EP2712462A1 - Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu - Google Patents
Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazuInfo
- Publication number
- EP2712462A1 EP2712462A1 EP12753988.0A EP12753988A EP2712462A1 EP 2712462 A1 EP2712462 A1 EP 2712462A1 EP 12753988 A EP12753988 A EP 12753988A EP 2712462 A1 EP2712462 A1 EP 2712462A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- partial discharge
- insulating
- insulating tape
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/04—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B19/00—Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
- H01B19/02—Drying; Impregnating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B19/00—Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
- H01B19/04—Treating the surfaces, e.g. applying coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/002—Inhomogeneous material in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
Definitions
- Insulating systems with improved partial discharge resistance process for the preparation thereof
- the present invention relates generally to the field of insulation of partial discharge electrical conductors, and more particularly to a method of manufacturing an insulation system having improved partial discharge resistance and an insulation system having improved partial discharge resistance.
- the iso liersystem has to isolate the task of electrical conductors (wires, Spu ⁇ len, rods) permanently against each other and against the stator core or the ambient electric.
- electrical conductors wires, Spu ⁇ len, rods
- the insulation between the conductor elements a distinction (conductor insulation) between the conductors or windings (conductor or winding insulation) and between the conductor and ground potential in the tongue and winding ⁇ head portion (main insulation).
- the thickness of the main insulation is adapted to both the rated voltage of the machine and the operating and manufacturing conditions.
- Mica paper is umgewan ⁇ punched in a more stable mica tape according to the needs of the electrical industry. This is done by bonding the mica paper with a carrier material having a high mechanical Festig ⁇ speed, by an adhesive.
- the adhesive is preferably characterized by the fact that it has a high strength at room temperature in order to ensure the connection of mica and support and changes into a liquid state at elevated temperatures (60 ° C.-150 ° C.). This allows its application as an adhesive at elevated temperature in liquid form or in admixture with a volatile solvent.
- the adhesive After cooling or removal of the solvent, the adhesive is in a solid but flexible form and allows, for example, the application of the Glimmerban ⁇ to Röbelstäbe consisting of partial conductors and form coils at room temperature, the adhesive properties of the adhesive prevent the delamination of the mica paper comes from the substrate , The resulting mica tape is wound in several layers around electrical conductors.
- High and medium voltage motors and generators use stratified mica insulation.
- mica is used in the form of mica paper, wherein in the course of impregnation, the cavities located in the mica paper between the individual particles are filled with resin.
- the composite of impregnating resin and the base material of the mica provides the mechanical Fes ⁇ ACTION the insulation.
- the electrical strength results from the multitude of solid-solid interfaces of the mica used.
- the resulting layering of organic and inorganic materials forms microscopic interfaces whose resistance to partial discharges and thermal stresses is determined by the properties of the mica platelets. Due to the complex VPI process, even the smallest cavities in the insulation have to be filled with resin in order to minimize the number of internal gas-solid interfaces.
- nanoparticulate fillers is described.
- the composite of impregnating resin and the carrier tape of the mica mers provides the mechanical strength and the current ge ⁇ called partial discharge resistance of the electrical insulation.
- the main difference between the two technologies is the design and manufacture of the actual coil insulation system. While the VPI system is finished only after impregnation and after curing of the winding in a convection oven, the leg of the resin-rich coil which has been cured separately under temperature and pressure already represents a functioning and testable insulation system prior to installation in the stator.
- the VPI process uses porous belts, which form a solid and continuous insulation system under vacuum and subsequent pressurization of the impregnation tank after curing in a convection oven.
- erosion resistant nanoparticles Alluminanum oxide, silicon dioxide
- the present invention has for its object to provide an insulating system with improved partial discharge resistance.
- a method for producing an insulation system with improved Operaentla ⁇ -making resistance comprising: - providing an insulating tape comprising a Glimmerpa ⁇ pier and a carrier material, which are bonded together by means of ei ⁇ nes adhesive,
- Impregnating the conductor wound around the conductor with synthetic resin characterized in that
- an adhesion promoter is added before the addition of the nanoparticulate filler.
- an insulation system is with improved resistance to partial discharge pre ⁇ represents that has a coiled around an electrical conductor insulation tape comprising a comparable with a carrier material bundenes mica tape, wherein the tape is impregnated with egg ⁇ nem resin, characterized in that that the impregnated insulating tape is permeated with a nanoparticulate filler which is at least partly agglomerated via an adhesion promoter ⁇ medium.
- inorganic particles are not or only to a very limited extent damaged or destroyed by partial discharge.
- the resulting erosion-inhibiting effect of the inorganic particles is, inter alia, of
- Inorganic nanoparticles have very large specific surface areas of 50 g / m2 or more.
- an unfilled or mica-based insulating material based on epoxy resins under partial discharge stress shows rapid degradation of the polymeric matrix.
- the implementation of the polymer matrix with erosion-resistant nanoparticulate filler alumina, silicon dioxide
- Adhesion promoters are mostly organosilicon compounds which are chemically bound to the surface of fillers or nanoparticles by means of condensation reactions.
- the adhesion promoter results in improved binding of the particles to the polymer matrix, resulting in improved erosion resistance. This is direct ⁇ dependent of the filler, which is why the use of adhesion promoters to particles with small diameters improves the erosion resistance in particular.
- Such a coating corresponds to the first layer in the multi-core model of Prof. Tanaka in Tanaka et al. , Dependence of PD Erosion on the Size of Silica Fillers; Takahiro Imai *, Fumio Sawa, Tamon Ozaki, Toshio Shimizu, Ryouichi Kido, Masahiro Kozako and Toshikatsu Tanaka; Evaluation of In- sulation Properties of Epoxy Resin with Nano-scale Silica Particles Toshiba Research Cooperation.
- organosilanes can be synergistically exploited with nanoparticles by adding coupling agents such as silanes to the impregnating resin or Resin Rieh resin.
- a particularly advantageous embodiment of the invention lies in the synergistic use of the described model of the passivation layer under TE load and the improvement of the erosion inhibition by the use of organosilanes in mica-based Hochnapsisoliersystemen. This is achieved in that the added organosilanes positively influence the formation and mode of action of the passivation layer forming under TE load.
- the increased erosion resistance can be achieved by spontaneous sintering of the
- organic silanes not limited to use for coating of nanoparticles, but can, for the first time as described herein, as well as by direct addition to the component reactive resin formulation ⁇ take place.
- Organic silanes are activated under TE stress and result in e.g. by means of condensation reactions to crosslink the nanoparticles via forming siloxane bonds
- POSS polyhedral oligomeric silsesquioxanes
- Organic silanes (mono- or polyfunctional) with their reactive groups enable the cross-linking of nanoparticles through chemical reactions with reactive groups on the nanoparticle surface.
- the resin base is, for example, an epoxy resin and / or a polyurethane resin.
- the hardener comprises as a functional group e.g. an anhydride, an aromatic amine and / or an aliphatic amine
- the nanoparticulate filler has, for example, a particle size between 2.5 to 70 nm, in particular from 5 to 50 nm in a concentration between 5 and 70 wt .-%, in particular between 10 - 50 wt .-% based on S1O 2 or AI 2 O 3 .
- Other fillers, additives, pigments may be included.
- an organic silicon ⁇ compound such as an organosilane and / or POSS used.
- organic silicon ⁇ compound such as an organosilane and / or POSS used.
- these are - again preferably - in a concentration between 0.1 and 45 wt .-%, in particular from 1 to 25 wt .-%, in the resin.
- adhesion promoters such as organic silicon compounds as part of the resin formulation in combination with the above components offers the following advantage that the use of adhesion promoters, ie silane as part of the reactive resin in higher concentrations is possible, than when using silanes as adhesion promoters of the particles before Addition to the reaction resin.
- the use of the organosilane as part of the resin formulation also allows much more silanes to be used since the range of useful organic silanes is increased unless they are anchored in the form of coatings to the surfaces of the particles.
- silanes are used which have one or more functional groups contain sufficient reactivity to be able to react with the particle surface.
- the silanes used can have 1 to 4 functional groups.
- 1 shows schematically a general mechanism for in situ particle crosslinking the example of a bifunktio ⁇ tional organosilane.
- silanes can have one to four reactive functional groups to exert a positive influence on erosion resistance. These functional-group have the property of being able to react with the Parti ⁇ kelober Design, whereby the wide range of organosilanes results
- the particles 1 and 2 are both te by substitution of the RES R2 on the silicon core 3, for example under Temperaturerhö ⁇ hung 4 bonded to these and are therefore located in the immediate closer to each other, are connected via the silicon core.
- the potential of nanotechnology can be seen again in the use of nanoparticulate fillers in combination with the silanes according to the invention, for example in the currently used insulating materials based on mica.
- reference samples are the experimental specimens (shown by dashed lines), contrasting embodiments of the invention.
- the test bodies correspond in a reduced form to the State of the art with regard to insulated Cu conductors in stators of hydroelectric or turbo generators. They are measured under electric field load until electrical breakdown. Since the electrical resistance of the insulation system is several decades under operating stress, the electrical endurance tests are carried out at multiply excessive electric field strengths.
- the graph shown in Figure 2 represents the average values of electrical life of seven specimens at three different field loads for each standard insulation (mica) and a nanoparticulate / silane-filled insulation.
- the unfilled systems (term Micalastic) have a share of approx. 50% by weight of glimmer and 50% by weight of resin.
- the specified proportion of nanoparticles correspondingly reduces the proportion of resin.
- the proportion of mica remains constant.
- Figure 3 shows corresponding fatigue life curves of unfilled and nanoparticulate high voltage insulation systems (Mica ⁇ lastic (black) and, Micalastic with nanoparticles 10 wt .-% (diameter about 20 nm), octamethyltrisiloxane 2.5 wt .-% Again, the almost parallel Shifting lifetimes to longer times to recognize well.
- FIG. 4 also shows the fatigue curves of unfilled and nanoparticle-filled high-voltage insulation systems (micalastic (black) and, micalastic with nanoparticles 10% by weight (diameter about 20 nm), POSS (2.5% by weight). Comparing the lifespan of the respective collectives, it can be seen that lifetime improvements are achieved by a factor of 20 to 30. Both life histories wei ⁇ sen on the same pitch, so that a direct transmission of the life extension of operating conditions appear permissible.
- Insulations with a nanoparticulate content of up to 35% by weight are possible.
- the invention shows for the first time the surprising erosion-inhibiting effect of adhesion promoters, such as organic silicon compounds, which are present in the resin when adding nanoparticulate filler.
- adhesion promoters such as organic silicon compounds
- the invention shows for the first time the surprising erosion-inhibiting effect of adhesion promoters, such as organic silicon compounds, which are present in the resin when adding nanoparticulate filler.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
- Insulating Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011083228A DE102011083228A1 (de) | 2011-09-22 | 2011-09-22 | Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu |
PCT/EP2012/067141 WO2013041363A1 (de) | 2011-09-22 | 2012-09-03 | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2712462A1 true EP2712462A1 (de) | 2014-04-02 |
Family
ID=46796601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12753988.0A Withdrawn EP2712462A1 (de) | 2011-09-22 | 2012-09-03 | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu |
Country Status (7)
Country | Link |
---|---|
US (1) | US9589699B2 (ru) |
EP (1) | EP2712462A1 (ru) |
KR (1) | KR20140079787A (ru) |
CN (2) | CN109243672A (ru) |
DE (1) | DE102011083228A1 (ru) |
RU (1) | RU2623493C2 (ru) |
WO (1) | WO2013041363A1 (ru) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014219440A1 (de) | 2014-09-25 | 2016-03-31 | Siemens Aktiengesellschaft | Glimmschutzsystem für eine elektrische Maschine und elektrische Maschine |
DE102014219441A1 (de) | 2014-09-25 | 2016-03-31 | Siemens Aktiengesellschaft | Glimmschutzsystem und elektrische Maschine |
DE102014219439A1 (de) | 2014-09-25 | 2016-03-31 | Siemens Aktiengesellschaft | Glimmschutzsystem für eine elektrische Maschine |
DE102014219765A1 (de) * | 2014-09-30 | 2016-03-31 | Siemens Aktiengesellschaft | Formulierung für ein Isoliersystem und Isoliersystem |
EP3188196B1 (fr) * | 2015-12-28 | 2020-03-04 | General Electric Technology GmbH | Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur |
JP6613163B2 (ja) * | 2016-02-10 | 2019-11-27 | 住友電気工業株式会社 | 絶縁電線 |
US10848027B2 (en) | 2016-11-17 | 2020-11-24 | General Electric Company | Electrical insulation systems and insulated components for electrical machine |
DE102018202058A1 (de) * | 2018-02-09 | 2019-08-14 | Siemens Aktiengesellschaft | Formulierung zur Herstellung eines Isolationssystems, elektrische Maschine und Verfahren zur Herstellung eines Isolationssystems |
DE102018202061A1 (de) | 2018-02-09 | 2019-08-14 | Siemens Aktiengesellschaft | Isolation, elektrische Maschine und Verfahren zur Herstellung der Isolation |
CN110492646A (zh) * | 2019-08-08 | 2019-11-22 | 中国长江动力集团有限公司 | 匝间绝缘结构及其构成的发电机转子线圈 |
DE102020208760A1 (de) | 2020-07-14 | 2022-01-20 | Siemens Aktiengesellschaft | Isolationssystem aus festem Isolationsstoff und Imprägnierharz |
US11916448B2 (en) * | 2021-02-01 | 2024-02-27 | The Timken Company | Small-fraction nanoparticle resin for electric machine insulation systems |
DE102021201666A1 (de) | 2021-02-22 | 2022-08-25 | Siemens Aktiengesellschaft | Nutisolationssystem für eine elektrische rotierende Maschine, Verfahren zur Herstellung eines Nutisolationssystems |
EP4047620A1 (de) | 2021-02-22 | 2022-08-24 | Siemens Aktiengesellschaft | Isolationssystem mit festem isolationsstoff und imprägnierharz |
WO2023117588A1 (de) | 2021-12-20 | 2023-06-29 | Siemens Aktiengesellschaft | Isolationssystem, verwendung eines polymerblends und elektrische maschine mit isolationssystem |
EP4199006A1 (de) | 2021-12-20 | 2023-06-21 | Siemens Aktiengesellschaft | Isolationssystem, verwendung eines polymerblends und elektrische maschine mit isolationssystem |
DE202021106928U1 (de) | 2021-12-20 | 2022-01-20 | Siemens Aktiengesellschaft | Isolationssystem und elektrische Maschine mit Isolationssystem |
EP4447283A1 (de) | 2023-04-11 | 2024-10-16 | Siemens Aktiengesellschaft | Isolationssystem |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011138413A2 (de) * | 2010-05-07 | 2011-11-10 | Siemens Aktiengesellschaft | Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4269894A (en) * | 1979-12-03 | 1981-05-26 | Hitachi, Ltd. | Electric windings and production thereof characterized by the use of a condensation type silicon resin for combination with an addition type silicon resin |
RU2051434C1 (ru) * | 1993-02-16 | 1995-12-27 | Индивидуальное частное предприятие - Научно-коммерческая фирма "Слюдотерм" | Способ получения слюдоволокнистой бумаги |
JPH10249564A (ja) | 1997-03-05 | 1998-09-22 | Japan Tobacco Inc | 帯状材の開孔装置 |
EP0966001A1 (fr) * | 1998-06-17 | 1999-12-22 | COMPAGNIE ROYALE ASTURIENNE DES MINES, Société Anonyme | Procédé de réalisation d'un produit micacé se présentant de préférence sous la forme d'un ruban de mica et produit obtenu |
DE19963124A1 (de) * | 1999-12-24 | 2001-07-12 | Roland Man Druckmasch | Reinigungsmedium und dessen Verwendung |
EP1878027A4 (en) * | 2005-05-04 | 2012-04-11 | Abb Research Ltd | ELECTRICAL INSULATION MATERIAL, ELECTRICAL EQUIPMENT AND METHOD FOR PRODUCING AN ELECTRICAL INSULATION MATERIAL |
WO2008129032A1 (en) | 2007-04-20 | 2008-10-30 | Abb Research Ltd | An impregnation medium |
WO2011095208A1 (en) | 2010-02-03 | 2011-08-11 | Abb Research Ltd | Electrical insulation system |
DE102010032555A1 (de) * | 2010-07-29 | 2012-02-02 | Siemens Aktiengesellschaft | Isolierung für rotierende elektrische Maschinen |
DE102011083409A1 (de) * | 2011-09-26 | 2013-03-28 | Siemens Aktiengesellschaft | Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu |
-
2011
- 2011-09-22 DE DE102011083228A patent/DE102011083228A1/de not_active Ceased
-
2012
- 2012-09-03 KR KR1020147010741A patent/KR20140079787A/ko not_active Application Discontinuation
- 2012-09-03 CN CN201811109529.1A patent/CN109243672A/zh active Pending
- 2012-09-03 WO PCT/EP2012/067141 patent/WO2013041363A1/de active Application Filing
- 2012-09-03 US US14/345,692 patent/US9589699B2/en not_active Expired - Fee Related
- 2012-09-03 CN CN201280045367.4A patent/CN103797544A/zh active Pending
- 2012-09-03 RU RU2014115974A patent/RU2623493C2/ru not_active IP Right Cessation
- 2012-09-03 EP EP12753988.0A patent/EP2712462A1/de not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011138413A2 (de) * | 2010-05-07 | 2011-11-10 | Siemens Aktiengesellschaft | Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung |
Non-Patent Citations (1)
Title |
---|
See also references of WO2013041363A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN103797544A (zh) | 2014-05-14 |
DE102011083228A1 (de) | 2013-03-28 |
WO2013041363A1 (de) | 2013-03-28 |
RU2014115974A (ru) | 2015-10-27 |
US20140326481A1 (en) | 2014-11-06 |
US9589699B2 (en) | 2017-03-07 |
RU2623493C2 (ru) | 2017-06-27 |
CN109243672A (zh) | 2019-01-18 |
KR20140079787A (ko) | 2014-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013041363A1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
EP2721616B1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
DE102010032555A1 (de) | Isolierung für rotierende elektrische Maschinen | |
WO2011138173A1 (de) | Elektrisches isoliermaterial, isolationspapier und isolationsband für eine hochspannungsrotationsmaschine | |
WO2013011047A1 (de) | Verfahren zum herstellen eines bandes für ein elektrisches isolationssystem | |
EP2402958B1 (de) | Elektroisolationssystem für eine elektrische Hochspannungsrotationsmaschine | |
WO2011138413A2 (de) | Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung | |
EP1573882A1 (de) | Spulen für elektrische maschinen in litzentechnik | |
DE102010032949A1 (de) | Isoliersysteme mit verbesserter Teilentladungsbeständigkeit | |
EP2807654A1 (de) | Isolierstoff für rotierende maschinen | |
DE102013205117A1 (de) | Vergussmasse, Verwendung der Vergussmasse, thermisch gehärteter Komposit erhältlich aus der Vergussmasse und elektrische Maschine mit der Vergussmasse | |
DE202022106253U1 (de) | Formulierung für ein Isolationssystem und Formkörper daraus | |
DE102018125567A1 (de) | Spule sowie stromerregte Synchronmaschine | |
DE102012211762A1 (de) | Formulierung, Verwendung der Formulierung und Isoliersystem für rotierende elektrische Maschinen | |
EP4447283A1 (de) | Isolationssystem | |
WO2023170112A1 (de) | Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine | |
DE102014204416A1 (de) | Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes | |
WO2024088848A1 (de) | Formulierung für ein isolationssystem, verwendung dazu und formkörper | |
WO2023117588A1 (de) | Isolationssystem, verwendung eines polymerblends und elektrische maschine mit isolationssystem | |
DE112019007547T5 (de) | Isolierlackzusammensetzung, spule für eine rotierende maschine sowie rotierende maschine | |
WO2012076103A2 (de) | Isolationssystem für einen leiter einer hochspannungsmaschine | |
WO2011012405A2 (de) | Flächenisolierfolie und anwendung dazu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131223 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170510 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200603 |