EP2718202B1 - Frachtaufnahmeeinrichtung - Google Patents

Frachtaufnahmeeinrichtung Download PDF

Info

Publication number
EP2718202B1
EP2718202B1 EP12725818.4A EP12725818A EP2718202B1 EP 2718202 B1 EP2718202 B1 EP 2718202B1 EP 12725818 A EP12725818 A EP 12725818A EP 2718202 B1 EP2718202 B1 EP 2718202B1
Authority
EP
European Patent Office
Prior art keywords
groove
section
holding device
corner
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12725818.4A
Other languages
English (en)
French (fr)
Other versions
EP2718202A1 (de
Inventor
Thomas Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telair International GmbH
Original Assignee
Telair International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102011050893.7A external-priority patent/DE102011050893B4/de
Priority claimed from PCT/EP2011/003114 external-priority patent/WO2012175099A1/de
Application filed by Telair International GmbH filed Critical Telair International GmbH
Priority to EP17154606.2A priority Critical patent/EP3181486A3/de
Priority to EP12725818.4A priority patent/EP2718202B1/de
Priority claimed from PCT/EP2012/060724 external-priority patent/WO2012168314A1/de
Publication of EP2718202A1 publication Critical patent/EP2718202A1/de
Application granted granted Critical
Publication of EP2718202B1 publication Critical patent/EP2718202B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/14Large containers rigid specially adapted for transport by air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/08Interconnections of wall parts; Sealing means therefor

Definitions

  • the present invention relates to a cargo receiving device, such as containers, pallets or the like, in particular for loading aircraft and a method for producing a cargo receiving device
  • freight containers and cargo pallets - ie cargo receiving facilities - are indispensable, as they allow a fast loading and unloading of the aircraft.
  • the vast majority of commercial aircraft can accommodate a variety of freight containers or cargo pallets.
  • Most containers or pallets are standardized so that they can be used independently of the aircraft used for transport.
  • freight containers were made exclusively of aluminum, with the weight of the container was about 100 kg.
  • the currently used containers are partly based on lighter materials, so that freight containers weighing around 60 kg are now being used. It should be obvious that reducing the dead weight of the containers or pallets used has a significant financial and environmental impact.
  • a freight container is in the DE 20 64 241 described.
  • the DE 696 16 182 T2 suggests, for example a freight container having an aluminum alloy frame in which side walls and a roof of fiber reinforced plastic are inserted. The side walls and the roof are made as fiber webs of fiber-reinforced plastic.
  • a frame of carbon fiber reinforced plastic material is already mentioned in the aforementioned document.
  • a technical embodiment of such a freight container is the DE 696 16 182 T2 but not to be seen. Perhaps the frame should be made from the said knitted or knitted fabric by lamination or by winding.
  • the DE 42 18 589 A1 describes a collapsible transport container, in which at least the side walls are connected to each other via a clip connection.
  • a U-shaped rail surrounds a round profile element which extends over the entire longitudinal sides of the side wall.
  • the roof element is a cover which partially surrounds the side walls and thus forms a frame enclosing the transport container.
  • a side wall of the DE 42 18 589 A1 has a plate and a frame with four attachable profile strips.
  • the profile strips in turn form a rectangle in the arranged state.
  • the DE 10 2008 005 010 A1 in turn describes a collapsible transport container for goods, in particular air freight container, having a bottom, a lid, side walls, a rear wall and at least two doors. Profiles may be provided on the wall elements.
  • the GB 2 273 542 A describes a freight container with elastic corner profiles, which are used to connect the side walls, are clipped into this.
  • the floor element can be suspended by providing a hook in the profile element. This results in a structurally simple, yet secure connection. Assembly and disassembly of the cargo receiving device are facilitated. In particular, can be dispensed with irreversible bonding or locking.
  • At least one wall element which has a stiffening running from a wall corner to the diagonally opposite wall corner, comprising at least one additional wall layer (tarpaulin layer).
  • stiffeners run from all four corners of the wall to the respective diagonally opposite wall corner, so that a total of a cross-shaped stiffening forms.
  • the at least one stiffening is realized by a local increase of a number of layers (number of planets). Due to the stiffeners, tensile loads can be absorbed via corner points, so that they no longer have to be set down via frame profiles.
  • a construction is achieved which is extremely lightweight and easy to assemble.
  • the at least one wall element becomes a structurally reinforcing element of the entire cargo receiving device. This allows a lightweight construction (Frame construction) and the absence of connecting means, such as rivets or screws.
  • a connection between the floor element and profile element via an insertion (of the floor and / or profile element) with subsequent rotation (of floor and profile element against each other) can be produced.
  • the release of a connection between floor and profile element via a rotation (of floor and profile element against each other) with subsequent removal of the floor and profile element from each other can be produced.
  • the connecting device comprises at least one groove and at least one spring.
  • the groove may for example be provided in the profile element (and / or in the bottom element).
  • the spring is preferably provided in the bottom element.
  • at least one groove is provided in the profile element.
  • a cross section of the groove and / or the spring may be at least partially round, in particular circular. As a result, profile and floor element can be rotated particularly easily against each other, which facilitates assembly / disassembly.
  • a cross section of the groove is preferably completely circular (apart from a slot opening).
  • At least one spring and / or at least one groove may be asymmetrical, so that the spring is insertable into the groove at a predetermined first relative angle to the groove and is hooked to the groove at a predetermined second (relative to the first, different) relative angle.
  • spring and groove are formed such that the spring acts as a hook in the associated groove or is formed as a hook. This development is particularly simple in terms of design and allows a stable connection.
  • a cross section of the spring when a cross section of the groove (other than a groove opening) is circular, a cross section of the spring may have a length (maximum length) in a longitudinal direction and a width (maximum width) in a width direction with the longitudinal direction perpendicular to the width direction, wherein the length is greater than the width (for example at least 1.1 times or at least 1.3 times or at least 1.6 times as large).
  • a cross-section of the spring has a circular arc section and opposite the circular arc section a fulcrum.
  • the spring can be particularly easily levered by rotation in the groove, which allows assembly and disassembly.
  • an edge portion of the bottom plate and / or at least one of the edge portion of the bottom plate facing profile element edge portion (in cross section) is hook-shaped.
  • a separate component for example, a separate hook
  • the connection can thus be structurally extremely simple.
  • At least one bottom plate edge portion of the bottom plate may be bent inwardly.
  • at least one profile element edge section facing the bottom plate edge section can be bevelled downwards in the direction of the base plate.
  • "inward” may mean that the bend is oriented toward a cargo receiving surface
  • "inward” for a container may mean that the bend is oriented towards a center of the cargo receiving space.
  • a stable and in particular positive formation of the soil can be achieved. The cost of materials is extremely low. The connection between floor element and profile element is still reliable and safe.
  • the bottom plate and / or at least one, preferably pultruded, profile element may be made at least in sections of fiber-reinforced carbon.
  • weight can be saved.
  • the hook construction is extremely stable due to the alignment of the fibers of the profile element along its longitudinal axis, against a tensile load by the bottom element.
  • the present cargo receiving device can completely dispense with metallic components.
  • the cargo receiving device may comprise an electromagnetic transmitter and / or receiver, in particular an RFID chip.
  • this electromagnetic receiving and / or transmitting device can communicate particularly easily with a corresponding external transmitter or receiver. A disturbance by metallic components is avoided or at least reduced.
  • the overall weight compared to known cargo receiving devices is significantly reduced again.
  • a weight reduction of 35% or more seems possible, which could for example be around 640 kg per total load weight in a Boeing 747 compared to a load with known containers.
  • a Boeing 747 in maximum capacity of about one-third aircraft, one-third passengers or cargo and about one-third fuel and in this form then has a take-off weight of about 408 tons, it comes to the result that about 130 tons of fuel are needed to transport 272 tons of aircraft and cargo.
  • the cargo receiving device according to the invention can be saved on a flight in such a case about 320 kg of fuel. As a result, the CO 2 emissions can be significantly reduced again.
  • Fig. 1 shows a freight container 10 in an oblique view.
  • Fig. 2 shows the freight container in a view from above.
  • the cargo container 10 comprises a frame 11 and side walls 12a to 12d (attached to the frame), a ceiling 13 and a floor 14.
  • the side wall 12c then extends obliquely outward (at a 45 degree angle) to the floor 14.
  • the side wall 12c also comprises a vertical section 16, which extends to the ceiling 13.
  • the remaining side walls 12a, 12b and 12d extend continuously perpendicular to the floor 14 and the ceiling 13, respectively.
  • the frame 11 comprises first profile elements 17 and second profile elements 18, wherein the first profile elements 17 and the second profile elements 18 differ in particular with respect to their cross-section.
  • the first profile elements 17 are part of a floor frame 19.
  • the second profile elements 18 are components of a side frame 20 and a ceiling frame 21st
  • Bodenecketti 22 are integrated. At the bottom corner elements 22, two first profile elements 17 and a second profile element 18 can be infected.
  • the side frame 20 and the Ceiling frame 21 include side corner elements 23, can be connected to the three second profile elements 18 (connected).
  • Fig. 3 shows a section along the line III-III Fig. 2 , It can be seen that a second profile element 18 is also arranged between the oblique section 15 and the vertical section 16 of the side wall 12c. Furthermore, it can be seen that the first profile element and the second profile element are formed as a hollow profile, wherein a cavity 24 of the first profile elements 17 and a cavity 25 of the second profile elements 18 is formed differently.
  • Fig. 4 shows a profile element in an oblique view.
  • Fig. 5 shows the profile element in a view from the side.
  • Fig. 6 shows a section along the line VI-VI Fig. 5 ,
  • the first profile element 17 comprises a Bodenabilitynut 26 for receiving or fixing the bottom 14 and a 9.wandabilitynut 27 for receiving or fastening one of the side walls 12a to 12d and a seat rail construction 28 for introducing (hooking) lashing eyes for the cargo.
  • the bottom 14 or a bottom plate can be inserted into the bottom receiving groove 26. Due to the provision of Bodenabilitynut thus additional connecting parts, such as rivets, can be omitted in general. As a result, both the structural design and the effort during assembly is significantly reduced.
  • the side walls 12a to 12d can be inserted into the side wall receiving groove 27.
  • the Bodenabilitynut 26 and / or sowandabilitynut 27 preferably has a roundish cross section and is suitable for receiving a rounded bead (see below) of the bottom 14 or one of the side walls 12 a to 12 d or the ceiling 13 suitable.
  • the seat rail construction 28 has an elongated cross-section with inwardly bent hook 29 for retaining lashing eyes.
  • the cavity 24 of the first profile element has a (roughly) rectangular cross-section, one at the bottom 14 (not in FIG Fig. 6 see) subsequent wall is bent outwards.
  • the inner contour of the profile element 17, 18 may vary; an outer contour also, if necessary taking into account the freight system.
  • the inner cross sections can be adapted in particular to different loads.
  • the outer contour can be adapted to the interface to the freight system, for example, edge corners can be designed to receive bars and guides.
  • the bottom corner elements 22 can be extended and / or widened (in the vertical direction) with a flange plate (not shown in the figures), in particular in order to be able to connect the first profile elements to the bottom corner elements 22 by means of screws.
  • the bottom corner elements 22 (possibly also the side corner elements 23) may be formed from a composite material (in particular fiber composite material) or possibly also from an aluminum alloy (cast or forged). If the corner elements comprise a metal alloy, then corrosion protection can be provided between the pultruded profile elements and the corner elements (since, for example, carbon fiber reinforced plastic is comparatively aggressive towards aluminum).
  • Seat rail construction 28 may include bores (not visible in the figures) (which bores may be retrofitted and may have a diameter of 19 mm) to fasten or hook tie-in loops (single tiedown and double tie-down studs) to be able to, for example, if in the freight container heavy loads are flown, which still need to be lashed in the container 10. For pallets, these could also circulate inside, for example, to attach pallet nets to the pallets. So far, aluminum sections were usually screwed or riveted to it. In the present profile element, this seat rail construction 28 is integrated and also preferably made of pultruded fiber composite plastic (such as carbon fiber reinforced plastic or glass fiber reinforced plastic, etc.).
  • the Fig. 7 and 8th show one of the bottom corner elements 22 in different oblique views.
  • the bottom corner element 22 is designed for connection (by insertion) with two first profile elements 17.
  • two cavity receiving pins 30 are formed, to each of which a cavity 24 of the first profile element (not in Fig. 7 and 8th to see; see. Fig. 6 ) can be infected.
  • seat rail receiving pins 31 are provided, which are designed to be inserted into the seat rail construction 28 of the first profile element 17.
  • a cargo receiving device in which at least one connecting element for connecting two profile elements has at least one seat rail receiving pin which can be inserted into a seat rail construction of a (pultruded) profile element.
  • the bottom element 22 comprises a side wall web 32 which extends in the direction of (in the Fig. 6 and 7 not shown) sidewalls 12a to 12d extends.
  • a (horizontal) portion is provided with an arcuate groove 34 in order to attach the side walls 12a to 12d to the first profile element 17 can.
  • the arcuate groove 34 is in the assembled state (see. Fig. 1 ) in the sowandabilitynuten 27 of the first profile elements 17 via.
  • Fig. 9 shows the cross section of the second profile element 18, which is preferably used at all edges of the container (with the exception of the edges towards the bottom 14).
  • the side walls 12a to 12d and the ceiling 13 can preferably be connected to the second profile elements by sliding (via a joining connection). Again, eliminates a complex connection process, such as by riveting.
  • the second profile element according to Fig. 9 includes a first side wall receiving groove 27a and a second side wall receiving groove 27b for connecting two side walls 12a to 12d or one of the side walls 12a to 12d to the ceiling 13. Also, the side wall receiving grooves 27a and 27b have a (round) round cross section and are suitable for receiving a bead of the side walls 12a to 12d and the ceiling 13, respectively.
  • the cavity 25 of the second profile element 18 is (approximately) circular segment-shaped and has a recess 35 in the region of a circular arc. Also, the cross section of the second profile element depends in particular on the male loads, which may be different. In this respect, the cross section of the cavity 25 or the second profile element 18 may differ (from the in Fig. 9 shown form).
  • Fig. 10 shows a side corner element 23 in an oblique view.
  • Fig. 11 shows the side corner element according to Fig. 10 in a side view.
  • the side corner element 23 comprises three cavity receiving pins 36, which can be inserted into the corresponding cavities 25 of three second profile elements 18.
  • arcuate grooves 37 may optionally corner areas of the side walls 12a to 12d or the ceiling 13 are introduced. Another way to realize a corner connection is shown below.
  • the side corner element 23 is formed as dreischenkliger angle.
  • Fig. 12 shows a section of a bottom 14 (bottom plate), which is mounted in a (partially shown) first profile element 17.
  • the bottom 14 comprises a (round) edge bead 38, which is inserted into the bottom receiving groove 26 of the first profile element 17.
  • the bottom 14 comprises a first bottom layer 39, a second bottom layer 40 and a third bottom layer 41.
  • the first (bottom) bottom layer 39 is preferably made of an aluminum alloy (in particular the 7075 series) and can provide sufficient support against transport rollers (PDU rollers). enable.
  • the second bottom layer 40 may be made of fiber reinforced plastic (such as carbon fiber reinforced plastic and / or glass fiber reinforced plastic) and / or aramid and / or Kevlar.
  • the second bottom layer 40 or also a third bottom layer 41 lying above the second bottom layer can form a (fine) braiding layer (iron braiding layer), in order to achieve an electromagnetic shielding, if required. Overall, more than three soil layers can be provided.
  • the thickness of the bottom plate may be 1.5 to 4.5 mm, in particular (about) 3.2 mm.
  • a bottom metal sheet (corresponding to the first bottom layer 39) may have a thickness of 0.5 to 1 mm, especially (about) 0.75 mm.
  • a bottom edge 42 has a bend 43 (towards an interior of the cargo container). As a result, a more favorable (flush) transition into the first profile element 17 can be achieved. Furthermore, a delamination of a metal support can be avoided if the transport rollers (PDU rollers) drive in operation over a corner edge of the floor.
  • the bend 43 runs parallel to an inclined surface 44 of the first profile element 17.
  • the first bottom layer 39 metal layer
  • One or more of the soil layers may be made of a fiber reinforced plastic containing at least a -45 degree / + 45 degree layer and a 0 degree / 90 degree layer.
  • Reference line is an edge of the bottom 14 (ie in Fig. 12 a direction perpendicular to the plane of the drawing).
  • the degree specifications refer to a mean orientation of the fibers within the fiber-reinforced plastics.
  • FIG. 13 shows a part of a manufacturing process for achieving the structure according to Fig. 14 ,
  • the side walls 12a to 12d and the ceiling 13 may be like a plan (or as a tarpaulin) and a bead 46 (see Fig. 14 ).
  • the edge bead 45 runs at least partially around the side walls 12a to 12d and the ceiling 13 and can preferably be inserted into the bottom corner elements 22 or second profile element 18.
  • the (designed as tarpaulin) side walls 12a to 12d and the ceiling 13 may be made of a carbon fiber reinforced plastic, a glass fiber reinforced plastic, aramid and / or Kevlar. Other fiber composites are conceivable.
  • Fig. 14 are (apart from an area adjacent to the edge bead 45) formed three layers (there may be further layers provided), namely a first side wall layer 46, a second side wall layer 47 and a third side wall layer 48.
  • the second (middle) sidewall layer 47 formed as 0 degrees / 90 degrees position (relative to a side wall edge 49, the in Fig.
  • the first sidewall layer 46 and the third sidewall layer 48 are preferably formed as -45 degrees / + 45 degrees plies.
  • Fig. 15 are shown by solid lines 67 by way of example the orientation of the -45 degrees / +45 degrees layers.
  • Dashed lines 68 show the 0 degree / 90 degree plies.
  • the middle layer 47 is thus designed to transmit in particular (pure) tensile forces between the profile elements (17, 18).
  • the first and third sidewall layers 46, 48 are preferably configured to support corner points of the sidewalls 12a to 12d (or ceiling 13) and to transmit tensile forces from corner to corner, respectively.
  • the side wall layers 46 to 48 may be 0.1 to 0.4 mm thick, in particular (about) 0.25 mm.
  • the side walls 12a to 12d or ceiling 13 may have a total thickness of about 0.5 to 1 mm, preferably 0.75 mm. Even larger thicknesses (especially with correspondingly high weights) are conceivable.
  • aramid Kevlar
  • the safety of the cargo receiving device is further increased.
  • no unauthorized person can (by simple means) insert a slot in the side walls 12a to 12d and insert a dangerous object (for example a bomb).
  • aramid Kevlar
  • the side walls 12a to 12d and the ceiling 13 are formed such that (in particular on the Randwülste 45) on the side wall edges 49 tensile forces can be absorbed by the first and second profile elements (which has the consequence that the pultruded profile elements not or only conditionally can be pulled apart and the structure of the frame of the freight container 10 is preserved.
  • the combination of the special layer arrangement (0 degrees / 90 degree layers and -45 degrees / + 45 degrees layers) and the pultruded version of the profile elements allows a particularly lightweight, yet stable construction.
  • a design of the side walls 12a to 12d or ceiling 13 as a tarpaulin has the advantage that damage such as smaller holes can be relatively easily repaired with a piece of repair, which can be glued, for example.
  • a rod 50 is provided.
  • the rod 50 may preferably be formed of fiber reinforced plastic (carbon fiber reinforced or glass fiber reinforced) and more preferably prepared in a pultrusion process.
  • the rod may for example have a diameter of 1.5 to 2.5 mm.
  • the rod 50 is connected (preferably integrally) to lugs 51 (as longitudinally extending portions of the rod, in particular planar sections).
  • the rod 50 and the lugs 51 may be pultruded in a common pultrusion process. This considerably simplifies the manufacturing process.
  • a rod for forming a peripheral bead of a sidewall may thus be pultruded with two tabs extending along the rod.
  • the lugs 51 may be at an angle of (approximately) 45 to 60 degrees to each other.
  • a corner plate can still be introduced in a corner region (see below).
  • the 15 to 18 show an attachment of the side walls 12a to 12d or the ceiling 13 to a corner region 57 (see Fig. 15 ) of the frame.
  • a corner plate 59 (see Fig. 16 ) brought in.
  • the corner plates 59 may, for example, have a triangular or quadrangular plan view and / or have a thickness of (approximately) 1 to 4 mm, preferably 2 to 3 mm.
  • the corner plates 59 may optionally be attached to the bottom corner elements 22 or side corner elements 23 by screws and / or rivets.
  • the recessed corner plates 59 in the side walls 12a to 12d or the ceiling 13 may optionally divert forces by -45 degrees / + 45 degrees so that the frame 11 of the freight container 10 can not shift obliquely (as in the case of known structural structures, for example) for bridges or ceilings).
  • a high-strength construction which loads directly by (pure) Tensile forces on the side walls or the ceiling in the frame 11 (and vice versa) passes.
  • the corner plates 59 can either be a (prefabricated) plastic part (optionally comprising a fiber component) or a metal part (for example made of an aluminum alloy), in particular metal stamped part.
  • a metal part for example made of an aluminum alloy
  • holes 60 in the corner plates 59 can already holes 60 (see Fig. 16 ) be prefabricated. These holes 60 may have a (comparatively high) edge break 61 (on one or both opposite outer surfaces of the corner plate 59).
  • the corner plate tapers toward a center of the respective side wall 12a-12d or ceiling 13, in particular to provide a stable (flush) transition from the approximately 2 to 3 mm thick plate to the (approximately) 0.75 thick tarpaulin.
  • a mold for making the connection of the respective side wall 12a-12d or ceiling 13 with the corner plate 59 may comprise a pin having a cone-shaped portion for material of one of the sidewall layers 46-48, particularly the first sidewall layer 46 and / or the third sidewall layer 48 in FIG the holes 60 and their edge fractures 61 press into it (see Fig. 16 ).
  • the first side wall layer 46 and the third side wall layer 48 can be pressed when closing the mold in a limited by the edge break 61 lowering 62 (obliquely downwards).
  • the fibers should not be destroyed, but are formed around the bore 60 around.
  • a screw with a screw 63 and a nut 64 can be seen. Both the screw 63 and the nut 64 have a (comparatively large) flange portion 65 (the flange portions 65 need not be provided simultaneously). Overall points the screw 63 an enlarged head 66, which may be adapted to the first edge break 61.
  • the first sidewall layer 46 is bent inwardly by the manufacturing process previously described. Accordingly, the third side wall layer 48 is bent inward in the region of the associated edge break 61. Overall, an improved and clearly defined force flow in the corner region 57 can be achieved by the present construction.
  • Fig. 18 shows a schematic oblique view of a side corner element 23 with a section of a side wall 12a, a side wall 12b and the ceiling 13.
  • the side walls 12a, 12b and the ceiling 13 are connected via corresponding corner plates 59 with the side corner element 23.
  • the corner plates 59 have a triangular plan and are connected via a plurality of (three) screws 63 with the side walls 12a, 12b and the ceiling 13 on the one hand and the side corner element 23 on the other.
  • the corner plates 59 are arranged above the side walls 12a, 12b and the ceiling 13. In a preferred embodiment, however, the corner plates 59 in the side walls 12a, 12b and the ceiling 13 (at least partially) introduced (see. 15 to 17 ).
  • Fig. 19 shows sections of a first profile element 17 and the bottom member 14 according to a second embodiment (in cross section).
  • the bottom element 14 according to Fig. 19 is multi-layered.
  • the profile element 17 is (in terms of its shape) as the profile element according to Fig. 4-6 educated.
  • the bottom 14 consists of two (multi-layered) layers, which are folded at the bottom edge 42, so that they lie one above the other.
  • the bottom edge 42 has a (upwardly projecting) edge bead 45.
  • the edge bead 45 has a length L and a width B. The length L is greater than the width B (about 1.2 times as large).
  • the edge bead 38 has (in cross-section) on a circular arc portion 69, which corresponds to a circular arc portion 70 of the bottom receiving groove 26 of the profile element 17. Opposite the circular arc section 69, the cross section of the edge bead 38 has a projection 71 which serves to move the edge bead 38 or the bottom edge 42 into the bottom receiving groove 26 (during one rotation).
  • a section adjoining a distal end of the circular arc section 69 is planar.
  • the edge bead 38 be kept comparatively narrow so that it can be inserted into the Bodenfactnut 26.
  • the connection of floor element and profile element is simplified. If now the edge bead 38 (translationally) moved along an arrow 72 in the Bodenelementamnut 26, resulting in the relative position of the profile element and bottom element, as in Fig. 20 is shown. If bottom element 14 and profile element 17 are now rotated against each other (see Fig. 20 and 21 ), the edge bead hooks 38 in the Bodensuitnut 26. The bead 38 thus forms a hook.
  • the rotation angle between the position according to Fig. 20 and Fig. 21 is (about) 40-70 degrees. In the end position according to Fig. 21 Floor surfaces of profile element 17 and bottom element 14 are aligned or are parallel to one another.
  • Fig. 22 shows a schematic oblique view of another embodiment of a corner element.
  • the bottom corner element 73 is analogous to the bottom corner element 22 according to FIG Fig. 7 and 8th for connection (by plugging) formed with two first profile elements 17.
  • two cavity receiving pins 30 are formed, to each of which a cavity of the first profile element 17 (see. Fig. 6 ) can be infected.
  • An outer contour of the cavity receiving pins 30 corresponds to an inner contour of the cavities 24 of the first profile elements 17.
  • no Wegschienening hail 31 this can also in the embodiment according to Fig. 7 and 8th omitted and / or in the embodiment according to Fig.
  • a third cavity receiving pin 74 is provided to engage with a second profile member 18 (see FIG Fig. 9 ) to be connected via a plug connection.
  • the outer contour of the third cavity receiving pin 74 is formed corresponding to the inner contour of the cavity 25 of the second profile element 18 (see Fig. 9 ).
  • the bottom corner element 73 according to Fig. 22 has a plurality of bores 75 into which pins (or screws or the like) can be inserted to connect (e.g., diagonal) straps or other elements of the cargo container to the bottom corner element 73.
  • Fig. 23 shows a further embodiment of a bottom corner element or end corner element 76.
  • the end corner element 76 corresponds to the bottom corner element 73 according to Fig. 22 with the difference that the bottom corner element 76 has no cavity receiving pins 30. However, the cavity receiving pin 74 for receiving the second profile element 18 is provided.
  • the Bodeneckelement 76 is thus in contrast to the Bodeneckelement 73 according to Fig. 22 not suitable for the production of a plug connection to a first profile element 17.
  • a peripheral frame can be realized in a simple manner, which can be constructed entirely without gluing or screwing or the like. Sufficient stability is still ensured (although the holes 75 or corresponding support elements, such as diagonal straps can contribute).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pallets (AREA)
  • Connection Of Plates (AREA)
  • Packaging Of Machine Parts And Wound Products (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Frachtaufnahmeeinrichtung, wie Container, Palette oder dergleichen, insbesondere für das Beladen von Flugzeugen sowie ein Verfahren zur Herstellung einer Frachtaufnahmeeinrichtung
  • Für den effektiven Transport von Ladung in Flugzeugen sind Frachtcontainer und Frachtpaletten - also Frachtaufnahmeeinrichtungen - unverzichtbar, da sie ein schnelles Be- und Entladen des Flugzeugs ermöglichen. Die überwiegende Anzahl von kommerziell eingesetzten Flugzeugen kann eine Vielzahl von Frachtcontainern oder Frachtpaletten aufnehmen. Die meisten Container bzw. Paletten sind normiert, so dass diese unabhängig von dem für den Transport verwendeten Flugzeug eingesetzt werden können. Bis vor 10 Jahren wurden Frachtcontainer ausschließlich aus Aluminium hergestellt, wobei das Eigengewicht des Containers ca. 100 kg betrug. Die momentan verwendeten Container greifen teilweise auf leichtere Materialien zurück, so dass inzwischen Frachtcontainer mit einem Gewicht von ca. 60 kg verwendet werden. Es sollte offensichtlich sein, dass die Verringerung des Eigengewichts der verwendeten Container oder Paletten erhebliche finanzielle sowie ökologische Auswirkungen mit sich bringt. Ein Frachtcontainer ist beispielsweise in der DE 20 64 241 beschrieben. Auch die Verwendung von nichtmetallischen Materialien (vgl. DE 69616182 T2 ) in diesem Bereich wurde in Betracht gezogen. Die DE 696 16 182 T2 schlägt beispielsweise einen Frachtcontainer vor, der einen Rahmen aus einer Aluminiumlegierung aufweist, in dem Seitenwände und ein Dach aus faserverstärktem Kunststoff eingesetzt sind. Die Seitenwände und das Dach sind dabei als Gewebe-Bahnen aus faserverstärktem Kunststoff gefertigt. Als mögliche Alternative zu der Aluminiumlegierung wird in der vorgenannten Druckschrift auch bereits ein Rahmen aus kohlefaserverstärktem Kunststoffmaterial erwähnt. Eine technische Ausführung eines solchen Frachtcontainers ist der DE 696 16 182 T2 jedoch nicht zu entnehmen. Möglicherweise sollen der Rahmen ausgehend von dem genannten Gewirk oder Gestrick durch Laminierung oder im Wickelverfahren hergestellt werden.
  • In der DE 696 16 182 T2 ist die Bodenplatte im Rahmen eingeklebt und durch Nieten fixiert. Diese Befestigung wird jedoch als vergleichsweise aufwändig empfunden.
  • In der WO 2010/045572 A1 wird für die Befestigung von Frachtcontainer-Paneelen ein Presssitz vorgeschlagen, der durch Klebstoffe und mechanische Verbindungs-Nieten verstärkt werden kann. Alternativ wird auch vorgeschlagen, eine Verrastung durch eine Vielzahl von Rastzähnen durchzuführen. Auch diese Maßnahmen werden als aufwändig empfunden. Eine unlösbare Verbindung durch Verklebung, Vernietung oder die Verwendung von Rastzähnen erschwert darüber hinaus die Demontage des Frachtcontainers.
  • Die DE 42 18 589 A1 beschreibt einen zerlegbaren Transportbehälter, bei dem zumindest die Seitenwände über eine Clip-Verbindung miteinander verbunden sind. Hierfür umgreift, eine U-förmige Schiene ein rundes Profilelement, das über die gesamten Längsseiten der Seitenwand verläuft. Um die Clip-Verbindungen zu fixieren, ist das Dachelement ein Deckel, der die Seitenwände teilweise umgreift und somit einen den Transportbehälter umschließenden Rahmen ausbildet.
  • Eine Seitenwand der DE 42 18 589 A1 weist eine Platte sowie einen Rahmen mit vier aufsteckbaren Profilleisten auf. Die Profilleisten bilden ihrerseits im angeordneten Zustand ein Rechteck aus.
  • Die DE 10 2008 005 010 A1 beschreibt ihrerseits einen zusammenlegbaren Transportcontainer für Waren, insbesondere Luftfrachtcontainer, der einen Boden, einen Deckel, Seitenwände, eine Rückwand und zumindest zwei Türen aufweist. An den Wandelementen können Profile vorgesehen sein.
  • Die GB 2 273 542 A beschreibt einen Frachtcontainer mit elastischen Eckprofilen, die zur Verbindung der Seitenwände, in diese eingeclipt werden.
  • Weitere Transportbehälter sind aus der WO 96/29232 A1 und der US 3 598 273 A bekannt.
  • Ausgehend von der DE 42 18 589 A1 ist es Aufgabe der vorliegenden Erfindung, eine verbesserte Frachtaufnahmeeinrichtung bereitzustellen. Insbesondere soll das Eigengewicht, die Herstellungskosten und der Herstellungsaufwand der Frachtaufnahmeeinrichtungen reduziert sowie die Funktionalität (z.B. Handhabbarkeit, Sicherheit) und Stabilität erhöht werden.
  • Diese Aufgabe wird durch eine Frachtaufnahmeeinrichtung gemäß Anspruch 1 gelöst.
  • Ein wesentlicher Gedanke der Erfindung liegt darin, dass das Bodenelement durch das Vorsehen eines Hakens in das Profilelement eingehängt werden kann. Daraus resultiert eine konstruktiv einfache und dennoch sichere Verbindung. Montage und Demontage der Frachtaufnahmeeinrichtung sind erleichtert. Insbesondere kann auf eine irreversible Verklebung oder Verrastung verzichtet werden.
  • Erfindungsgemäß ist mindestens ein Wandelement vorgesehen, das eine von einer Wandecke zur diagonal-gegenüberliegenden Wandecke laufende Versteifung, umfassend zumindest eine zusätzliche Wandlage (Planenlage), aufweist. Bei dem Wandelement verlaufen von allen vier Wandecken Versteifungen zur jeweils diagonal-gegenüberliegenden Wandecke, so dass sich insgesamt eine kreuzförmige Versteifung ausbildet. Die mindestens eine Versteifung ist durch eine lokale Erhöhung einer Lagenanzahl (Planenlagenanzahl) realisiert. Durch die Versteifungen können Zuglasten über Eckpunkte aufgenommen werden, so dass diese (nicht mehr) über Rahmenprofile abgesetzt werden müssen. Insbesondere in Kombination mit dem zuvor beschriebenen Bodenelement wird eine Konstruktion erreicht, die äußerst leicht ist und einfach zu montieren. Vorgesehene Steckverbindungen oder Haken-Verbindungen werden durch die Versteifungen stabilisiert. Durch diese Maßnahme wird das mindestens eine Wandelement zu einem strukturell-verstärkenden Element der gesamten Frachtaufnahmeeinrichtung. Dies erlaubt eine leichte Konstruktion (Rahmenkonstruktion) sowie den Verzicht auf Verbindungsmittel, wie Nieten oder Schrauben.
  • Vorzugsweise ist eine Verbindung zwischen Bodenelement und Profilelement über ein Einstecken (des Boden- und/oder Profilelementes) mit anschließender Rotation (von Boden- und Profilelement gegeneinander) herstellbar. Alternativ oder zusätzlich ist das Lösen einer Verbindung zwischen Boden- und Profilelement über eine Rotation (von Boden- und Profilelement gegeneinander) mit anschließender Entfernung des Boden- und Profilelementes voneinander ermöglicht. Insgesamt wird dadurch eine zuverlässige Verbindung ermöglicht, die insbesondere die Montage bzw. Demontage erleichtert. Auch ohne das Vorsehen einer irreversiblen Verklebung oder Verrastung ist die Verbindung vergleichsweise zuverlässig (insbesondere aufgrund des Vorsehens des Hakens).
  • In einer konkreten Ausführungsform umfasst die Verbindungseinrichtung mindestens eine Nut und mindestens eine Feder. Die Nut kann beispielsweise im Profilelement vorgesehen sein (und/oder im Bodenelement). Die Feder ist vorzugsweise im Bodenelement vorgesehen. Alternativ oder zusätzlich ist mindestens eine Nut im Profilelement vorgesehen. Durch eine derartige Nut-Federverbindung zusammen mit dem Haken kann eine äußerst einfache Montage/Demontage realisiert werden.
  • Ein Querschnitt der Nut und/oder der Feder kann zumindest abschnittsweise rund, insbesondere kreisförmig ausgebildet sein. Dadurch können Profil- und Bodenelement besonders einfach gegeneinander rotiert werden, was die Montage/Demontage erleichtert. Ein Querschnitt der Nut ist vorzugsweise vollständig (abgesehen von einer Nutöffnung) kreisförmig.
  • Mindestens eine Feder und/oder mindestens eine Nut können asymmetrisch sein, so dass die Feder in einem vorbestimmten ersten Relativwinkel zur Nut in diese einführbar ist und in einem vorbestimmten zweiten (gegenüber dem ersten, verschiedenen) Relativwinkel mit der Nut verhakt ist. In dieser Ausführungsform sind Feder und Nut derart ausgebildet, dass die Feder in der zugeordneten Nut als Haken wirkt bzw. als Haken ausgebildet ist. Diese Weiterbildung ist insbesondere in konstruktiver Hinsicht besonders einfach und ermöglicht eine stabile Verbindung.
  • Insbesondere wenn ein Querschnitt der Nut (abgesehen von einer Nutöffnung) kreisförmig ist, kann ein Querschnitt der Feder eine Länge (maximale Länge) in einer Längsrichtung aufweisen sowie eine Breite (maximale Breite) in einer Breitenrichtung, wobei die Längsrichtung auf die Breitenrichtung senkrecht steht, wobei die Länge größer als die Breite ist (beispielsweise mindestens 1,1mal oder mindestens 1,3mal oder mindestens 1,6mal so groß). Durch eine derart (im Querschnitt) längliche Feder kann die Verbindung mit der Nut einfach und sicher erfolgen.
  • Vorzugsweise weist ein Querschnitt der Feder einen Kreisbogenabschnitt auf und gegenüber dem Kreisbogenabschnitt einen Dreh-Abstütz-Vorsprung (fulcrum). Bei einer derartigen Ausführungsform kann die Feder besonders einfach durch Rotation in die Nut hineingehebelt werden, was eine Montage und Demontage ermöglicht.
  • Vorzugsweise ist ein Randabschnitt der Bodenplatte und/oder mindestens ein dem Randabschnitt der Bodenplatte zugewandter Profilelement-Randabschnitt (im Querschnitt) hakenförmig. Durch die entsprechende Ausbildung des Randes kann ein separates Bauteil (beispielsweise ein separater Haken) entfallen. Die Verbindung kann somit konstruktiv äußerst einfach erfolgen.
  • Mindestens ein Bodenplattenrandabschnitt der Bodenplatte kann einwärts gebogen sein. Alternativ oder zusätzlich kann mindestens ein dem Bodenplattenrandabschnitt zugewandter Profilelementrandabschnitt nach unten in Richtung Bodenplatte abgeschrägt sein. Bei einer Ausführung der Frachtaufnahmeeinrichtung als Palette kann "einwärts bedeuten, dass die Biegung in Richtung einer Frachtaufnahmefläche orientiert ist. Bei einem Container kann "einwärts bedeuten, dass die Biegung in Richtung einer Mitte des Frachtaufnahmeraums orientiert ist. In jedem Fall kann dadurch eine stabile und insbesondere formschlüssige Ausbildung des Bodens erreicht werden. Der Materialaufwand ist dabei äußerst gering. Die Verbindung zwischen Bodenelement und Profilelement ist dennoch zuverlässig und sicher.
  • Die Bodenplatte und/oder mindestens ein, vorzugsweise pultrudiertes, Profilelement kann zumindest abschnittsweise aus faserverstärktem Kohlenstoff hergestellt sein. Dadurch kann einerseits Gewicht gespart werden. Insbesondere bei einer Herstellung durch Pultrusion ergibt sich der Vorteil, dass die Hakenkonstruktion durch die Ausrichtung der Fasern des Profilelementes entlang seiner Längsachse, gegenüber einer Zugbelastung durch das Bodenelement äußerst stabil ist.
  • Die vorliegende Frachtaufnahmeeinrichtung kann vollständig auf metallische Komponenten verzichten. In einer konkreten Ausführungsform kann die Frachtaufnahmeeinrichtung einen elektromagnetischen Sender und/oder Empfänger, insbesondere einen RFID-Chip umfassen. Durch den Verzicht auf metallische Komponenten oder zumindest eine Reduktion des Anteils von metallischen Komponenten kann diese elektromagnetische Empfangs- und/oder Sendeeinrichtung besonders einfach mit einem entsprechenden externen Sender bzw. Empfänger kommunizieren. Eine Störung durch metallische Komponenten wird vermieden oder zumindest reduziert.
  • Durch die spezielle Bauweise der Frachtaufnahmeeinrichtung wird insgesamt das Gewicht gegenüber bekannten Frachtaufnahmeeinrichtungen nochmals erheblich reduziert. Eine Gewichtsreduktion von 35% oder mehr scheint möglich, was beispielsweise bei einer Boeing 747 nochmals rund 640 kg pro Gesamtladegewicht gegenüber einer Beladung mit bekannten Containern sein könnte. Wenn man davon ausgeht, dass eine Boeing 747 in maximaler Auslastung aus ca. einem Drittel Flugzeug, einem Drittel Passagiere bzw. Fracht und ca. einem Drittel Treibstoff besteht und in dieser Form dann ein Abfluggewicht von rund 408 Tonnen hat, so kommt man zum Ergebnis, dass ca. 130 Tonnen Treibstoff nötig sind, um 272 Tonnen Flugzeug und Ladung zu transportieren. Durch die erfindungsgemäße Frachtaufnahmeeinrichtung kann in einem solchen Fall rund 320 kg Treibstoff auf einem Flug gespart werden. Dadurch kann die CO2-Emission nochmals deutlich reduziert werden.
  • Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Nachfolgend wird die Erfindung mittels mehrerer Ausführungsbeispiele beschrieben, die anhand der folgenden Abbildungen näher erläutert werden.
  • Hierbei zeigen:
  • Fig. 1
    eine schematische Darstellung eines Frachtcontainers in einer Schrägansicht;
    Fig. 2
    den Frachtcontainer aus Fig. 1 in einer Ansicht von oben;
    Fig. 3
    den Frachtcontainer in einer entlang der Linie III-III aus Fig. 2 geschnittenen Ansicht;
    Fig. 4
    ein pultrudiertes Profilelement in einer Schrägansicht;
    Fig. 5
    das pultrudierte Profilelement gemäß Fig. 4 in einer Seitenansicht;
    Fig. 6
    einen Schnitt entlang der Linie VI-VI aus Fig. 5;
    Fig. 7
    ein Eckelement in einer ersten Schrägansicht;
    Fig. 8
    das Eckelement aus Fig. 7 in einer zweiten Schrägansicht;
    Fig. 9
    eine zweite Ausführungsform eines pultrudierten Profilelements in einer schematischen Schnittansicht;
    Fig. 10
    eine zweite Ausführungsform eines Eckelements in einer schematischen Schrägansicht;
    Fig. 11
    das Eckelement gemäß Fig. 10 in einer Seitenansicht;
    Fig. 12
    einen Ausschnitt des pultrudierten Profilelements gemäß der ersten Ausführungsform sowie einen Ausschnitt eines Bodenelementes in einer schematischen Schnittansicht gemäß einer ersten Ausführungsform;
    Fig. 13
    Bestandteile einer Wand sowie eine Form zur Herstellung eines Randwulstes in einer schematischen Schnittdarstellung;
    Fig. 14
    einen Ausschnitt eines Randes einer Wand der Frachtaufnahmeeinrichtung in einer schematischen Schnittansicht;
    Fig. 15
    eine Befestigung einer Wand der Frachtaufnahmeeinrichtung an einem Eckelement in einer Ansicht von oben;
    Fig. 16
    einen teilweisen Schnitt entlang der Linie XVI-XVI aus Fig. 15;
    Fig. 17
    eine alternative mögliche Ausgestaltung eines Bereichs der Befestigung der Wand an dem Eckelement in einem schematischen Schnitt;
    Fig. 18
    ein Seiteneckelement mit Ausschnitten zweier Seitenwände und einer Decke;
    Fig. 19
    eine schematische Schnittansicht eines Ausschnittes eines Profilelementes sowie eines Ausschnittes eines Bodenelementes in einer schematischen Schnittansicht gemäß einer zweiten Ausführungsform in einer ersten Relativstellung;
    Fig. 20
    das Profilelement und das Bodenelement gemäß Fig. 19 in einer zweiten Relativstellung;
    Fig. 21
    das Profilelement und das Bodenelement gemäß Fig. 19 in einer dritten Relativstellung;
    Fig. 22
    eine Schrägansicht einer alternativen Ausgestaltung eines Eckelementes; und
    Fig. 23
    eine weitere Alternative einer Ausgestaltung eines Eckelementes in Schrägansicht.
  • In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile dieselben Bezugsziffern verwendet.
  • Fig. 1 zeigt einen Frachtcontainer 10 in einer Schrägansicht. Fig. 2 zeigt den Frachtcontainer in einer Ansicht von oben. Der Frachtcontainer 10 umfasst einen Rahmen 11 sowie (am Rahmen befestigte) Seitenwände 12a bis 12d, eine Decke 13 und einen Boden 14. Die Seitenwand 12c verläuft an den Boden 14 anschließend schräg nach außen (in einem 45 Grad-Winkel). Neben diesem Schrägabschnitt 15 umfasst die Seitenwand 12c noch einen Vertikalabschnitt 16, der bis zur Decke 13 verläuft. Die übrigen Seitenwände 12a, 12b und 12d verlaufen gegenüber dem Boden 14 bzw. der Decke 13 durchgehend senkrecht.
  • Der Rahmen 11 umfasst erste Profilelemente 17 und zweite Profilelemente 18, wobei sich die ersten Profilelemente 17 und die zweiten Profilelemente 18 insbesondere hinsichtlich Ihres Querschnittes unterscheiden. Die ersten Profilelemente 17 sind Bestandteil eines Bodenrahmens 19. Die zweiten Profilelemente 18 sind Bestandteile eines Seitenrahmens 20 sowie eines Deckenrahmens 21.
  • In dem Bodenrahmen 19 sind Bodeneckelemente 22 integriert. An die Bodeneckelemente 22 können zwei erste Profilelemente 17 und ein zweites Profilelement 18 angesteckt werden. Der Seitenrahmen 20 bzw. der Deckenrahmen 21 umfassen Seiteneckelemente 23, an die drei zweite Profilelemente 18 angesteckt (angeschlossen) werden können.
  • Fig. 3 zeigt einen Schnitt entlang der Linie III-III aus Fig. 2. Dabei ist zu sehen, dass auch zwischen Schrägabschnitt 15 und Vertikalabschnitt 16 der Seitenwand 12c ein zweites Profilelement 18 angeordnet ist. Weiterhin ist zu erkennen, dass das erste Profilelement und das zweite Profilelement als Hohlprofil ausgebildet sind, wobei ein Hohlraum 24 der ersten Profilelemente 17 und ein Hohlraum 25 der zweiten Profilelemente 18 unterschiedlich ausgebildet ist.
  • Fig. 4 zeigt ein Profilelement in einer Schrägansicht. Fig. 5 zeigt das Profilelement in einer Ansicht von der Seite. Fig. 6 zeigt einen Schnitt entlang der Linie VI-VI aus Fig. 5. Wie den Fig. 4 und 6 entnommen werden kann, umfasst das erste Profilelement 17 eine Bodenaufnahmenut 26 zur Aufnahme bzw. Befestigung des Bodens 14 sowie eine Seitenwandaufnahmenut 27 zur Aufnahme bzw. Befestigung einer der Seitenwände 12a bis 12d sowie eine Sitzschienenkonstruktion 28 zum Einbringen (Einhaken) von Verzurr-Ösen für das Ladegut.
  • Konkret kann der Boden 14 bzw. eine Bodenplatte in die Bodenaufnahmenut 26 eingeschoben werden. Aufgrund des Vorsehens der Bodenaufnahmenut können somit im Allgemeinen zusätzliche Verbindungsteile, wie beispielsweise Nieten, entfallen. Dadurch wird sowohl der konstruktive Aufbau als auch der Aufwand beim Zusammenbau erheblich reduziert.
  • Auch die Seitenwände 12a bis 12d können in die Seitenwandaufnahmenut 27 eingeschoben werden. Die Bodenaufnahmenut 26 und/oder Seitenwandaufnahmenut 27 hat vorzugsweise einen rundlichen Querschnitt und ist zur Aufnahme eines rundlichen Wulstes (siehe unten) des Bodens 14 oder einer der Seitenwände 12a bis 12d oder der Decke 13 geeignet.
  • Die Sitzschienenkonstruktion 28 hat einen länglichen Querschnitt mit einwärts gebogenen Haken 29 zum Zurückhalten von Verzurr-Ösen.
  • Der Hohlraum 24 des ersten Profilelementes (siehe Fig. 6) hat einen (etwa) rechteckförmigen Querschnitt, wobei eine an dem Boden 14 (nicht in Fig. 6 zu sehen) anschließende Wand nach außen hochgebogen ist. Insbesondere die innere Kontur der Profilelement 17, 18 kann variieren; eine äußere Kontur ebenfalls, ggf. unter Berücksichtigung des Frachtsystems. Die inneren Querschnitte können dabei insbesondere an verschiedene Lasten angepasst werden. Die äußere Kontur kann an die Schnittstelle zum Frachtsystem angepasst werden, beispielsweise können Randecken zur Aufnahme von Riegeln und Führungen ausgebildet sein.
  • Die Bodeneckelemente 22 können (in vertikaler Richtung) mit einem Flanschblech verlängert und/oder verbreitert werden (nicht in den Figuren zu sehen), insbesondere um die ersten Profilelemente mit den Bodeneckelementen 22 durch Schrauben verbinden zu können. Die Bodeneckelemente 22 (gegebenenfalls auch die Seiteneckelemente 23) können aus einem Verbundwerkstoff gebildet sein (insbesondere Faserverbundwerkstoff) oder gegebenenfalls auch aus einer Aluminiumlegierung (gegossen oder geschmiedet). Wenn die Eckelemente eine Metalllegierung umfassen, dann kann ein Korrosionsschutz zwischen den pultrudierten Profilelementen und den Eckelementen vorgesehen sein (da beispielsweise kohlenfaserverstärkter Kunststoff vergleichsweise aggressiv gegenüber Aluminium ist).
  • Die Sitzschienenkonstruktion 28 kann Bohrungen (nicht in den Figuren zu sehen) umfassen (wobei die Bohrungen nachträglich eingearbeitet werden können und einen Durchmesser von 19 mm aufweisen können), um Verzurr-Ösen (single tiedown und double tie-down studs) befestigen bzw. einhaken zu können, beispielsweise wenn in dem Frachtcontainer schwere Lasten geflogen werden, welche noch zusätzlich im Container 10 verzurrt werden müssen. Bei Paletten könnten diese ebenfalls innen umlaufen, beispielsweise um Palettennetze an den Paletten zu befestigen. Bisher wurden dazu üblicherweise Aluminium-Teilstücke aufgeschraubt bzw. eingenietet. Beim vorliegenden Profilelement ist diese Sitzschienenkonstruktion 28 integriert und ebenfalls vorzugsweise aus pultrudiertem Faserverbundkunststoff (wie kohlenfaserverstärktem Kunststoff oder glasfaserverstärktem Kunststoff etc.).
  • Die Fig. 7 und 8 zeigen eines der Bodeneckelemente 22 in verschiedenen Schrägansichten. Das Bodeneckelement 22 ist zur Verbindung (durch Stecken) mit zwei ersten Profilelementen 17 ausgebildet. Dazu sind zwei Hohlraumaufnahmestifte 30 ausgebildet, an die jeweils ein Hohlraum 24 des ersten Profilelementes (nicht in Fig. 7 und 8 zu sehen; vgl. Fig. 6) angesteckt werden kann. Insofern korrespondiert eine äußere Kontur der Hohlraumaufnahmestifte 30 mit einer inneren Kontur der Hohlräume 24 der ersten Profilelemente 17. Weiterhin sind Sitzschienenaufnahmestifte 31 vorgesehen, die ausgebildet sind, um in die Sitzschienenkonstruktion 28 des ersten Profilelements 17 eingeführt zu werden. Insofern entspricht vorzugsweise eine äußere Kontur der Sitzschienenaufnahmestifte 31 einer inneren Kontur der Sitzschienenkonstruktion 28. Dadurch ermöglicht die Sitzschienenkonstruktion 28 nicht nur die Verzurrung (Befestigung) des zu transportierenden Gegenstandes, sondern trägt auch zur weiteren Stabilisierung des Frachtcontainers 10 bei. Dadurch kann weiter Material eingespart werden, was das Gesamtgewicht reduziert. Gemäß einem unabhängigen Gedanken wird eine Frachtaufnahmeeinrichtung vorgeschlagen, bei der wenigstens ein Verbindungselement zum Verbinden zweier Profilelemente mindestens einen Sitzschienenaufnahmestift aufweist, der in eine Sitzschienenkonstruktion eines (pultrudierten) Profilelementes eingeführt werden kann.
  • Das Bodenelement 22 umfasst einen Seitenwandsteg 32, der sich in Richtung der (in den Fig. 6 und 7 nicht gezeigten) Seitenwände 12a bis 12d erstreckt. An einem distalen Ende 33 des Seitenwandsteges 32 ist ein (horizontaler) Abschnitt mit einer bogenförmig verlaufenden Nut 34 vorgesehen, um die Seitenwände 12a bis 12d am ersten Profilelement 17 befestigen zu können. Die bogenförmig verlaufende Nut 34 geht dabei im zusammengebauten Zustand (vgl. Fig. 1) in die Seitenwandaufnahmenuten 27 der ersten Profilelemente 17 über.
  • Fig. 9 zeigt den Querschnitt des zweiten Profilelements 18, das vorzugsweise an sämtlichen Kanten des Containers (mit Ausnahme der Kanten zum Boden 14 hin) zum Einsatz kommt. Die Seitenwände 12a bis 12d und die Decke 13 können vorzugsweise durch Schieben (über Fügeschluss) mit den zweiten Profilelementen verbunden werden. Auch hierbei entfällt ein aufwändiger Verbindungsvorgang, wie beispielsweise durch Nieten.
  • Das zweite Profilelement gemäß Fig. 9 umfasst eine erste Seitenwandaufnahmenut 27a und eine zweite Seitenwandaufnahmenut 27b, um zwei Seitenwände 12a bis 12d oder eine der Seitenwände 12a bis 12d mit der Decke 13 verbinden zu können. Auch die Seitenwandaufnahmenuten 27a und 27b weisen einen (etwa) runden bzw. rundlichen Querschnitt auf und sind zur Aufnahme eines Wulstes der Seitenwände 12a bis 12d bzw. der Decke 13 geeignet. Der Hohlraum 25 des zweiten Profilelementes 18 ist (in etwa) kreissegmentförmig ausgebildet und weist im Bereich eines Kreisbogens eine Ausnehmung 35 auf. Auch der Querschnitt des zweiten Profilelementes hängt insbesondere von den aufzunehmenden Lasten ab, die unterschiedlich sein können. Insofern kann auch der Querschnitt des Hohlraums 25 bzw. des zweiten Profilelements 18 abweichen (von der in Fig. 9 gezeigten Form).
  • Fig. 10 zeigt ein Seiteneckelement 23 in einer Schrägansicht. Fig. 11 zeigt das Seiteneckelement gemäß Fig. 10 in einer Seitenansicht. Das Seiteneckelement 23 umfasst drei Hohlraumaufnahmestifte 36, die in die korrespondierenden Hohlräume 25 von drei zweiten Profilelementen 18 eingeführt werden können. In bogenförmige Nuten 37 können gegebenenfalls Eckbereiche von den Seitenwänden 12a bis 12d oder der Decke 13 eingeführt werden. Eine weitere Möglichkeit, um einen Eckanschluss zu realisieren, wird weiter unten dargestellt. Insgesamt ist das Seiteneckelement 23 als dreischenkliger Winkel ausgebildet.
  • Fig. 12 zeigt einen Ausschnitt eines Bodens 14 (Bodenplatte), der in einem (ausschnittsweise dargestellten) ersten Profilelement 17 angebracht ist. Der Boden 14 umfasst einen (runden) Randwulst 38, der in die Bodenaufnahmenut 26 des ersten Profilelements 17 eingeführt ist. Dadurch können auf einfache Weise (horizontale) Lasten aufgenommen werden, welche im Betrieb entstehen können.
  • Der Boden 14 umfasst eine erste Bodenschicht 39, eine zweite Bodenschicht 40 und eine dritte Bodenschicht 41. Die erste (unterste) Bodenschicht 39 ist vorzugsweise aus einer Aluminiumlegierung (insbesondere der 7075-Serie) und kann eine ausreichende Stützung gegenüber Transportrollen (PDU-Rollen) ermöglichen. Oberhalb der ersten Bodenschicht 39 kann die zweite Bodenschicht 40 aus faserverstärkten Kunststoff (wie kohlenstofffaserverstärkten Kunststoff und/oder glasfaserverstärkten Kunststoff) und/oder Aramid und/oder Kevlar gefertigt sein. Die zweite Bodenschicht 40 oder auch eine oberhalb der zweiten Bodenschicht liegende dritte Bodenschicht 41 kann eine (feine) Geflechtlage (Eisengeflechtlage) ausbilden, um gegebenenfalls eine elektromagnetische Abschirmung zu erreichen. Insgesamt können auch mehr als drei Bodenschichten vorgesehen sein. Eine Kombination aus mehreren der oben genannten Werkstoffe, insbesondere Faserwerkstoffe ist denkbar. Die Dicke der Bodenplatte kann 1,5 bis 4,5 mm, insbesondere (etwa) 3,2 mm betragen. Ein unterseitiges Metallblech (entspricht der ersten Bodenschicht 39) kann eine Dicke von 0,5 bis 1 mm, insbesondere (etwa) 0,75 mm aufweisen.
  • Ein Bodenrand 42 weist eine Aufbiegung 43 auf (in Richtung eines Inneren des Frachtcontainers). Dadurch kann ein günstiger (bündiger) Übergang in das erste Profilelement 17 erreicht werden. Weiterhin kann eine Delaminierung einer Metallauflage vermieden werden, wenn die Transportrollen (PDU-Rollen) Im Betrieb über eine Eckkante des Bodens fahren. Die Aufbiegung 43 verläuft parallel zu einer Schrägfläche 44 des ersten Profilelements 17. Wie in Fig. 12 zu sehen, kann insbesondere auch die erste Bodenschicht 39 (Metallschicht) im Bereich dieser Schrägfläche 44 vorgesehen sein. Es ist auch denkbar, die Metallschicht (erste Bodenschicht 39) bis in die Bodenaufnahmenut 26 hinein vorzusehen. Durch derartige Maßnahmen wird sowohl eine stabile Verbindung erreicht als auch eine Delaminierung (weitestgehend) verhindert. Eine oder mehrere der Bodenschichten können aus einem faserverstärkten Kunststoff bestehen, der zumindest eine -45 Grad/+45 Grad-Lage und eine 0 Grad/90 Grad-Lage enthält. Bezugslinie ist dabei eine Kante des Bodens 14 (also in Fig. 12 eine Richtung senkrecht auf die Zeichenebene). Die Grad-Angaben beziehen sich dabei auf eine mittlere Orientierung der Fasern innerhalb der faserverstärkten Kunststoffe.
  • Ein grundsätzlicher Aufbau der Seitenwände 12a bis 12d und der Decke 13 kann (ausschnittsweise) Fig. 14 entnommen werden. Fig. 13 zeigt einen Teil eines Herstellungsverfahrens zum Erreichen des Aufbaus gemäß Fig. 14.
  • Die Seitenwände 12a bis 12d sowie die Decke 13 können planenartig (bzw. als Plane) ausgebildet sein und einen Randwulst 45 (siehe Fig. 14) umfassen. Der Randwulst 45 verläuft zumindest teilweise um die Seitenwände 12a bis 12d sowie die Decke 13 und kann vorzugsweise in die Bodeneckelemente 22 bzw. zweiten Profilelementes 18 eingeschoben werden.
  • Die (als Planen ausgebildeten) Seitenwände 12a bis 12d sowie die Decke 13 können aus einem kohlstofffaserverstärkten Kunststoff, einem glasfaserverstärkten Kunststoff, aus Aramid und/oder Kevlar gefertigt sein. Andere Faserverbundwerkstoffe sind denkbar. In Fig. 14 sind (abgesehen von einem Bereich anschließend an den Randwulst 45) drei Schichten ausgebildet (es können noch weitere Schichten vorgesehen sein), nämlich eine erste Seitenwandschicht 46, eine zweite Seitenwandschicht 47 sowie eine dritte Seitenwandschicht 48. Vorzugsweise ist die zweite (mittlere) Seitenwandschicht 47 als 0 Grad/90 Grad-Lage ausgebildet (bezogen auf einen Seitenwandrand 49, der in Fig. 14 senkrecht zur Zeichenebene verläuft) (an dieser Stelle soll darauf hingewiesen werden, dass wenn im Folgenden von einer Seitenwand bzw. Seitenwandrand oder dergleichen die Rede ist, auch stets die Decke 13 bzw. dieser zugeordnete Elemente gemeint sein können, es sei denn, es ist explizit auf Abweichendes hingewiesen). Die erste Seitenwandschicht 46 und die dritte Seitenwandschicht 48 sind vorzugsweise als -45 Grad/+45 Grad-Lagen ausgebildet. In Fig. 15 sind durch durchgezogene Linien 67 beispielhaft die Orientierung der -45 Grad/ +45 Grad-Lagen dargestellt. Durch gestrichelte Linien 68 sind die 0 Grad/ 90 Grad-Lagen dargestellt.
  • Die mittlere Schicht 47 ist somit ausgebildet, um insbesondere (reine) Zugkräfte zwischen den Profilelementen (17, 18) zu übertragen. Die erste und dritte Seitenwandschicht 46, 48 ist vorzugsweise ausgebildet, um Eckpunkte der Seitenwände 12a bis 12d (oder Decke 13) zu stützen bzw. um Zugkräfte von Ecke zu Ecke zu übertragen.
  • Die Seitenwandschichten 46 bis 48 können 0,1 bis 0,4 mm dick sein, insbesondere (etwa) 0,25 mm. Die Seitenwände 12a bis 12d bzw. Decke 13 können einen Gesamtdicke von ca. 0,5 bis 1 mm, vorzugsweise 0,75 mm aufweisen. Auch größere Dicken (insbesondere bei entsprechend hohen Gewichten) sind vorstellbar.
  • Vorzugsweise ist zumindest eine der drei Seitenwandschichten 46 bis 48 aus Aramid (Kevlar), insbesondere um eine hohe Schnittfestigkeit der Seitenwand zu erreichen. Dadurch wird die Sicherheit der Frachtaufnahmeeinrichtung weiter erhöht. Beispielsweise kann keine unbefugte Person (mit einfachen Mitteln) einen Schlitz in die Seitenwände 12a bis 12d einbringen und einen gefährlichen Gegenstand (beispielsweise eine Bombe) einwerfen. Außerdem kann durch Aramid (Kevlar) erreicht werden, dass die Frachtaufnahmeeinrichtung noch stabiler gegenüber Beschädigungen ist (beispielsweise bei einem Auffahrunfall mit einem Gabelstapler oder dergleichen).
  • Grundsätzlich sind die Seitenwände 12a bis 12d bzw. die Decke 13 derart ausgebildet, dass (insbesondere über die Randwülste 45) an den Seitenwandrändern 49 Zugkräfte von den ersten und zweiten Profilelementen aufgenommen werden können (was zur Folge hat, dass die pultrudierten Profilelemente nicht oder nur bedingt auseinandergezogen werden können und die Struktur des Rahmens des Frachtcontainers 10 erhalten bleibt. Insbesondere die Kombination der speziellen Lagenanordnung (0 Grad/90 Grad-Lagen sowie -45 Grad/+45 Grad-Lagen) und der pultrudierten Ausführung der Profilelemente ermöglicht eine besonders leichte und dennoch stabile Konstruktion.
  • Eine Ausbildung der Seitenwände 12a bis 12d bzw. Decke 13 als Plane hat den Vorteil, dass Beschädigungen wie kleinere Löcher vergleichsweise einfach mit einem Ausbesserungsstück, das beispielsweise aufgeklebt werden kann, repariert werden können.
  • In Fig. 13 ist ein erster Teil eines Herstellungsverfahrens für den Randwulst 45 schematisch dargestellt. In einem ersten Schritt wird ein Stab 50 bereitgestellt. Der Stab 50 kann vorzugsweise aus faserverstärktem Kunststoff (kohlenfaserverstärkt oder glasfaserverstärkt) gebildet sein und weiter vorzugsweise in einem Pultrusionsprozess hergestellt werden. Der Stab kann beispielsweise einen Durchmesser von 1,5 bis 2,5 mm aufweisen. Der Stab 50 ist (vorzugsweise integral) mit Fahnen 51 (als längs des Stabes verlaufende, insbesondere plane Abschnitte) verbunden. Vorzugsweise kann der Stab 50 und die Fahnen 51 in einem gemeinsamen Pultrusionsprozess pultrudiert werden. Dadurch wird das Herstellungsverfahren erheblich vereinfacht. Gemäß einem unabhängig beanspruchten Gedanken kann somit ein Stab für die Ausbildung eines Randwulstes einer Seitenwand (oder Decke oder Boden) mit zwei längs des Stabes verlaufenden Fahnen pultrudiert sein bzw. werden. Die Fahnen 51 können in einem Winkel von (etwa) 45 bis 60 Grad zueinander stehen.
  • Der Stab 50 mit den Fahnen 51 kann in eine Form 52 eingelegt werden. In der Form 52 können bereits weitere Seitenwandschichten (in Fig. 13 ist die Seitenwandschicht 47 zu sehen) eingelegt werden. Vorzugsweise (nicht in Fig. 13 zu sehen) sind an einer Innenfläche 53 eines ersten Formwerkzeugs 54 und einer Innenfläche 55 eines zweiten Formwerkzeugs 56 noch mindestens je eine Seitenwandschicht angeordnet. Eine bevorzugte Verfahrensabfolge kann dann wie folgt sein:
    • Einbringen der ersten Seitenwandschicht 46 (nicht in Fig. 13 zu sehen) auf das erste Formwerkzeug 45;
    • Einlegen des Stabes 50 mit den Fahnen 51 zwischen das erste Formwerkzeug 54 und das zweite Formwerkzeug 56;
    • Einbringen der zweiten Seitenwandschicht 47 auf die (untere) Fahne 51 bzw. zwischen die Fahnen 51;
    • Einbringen der dritten Seitenwandschicht 48 (nicht in Fig. 13 zu sehen) zwischen das zweite Formwerkzeug 56 und den Stab 50 mit Fahnen 51;
    • Zufahren der Form 52 bzw. Gegeneinanderführen des ersten Formwerkzeugs 54 und des zweiten Formwerkzeugs 56;
    • optionale Wärmebeaufschlagung zum Verbinden der Seitenwandschichten 46 bis 48.
  • Einer oder mehrere dieser Schritte kann/können auch entfallen. Beim Zufahren der Form 52 werden die Fahnen 51 zusammengedrückt und der Stab 50 (lasttragend) mit der Seitenwand 12a bis 12d bzw. der Decke 13 verbunden.
  • Beispielsweise vor dem Einbringen der dritten Seitenwandschicht 48 kann (siehe unten) noch eine Eckplatte in einem Eckbereich eingebracht werden.
  • Die Fig. 15 bis 18 zeigen eine Anbringung der Seitenwände 12a bis 12d bzw. der Decke 13 an einen Eckbereich 57 (siehe Fig. 15) des Rahmens. In einem Seitenwandeckbereich 58 ist eine Eckplatte 59 (siehe Fig. 16) eingebracht. Die Eckplatten 59 können beispielsweise einen dreieckigen oder viereckigen Grundriss aufweisen und/oder eine Dicke von (etwa) 1 bis 4 mm, vorzugsweise 2 bis 3 mm aufweisen. Die Eckplatten 59 können gegebenenfalls durch Schrauben und/oder Nieten an die Bodeneckelemente 22 oder Seiteneckelemente 23 angebracht werden.
  • Die eingelassenen Eckplatten 59 in den Seitenwänden 12a bis 12d bzw. der Decke 13 können gegebenenfalls durch -45 Grad/+45 Grad-Lagen Kräfte derart ableiten, dass sich der Rahmen 11 des Frachtcontainers 10 nicht schräg verschieben kann (wie dies beispielsweise bei bekannten Tragwerkskonstruktionen bei Brücken oder Decken der Fall ist). Durch unterschiedliche Lagenrichtungen (-45 Grad/+45 Grad und 0 Grad/90 Grad) kann mit geringem Material- bzw. Gewichtsaufwand eine hochfeste Konstruktion erreicht werden, welche Lasten unmittelbar durch (reine) Zugkräfte über die Seitenwände bzw. die Decke in den Rahmen 11 (und umgekehrt) leitet. Auch ein Austausch einer beschädigten Seitenwand oder Decke ist einfach möglich, da auf feste Verbindungen, wie Nieten, verzichtet werden kann und die Seitenwände oder die Decke in großen Teilen einfach nur aus den Profilelementen gezogen werden muss (und gegebenenfalls an den Ecken abgeschraubt werden muss). Die erfindungsgemäße Steckkonstruktion des Rahmens 11 erleichtert weiter einen derartigen Austausch.
  • Die Eckplatten 59 können entweder ein (vorgefertigtes) Kunststoffteil (gegebenenfalls umfassend eine Faserkomponente) oder ein Metallteil (beispielsweise aus einer Aluminiumlegierung), insbesondere Metall-Stanzteil sein. Auch hier kann (bei der Verbindung eines Metall-, insbesondere Aluminium-Teils) auf einen Korrosionsschutz geachtet werden, insbesondere beim Einsatz von kohlenfaserverstärktem Kunststoff. In die Eckplatten 59 können bereits Bohrungen 60 (siehe Fig. 16) vorgefertigt sein. Diese Bohrungen 60 können einen (vergleichsweise hohen) Kantenbruch 61 (an einer oder beiden sich gegenüberliegenden Außenflächen der Eckplatte 59) aufweisen. Vorzugsweise verjüngt sich die Eckplatte in Richtung einer Mitte der jeweiligen Seitenwand 12a bis 12d oder Decke 13, insbesondere um einen stabilen (bündigen) Übergang von der etwa 2 bis 3 mm starken Platte auf die (etwa) 0,75 dicke Plane bereitzustellen.
  • Eine Form zur Herstellung der Verbindung der jeweiligen Seitenwand 12a bis 12d oder Decke 13 mit der Eckplatte 59 kann einen Stift aufweisen mit einem konusförmigen Abschnitt, um Material einer der Seitenwandschichten 46 bis 48, insbesondere der ersten Seitenwandschicht 46 und/oder der dritten Seitenwandschicht 48 in die Bohrungen 60 bzw. deren Kantenbrüche 61 hineinzudrücken (siehe Fig. 16). Dazu ist es notwendig, die Eckplatte 49 möglichst genau in der Herstellungsform zu positionieren. Die erste Seitenwandschicht 46 und die dritte Seitenwandschicht 48 können beim Schließen der Form in eine durch den Kantenbruch 61 begrenzte Absenkung 62 (schräg nach unten) angedrückt werden. Dabei sollten die Fasern nicht zerstört werden, sondern um die Bohrung 60 herum geformt werden.
  • In dem Ausschnitt gemäß Fig. 17 sind noch Details einer Verschraubung mit einer Schraube 63 und einer Mutter 64 zu erkennen. Sowohl die Schraube 63 als auch die Mutter 64 weisen einen (vergleichsweise großen) Flanschabschnitt 65 auf (die Flanschabschnitte 65 müssen nicht gleichzeitig vorgesehen sein). Insgesamt weist die Schraube 63 einen vergrößerten Kopf 66 auf, der an den ersten Kantenbruch 61 angepasst sein kann. Die erste Seitenwandschicht 46 ist durch den vorher beschriebenen Herstellungsprozess einwärts gebogen. Entsprechend ist auch die dritte Seitenwandschicht 48 im Bereich des zugeordneten Kantenbruchs 61 einwärts gebogen. Insgesamt kann durch die vorliegende Konstruktion ein verbesserter und klar definierter Kraftfluss im Eckbereich 57 erreicht werden.
  • Fig. 18 zeigt eine schematische Schrägansicht eines Seiteneckelementes 23 mit einem Ausschnitt einer Seitenwand 12a, einer Seitenwand 12b sowie der Decke 13. Die Seitenwände 12a, 12b sowie die Decke 13 sind über entsprechende Eckplatten 59 mit dem Seiteneckelement 23 verbunden. Die Eckplatten 59 weisen einen dreieckigen Grundriss auf und sind über mehrere (drei) Schrauben 63 mit den Seitenwänden 12a, 12b sowie der Decke 13 einerseits und dem Seiteneckelement 23 andererseits verbunden. Gemäß der schematischen Zeichnung nach Fig. 17 sind die Eckplatten 59 oberhalb der Seitenwände 12a, 12b sowie der Decke 13 angeordnet. In einer bevorzugten Ausführungsform sind jedoch die Eckplatten 59 in die Seitenwände 12a, 12b sowie der Decke 13 (zumindest bereichsweise) eingebracht (vgl. Fig. 15 bis 17).
  • Fig. 19 zeigt Ausschnitte eines ersten Profilelementes 17 sowie des Bodenelements 14 gemäß einer zweiten Ausführungsform (im Querschnitt). Das Bodenelement 14 gemäß Fig. 19 ist mehrschichtig aufgebaut. Das Profilelement 17 ist (hinsichtlich seiner Form) wie das Profilelement gemäß Fig. 4-6 ausgebildet.
  • Der Boden 14 besteht aus zwei (mehrschichtigen) Lagen, die am Bodenrand 42 gefaltet sind, so dass sie übereinander liegen. Der Bodenrand 42 weist einen (nach oben ragenden) Randwulst 45 auf. Der Randwulst 45 hat eine Länge L sowie eine Breite B. Die Länge L ist größer als die Breite B (etwa 1,2mal so groß). Der Randwulst 38 weist (im Querschnitt) einen Kreisbogenabschnitt 69 auf, der mit einem Kreisbogenabschnitt 70 der Bodenaufnahmenut 26 des Profilelementes 17 korrespondiert. Gegenüber dem Kreisbogenabschnitt 69 weist der Querschnitt des Randwulstes 38 einen Vorsprung 71 auf, der dazu dient, den Randwulst 38 bzw. den Bodenrand 42 in die Bodenaufnahmenut 26 hinein zu bewegen (bei einer Rotation). Ein sich an ein distales Ende des Kreisbogenabschnittes 69 anschließender Abschnitt ist plan ausgebildet. Dadurch kann der Randwulst 38 vergleichsweise schmal gehalten werden, so dass er in die Bodenaufnahmenut 26 eingeführt werden kann. Dadurch wird die Verbindung von Bodenelement und Profilelement vereinfacht. Wird nun der Randwulst 38 (translatorisch) entlang einem Pfeil 72 in die Bodenelementaufnahmenut 26 hineinbewegt, resultiert die Relativstellung von Profilelement und Bodenelement, wie sie in Fig. 20 dargestellt ist. Werden Bodenelement 14 und Profilelement 17 nun gegeneinander rotiert (siehe Fig. 20 und 21), verhakt sich der Randwulst 38 in der Bodenaufnahmenut 26. Der Randwulst 38 bildet somit einen Haken aus. Der Rotationswinkel zwischen der Position gemäß Fig. 20 und Fig. 21 beträgt (in etwa) 40-70 Grad. In der Endstellung gemäß Fig. 21 fluchten Bodenflächen von Profilelement 17 und Bodenelement 14 bzw. sind zueinander parallel.
  • Fig. 22 zeigt eine schematische Schrägansicht einer weiteren Ausführungsform eines Eckelementes. Das Bodeneckelement 73 ist analog dem Bodeneckelement 22 gemäß Fig. 7 und 8 zur Verbindung (durch Stecken) mit zwei ersten Profilelementen 17 ausgebildet. Dazu sind zwei Hohlraumaufnahmestifte 30 ausgebildet, an die jeweils ein Hohlraum des ersten Profilelementes 17 (vgl. Fig. 6) angesteckt werden kann. Eine äußere Kontur der Hohlraumaufnahmestifte 30 korrespondiert mit einer inneren Kontur der Hohlräume 24 der ersten Profilelemente 17. Im Unterschied zur Ausführungsform gemäß Fig. 7 und 8 ist in der Ausführungsform gemäß Fig. 22 kein Sitzschienenaufnahmestift 31 vorgesehen (dieser kann auch in der Ausführungsform gemäß Fig. 7 und 8 weggelassen und/oder in der Ausführungsform gemäß Fig. 22 vorgesehen werden). Ein dritter Hohlraumaufnahmestift 74 ist vorgesehen, um mit einem zweiten Profilelement 18 (siehe Fig. 9) über eine Steckverbindung verbunden zu werden. Dazu ist die Außenkontur des dritten Hohlraumaufnahmestiftes 74 korrespondierend ausgebildet zur Innenkontur des Hohlraumes 25 des zweiten Profilelementes 18 (siehe Fig. 9). das Bodeneckelement 73 gemäß Fig. 22 weist eine Vielzahl von Bohrungen 75 auf, in die Stifte (oder Schrauben oder dergleichen) eingeführt werden können, um (beispielsweise diagonal verlaufende) Gurte oder andere Elemente des Frachtcontainers mit dem Bodeneckelement 73 zu verbinden.
  • Fig. 23 zeigt eine weitere Ausführungsform eines Bodeneckelementes bzw. End-Eckelementes 76. Das End-Eckelement 76 entspricht dem Bodeneckelement 73 gemäß Fig. 22 mit dem Unterschied, dass das Bodeneckelement 76 keine Hohlraumaufnahmestifte 30 aufweist. Der Hohlraumaufnahmestift 74 für die Aufnahme des zweiten Profilelementes 18 ist jedoch vorgesehen. Das Bodeneckelement 76 ist somit im Unterschied zum Bodeneckelement 73 gemäß Fig. 22 nicht für die Herstellung einer Steckverbindung zu einem ersten Profilelement 17 geeignet.
  • In einer konkreten Ausführungsform des Frachtcontainers liegen drei Bodeneckelemente 73 gemäß Fig. 22 vor und ein Bodeneckelement 76 gemäß Fig. 23. Dadurch kann auf einfache Weise ein umlaufender Rahmen realisiert werden, der gänzlich ohne Verklebungen oder Verschraubungen oder dergleichen aufgebaut werden kann. Eine ausreichende Stabilität ist dennoch gewährleistet (wobei auch die Bohrungen 75 bzw. entsprechende Stützelemente, wie beispielsweise diagonal verlaufende Gurte dazu beitragen können).
  • An dieser Stelle sei darauf hingewiesen, dass alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination, insbesondere den in den Zeichnungen dargestellten Details als erfindungswesentlich beansprucht werden. Abänderungen hiervon sind dem Fachmann geläufig.
  • Bezugszeichenliste
  • 10
    Frachtcontainer
    11
    Rahmen
    12a bis 12d
    Seitenwand
    13
    Decke
    14
    Boden
    15
    Schrägabschnitt
    16
    Vertikalabschnitt
    17
    erstes Profilelement
    18
    zweites Profilelement
    19
    Bodenrahmen
    20
    Seitenrahmen
    21
    Deckenrahmen
    22
    Bodeneckelement
    23
    Seiteneckelement
    24
    Hohlraum
    25
    Hohlraum
    26
    Bodenaufnahmenut
    27, 27a, 27b
    Seitenwandaufnahmenut
    28
    Sitzschienenkonstruktion
    29
    Haken
    30
    Hohlraumaufnahmestift
    31
    Sitzschienenaufnahmestift
    32
    Seitenwandsteg
    33
    distales Ende
    34
    bogenförmig verlaufende Nut
    35
    Ausnehmung
    36
    Hohlraumaufnahmestift
    37
    bogenförmig verlaufende Nut
    38
    Randwulst (Haken)
    39
    erste Bodenschicht
    40
    zweite Bodenschicht
    41
    dritte Bodenschicht
    42
    Bodenrand
    43
    Aufbiegung
    44
    Schrägfläche
    45
    Randwulst
    46
    erste Seitenwandschicht
    47
    zweite Seitenwandschicht
    48
    dritte Seitenwandschicht
    49
    Seitenwandrand
    50
    Stab
    51
    Fahne
    52
    Form
    53
    Innenfläche
    54
    erstes Formwerkzeug
    55
    Innenfläche
    56
    zweites Formwerkzeug
    57
    Eckbereich
    58
    Seitenwandeckbereich
    59
    Eckbereich
    60
    Bohrung
    61
    Kantenbruch
    62
    Absenkung
    63
    Schraube
    64
    Mutter
    65
    Flanschabschnitt
    66
    Kopf
    67
    Linie
    68
    Linien
    69
    Kreisbogenabschnitt
    70
    Kreisbogenabschnitt
    71
    Vorsprung
    72
    Pfeil
    73
    Eckelement
    74
    Dritter Hohlraumaufnahmestift
    75
    Bohrung
    76
    End-Eckelement

Claims (9)

  1. Frachtaufnahmeeinrichtung, nämlich Frachtcontainer (10) zum Beladen von Flugzeugen, umfassend mindestens ein Bodenelement (14) sowie mindestens ein Profilelement (17), das mit dem Bodenelement (14) verbunden ist, wobei
    mindestens ein Randabschnitt (42) des Bodenelementes mit dem mindestens einen Profilelement (17) über eine Verbindungseinrichtung umfassend mindestens einen Haken (38) lösbar verbunden ist,
    wobei mindestens ein Wandelement mit zumindest einer zusätzlichen Wandlage und vier Wandecken vorgesehen ist,
    dadurch gekennzeichnet, dass
    von allen vier Wandecken Versteifungen zur jeweils diagonal-gegenüberliegenden Wandecke verlaufen derart, dass sich insgesamt eine kreuzförmige Versteifung ausbildet, wobei die mindestens eine Versteifung durch eine lokale Erhöhung einer Lagenzahl realisiert ist.
  2. Frachtaufnahmeeinrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Verbindungseinrichtung mindestens eine Nut (26) und mindestens eine Feder (38) umfasst.
  3. Frachtaufnahmeeinrichtung nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 2,
    dadurch gekennzeichnet, dass
    ein Querschnitt der Nut (26) und/oder der Feder (38) zumindest abschnittsweise rund, insbesondere kreisförmig, ist.
  4. Frachtaufnahmeeinrichtung nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass
    die Feder (38) und/oder Nut (26) derart asymmetrisch ist (sind), dass die Feder (38) in einem vorbestimmten ersten Relativwinkel zur Nut (26) in diese einführbar ist und in einem vorbestimmten zweiten Relativwinkel mit der Nut (26) verhakt ist.
  5. Frachtaufnahmeeinrichtung nach einem der Ansprüche 2-4,
    dadurch gekennzeichnet, dass
    ein Querschnitt der Nut (26), abgesehen von einer Nutöffnung, kreisförmig ist und/oder ein Querschnitt der Feder (38) eine Länge L in einer Längsrichtung hat sowie eine Breite B in einer Breitenrichtung, wobei die Längenrichtung L auf die Breitenrichtung B senkrecht steht, wobei die Länge L größer als die Breite B ist.
  6. Frachtaufnahmeeinrichtung nach einem der Ansprüche 2-5,
    dadurch gekennzeichnet, dass
    ein Querschnitt der Feder (38) einen Kreisbogenabschnitt hat und gegenüber dem Kreisbogenabschnitt einen Dreh-Abstütz-Vorsprung (71) aufweist.
  7. Frachtaufnahmeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    mindestens ein Bodenelementrandabschnitt des Bodenelementes (14) und/oder mindestens ein dem Bodenelementrandabschnitt zugewandter Profilelement-Randabschnitt des Profilelements (17) im Querschnitt hakenförmig ist.
  8. Frachtaufnahmeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    mindestens ein Bodenelementrandabschnitt der Bodenplatte einwärts gebogen ist und/oder ein dem Bodenelementrandabschnitt der Bodenplatte zugewandter Profilelementrandabschnitt nach unten in Richtung Bodenplatte abgeschrägt ist.
  9. Frachtaufnahmeeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    das Bodenelement (14) zumindest abschnittsweise aus faserverstärktem Kunststoff, umfassend Kohlenstoff- oder Glasfaser, hergestellt ist.
EP12725818.4A 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung Not-in-force EP2718202B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17154606.2A EP3181486A3 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung
EP12725818.4A EP2718202B1 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102011050893.7A DE102011050893B4 (de) 2011-06-07 2011-06-07 Frachtcontainer und Verfahren zur Herstellung eines Frachtcontainers
PCT/EP2011/003114 WO2012175099A1 (de) 2011-06-24 2011-06-24 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen, verfahren zur herstellung einer frachtaufnahmeeinrichtung sowie verwendung eines pultrudierten faserverstärkten profilelements für eine frachtaufnahmeeinrichtung
PCT/EP2012/060724 WO2012168314A1 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung
EP12725818.4A EP2718202B1 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17154606.2A Division-Into EP3181486A3 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung
EP17154606.2A Division EP3181486A3 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung

Publications (2)

Publication Number Publication Date
EP2718202A1 EP2718202A1 (de) 2014-04-16
EP2718202B1 true EP2718202B1 (de) 2017-09-13

Family

ID=50238066

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12725818.4A Not-in-force EP2718202B1 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung
EP17154606.2A Withdrawn EP3181486A3 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17154606.2A Withdrawn EP3181486A3 (de) 2011-06-07 2012-06-06 Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung

Country Status (1)

Country Link
EP (2) EP2718202B1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598273A (en) * 1968-12-06 1971-08-10 Air Cargo Equipment Corp Container
US3645596A (en) 1969-12-30 1972-02-29 Boothe Airside Services Cargo container construction
DE4218589A1 (de) * 1992-06-05 1993-12-09 Durotherm Kunststoffverarbeitu Transportbehälter
DE4243135A1 (de) * 1992-12-19 1994-06-30 Blohm Voss Ag Verfahren und Vorrichtung zur Verbindung
US5741042A (en) * 1995-03-23 1998-04-21 Stoughton Composites, Inc. Intermodal container including double lap shear joints
DE69616182T2 (de) 1995-07-14 2002-06-20 Toray Industries Container aus Faserverstärktem Kunststoff
DE102008005010A1 (de) * 2007-04-25 2008-10-30 Aircon Gmbh & Co. Kg Zusammenlegbarer Transportcontainer für Waren
US20110247958A1 (en) 2008-10-16 2011-10-13 Composite Transport Technologies ,Inc. Lightweight unit load device
DE102011050893B4 (de) 2011-06-07 2016-01-14 Telair International Gmbh Frachtcontainer und Verfahren zur Herstellung eines Frachtcontainers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3181486A3 (de) 2017-08-23
EP2718202A1 (de) 2014-04-16
EP3181486A2 (de) 2017-06-21

Similar Documents

Publication Publication Date Title
WO2012168314A1 (de) Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung
DE102007019821B4 (de) Strukturelement eines Flugzeugrumpfs
EP1646555A1 (de) Frachtdeck sowie verfahren zur montage
EP3116806B1 (de) Platte für eine frachtpalette, verfahren zur herstellung einer entsprechenden bodenplatte, verfahren zur herstellung eines bodenelements
EP2229317B1 (de) Flügel-rumpf-strukturbauteil zur verbindung von zwei tragflügeln und einer rumpfsektion an einem flugzeug
EP2723656A1 (de) Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen, verfahren zur herstellung einer frachtaufnahmeeinrichtung sowie verwendung eines pultrudierten faserverstärkten profilelements für eine frachtaufnahmeeinrichtung
DE102011108895A1 (de) Tragende Struktur für bewegliches Staufach
DE102012000564A1 (de) Urformwerkzeug und Verfahren für die Fertigung eines aus faserverstärktem Kunststoff bestehenden aerodynamisch geformten Luftfahrzeugbauteils
EP2374713A2 (de) Türrahmenanordnung und Tür, insbesondere für Luft- oder Raumfahrzeuge
DE102009028534A1 (de) Befestigungssystem in einem Luft- und Raumfahrzeug
EP1319584B2 (de) Kippmulde für ein Transportfahrzeug
DE102011108883B4 (de) Strömungskörper mit einem Basiskörper und einer Vorderkante
EP2718202B1 (de) Frachtaufnahmeeinrichtung
DE102011050893B4 (de) Frachtcontainer und Verfahren zur Herstellung eines Frachtcontainers
EP0588761B1 (de) Vorrichtung zur Sicherung von Ladegut
DE102014110932B3 (de) Nachrüstsatz für einen Frachtcontainer, Frachtcontainer mit Nachrüstsatz und Verfahren zur Nachrüstung eines Frachtcontainers
DE2056501A1 (de) Palette zum Befestigen und Bewegen von Fracht
EP2409934B1 (de) Luftfrachtcontainer
DE102016216527A1 (de) Spantvorrichtung, Druckkalotte, Anordnung und Verfahren
EP2718204A1 (de) Frachtaufnahmeeinrichtung insbesondere für das beladen von flugzeugen sowie verfahren zur herstellung einer frachtaufnahmeeinrichtung
DE102021108665A1 (de) Verbundprofil für einen Kofferaufbau für ein Nutzfahrzeug sowie Kofferaufbau für ein Nutzfahrzeug
EP2895371B1 (de) Passagierschienenfahrzeug
WO2017050539A1 (de) Flächiges fahrkorbelement für eine aufzugsanlage
DE202021103984U1 (de) Ankerschiene in einem LKW-Aufbau
EP3546266B1 (de) Kombinationstank und behälter aus kunststoff hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1190682

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150821

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170802

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 927905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011271

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170913

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011271

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

26N No opposition filed

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 927905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120606

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210629

Year of fee payment: 10

Ref country code: FR

Payment date: 20210625

Year of fee payment: 10

Ref country code: NO

Payment date: 20210617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210625

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012011271

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220606

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103