation between the primary side and the secondary side.
  • the dielectric strength of the insulation is determined by the semiconductor technology and can not be increased by circuitry measures.
  • the withstand voltage of the transmission circuit can be increased to n times.
  • the withstand voltage of the entire transmission circuit can only be increased to n times the value if each of the n high-voltage components is integrated on a separate substrate.
  • higher potential differences can be overcome with prior art 600V isolation techniques. For example, if two chips are used, an integrated circuit arrangement can also be realized for the voltage class of 1200V, for three chips up to 1800V and analog for other voltage classes.
  • the embodiment of the forward transformer in this embodiment differs from that according to FIG Fig. 3 in that the transmitter is subdivided into n separate chips, one of the n HV capacitors C11 to C1n or C31 to C3n being integrated on each chip.
  • the HV capacitors C11 and C31, the transistors M1 to M4, and the inverter INV2 are integrated on chip 1.
  • further circuits such as a logic board and a driver for a BOT switch can be integrated on chip 1.
  • the rear-side contact, handle wafer, HW1 of the first chip 1 is connected to the primary-side reference potential gnd_pri.
  • the chip n in each case contains the HV capacitors C1n and C3n, the Zener diodes Z1an, Z1bn, Z3an, Z3bn, the capacitors C2 and C4, the resistors R1 to R6, the zener diodes Z1 to Z4 and the comparator COMP1.
  • the rear-side contact HWn of the chip n is connected to the respective one terminal of the zener diodes Z1an and Z3an.
  • the signal transmission in the embodiment of the forward transformer after Fig. 6 takes place with the transmission method according to the invention in an analogous manner as in the previous embodiments Fig. 3 and 5 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

Es wird ein Verfahren und eine Ansteuerschaltung mit Übertragungsschaltung zur Übertragung eines Signals über eine Potentialbarriere hinweg, von einer ersten Potentialseite mit erstem Grundpotential zu einer zweiten Potentialseite mit zweitem Grundpotential, mit einer kapazitiv wirkenden Übertragungseinrichtung mit kapazitiver Kopplung zwischen der ersten und der zweiten Potentialseite vorgestellt. Hierbei weisen die Übertragungseinrichtung genau einen oder zwei Zweige auf, die ihrerseits jeweils einen ersten und einen zweiten Teilzweig aufweisen, wobei die kapazitive Kopplung zwischen erster und zweiter Potentialseite bei jedem Teilzweig durch eine Reihenschaltung einer Mehrzahl von ersten und zweiten Hochvoltkondensatoren ausgebildet ist, die wiederum jeweils eine Reihenschaltung mit einem zugeordneten Kondensator auf der zweiten Potentialseite bilden, wobei innerhalb des jeweiligen Übertragungszweiges das Signal direkt an einem ersten Teilzweig und über einen zweiten Inverter an einem zweiten Teilzweig anliegt und wobei bei zwei Zweigen ein Signal am Eingang direkt an dem ON- Übertragungszweig und über einen ersten Inverter am OFF- Übertragungszweig anliegt.

Description

  • Die Erfindung beschreibt eine Ansteuerschaltung mit Übertragungsschaltung zur Übertragung eines Signals über eine Potentialbarriere hinweg, wie sie in Treiberschaltungen von Leistungshalbleitermodulen Verwendung findet.
  • Der Stand der Technik wird insbesondere gebildet durch DE 10 2010 018 997 A1 . Diese offenbart eine Ansteuerschaltung mit Übertragungsschaltung zur Übertragung eines Signals von einer Primärseite mit erstem Grundpotential zu mindestens einer Sekundärseite mit jeweiligem zweitem Grundpotential mit einem Übertrager mit kapazitiver Kopplung zwischen der Primär- und der Sekundärseite. Hierbei weist der Übertrager zwei Zweige, einen ON- Übertragungszweig und einen OFF-Übertragungszweig auf, die ihrerseits je einen ersten und einen zweiten Teilzweig aufweisen, wobei die kapazitive Kopplung zwischen Primär- und Sekundärseite bei jedem Teilzweig durch Hochvoltkondensatoren ausgeführt wird. Gemäß dem erfindungsgemäßen Verfahren erzeugt in jedem Übertragungszweig das dortige Signal einen Stromfluss durch einen ersten HV- Kondensator eines ersten Teilzweiges und einen inversen Stromfluss durch einen zweiten HV- Kondensator eines zweiten Teilzweiges. Dieser jeweilige Stromfluss wird auf der Sekundärseite detektiert und einer beiden Teilzweigen gemeinsamen Auswerteschaltung zugeführt, die das primärseitige Eingangssignal sekundärseitig rekonstruiert.
  • Der Erfindung liegt die Aufgabe zugrunde, die bekannte Übertragungsschaltung derart weiterzubilden, dass Signal auch über Potentialbarrieren hinweg übertragen werden können, bei denen die Spannungsdifferenz zwischen einer ersten Potentialseite und einer zweiten Potentialseite höher ist als die Spannungsfestigkeit eines einzelnen Hochvoltkondensators sowie ein Verfahren zum Betrieb einer derartigen Übertragungsschaltung anzugeben.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein leistungselektronisches System mit den Merkmalen des Anspruchs 1 und durch ein Verfahren mit den Merkmalen des Anspruchs 12. Bevorzugte Ausführungsformen sind in den jeweiligen abhängigen Ansprüchen beschrieben.
  • Die Erfindung umfasste eine Ansteuerschaltung mit Übertragungsschaltung zur Übertragung eines Signals über eine Potentialbarriere hinweg, von einer ersten Potentialseite mit erstem Grundpotential zu einer zweiten Potentialseite mit zweitem Grundpotential, mit einer kapazitiv wirkenden Übertragungseinrichtung mit kapazitiver Kopplung zwischen der ersten und der zweiten Potentialseite, wobei die Übertragungseinrichtung genau einen oder zwei Zweige, somit nur einen ON-Übertragungszweig oder einen ON- Übertragungszweig und einen OFF-Übertragungszweig aufweist, die ihrerseits jeweils einen ersten und einen zweiten Teilzweig aufweisen, wobei die kapazitive Kopplung zwischen erster und zweiter Potentialseite bei jedem Teilzweig durch eine Reihenschaltung einer Mehrzahl von ersten und zweiten Hochvoltkondensatoren ausgebildet ist, die wiederum jeweils eine Reihenschaltung mit einem zugeordneten Kondensator auf der zweiten Potentialseite bilden, wobei innerhalb des jeweiligen Übertragungszweiges das Signal direkt an einem ersten Teilzweig und über einen zweiten Inverter an einem zweiten Teilzweig anliegt und wobei bei zwei Zweigen ein Signal am Eingang direkt an dem ON-Übertragungszweig und über einen ersten Inverter am OFF- Übertragungszweig anliegt.
  • Es erweist sich als vorteilhaft, wenn parallel zu den ersten und zweiten Hochvoltkondensatoren eines Zweiges ein weiterer kapazitiver Spannungsteiler mit der gleichen Anzahl von Symmetrierungskondensatoren wie erste und zweite Hochvoltkondensatoren, wobei jedes der Zwischenpotentiale von Symmetrierungs- und zugeordneter Hochvoltkondensatoren mittels einer Zenerdioden-Ausgleichsschaltung verbunden sind.
  • Weiterhin erweist es sich als vorteilhaft, wenn die Zenerdioden-Ausgleichsschaltung ausgebildet ist als je zwei Reichenschaltungen zweier Zenerdioden, die mit Ihren Anoden oder ihren Kathoden miteinander verbunden sind und deren Kathoden bzw. Anoden einerseits mit dem jeweiligen Zwischenpotential der Symmetrierungskondensatoren und andererseits mit dem zugeordneten Zwischenpotential der Hochvoltkondensatoren verbunden sind.
  • Es kann auch vorteilhaft sein, wenn die Reihenschaltung der Symmetrierungskondensatoren mit dem Versorgungspotentialen der ersten und zweiten Potentialseite verbunden sind.
  • Insbesondere ist es vorteilhaft, wenn zu jedem Symmetrierungskondensator eine Spannungsbegrenzungsschaltung parallel geschaltet ist.
  • Zudem kann es vorteilhaft sein, wenn die Spannungsbegrenzungsschaltung mit einem oberen und einem unteren Anschluss, aus einer Reihenschaltung von weiteren Zenerdioden und einem parallel geschalteten Spannungsbegrenzungstransistor, dessen Source mit dem unteren Anschluss, dessen Drain mit dem oberen Anschluss der Spannungsbegrenzungsschaltung und dessen Gate einerseits mit der Kathode der ersten Zenerdiode der Reihenschaltung und andererseits über einen Widerstand, mit der Anode der ersten Zenerdiode der Reihenschaltung verbunden ist.
  • Grundsätzlich, insbesondere wenn die Gesamtpotentialdifferenz von einer ersten Potentialseite mit erstem Grundpotential zu einer zweiten Potentialseite mit zweitem Grundpotential größer ist als die Spannungsfestigkeit der Hochvoltkondensatoren und wenn gelichzeitig oder alternativ diese Gesamtpotentialdifferenz größer ist als der Isolationsfestigkeit der zweiten Potentialseite zum Substrat, erweist es sich für die Ansteuerschaltung als vorteilhaft, wenn die jeweiligen Komponenten auf einer Mehrzahl von voneinander elektrisch isolierten Substraten jeweils monolithisch integriert angeordnet sind. Hierbei ist es weiterhin vorteilhaft, wenn der Mittelpunkt einer Zenerdioden-Ausgleichsschaltung mit dem Grundpotential elektrisch leitend verbunden ist.
  • Dies kann vorteilhafte ausgestaltet sein indem die jeweiligen Komponenten auf zwei Substraten angeordnet sind und hierbei die Komponenten der ersten Potentialseite auf dem ersten Substrat angeordnet sind und diejenigen der zweiten Potentialseite auf dem zweiten Substrat angeordnet sind. Alternativ können die jeweiligen Komponenten auf mehr als zwei Substraten angeordnet sein und hierbei die Komponenten der ersten Potentialseite auf einem ersten Substrat angeordnet sein und diejenigen der zweiten Potentialseite auf einem zweiten Substrat angeordnet sein, sowie Hochvoltkondensatoren und zugeordnete Spannungsbegrenzungsschaltungen auf jeweils eigenen weiteren Substraten angeordnet sein. Hierbei ist es besonders bevorzugt, wenn die jeweiligen Substrate innerhalb eines Multi-Chip-Moduls angeordnet sind.
  • Das erfindungsgemäße Verfahren umfasst ein Eingangssignal an einer ersten Potentialseite, das am Eingang der Übertragungseinrichtung direkt an einen ON-Übertragungszweig angelegt wird, wobei in jedem Übertragungszweig das dortige Signal einen Stromfluss durch erste Hochvoltkondensator eines ersten Teilzweiges und einen inversen Stromfluss durch zweite Hochvoltkondensator eines zweiten Teilzweiges erzeugt, dieser jeweilige Stromfluss auf der Sekundärseite detektiert und einer beiden Teilzweigen gemeinsamen Auswerteschaltung zugeführt wird, die das Eingangssignal auf der zweiten Potentialseite rekonstruiert und wobei eine Spannungsbegrenzungsschaltung in Kombination mit einer Zenerdioden-Ausgleichsschaltung die über den jeweiligen Hochvoltkondensatoren abfallende Teilspannung begrenzt.
  • Es kann hierbei auch vorteilhaft sein, wenn ein primärseitiges Eingangssignal am Eingang der Übertragungseinrichtung direkt an einen ON- Übertragungszweig und invertiert an einen OFF- Übertragungszweig angelegt wird.
  • Es versteht sich, dass die verschiedenen Ausgestaltungen der Erfindung einzeln oder in beliebigen Kombinationen realisiert sein können, um Verbesserungen zu erreichen. Insbesondere sind die vorstehend genannten und erläuterten Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Weitere Erläuterung der Erfindung vorteilhafte Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung der in den Fig. 1 bis 7 dargestellten Ausführungsbeispiele der erfindungsgemäßen Leistungshalbleiterschaltung oder von Teilen hiervon.
    • Figur 1 zeigt ein Blockschaltbild mit einer monolithisch integrierten Ansteuerschaltung.
    • Figur 2 zeigt ein Blockschaltbild einer Ausführungsform einer erfindungsgemäßen monolithisch integrierten Ansteuerschaltung.
    • Figur 3 zeigt eine Grundschaltung einer Übertragungseinrichtung mit zwei Zweigen von einer ersten Potentialseite zu einer zweiten.
    • Figur 4 zeigt eine Grundschaltung einer Übertragungseinrichtung mit nur einem Zweig von einer zweiten Potentialseite zu einer ersten.
    • Figur 5 zeigt Simulationsergebnisse des erfindungsgemäßen Verfahrens.
    • Figur 6 zeigt eine Grundschaltung einer Übertragungseinrichtung von einer ersten Potentialseite zu einer zweiten mit aktiver Spannungsbegrenzung der Zwischenpotentiale.
    • Figur 7 zeigt eine weitere Ausführungsform einer Übertragungseinrichtung.
  • Grundsätzlich sind alle wesentlichen Teile der Übertragungseinrichtung für ein oder zwei Zweige von einer ersten Potentialseite zu einer zweiten Potentialseite identisch. In den Ausführungsbeispielen sind somit alle Aussagen, die sich auf die Übertragung von einer Potentialseite zu einer zweiten, also beispielhaft der Primärseite zur Sekundärseite in gleicher Weise gleichbedeutend auch für die umgekehrte Richtung, also von der Sekundärseite zur Primärseite, auch wenn die jeweiligen Beispiele unterschiedliche Ausführungsformen zeigen.
  • Figur 1 zeigt zur Erläuterung der Erfindung ein Blockschaltbild mit einer monolithisch integrierten Ansteuerschaltung 10 nach dem Stand der Technik, sowie eine hierdurch ansteuerbare Halbbrückenschaltung 70. Diese Halbbrückenschaltung 70 weist einen TOP- 72 und einen BOT-Leistungsschalter 74 auf, die hier jeweils als ein IGBT mit antiparallel geschalteter Diode ausgebildet sind. Der BOT- Leistungsschalter 74 liegt auf dem Bezugspotential gnd_bot der BOT-Sekundärseite, welches beispielhaft bei Applikationen mit kleinen Leitungsinduktivitäten nahezu gleich dem Bezugspotential gnd_pri der Primärseite der Ansteuerschaltung 10 ist.
  • Die Ansteuerschaltung 10 selbst weist eine Ansteuerlogik 20 mit einer Pulserzeugungsschaltung 22, einen Vorwärts-Übertrager 30, also eine Übertragungseinrichtung von der Primär- zur Sekundärseite, mit nachgeschalteter TOP-Sekundärseite 40 sowie einen zweiten Vorwärts-Übertrager 50 mit nachgeschalteter BOT-Sekundärseite 60 auf, wobei die jeweiligen Vorwärts-Übertrager als kapazitive Übertrager gemäß dem Stand der Technik ausgebildet sind.
  • Figur 2 zeigt ein Blockschaltbild mit relevanten Teilen einer erfindungsgemäßen monolithisch integrierten Ansteuerschaltung mit einem Vorwärts-Übertrager 80, der einen ON-Übertragungszweig 82, einen grundsätzlich identischen OFF-Übertragungszweig 83, und eine diesen Übertragungszweigen nachgeschalteten gemeinsamen Signalauswerteschaltung 84 aufweist. Das zu übertragende Signal wird an den ON-Übertragungszweig 82 direkt und an den OFF-Übertragungszweig 83 mittels eines vorgeschalteten ersten Inverter INV1 angelegt. Der Vorwärts-Übertrager überträgt somit innerhalb der Ansteuerschaltung das Signal von der Primärseite mit erstem Potential gnd_pri auf die Sekundärseite mit zweitem Potential gnd_sek.
  • Ebenso dargestellt ist ein Rückwärts-Übertrager 90, also eine Übertragungseinrichtung von der Sekundär- zur Primärseite, wobei der Rückwärts-Übertrager grundsätzlich komplementär zum Vorwärts-Übertrager aufgebaut ist. Der Rückwärts-Übertrager dient beispielhaft der Übertragung von Sensor- oder Statussignalen von der Sekundär- zur Primärseite. Der Rückwärts-Übertrager 90 besteht analog zum Vorwärts-Übertrager 80 aus einem ON- Übertragungszweig 92 weist allerdings keinen OFF-Übertragungszweig 93 auf. Ebenso weist er eine in manchen Ausgestaltungen nicht zwingend notwendige nachgeschaltete Signalauswerteschaltung 94 auf. Zur primärseitigen Auswertung mancher auf der TOP-Sekundärseite erzeugten Signale ist es nicht notwendig dieses Signal in vollständiger Länge zur Primärseite zu übertragen, es kann hier ein kurzer Übertragungspuls oder eine repetitive Folge kurzer Übertragungspulse ausreichend sein. Deshalb wurde hier auf den OFF-Übertragungszweig verzichtet.
  • Figur 3 zeigt eine Grundschaltung eines Vorwärts- Übertragers 80, bestehend aus einem ersten Inverter INV1, einem ON-Übertragungszweig 82 und einem identischen OFF-Übertragungszweig 83 sowie einer Signalauswerteschaltung 84. Da beide Übertragungszweige identisch aufgebaut sind, ist ausschließlich der ON-Übertragungszweig im Detail dargestellt, wobei die folgenden allgemeinen Aussagen für beide Übertragungszweige gelten.
  • Der jeweilige Übertragungszweig besteht aus einem primärseitigen Schaltungsteil, einem sekundärseitigen Schaltungsteil und jeweils n in Reihe geschalteten Hochvoltkondensatoren C1 x, C3x, mit x = 1...n hier und im Folgenden auch als HV-Kondensatoren bezeichnet, die die beiden Schaltungsteile verbinden. Der primärseitige Schaltungsteil weist zwei Brückenschaltungen M1, M2 und M3, M4 auf, mit jeweils einem Transistor M1, M3 vom n-Kanal-Typ und jeweils einem M2, M4 vom p-Kanal-Typ. Die Source-Anschlüsse der n-Kanal Transistoren (M1, M3) sind an das primärseitige Bezugspotential gnd_pri und die Source-Anschlüsse der p-Kanal Transistoren M2, M4 sind an die primärseitige Versorgungsspannung vdd_pri angeschlossen. Die Gate-Anschlüsse der Transistoren der ersten Brückenschaltung M1, M2 sind direkt mit dem Eingang IN des Vorwärts-Übertragers 80 verbunden. Die Gate-Anschlüsse der Transistoren der zweiten Brückenschaltung M3, M4 sind mit dem Ausgang eines zweiten Inverters INV2 verbunden, dessen Eingang mit dem Eingang IN des Vorwärts-Übertragers 80 verbunden ist. Die Reihenschaltung der HV-Kondensatoren C1x ist einerseits mit dem Ausgang a1 der ersten Brückenschaltung M1, M2 und andererseits einem ersten sekundärseitigen Knotenpunkt a2 verbunden. Die erste Brückenschaltung M1, M2, die Reihenschaltung der HV-Kondensatoren C1x und der erste sekundärseitige Knotenpunkt a2 bilden mit dessen Beschaltung den ersten Teilzweig aus. Der zweite Teilzweig ist grundsätzlich identisch aufgebaut und unterscheidet sich vom ersten nur in der Beschaltung des zweiten sekundärseitigen Knotenpunktes b2.
  • Die Beschaltung der sekundärseitigen Knotenpunkte a2, b2 ist folgendermaßen ausgebildet und mit einem ersten Komparator COMP1 verbunden. Der erste Anschluss weiterer Kondensatoren C2, C4 ist mit einem zugeordneten Knotenpunkt a2, b2 verbunden, während der zweite Anschluss mit der Versorgungsspannung der Sekundärseite vdd_hs verbunden ist. Der sekundärseitige Knotenpunkt a2 ist an den invertierenden Eingang IN- des ersten Komparators COMP1 angeschlossen. Der sekundärseitige Knotenpunkt b2 ist an den nicht invertierenden Eingang IN+ des ersten Komparators COMP1 angeschlossen. Die Widerstände R1, R2 bzw. R3, R4 bilden jeweils einen Spannungsteiler zwischen der Versorgungsspannung der Sekundärseite vdd_hs und dem Bezugspotential der Sekundärseite gnd_hs, deren Mittelpunkt mit dem zugeordneten Knotenpunkt a2, b2 verbunden ist. Parallel zu den Spannungsteilern ist eine Reihenschaltung zweier Zenerdioden Z1, Z2 bzw. Z3, Z4 und eines Widerstandes R5 bzw. R6 geschaltet und der Mittelpunkt dieser jeweiligen Schaltung ist wiederum mit dem Knotenpunkt verbunden. Der Ausgang OUT_ON des ersten Komparators COMP1 ist gleichzeitig der Ausgang des entsprechenden ON-Übertragungszweigs 82 und ist mit dem zugeordneten Eingang der Signalauswerteschaltung 84 verbunden.
  • Das Verhältnis der Kapazitäten der Reihenschaltung der HV-Kondensatoren C1x, C3x zu denjenigen der zugeordneten weiteren Kondensatoren C2, C4 der sekundärseitigen Beschaltung der jeweiligen Knotenpunkte a2, b2 wird vorteilhaft derart gewählt, dass sich deren Kapazitäten verhalten wie C1ges/C2 = C3ges / C4 << 1, wobei sich die Gesamtkapazität C1ges, C3ges der jeweiligen Reihenschaltung wie folgt ergibt: C 1 ges = C 11 * C 12 * * C 1 n / C 11 + C 12 + + C 1 n bzw .
    Figure imgb0001
    C 3 ges = C 31 * C 32 * * C 3 n / C 31 + C 32 + + C 3 n .
    Figure imgb0002
  • Die Summe der Durchbruchspannungen der in Reihe geschalteten HV-Kondensatoren C1x, C3x ist erfindungsgemäß größer als die maximal auftretende Potentialdifferenz zwischen der sekundärseitigen Versorgungsspannung vdd_sek und dem primärseitigen Bezugspotential gnd_pri. Solange im Rahmen des erfindungsgemäßen Übertragungsverfahrens keine Spannungstransienten an den sekundärseitigen Knotenpunkten a2, b2 also zwischen primär- und sekundärseitigen Bezugspotentialen und Versorgungsspannungen auftreten befindet sich der Übertragungszweig im stationären Zustand. Die Potentiale an den sekundärseitigen Knotenpunkten a2, b2, bezogen auf das sekundärseitige Bezugspotential gnd_sek, werden dann durch die Spannungsteiler R1, R2 bzw. R3, R4 und durch die Höhe der sekundärseitigen Versorgungsspannung vdd_sek bestimmt. Die Spannungsteiler sind derart ausgebildet, dass im stationären Gleichgewicht das Potential am ersten sekundärseitigen Knotenpunkt a2 geringfügig höher, beispielhaft 200mV, als das Potential am zweiten sekundärseitigen Knotenpunkt b2 ist. Damit wird gewährleistet, dass der erste Komparator COMP1 im stationären Gleichgewicht derart angesteuert wird, dass sein Ausgang OUT_ON auf einem LOW-Zustand "AUS" verharrt.
  • Weiterhin sind die Spannungsteiler R1, R2 und R3, R4 derart gestaltet, dass die Potentiale an den sekundärseitigen Knotenpunkten a2, b2 etwa der Hälfte der sekundärseitigen Versorgungsspannung vdd_sek entsprechen. Die weiteren Bauelemente Z1, R5, Z2, bzw. Z3, Z4, R6 der Beschaltung der sekundärseitigen Knotenpunkte a2, b2 begrenzen einen möglichen Verriss der Potentiale bei auftretenden Spannungstransienten an diesen Knotenpunkten a2, b2 jeweils auf einen oberen und einen unteren Wert. Die Zenerspannung der Zenerdioden Z1..Z4 ist dabei jeweils so gewählt, dass die Potentiale an den sekundärseitigen Knotenpunkten a2, b2 nur Werte innerhalb eines bestimmten Spannungsfensters einnehmen können
  • Bei zeitlich schneller positiver Spannungsänderung zwischen primärseitigem und sekundärseitigem Bezugspotential, verursacht durch Schaltvorgänge der Leistungshalbbrücke, teilt sich die Spannung gemäß der kapazitiven Spannungsteilerregel über den in Reihe geschalteten Kondensatoren des jeweiligen Übertragungszweiges auf. An den Knoten X1 x, mit x = 1...n-1 werden n-1 Zwischenpotentiale erzeugt. Bei geeigneter Dimensionierung der Kondensatoren C1 x und C2 bzw. C3x und C4 teilt sich die ändernde Spannung annähernd gleichmäßig über den Knoten X1x und a2 bzw. X3x und b2 auf, so dass über jedem Kondensator eine Spannung abfällt, die etwa dem n-ten Teil der gerade anliegenden Spannung zwischen vdd_sek und gnd_pri entspricht. Die durch die Kondensatoren erzeugte Teilung der Spannung bleibt auch nach dem Abklingen der zeitlichen Spannungsänderung erhalten, da die Kondensatoren die gespeicherte Ladung halten.
  • Die erfindungsgemäße Signalübertragung durch Ladungsverschiebung an den HV-Kondensatoren C1x, C3x über einen Übertragungszweig erfolgt unabhängig davon ob das Bezugspotential gnd_sek der Sekundärseite statisch höher, gleich oder niedriger ist als das Bezugspotential gnd_pri der Primärseite.
  • Nach dem erfindungsgemäßen Verfahren wird ein am Eingang IN des Vorwärts-Übertragers 82 anliegendes Eingangssignal direkt an den Eingang des ON-Übertragungszweigs 82 und invertiert an den Eingang des OFF-Übertragungszweigs 83 angelegt. Aufgrund der identischen Ausführung des ON- und des OFF-Übertragungszweigs 82, 83 wird im Folgenden nur die Funktion des ON-Übertragungszweigs detailliert beschrieben. Erläuternd hierzu zeigt Fig. 5 zugehörige Simulationsergebnisse für die Ausführungsform mit zwei in Reihe geschalteten HV-Kondensatoren, d.h. n=2, bei einem positiven Bezugspotential der TOP-Sekundärseite gnd_sek=600V. Das Bezugspotential der Primärseite gnd_pri liegt dabei beispielhaft auf Erdpotential (0V). Als Signalform wurden Rechtecksignale gewählt. Dargestellt sind jeweils das Signal am Eingang IN, die Potentialverläufe an den Knotenpunkten X11, X31 und a2, b2 und das Signal am Ausgang OUT_ON des ON-Übertragungszweigs. Das Gesagte gilt für den OFF-Übertragungszweig in gleicher Weise mit vertauschter positiver und negativer Eingangssignalflanke.
  • Bei einer positiven Signalflanke am Eingang IN wird der erste n-Kanal Transistor M1 eingeschaltet und der erste p-Kanal Transistor M2 ausgeschaltet. Entsprechend sinkt das Potential am ersten primärseitigen Knotenpunkt a1 transient von einer Spannung nahe der primärseitigen Versorgungsspannung vdd_pri zu einer Spannung nahe Erdpotential gnd_pri ab. Während dieser Spannungsänderung fließt ein Strom IC1 entsprechend der allgemeinen Formel IC = C*dUC /dt über die HV-Kondensatoren C11, C12 von der Sekundärseite zur Primärseite und zieht das Potential am sekundärseitigen Knotenpunkt a2 gemäß der kapazitiven Spannungsteilerregel nach unten, beispielhaft um 400mV (vgl. Fig. 5, Abschnitt I). Gleichzeitig wird durch den zweiten Inverter INV2 eine negative Signalflanke an die zweite Brückenschaltung M3, M4 angelegt, wodurch der zweite n-Kanal Transistor M3 ausgeschaltet und der zweite p-Kanal Transistor M4 eingeschaltet wird. Hierdurch steigt das Potential am zweiten primärseitigen Knotenpunkt b1 transient von einer Spannung nahe Erdpotential gnd_pri zu einer Spannung nahe primärseitigem Versorgungspotential vdd_pri an. Während der Spannungsänderung fließt ein Strom IC3 über die HV-Kondensatoren C31, C32 von der Primärseite zur Sekundärseite und zieht das Potential am sekundärseitigen Knotenpunkt b2 nach oben, beispielhaft um 400mV (vgl. Fig. 5, Abschnitt I). Durch diesen Potentialverriss mit entgegen gesetztem Vorzeichen, ist nun das Potential am sekundärseitigen Knotenpunkt a2 geringer als am sekundärseitigen Knotenpunkt b2, wodurch der Ausgang des Vorwärts-Übertragers OUT_ON den Wert HIGH "Ein" annimmt. Nach dem Ende der Spannungstransienten nähern sich die Potentiale an den sekundärseitigen Knotenpunkten gemäß der ohmsch-kapazitiven Knotenimpedanz exponentiell mit der Zeitkonstante ihrem statischen Wert an (vgl. Fig. 5, Abschnitt II). Die Zeitkonstante des exponentiellen Abklingvorgangs in Abschnitt II Ta2 bzw. Tb2 fasst alle ohmschen und kapazitiven Anteile, die an der Umladung der entsprechenden Knoten a2 bzw. b2 beteiligt sind, zusammen. Solange keine Ausschaltflanke am Eingang IN erscheint, schreitet die Entladung selbständig bis zum statischen Grundzustand fort (vgl. Fig. 5, Abschnitt IV). Sobald der Entladevorgang soweit abgeklungen ist, dass der erste sekundärseitige Knotenpunkt a2 auf einem höheren Potential als der zweite sekundärseitige Knotenpunkt b2 liegt, beispielhaft nach 500ns, schaltet der Ausgang des Übertragungszweigs OUT_ON wieder auf LOW (vgl. Fig.5, Abschnitt III).
  • Beim Aufbau der Spannung zwischen Primär- und Sekundärseite hat sich an den Knotenpunkten X11, X31 ein Zwischenpotential von 300V eingestellt. Die durch die Schaltsignalflanken an den Knoten a1, b1 verursachten Potentialverschiebungen betragen in der Simulation ca. 5V, sowohl für steigende als auch für fallende Flanken.
  • Die negative Flanke des Signals am Eingang IN bewirkt kein Ausgangssignal des ON-Übertragungszweigs 82 (vgl. Fig.5, Abschnitt V), vielmehr erzeugt diese ein nicht dargestelltes entsprechendes Signal am OFF-Übertragungszweig 83. Sollte das stationäre Gleichgewicht noch nicht erreicht sein, führt eine negative Signalflanke direkt zu einem LOW-Pegel am Ausgang OUT_ON des ersten Komparators COMP1 (vgl. Fig. 5, Abschnitt VI). Ebenso gilt, dass eine positive Flanke des Signals am Eingang IN immer zu einem HIGH-Pegel am Ausgang OUT_ON des ON-Übertragungszweiges 82 führt, unabhängig davon, ob sich bereits ein stationäres Gleichgewicht an den sekundärseitigen Knotenpunkten a2, b2 eingestellt hat. Jede Flanke am Eingang IN führt somit immer zu einem korrelierenden Schaltzustand am Ausgang OUT_ON, sofern dieser nicht bereits vorliegt. Es lassen sich somit auch Pulsfolgen hoher Frequenz übertragen.
  • Weitere Simulationen zeigen, dass die Signalübertragung durch Ladungsverschiebung an den HV-Kondensatoren unabhängig davon erfolgt, ob das Bezugspotential gnd_sek der Sekundärseite statisch höher, gleich oder niedriger als das Bezugspotential gnd_pri der Primärseite ist. Bei einem Schaltvorgang der Leistungsschalter, bei dem gleichzeitig oder kurz nacheinander der BOT- Schalter aus bzw. ein- und der TOP-Schalter ein- bzw. ausgeschaltet werden, steigt bzw. sinkt die Spannung am Ausgang der Halbbrücke mit einer schnellen Änderung pro Zeiteinheit (Spannungstransienten), von beispielhaft 10kV/µs. In gleichem Maße steigt gleichzeitig das Bezugspotential gnd_sek der Sekundärseite an. Während dieser Phasen ist eine Signalübertragung über die Übertragungszweige 82, 83 und damit über den gesamten Vorwärts-Übertrager 80 nicht möglich und auch nicht erwünscht.
  • Die Übertragung eines Signals von der Primär- auf die Sekundärseite über einen erfindungsgemäßen Vorwärts-Übertrager kann wie folgt zusammengefasst werden. Bei einer positiven Eingangssignalflanke wird am Ausgang OUT_ON des ON-Übertragungszweig 82 ein positiver Puls bestimmter Länge erzeugt, der von der Signalauswerteschaltung 84 erfasst wird. Daraufhin wird der Ausgang OUT des Vorwärts-Übertragers 80 auf einen Einschaltstatus, beispielhaft HIGH, gesetzt, der auch nach Ende des Signals am Ausgang OUT_ON ansteht. Der Ausgang OUT_OFF des OFF-Übertragungszweigs 83 verharrt auf LOW. Bei einer negativen Eingangssignalflanke wird am Ausgang OUT_OFF des OFF-Übertragungszweigs 83 ein positiver Puls bestimmter Länge erzeugt, der ebenfalls von der Signalauswerteschaltung 84 erfasst wird. Daraufhin wird der Ausgang OUT des Vorwärts-Übertragers 82 zurückgesetzt. Der Ausgang OUT_ON des ON-Übertragungszweigs 82 verharrt auf LOW. Das Signal am Eingang IN wird in vollständiger Länge übertragen und an die TOP-Sekundärseite 40 übergeben. Während hoher Spannungstransienten zwischen primärseitigem gnd_pri und sekundärseitigem Bezugspotential gnd_sek findet keine Signalübertragung statt. Die Ausgänge der Übertragungszweige OUT_ON, OUT_OF) verbleiben im LOW-Zustand bzw. werden auf den LOW-Zustand zurückgesetzt. Der gespeicherte Zustand am Ausgang OUT des Vorwärts-Übertragers 80 bleibt erhalten.
  • Um eine zur sicheren Detektion ausreichende Pulslänge, beispielhaft 500ns, am Ausgang eines Vorwärts- Übertragers zu erreichen muss die Entladezeitkonstante an den Knoten a2 und b2 groß genug sein. Diese wird bestimmt durch die ohmsche und kapazitive Belastung an den Knoten a2 und b2. Für eine platzsparende monolithische Integration der Schaltung ist der Großteil der benötigten kapazitiven Belastung der Knoten a2 und b2 vorzugsweise durch die Niedervoltkondensatoren C2 und C4 zu realisieren, da sie einen viel geringeren Flächenbedarf pro Kapazitätseinheit gegenüber den HV-Kondensatoren der Schaltung haben. Gleichzeitig soll die kapazitive Kopplung zwischen Primär- und Sekundärseite möglichst gering gehalten werden. Deshalb muss die o.g. Bedingung C1ges/C2 = C3ges/C4 << 1 erfüllt sein. Da herstellungsbedingt nicht alle in Reihe geschalteten Kondensatoren eines Übertragungszweigs den gleichen Kapazitätswert besitzen, ergibt sich zwangsläufig eine ungleichmäßige Spannungsverteilung an den Zwischenpotentialknoten X11 bis X1n-1 bzw. X31 bis X3n-1. Um eine Überschreitung der Spannung über die Spannungsfestigkeit an einem oder mehreren HV-Kondensatoren zu vermeiden ist eine Begrenzung der Spannung über diesen vorzusehen.
  • Figur 4 zeigt analog zu Figur 3 die Grundschaltung des erfindungsgemäßen Rückwärts-Übertragers 90, der hier nur als ON-Übertragungszweig 92 ausgebildet ist. Die Bezugszeichen entsprechen denjenigen der Figur 3 mit jeweils angehängtem "r", um die reverse Übertragung zu kennzeichnen.
  • Um die oben genannte Spannungsbegrenzungsschaltung SPB wird die Grundschaltung eines Vorwärts-Übertragerzweigs gemäß Figur 3 in der Ausführungsform nach Figur 6 zusätzlich erweitert. Beispielhaft wird hier n=2 angenommen, d.h. in jedem Übertragungszweig werden zwei HV-Kondensatoren in Reihe geschaltet. Die Zwischenpotentialknoten X11 und X31 sind jeweils über zwei gegenpolig in Reihe geschaltete Zenerdioden am gemeinsamen Knoten Y angebunden, der wiederum den Mittelpunkt eines weiteren kapazitiven Spannungsteilers mit Symmetrierungskondensatoren (C5, C6) zwischen vdd_pri und vdd_sek bildet. Weiterhin beinhaltet die Übertragungsschaltung eine Spannungsbegrenzungsschaltung über jedem HV-Kondensator, beispielhaft in Fig. 6: C5 und C6, wobei hier die obere Spannungsbegrenzungsschaltung mit dem sekundärseitigen Betriebsspannungspotential vdd_sek und dem Knoten Y und die untere Spannungsbegrenzungsschaltung mit dem Knoten Y und dem primärseitigen Betriebsspannungspotential vdd_pri verbunden ist. Die Spannungsbegrenzungsschaltungen sind identisch aufgebaut und bestehen aus einer Zenerdioden-Ausgleichsschaltung ausgebildet als Reihenschaltungen gleichgepolter Zenerdioden der Anzahl y Z5y, Z6y, mit y = 1...m, wobei die Kathoden der jeweils obersten Zenerdiode Z5m, Z6m mit dem oberen Anschluss und die Anode der untersten Zenerdiode Z51, Z61 mit dem unteren Anschluss der Spannungsbegrenzungsschaltung verbunden ist. Parallel zur Reihenschaltung der Zenerdioden ist jeweils ein Spannungsbegrenzungstransistor, ebenfalls ausgebildet als ein Hochvolttransistor, HV5, HV6 geschaltet, wobei das Drain mit dem oberen Anschluss und das Source mit dem unteren Anschluss der jeweiligen Spannungsbegrenzungsschaltung verbunden ist. Vervollständigt wird die Spannungsbegrenzungsschaltung durch einen Widerstand R5, R6, dessen erster Anschluss mit dem Gate des Spannungsbegrenzungstransistors HV5, HV6 und der Kathode der untersten Zenerdiode Z51, Z61 und dessen zweiter Anschluss mit dem unteren Anschluss der Spannungsbegrenzungsschaltung verbunden ist. Das Gate des jeweiligen Spannungsbegrenzungstransistors HV5, HV6 ist einerseits mit der Kathode der ersten Zenerdiode Z51 bzw. Z61 der Reihenschaltung und andererseits über einen Widerstand R5 bzw. R6 mit der Anode der ersten Zenerdiode Z51 bzw. Z61 der Reihenschaltung verbunden.
  • Die Wirkungsweise der Schaltungserweiterung in der Ausführungsform nach Fig. 6 ist wie folgt. Die HV-Kondensatoren C5 und C6 bilden einen weiteren kapazitiven Spannungsteiler zwischen Primär- und Sekundärseite. Bei gleicher Dimensionierung der HV-Kondensatoren C5 und C6 stellt sich bei zeitlich schneller positiver Spannungsänderung zwischen primärseitigem und sekundärseitigem Bezugspotential die halbe Spannung zwischen Primär- und Sekundärseite am Knoten Y ein. Ist die kapazitive Spannungsteilung in den Übertragungszweigen derart, dass sich an den Knoten X11 bzw. X31 ohne erweiterte Beschaltung ein um mehr als den Betrag einer Zenerspannung der Zenerdioden Z1a2, Z1b2 bzw. Z3a2, Z3b2 unterschiedlicher Spannungswert als an Knoten Y einstellen würde, dann überschreitet die entsprechende Zenerdiode Z1a2 oder Z1b2 bzw. Z3a2 oder Z3b2 ihre Zenerspannung und es fließt ein Ausgleichstrom zwischen den Knoten X11 bzw. X31 und Y über die in Durchbruch befindliche Zenerdiode und die jeweils andere in Durchlass befindliche Zenerdiode. Dieser Ausgleichstrom fließt solange bis sich die Potentiale zwischen X11 bzw. X31 und Y soweit angenähert haben, dass die Zenerdioden-Kette Z1a2, Z1b2 bzw. Z3a2, Z3b2 wieder sperrt. Ist die kapazitive Belastung am Knoten Y sehr viel größer als an den Knoten X11 bzw. X31, d.h. C5 +C6 >>C11 + C12 bzw. C31 + C32, dann ändern sich während des Ausgleichsvorgangs überwiegend die Potentiale an X11 bzw. X31. Die Spannungsbegrenzungsschaltungen begrenzen das Potential am Knoten Y gegenüber vdd_pri (untere Schaltung) und vdd_sek (obere Schaltung). Wird während eines Ausgleichsvorgangs die Spannung an einem der HV-Kondensatoren C5 oder C6 so groß, dass die Begrenzungsspannung Uclamp der y in Reihe geschalteten Zenerdioden Uclamp = y*Uz überschritten wird, dann beginnt ein Querstrom durch die niederohmig gewordene Zenerdioden-Kette zu fließen, der einen Abbau der Überspannung bewirkt. Ein Teil des Stroms fließt durch den Widerstand R5 bzw. R6. Überschreitet der Spannungsabfall über R5 bzw. R6 die Schwellspannung von HV5 bzw. HV6, dann öffnet dieser. Über der Drain-Source-Strecke von HV5 bzw. HV6 entsteht ein zusätzlicher niederohmiger Querstrompfad. Der Knoten Y kann somit einfacher festgehalten bzw. mit hohen Strömen schnell umgeladen werden. Auf diese Weise wird die Spannung am Knoten Y und indirekt über Z1a2, Z1b2 bzw. Z3a2, Z3b2 auch an den Knoten X11 und X31 begrenzt. Die Begrenzungsspannung Uclamp der y in Reihe geschalteten Zenerdioden der jeweiligen Spannungsbegrenzungsschaltung muss dabei kleiner sein als die zulässigen Spannungen an den HV-Kondensatoren C5 und C6, C11 und C12, C31 und C32 und den Spannungsbegrenzungstransistoren HV5 und HV6.
  • Fig. 7 stellt eine weitere Ausführungsform des erfindungsgemäßen Übertragers dar, mit der es möglich ist Signale über eine hohe Potentialbarriere zu übertragen, die größer ist als die Spannungsfestigkeit in einer einzelnen monolithisch integrierten Schaltung. Die jeweilige Spannungsfestigkeit wird zum einen bestimmt durch die Durchbruchspannung der integrierten Übertragungsschaltungen, die bei herkömmlichen Topologien von der Durchbruchspannung des eingesetzten Hochspannungsbauelements (integrierter Hochvolttransistor) bestimmt wird, und zum anderen durch die Spannungsfestigkeit der Isolation zwischen Primärseite und Sekundärseite. Die Spannungsfestigkeit der Isolation wird von der Halbleitertechnologie bestimmt und kann mit schaltungstechnischen Maßnahmen nicht erhöht werden. Dagegen kann die Spannungsfestigkeit der Übertragungsschaltung, wie oben beschrieben, durch die Verwendung von n Hochspannungsbauelementen in Reihe in einem Multi-Chip-Modul auf den n-fachen Wert erhöht werden.
  • Da in den meisten Fällen die Durchbruchspannungen der Isolation und der verfügbaren Hochspannungsbauelemente annähernd gleich groß sind, kann die Spannungsfestigkeit der gesamten Übertragungsschaltung nur auf den n-fachen Wert erhöht werden, wenn jeder der n Hochspannungsbauelemente auf einem separaten Substrat integriert wird. Somit können mit 600V-Isolationsverfahren nach dem Stand der Technik höhere Potentialdifferenzen überwunden werden. Werden beispielsweise zwei Chips eingesetzt kann eine integrierte Schaltungsanordnung auch für die Spannungsklasse von 1200V realisiert werden, bei drei Chips bis 1800V und analog für weitere Spannungsklassen.
  • Die Ausführungsform des Vorwärts-Übertragers in dieser Ausführungsform unterscheidet sich von derjenigen gemäß Fig. 3, dass der Übertrager auf n separate Chips aufgeteilt ist, wobei auf jedem Chip einer der n HV-Kondensatoren C11 bis C1n bzw. C31 bis C3n integriert wird. Auf Chip 1 sind die HV-Kondensatoren C11 und C31, die Transistoren M1 bis M4, sowie der Inverter INV2 integriert. Gegebenenfalls können auf Chip 1 weitere Schaltungen wie z.B. eine Logikbaugruppe sowie ein Treiber für einen BOT-Schalter integriert werden. Der Rückseitenkontakt, handle wafer, HW1 des ersten Chips 1 ist mit dem primärseitigem Bezugspotential gnd_pri verbunden. Die Chips 2 bis n-1 enthalten jeweils zwei HV-Kondensatoren, einen für jeden Übertragungszweig, die wie in der ersten und zweiten Ausführungsform jeweils mit den HV-Kondensatoren C11 bis C1n bzw. C31 bis C3n verbunden sind, sowie die Zenerdioden Z1ax und Z1bx bzw. Z3ax und Z3bx, mit x=2..n-1, des jeweiligen Chips, deren einer Anschluss mit dem Knoten X1 x-1 bzw. X3x-1 und der jeweils andere Anschluss mit dem Rückseitenkontakt HWx, mit x=2..n-1, des jeweiligen Chips verbunden ist. Der Chip n enthält in jedem Fall die HV-Kondensatoren C1n und C3n, die Zenerdioden Z1an, Z1bn, Z3an, Z3bn,die Kondensatoren C2 und C4, die Widerstände R1 bis R6, die Zenerdioden Z1 bis Z4 sowie den Komparator COMP1. Der Rückseitenkontakt HWn des Chips n ist mit dem jeweils einen Anschluss der Zenerdioden Z1an bzw. Z3an verbunden.
  • Die Signalübertragung bei der Ausführungsform des Vorwärts-Übertragers nach Fig. 6 erfolgt mit dem erfindungsgemäßen Übertragungsverfahren in analoger Weise wie bei den vorherigen Ausführungsformen nach Fig. 3 und 5. Die jeweils gegenpolig in Reihe geschalteten Zenerdioden Z1ax und Z1bx bzw. Z3ax und Z3bx binden den Rückseitenkontakt HWx der jeweiligen Chips an die jeweiligen Zwischenpotentialknoten X1x-1 bzw. X3x-1, mit x=2..n-1, der jeweiligen Chips an.

Claims (13)

  1. Ansteuerschaltung mit Übertragungsschaltung zur Übertragung eines Signals über eine Potentialbarriere hinweg, von einer ersten Potentialseite (Pri, Sek) mit erstem Grundpotential zu einer zweiten Potentialseite (Sek, Pri) mit zweitem Grundpotential, mit einer kapazitiv wirkenden Übertragungseinrichtung (80,90) mit kapazitiver Kopplung zwischen der ersten und der zweiten Potentialseite, wobei
    die Übertragungseinrichtung (80,90) genau einen oder zwei Zweige, somit nur einen ON- Übertragungszweig (82, 92) oder einen ON- Übertragungszweig (82) und einen OFF- Übertragungszweig (83) aufweist, die ihrerseits jeweils einen ersten und einen zweiten Teilzweig aufweisen, wobei die kapazitive Kopplung zwischen erster und zweiter Potentialseite bei jedem Teilzweig durch eine Reihenschaltung einer Mehrzahl von ersten und zweiten Hochvoltkondensatoren (C1 x, C3x, mit x = 1...n bzw. x = 1 r...nr) ausgebildet ist, die wiederum jeweils eine Reihenschaltung mit einem zugeordneten Kondensator (C2, C4 bzw. C2r, C4r) auf der zweiten Potentialseite bilden, wobei innerhalb des jeweiligen Übertragungszweiges (82, 83, 92) das Signal direkt an einem ersten Teilzweig und über einen zweiten Inverter (INV2, INV2r) an einem zweiten Teilzweig anliegt und
    wobei bei zwei Zweigen ein Signal (IN) am Eingang direkt an dem ON-Übertragungszweig (82) und über einen ersten Inverter (INV1) am OFF-Übertragungszweig (83) anliegt.
  2. Ansteuerschaltung nach Anspruch 1, wobei
    parallel zu den ersten und zweiten Hochvoltkondensatoren (C1 x, C3x) eines Zweiges ein weiterer kapazitiver Spannungsteiler mit der gleichen Anzahl von Symmetrierungskondensatoren (C5, C6) wie erste und zweite Hochvoltkondensatoren (C1 x, C3x) angeordnet ist, wobei jedes der Zwischenpotentiale (X1 x, X3x) von Symmetrierungs- (C5, C6) und zugeordneten Hochvoltkondensatoren (C1 x, C3x) mittels einer Zenerdioden-Ausgleichsschaltung (ZA) verbunden sind.
  3. Ansteuerschaltung nach Anspruch 1 oder 2, wobei
    die Zenerdioden-Ausgleichsschaltung (ZA) ausgebildet ist als je zwei Reichenschaltungen zweier Zenerdioden (Z1ax, Z1bx bzw. Z3ax, Z3bx, mit x=2..n), die mit Ihren Anoden oder Kathoden miteinander verbunden sind und deren Kathoden bzw. Anoden mit dem jeweiligen Zwischenpotential (Y) der Symmetrierungskondensatoren (C5, C6) und dem zugeordneten Zwischenpotential (X1x, X3x) der Hochvoltkondensatoren (C1x, C3x) verbunden sind.
  4. Ansteuerschaltung nach Anspruch 2, wobei
    die Reihenschaltung der Symmetrierungskondensatoren (C5, C6) also der weitere kapazitive Spannungsteiler mit dem Versorgungspotentialen (vdd_sek, vdd_prim) der ersten und zweiten Potentialseite (Pri, Sek) verbunden sind.
  5. Ansteuerschaltung nach Anspruch 2, wobei
    zu jedem Symmetrierungskondensator (C5, C6) des weiterern kapazitiven Spannungsteilers eine Spannungsbegrenzungsschaltung (SPB) parallel geschaltet ist.
  6. Ansteuerschaltung nach Anspruch 5, wobei
    die Spannungsbegrenzungsschaltung (SPB) mit einem oberen und einem unteren Anschluss, aus einer Reihenschaltung von weiteren Zenerdioden (Z5y, Z6y mit y = 1...m) und einem parallel geschalteten Spannungsbegrenzungstransistor (HV5, HV6) besteht, dessen Source mit dem unteren Anschluss, dessen Drain mit dem oberen Anschluss der Spannungsbegrenzungsschaltung (SPB) und dessen Gate einerseits mit der Kathode der ersten Zenerdiode (Z51, Z61) der Reihenschaltung und andererseits über einen Widerstand mit der Anode der ersten Zenerdiode der Reihenschaltung verbunden ist.
  7. Ansteuerschaltung nach einem der vorhergehenden Ansprüche, wobei
    die jeweiligen Komponenten auf einer Mehrzahl von voneinander elektrisch isolierten Substraten (Chip 1 ... Chip n) monolithisch integriert angeordnet sind.
  8. Ansteuerschaltung nach Anspruch 7, wobei
    der Mittelpunkt einer Zenerdioden-Ausgleichsschaltung (ZA) mit dem Grundpotential (HWx mit x = 1...n) elektrisch leitend verbunden ist.
  9. Ansteuerschaltung nach Anspruch 7 oder 8, wobei
    die jeweiligen Komponenten auf zwei Substraten (Chip 1, Chip n mit n=2) angeordnet sind und hierbei die Komponenten der ersten Potentialseite auf dem ersten Substrat angeordnet sind und diejenigen der zweiten Potentialseite auf dem zweiten Substrat angeordnet sind.
  10. Ansteuerschaltung nach Anspruch 7 oder 8, wobei
    die jeweiligen Komponenten auf mehr als zwei Substraten (Chip x mit x = 1...n) angeordnet sind und hierbei die Komponenten der ersten Potentialseite auf einem ersten Substrat angeordnet sind und diejenigen der zweiten Potentialseite auf einem zweiten Substrat angeordnet sind, sowie Hochvoltkondensatoren und zugeordnete Spannungsbegrenzungsschaltungen auf jeweils eigenen weiteren Substraten (Chip 2 ... Chip n-1) angeordnet sind.
  11. Ansteuerschaltung nach einem der Ansprüche 8 bis 10, wobei
    die jeweiligen Substrate (Chip 1 ... Chip n) innerhalb eines Multi-Chip-Moduls angeordnet sind.
  12. Verfahren zum Betrieb einer Ansteuerschaltung nach Anspruch 1-11, wobei auf einer ersten Potentialseite ein Eingangssignal am Eingang (IN) der Übertragungseinrichtung (80, 90) direkt an einen ON- Übertragungszweig (82, 92) angelegt wird, wobei
    in jedem Übertragungszweig (82, 92) das dortige Signal einen Stromfluss durch erste Hochvoltkondensatoren (C1 x, C1 xr) eines ersten Teilzweiges und einen inversen Stromfluss durch zweite Hochvoltkondensatoren (C3x, C3xr) eines zweiten Teilzweiges erzeugt, dieser jeweilige Stromfluss auf der zweiten Potentialseite detektiert und einer beiden Teilzweigen gemeinsamen Auswerteschaltung (84, 94) zugeführt wird, die das Eingangssignal (IN) der ersten Potentialseite auf der zweiten Potentialseite rekonstruiert (OUT) und wobei eine Spannungsbegrenzungsschaltung (SPB) in Kombination mit einer Zenerdioden-Ausgleichsschaltung (ZA) die über den jeweiligen Hochvoltkondensatoren (X1 x, X3x, X1 xr, X3xr) abfallende Teilspannung begrenzt.
  13. Verfahren zum Betrieb einer Ansteuerschaltung nach Anspruch 12, wobei
    ein Eingangssignal am Eingang (IN) der Übertragungseinrichtung (80, 90) direkt an einen ON- Übertragungszweig (82, 92) und invertiert an einen OFF-Übertragungszweig (83) angelegt wird.
EP13178916.6A 2012-11-07 2013-08-01 Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb Active EP2731269B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012220213.7A DE102012220213B3 (de) 2012-11-07 2012-11-07 Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb

Publications (2)

Publication Number Publication Date
EP2731269A1 true EP2731269A1 (de) 2014-05-14
EP2731269B1 EP2731269B1 (de) 2015-10-14

Family

ID=48915888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13178916.6A Active EP2731269B1 (de) 2012-11-07 2013-08-01 Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb

Country Status (5)

Country Link
EP (1) EP2731269B1 (de)
JP (1) JP6200757B2 (de)
KR (1) KR102020071B1 (de)
CN (1) CN203590189U (de)
DE (1) DE102012220213B3 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123269A1 (en) * 2016-01-11 2017-07-20 Peregrine Semiconductor Corporation Dead time control
US9843311B2 (en) 2015-03-18 2017-12-12 Peregrine Semiconductor Corporation Integrated level shifter circuit
US9847348B1 (en) 2016-12-20 2017-12-19 Peregrine Semiconductor Corporation Systems, methods and apparatus for enabling high voltage circuits
US9912327B2 (en) 2015-03-18 2018-03-06 Peregrine Semiconductor Corporation Dead time control circuit for a level shifter
US10672726B2 (en) 2017-05-19 2020-06-02 Psemi Corporation Transient stabilized SOI FETs
US10971359B2 (en) 2017-05-19 2021-04-06 Psemi Corporation Managed substrate effects for stabilized SOI FETs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112262A1 (de) * 2013-11-07 2015-05-07 Semikron Elektronik Gmbh & Co. Kg Ansteuerschaltung für Drei-Level-Inverter
US10116297B1 (en) * 2017-06-19 2018-10-30 Psemi Corporation DC-coupled high-voltage level shifter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887698A2 (de) * 2006-08-10 2008-02-13 SEMIKRON Elektronik GmbH & Co. KG Levelshifter für eine Ansteuerschaltung für Leistungshalbleiterbauelemente
US20080231340A1 (en) * 2007-03-20 2008-09-25 Denso Corporation Level shift circuit
EP2385629A2 (de) * 2010-05-03 2011-11-09 SEMIKRON Elektronik GmbH & Co. KG Ansteuerschaltung mit Übertragungsschaltung zur kapazitiven Übertragung eines Signals und zugeordnetes Verfahren

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522787B2 (de) * 1971-12-23 1977-01-24
JPH01152971A (ja) * 1987-12-10 1989-06-15 Fuji Electric Co Ltd インバータ回路
JPH10145219A (ja) * 1996-11-06 1998-05-29 Nkk Corp 半導体入力回路およびその製造方法
JPH11136293A (ja) * 1997-10-31 1999-05-21 Hitachi Ltd アイソレータ回路及びモノリシックアイソレータ
JP4000976B2 (ja) * 2002-09-27 2007-10-31 株式会社日立製作所 インバータ装置とこれを用いたモータ駆動装置
WO2005122423A2 (en) * 2004-06-03 2005-12-22 Silicon Laboratories Inc. Spread spectrum isolator
JP2008252066A (ja) * 2007-03-06 2008-10-16 Denso Corp 半導体装置
JP5303167B2 (ja) * 2008-03-25 2013-10-02 ローム株式会社 スイッチ制御装置及びこれを用いたモータ駆動装置
DE102009029307A1 (de) * 2009-09-09 2011-03-10 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Übertragung eines Steuersignals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887698A2 (de) * 2006-08-10 2008-02-13 SEMIKRON Elektronik GmbH & Co. KG Levelshifter für eine Ansteuerschaltung für Leistungshalbleiterbauelemente
US20080231340A1 (en) * 2007-03-20 2008-09-25 Denso Corporation Level shift circuit
EP2385629A2 (de) * 2010-05-03 2011-11-09 SEMIKRON Elektronik GmbH & Co. KG Ansteuerschaltung mit Übertragungsschaltung zur kapazitiven Übertragung eines Signals und zugeordnetes Verfahren

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843311B2 (en) 2015-03-18 2017-12-12 Peregrine Semiconductor Corporation Integrated level shifter circuit
US9912327B2 (en) 2015-03-18 2018-03-06 Peregrine Semiconductor Corporation Dead time control circuit for a level shifter
US10734982B2 (en) 2015-03-18 2020-08-04 Psemi Corporation Dead time control circuit for a level shifter
WO2017123269A1 (en) * 2016-01-11 2017-07-20 Peregrine Semiconductor Corporation Dead time control
US9847348B1 (en) 2016-12-20 2017-12-19 Peregrine Semiconductor Corporation Systems, methods and apparatus for enabling high voltage circuits
US10770480B2 (en) 2016-12-20 2020-09-08 Psemi Corporation Systems, methods, and apparatus for enabling high voltage circuits
US10672726B2 (en) 2017-05-19 2020-06-02 Psemi Corporation Transient stabilized SOI FETs
US10971359B2 (en) 2017-05-19 2021-04-06 Psemi Corporation Managed substrate effects for stabilized SOI FETs
US11251140B2 (en) 2017-05-19 2022-02-15 Psemi Corporation Transient stabilized SOI FETs
US11948897B2 (en) 2017-05-19 2024-04-02 Psemi Corporation Transient stabilized SOI FETs

Also Published As

Publication number Publication date
CN203590189U (zh) 2014-05-07
JP2014096789A (ja) 2014-05-22
DE102012220213B3 (de) 2014-05-22
JP6200757B2 (ja) 2017-09-20
KR102020071B1 (ko) 2019-11-14
CN103812485A (zh) 2014-05-21
KR20140059143A (ko) 2014-05-15
EP2731269B1 (de) 2015-10-14

Similar Documents

Publication Publication Date Title
EP2731269B1 (de) Ansteuerschaltung mit Übertragungsschaltung und Verfahren zum Betrieb
EP2884662B1 (de) Vorrichtung und Verfahren zur Detektion eines Kurzschluss- oder Überstromzustands in einem Leistungshalbleiterschalter
DE102010018997B4 (de) Ansteuerschaltung mit Übertragungsschaltung zur kapazitiven Übertragung eines Signals und zugeordnetes Verfahren
EP1887698B1 (de) Levelshifter für eine Ansteuerschaltung für Leistungshalbleiterbauelemente
DE102010030064B4 (de) Schutzschaltung
DE102013218670B4 (de) Verpolungsschutz für High-Side-Schalter in n-Substrat
DE102007006319B4 (de) Ansteuerschaltung mit TOP-Levelshifter zur Übertragung eines Eingangssignals und zugeordnetes Verfahren
DE112018003130T5 (de) Zeitsteuerung für Totzeitsteuerung
DE112012001674T5 (de) Kaskodenschalter mit selbstsperrenden und selbstleitenden Bauelementen und die Schalter umfassende Schaltungen
DE112016000392B4 (de) Signalübertragungs-Einrichtung
DE102015102878B4 (de) Elektronische Ansteuerschaltung
DE112014006951T5 (de) Kurzschluss-Schutzschaltung für Halbleiterelemente vom Typ mit Lichtbogen-Selbstlöschung
EP2556590B1 (de) Schalteinrichtung mit jfet-serieschaltung
DE102010039141A1 (de) Halbleiterschaltung
DE102016108187A1 (de) Gate-Ansteuerschaltung zur Reduktion parasitärer Kopplung
DE102013106744A1 (de) Spannungsregelschaltung
DE102016112361A1 (de) Elektrische leistungsumwandlungsvorrichtung
DE112016001332T5 (de) Mehrphasenwandler
DE102013105230A1 (de) Treiberschaltkreis für einen Transistor
EP1926198B1 (de) Ansteuerschaltung mit BOT-Levelshifter zur Übertragung eines Eingangssignals und zugeordnetes Verfahren
DE102014110878B4 (de) Schaltsteuerkreisanordnungen und Verfahren zur Energieversorgung eines Treiberschaltkreises
DE102013109797A1 (de) Ionisator
DE102007018237B4 (de) Schaltung mit verbessertem ESD-Schutz bei repetierender Pulsbelastung
DE102015223336A1 (de) Für niedrige Eingangsspannungen geeignete Ladungspumpe
DE3912704C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001330

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 11

Ref country code: CH

Payment date: 20230902

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 11

Ref country code: DE

Payment date: 20230831

Year of fee payment: 11