WO2023170112A1 - Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine - Google Patents

Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine Download PDF

Info

Publication number
WO2023170112A1
WO2023170112A1 PCT/EP2023/055831 EP2023055831W WO2023170112A1 WO 2023170112 A1 WO2023170112 A1 WO 2023170112A1 EP 2023055831 W EP2023055831 W EP 2023055831W WO 2023170112 A1 WO2023170112 A1 WO 2023170112A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
partial conductor
conductor insulation
partial
sub
Prior art date
Application number
PCT/EP2023/055831
Other languages
English (en)
French (fr)
Inventor
Steffen Lang
Niels Müller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2023170112A1 publication Critical patent/WO2023170112A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the invention relates to partial conductor insulation, which can be produced by machine processing of a corresponding prepreg in automated processes in the production of partial conductor insulation of electrical rotating machines.
  • the invention relates to a partial conductor insulation, a partial conductor composite that can be produced with the prepreg and finally an electrical rotating machine with a corresponding partial conductor insulation.
  • an electrical conductor In electrical machines, an electrical conductor is usually split into several parallel sub-conductors. This applies both to electrical rotating machines with high rated voltage, where the partial conductors are often in the form of flat wires, as well as to electrical rotating machines with lower rated voltage, such as.
  • the grooves of the laminated core of the cylindrically constructed rotor of an electrical rotating machine such as a motor, for example a traction motor, are then filled.
  • an electrical rotating machine such as a motor, for example a traction motor
  • the production of a winding for electrical rotating machines is accomplished from flat wire or round wire.
  • the winding of an electrical rotating machine includes partial conductor assemblies, in particular assemblies of flat wire partial conductors in the form of coils, e.g. B. three, which in turn have several turns, which are realized by partial conductors.
  • Partial conductors with different potentials are now layered one above the other in a groove in the laminated core. To ensure that these partial conductors are not electrically short-circuited with one another, they must be electrically insulated from one another using partial conductor insulation.
  • layered partial conductor composites can also be arranged next to each other in the slot.
  • the insulated and layered partial conductors for example arranged in parallel, form the partial conductor composite.
  • the invention particularly concerns flat ones. During winding and insertion into the slots, the partial conductor insulation is repeatedly scratched or damaged, particularly at the edges.
  • the individual sub-conductors After the individual sub-conductors have been inserted into the groove, the individual sub-conductors are electrically insulated from one another and fixed to one another, but the sub-conductor assembly is still provided with a main insulation in order to be sufficiently well insulated from the grounded laminated core.
  • the greatest voltage difference is not between the partial conductors but between the partial conductor with the highest voltage and the laminated core, part of which is the groove.
  • a main insulation which additionally insulates the partial conductor insulation and the layered partial conductor composite from the laminated core.
  • the VPI process is used. If there are damaged areas on the individual partial conductor insulation and/or on the partial conductor assembly, this weak point continues throughout the entire insulation, with devastating consequences for the service life of the electrical rotating machine. Therefore, the technology of producing a partial conductor composite and/or the individual partial conductor insulation is an important component for the quality of the electrical rotating machine.
  • the object of the invention is to provide a technology for partial conductor insulation that increases the partial discharge resistance, in particular the partial discharge resistance at the edges and radii of the partial conductors, both
  • edges are the most vulnerable point of the partial conductor assembly when they are inserted into the - also edgy - groove, as well - dielectrically and materially in terms of the composition and structure of the partial conductor insulation compared to the partial discharges that occur during operation, especially at the edges, because this is where the area of a geometric field increase is.
  • the subject of the present invention is a partial conductor insulation made of a prepreg, which comprises a solid insulation material in a prepreg matrix, with solid insulation material in the form of layers, laminate layers, tapes, as paper and / or in the form of connected barrier material f particles in the Prepreg matrix is present, the solid insulation material comprises at least partial discharge-resistant material, optionally with a tape adhesive, wherein
  • the prepreg matrix is based on carbon compounds, although up to 45% by weight, preferably up to 35% by weight and particularly preferably up to 25% by weight of the total weight of the prepreg matrix is replaced by one or more silicon-containing component(s). is, where
  • the solid insulation material is embedded in the prepreg matrix and can be processed in the pre-hardened B-stage.
  • a “prepreg matrix” is a carbon-containing synthetic resin or duromer, such as epoxy, polyester, polyamide, polyamideimide, polyetherimide and/or any mixture and/or copolymer of these carbon-based compounds, which according to the invention is at least partially substituted by silicon-containing resin , in particular resins, which, after hardening, result in a plastic, i.e. a duromer in the fully hardened state.
  • the one or more silicon-containing component(s) is selected from the following group:
  • Siloxane polysiloxane, silsesquioxane and/or polysilsesquioxane as well as any combinations, blends, copolymers and/or mixtures of the aforementioned silicon-containing compounds.
  • the prepreg is processed by winding by wrapping a conductor element, such as a round copper wire, with a prepreg for insulation. This creates the so-called partial conductor insulation.
  • thermosets cannot be melted without decomposing, but decompose without first becoming soft. This is due to the three-dimensional crosslinking of the monomer units that form the duromer through hardening.
  • the monomer units are in a “B state” in which crosslinking is present, so that the monomers are no longer flowable, but there is a crosslinking that can be melted without decomposition, i.e. “liquefiable”. For example there is a linear chain cross-linking, but no cross-linking.
  • This pre-crosslinking is the B state of the prepreg matrix during processing.
  • the pure epoxy resins can be easily pre-crosslinked, but are slightly thin and therefore flow again - especially at the edges - when heated slightly
  • the prepregs according to the invention are in the B state in an uncured, flexible state which counteracts running off from the edges.
  • the general finding of the invention is that by adding sterically complex polysiloxanes and/or silsesquioxanes, the B state of the prepreg matrix has a completely different rheology. points as the only carbon-based, because these - for example sterically complex - silicon-based monomer units in the B state already result in a high strength of the synthetic resin while maintaining the full flexibility of the B state. This means they are both easier to process and mechanically more stable and, above all, suitable for keeping the resin in the B state for longer, for example on the edges, than is the case with pure carbon-based synthetic resins.
  • the prepreg is applied to the partial conductors in the form of flat material, such as layers, in particular band-shaped layers, also called “tape layers”.
  • the prepreg is wound around the partial conductors in the form of at least two layers.
  • a barrier material in particular mica or containing mica, is incorporated into the prepreg as a partial discharge-resistant material.
  • the barrier material can be connected to a carrier, such as a fiber fabric, and introduced into the matrix.
  • the barrier material is connected to the carrier with additional adhesive.
  • This connected barrier material for example mica paper, and/or the combination of carrier and barrier material, forms the so-called solid insulation material, for example a wrapping tape for wrapping tape insulation.
  • the solid insulation material is in the form of strips and/or in layers - for example also in the form of laminate layers - and is impregnated and pre-cured with the formulation, which after pre-hardening forms a prepreg matrix according to the invention, to produce the prepreg the B state is brought.
  • This product i.e. the solid insulation material
  • the matrix made of carbon-based synthetic resin in which up to 45% by weight of the carbon compounds are substituted by silicon compounds, and this preliminary product is then hardened to the B state of the matrix - speaks to the prepreg.
  • the prepreg is wound as partial conductor insulation around, for example, a flat copper wire, a coil using hairpin technology and/or a comparable conductor element of an electric motor as insulation.
  • the so-called partial conductor insulation is created by wrapping the conductor element, such as a flat wire, with the prepreg - for example - in the form of bandages.
  • a composite of a stack of such insulated partial conductors is called a partial conductor composite, which in turn is formed by wrapping the stack with, for example, the prepreg as a laminate, which can be produced, for example, from a stack of laminate layers from which strips are cut out.
  • the prepreg matrix is usually sufficient to ensure that the mica in the prepreg is chemically and physically stable in storage and homogeneously distributed, but a tape adhesive can optionally be provided.
  • the tape layers are wound abutting and/or in the same direction around the partial conductor or conductors.
  • the second layer of tape is wound around the partial conductor or conductors, offset by 40% to 60% above the first layer of tape.
  • Monomer units for epoxy resins that carry epoxy groups on a carbon framework can be produced by reacting a compound with hydroxy groups and/or amines and/or amides and epichlorohydrin.
  • Suitable compounds with hydroxy groups include, for example, aliphatic diols, phenols, phenolic compounds and/or dicarboxylic acids.
  • Compounds such as bisphenol -A, -F and/or novolaks are used as phenols.
  • Compounds such as 1,4-budanediol are used as polyhydric alcohols. Di- and polyols lead to diglycid polyethers.
  • the prepreg matrix also comprises a mixture of resin and hardener in the case of addition polymerization in a stoichiometric ratio and in the case of homopolymerization with a small proportion - for example less than 10% by weight - preferably less than 5% by weight, particularly preferably less than 2% by weight, particularly preferably within a range from 0.5 to 1.5% by weight, based on the total mass of the respective prepreg matrix, of initiator.
  • the B-stage or B-state refers to a state of pre-hardening of the synthetic resin in which the prepreg matrix is solid and can therefore be processed as partial conductor insulation, but can still be melted without decomposing.
  • the prepreg is processed in the B state and then hardened with the formation of the main insulation - for example under pressure and heat - by hot pressing to form the fully cured partial conductor insulation and/or the fully cured partial conductor composite.
  • a not insignificant part of the carbon-based resin portion of the prepreg matrix is substituted in the prepreg matrix by monomer units that carry epoxy groups on a silicon-containing component.
  • Compound classes such as siloxane, polysiloxane, silsesquioxane and/or polysilsesquioxane are referred to as “silicon-containing components”.
  • the silicon-containing component is in the prepreg matrix with a proportion of greater than or equal to 2% by weight, for example 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10% , 11%, 12%,
  • the carbon-based resin content is in the prepreg matrix with a proportion of greater than or equal to 8% by weight, for example 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%,
  • the prepreg matrix in addition to the carbon-based base resin, comprises at least one silicon-containing component with at least one saturated and/or unsaturated epoxycycloalkyl group, by means of which a glass transition temperature of the insulation material compared to an impregnation formulation without the silicon-containing component is increased.
  • the prepreg matrix contains at least two components, namely a carbon-containing base resin and a silicon-containing component, which preferably has one or more epoxycycloalkyl groups, whereby each of the epoxycycloalkyl groups can be saturated or mono- or polyunsaturated .
  • Unsaturated epoxycycloalkyl groups can also be referred to as epoxycycloalkenyl groups.
  • the cycloaliphatic epoxy functionality(s) of the silicon-containing component is/are very sterically demanding and requires a lot of space due to the non-planar cycloaliphatic ring structure.
  • this structure(s) into the polymeric network of the cured insulation material, compared to a matrix that does not contain the at least one silicon-containing component, leads to but otherwise has the same composition, resulting in higher glass transition temperatures and at the same time increased electrical resistance of the cured insulation material.
  • the glass transition usually does not occur at a sharp temperature value, but rather in a glass transition temperature range. In such a case, the average temperature value of the glass transition temperature range is used as the glass transition temperature.
  • the molar stoichiometric ratio of resin formulation to hardener - in addition polymerization - can be adjusted as required, with a ratio in the range of about 1:0.9 to about 1:1.1 usually being used.
  • a/an in the context of this disclosure are to be read as indefinite articles, i.e., unless expressly stated to the contrary, always as “at least one/at least one”. Conversely, “a/one” can also be understood as “only one/only one”. Accordingly, the term “comprise” can generally be understood to mean that in addition to the elements mentioned, further elements can be present. Conversely, the term “comprise” can also generally be understood in the sense of “consist of”, that is, in addition to the no other elements may be present.
  • a silicon-containing component comprises at least 2 and preferably between 8 and 12 saturated and/or unsaturated epoxycycloalkyl groups.
  • a silicon-containing component has several saturated and/or unsaturated epoxycycloalkyl groups, namely, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more.
  • the silicon-containing component can be used as a multifunctional crosslinker with an adjustable space requirement, whereby the glass transition temperature of the cured insulation material can be adjusted particularly precisely.
  • at least one epoxycycloalkyl group is bonded via a spacer to a structural element of a silicon-containing component.
  • the spacer can, for example, be a Ci-Ci2-alkyl radical and generally be attached to any suitable position of the cycloalkyl group. This also enables a particularly precise adjustment of the glass transition temperature and, in individual cases, facilitates the arrangement of several epoxycycloalkyl groups on the structural element of a silicon-containing component contained in the prepreg matrix.
  • At least one of the epoxycycloalkyl groups contained is selected from a group that includes epoxy-C3-C8-cycloalkly groups.
  • at least one epoxycycloalkyl group can be an epoxycyclopropyl, epoxycyclobutyl, epoxycyclopentyl, epoxycyclohexyl, epoxycycloheptyl or epoxycyclooctyl group. This also allows the space requirement of the silicon-containing component and thus the glass transition temperature of the cured prepreg and/or insulation material to be set particularly precisely.
  • the prepreg matrix comprises at least one polysilsesquioxane containing epoxycycloalkyl groups.
  • Polysilsesquioxanes are silicon resins that can be synthesized using trifunctional organosilane compounds and represent an organic-inorganic hybrid material that combines the inorganic properties of the siloxane bond (Si-O-Si) that forms the main chain and the organic properties of the organic functional group that the side chain (s) forms or form, combined.
  • This molecular, "liquid sand" at room temperature which usually has a particle diameter of 1 nm, can generally be modified with one or more epoxycycloalkyl functionalities, with each epoxycycloalkyl group optionally attached to a silicon via a spacer such as a methyl, ethyl, propyl group, etc - matom can be bound as a structural element of polysilsesquioxane.
  • polysilsesquioxane derivatives have, on the one hand, good solubility in epoxy resins, and on the other hand, their UV stability and hydrophobicity are advantageously increased.
  • Parts of the carbon-based diglycidyl ether are replaced by, for example, glycidyl ether-functionalized polyhedral silsesquioxanes.
  • the cycloaliphatic epoxy functionality(s) of these hybrid molecules can, for example, copolymerize with an anhydride-containing base epoxy resin and are thus completely and highly dispersed incorporated into the resulting prepreg matrix.
  • the cycloaliphatic epoxy functionality(s) has/have the already mentioned high sterics due to the non-aromatic ring structure(s) and lead to higher glass transition temperatures when the silicon-containing component is incorporated into the polymeric network. Since the backbone of these polysilsesquioxane derivatives that serve as additives consists of a (poly) oligosiloxane - i.e.
  • organically modified silicon which, for example, oxidizes 1.5-fold according to the formula (epoxycyclohexylethyl) 3-12 (SiOi.5) g-12 present - the stage of completely oxidized and quasi organically embedded silicon dioxide is reached very quickly through partial discharge bombardment during operation of an associated electrical machine, so that these polysilsesquioxane derivatives in the prepreg matrix are converted in-situ into a highly active anti-erosion additive under electrical stress.
  • the polysilsesquioxane derivatives mentioned also have other advantageous properties such as transparency, heat resistance, hardness, electrical resistance, dimensional stability (low thermal expansion) and flame retardancy.
  • one or more different epoxy functionalities can in principle Corresponding functional groups can be provided, via which further properties such as compatibility with the epoxy base resin and / or the hardener formulation, dispersion stability, storage stability, fracture factor and reactivity can be adjusted.
  • the at least one polysilsesquioxane containing epoxycycloalkyl groups has a random structure, a conductor structure and/or a cage structure. This makes it possible to specifically influence the resulting glass transition temperature of the prepreg matrix for partial conductor insulation.
  • the polysilsesquioxane containing epoxycycloalkyl groups can have a cage structure with 6, 8, 10 or 12 Si vertices.
  • the prepreg matrix comprises or is a cycloaliphatic epoxy resin, in particular 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate.
  • This also represents an advantageous glass transition modifier, by means of which the glass transition temperature of the insulation material that is later hardened from the prepreg matrix can be advantageously increased.
  • the prepreg matrix additionally comprising at least one polysiloxane, in particular a diglycidyl ether-terminated poly (dialkylsiloxane) and/or a diglycidyl ether-terminated poly (phenylsiloxane).
  • polysiloxanes can form a -SiR2-0 backbone in the cured insulation material.
  • R stands for all types of organic residues that are suitable for curing and/or crosslinking to form an insulation material.
  • R stands for -aryl, -alkyl, -heterocycles, nitrogen, oxygen and/or sulfur-substituted aryls and/or Alkyls.
  • each R can be chosen the same or different and generally represent the following groups: - Alkyl, for example -methyl, -propyl, -isoPropyl, -butyl, -isoButyl, -tertButyl, -pentyl, -isoPentyl, -cyclopentyl so- like all other analogues up to dodecyl, i.e. the homologue with 12 carbon atoms;
  • Aryl for example: benzyl, benzoyl, biphenyl, toluyl, xylenes etc., in particular, for example, all aryl radicals whose structure corresponds to Hückel's definition of aromaticity
  • heterocycles in particular sulfur-containing heterocycles such as thiophene, tetrahydrothiophene, 1, 4-thioxane and homologues and/or derivatives thereof,
  • Oxygen-containing heterocycles such as dioxanes
  • Nitrogen-containing heterocycles such as -CN, -CNO, -CNS, -N 3 (azide) etc.
  • the synthetic resin is selected from a group that includes epoxy resins containing phthalic anhydride derivatives and epoxy resins free of phthalic anhydride derivatives, in particular bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), epoxy novolak , epoxy-phenol novolak, epoxy-polyurethanes or any mixture thereof.
  • BADGE bisphenol A diglycidyl ether
  • BFDGE bisphenol F diglycidyl ether
  • epoxy novolak epoxy-phenol novolak
  • epoxy-polyurethanes epoxy-polyurethanes or any mixture thereof.
  • the epoxy base resin can be undistilled and/or distilled, possibly reactively diluted bisphenol A diglycidyl ether, undistilled and/or distilled, possibly reactively diluted bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether and/or hydrogenated bisphenol F Diglycidyl ether, pure and/or solvent-diluted epoxy novolak and/or epoxy phenol novolak, cycloaliphatic epoxy resins such as 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexylcarboxylate, for example CY179, ERL-4221; Celloxide 2021P, bis (3, 4-epoxycyclohexylmethyl) adipate, e.g.
  • ERL-4299 Celloxide 2081, vinylcyclohexene diepoxide, e.g. ERL-4206; Celloxide 2000, 2- (3, 4-epoxycyclohexyl-5, 5-spiro-3, 4-epoxy) - cyclohexane-meta-dioxane e.g. ERL-4234; Diglycidyl hexahydrophthalate, e.g. CY184, EPalloy 5200; Tetrahydrophthalic acid diglycidyl ether, for example CY192; glycidated amino resins (N,N-diglycidylpara-glycidyloxyaniline e.g.
  • the hardeners - in the case of addition polymerization - and / or the initiators - in the case of homopolymerization and optionally also in the case of addition polymerization - are selected from a group that includes cationic and anionic Curing catalysts, amines, acid anhydrides, in particular methylhexahydrophthalic anhydride, siloxane-based hardeners, oxirane-containing hardeners, in particular glycidyl ethers, super acids, epoxy-functionalized hardeners or any mixture thereof, and/or a tertiary amine and/or an organic zinc salt.
  • one or more organic salts such as organic ammonium, sulfonium, iodonium, phosphonium and/or imidazolium salts and amines, such as tertiary amines, pyrazoles and/or imidazole compounds, can be present as the initiator.
  • organic ammonium, sulfonium, iodonium, phosphonium and/or imidazolium salts and amines such as tertiary amines, pyrazoles and/or imidazole compounds
  • examples which may be mentioned here are 4,5-dihydroxymethyl-2-phenylimidazole and/or 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • the prepreg matrices produced using polysiloxane-containing and/or polysilsesquioxane-containing glycidyl ether-based synthetic resins are much better suited than the purely carbon-based ones for adhesion of the prepreg to the partial conductors and in particular to the partial conductor edges and for formation of the sub-leader group, in particular also with regard to the introduction of the partial conductor assembly into a groove.
  • the paint includes, for example, barrier material, in particular made of or with mica particles, SiC>2 nanoparticles and/or similar partial discharge-resistant, in particular mineral, particles.
  • prepreg matrices can be used to achieve the technical effect:
  • polysiloxane-substituted epoxy resin component (1,3-bis(3-glycidyl-oxypropyl) tetramethyldisiloxane), 10% by weight of cycloaliphatic epoxy resin component (3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate), 50% by weight .-% bisphenol A diglycidyl ether as epoxy base resin;
  • polysiloxane-substituted epoxy resin component (1,3-bis(3-glycidyl-oxypropyl) tetramethyldisiloxane), 20% by weight of cycloaliphatic epoxy resin component (3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate), 40% by weight .-% bisphenol A diglycidyl ether as epoxy base resin;
  • Example 4 20% by weight of polysiloxane-substituted epoxy resin component (1,3-bis(3-glycidyl-oxypropyl) tetramethyldisiloxane), 40% by weight of cycloaliphatic epoxy resin component (3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate), 40% by weight .-% bisphenol A diglycidyl ether as epoxy base resin.
  • polysiloxane-substituted epoxy resin component (1,3-bis(3-glycidyl-oxypropyl) tetramethyldisiloxane)
  • cycloaliphatic epoxy resin component (3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexanecarboxylate
  • bisphenol A diglycidyl ether as epoxy base resin.
  • Anhydride for example a phthalic anhydride, such as methylhexahydrophthalic anhydride, can be used as the hardener in all examples.
  • benzyldimethylamine for example, can be used as an initiator at 0.8% by weight, based on the total mass of the respective prepreg matrix.
  • the partial conductor insulation presented here for the first time and/or the partial conductor composite which can be produced using prepregs, makes it possible to create partial conductor insulations which, because of their good mechanical properties and their high partial discharge resistance, counteract the extreme electrical load on the edges and/or radii of the partial conductors and thus lead to an improvement of the entire insulation system at the weak point of the partial conductor insulation and in particular at the edges and/or radii of the partial conductor insulation.
  • elemental analysis can be used to detect at any time whether Si atoms were used in the partial conductor insulation or not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

Die Erfindung betrifft eine Teilleiterisolation, herstellbar durch eine maschinellen Verarbeitung eines entsprechenden Prepregs in automatisierten Prozessen bei der Herstellung von Teilleiterisolationen von elektrischen rotierenden Maschinen. Entsprechend betrifft die Erfindung die Teilleiterisolation, herstellbar mit dem Prepreg und schlielich eine elektrische rotierende Maschine mit einer entsprechenden Teilleiterisolation. Durch die hier erstmals vorgestellten Teilleiterisolation und/oder den Teilleiterverbund herstellbar ber Prepregs wird die Schaffung von Teilleiterisolationen mglich, die wegen ihrer guten mechanischen Eigenschaften und ihrer hohen Teilentladungsresistenz der extremen elektrischen Belastung an den Kanten und/oder Radien der Teilleiter entgegenwirken und damit zu einer Verbesserung des gesamten Isolationssystems an der Schwachstelle der Teilleiterisolation und insbesondere bei der Teilleiterisolation an den Kanten und/oder Radien, fhren. Unter anderem ist mittels Elementaranalyse jederzeit nachweisbar, ob Si-Atome in der Teilleiterisolation eingesetzt wurden oder nicht.

Description

Beschreibung
Teilleiterisolation und Teilleiterverbund einer elektrischen rotierenden Maschine
Die Erfindung betrifft eine Teilleiterisolation, herstellbar durch eine maschinellen Verarbeitung eines entsprechenden Prepregs in automatisierten Prozessen bei der Herstellung von Teilleiterisolationen von elektrischen rotierenden Maschinen.
Entsprechend betrifft die Erfindung eine Teilleiterisolation, einen Teilleiterverbund herstellbar mit dem Prepreg und schließlich eine elektrische rotierende Maschine mit einer entsprechenden Teilleiterisolation.
Bei elektrischen Maschinen wird in der Regel eine Aufsplit- tung eines elektrischen Leiters in mehrere parallele Teilleiter vorgenommen. Dies betrifft sowohl elektrische rotierende Maschinen mit hoher Bemessungsspannung, bei denen die Teilleiter oft in Form von Flachdrähten vorliegen, wie auch für elektrische rotierende Maschinen mit geringerer Bemessungsspannung, wie z. B. Traktionsmotoren, bei denen die Teilleiter auch in Form von Runddrähten vorliegen. Teilleiter sind in der Nut übereinander mit unterschiedlichem Potential geschichtet oder angeordnet. Damit diese Teilleiter nicht miteinander elektrisch kurzgeschlossen werden, müssen sie mit einer Teilleiterisolation elektrisch voneinander isoliert sein. Mit der Anordnung und/oder Schichtung - auch Teilleiterverbund genannt - werden dann die Nuten des Blechpakets des zylindrisch aufgebauten Rotors einer elektrischen rotierenden Maschine, wie eines Motors, beispielsweise auch eines Traktionsmotors, gefüllt. Wichtig ist beim Einbringen der Teilleiter und/oder des Teilleiterverbunds, dass die Isolation der Teilleiter erhalten bleibt. Insbesondere an den Kanten bei den Flachdrähten können beim Einbringen des Teilleiterverbunds in die Nut mechanische Schäden auftreten. Die Herstellung einer Wicklung für elektrische rotierende Maschinen wird aus Flachdraht oder Runddraht bewerkstelligt .
Die Wicklung einer elektrischen rotierenden Ma schine umfas st dabei Teilleiterverbunde , insbesondere Verbünde aus Flachdraht-Teilleitern in Form von Spulen , z . B . drei , die wiederum mehrere Windungen , welche durch Teilleiter realisiert werden , haben . In einer Nut im Blechpaket sind nun Teilleiter übereinander mit unterschiedlichem Potential ge schichtet . Damit diese Teilleiter nicht miteinander elektrisch kurzgeschlos sen werden , müs sen sie mit einer Teilleiterisolation elektrisch voneinander i soliert werden . Je nach Design der Wicklungen können auch geschichtete Teilleiterverbunde nebeneinander in der Nut angeordnet werden . Die , beispielsweise parallel , angeordneten isolierten und ge schichteten Teilleiter bilden den Teilleiterverbund .
Es gibt verschiedene Arten von Teilleiter , die Erfindung betrif ft insbesondere flache . Bei der Wicklung und der Einbringung in die Nuten findet immer wieder ein Abkratzen oder eine sonstige Beschädigung der Teilleiterisolation , insbesondere an den Kanten statt .
Dies ist insbesondere deshalb so nachteilig , weil genau die Teilleiterkanten der Bereich mit der höchsten elektrischen Feldstärke auf Grund der geometrischen Feldüberhöhung an der Kante ist . Dort ist die Gefahr der Zündung von Teilentladungen im Betrieb am höchsten . Diese Teilentladungen können die polymere I solation im Laufe der Betriebsdauer derart schädigen , das s die Teilleiterisolation durchschlägt und zwei elektrische Teilleiter miteinander kurzge schlos sen werden .
Nach dem Einbringen der einzelnen Teilleiter in die Nut sind die einzelnen Teilleiter zwar voneinander elektrisch isoliert und zueinander fixiert , aber der Teilleiterverbund wird noch mit einer Hauptisolation versehen , um durch diese ausreichend gut vom geerdeten Blechpaket isoliert zu werden . Dabei ist die größte Spannungsdif ferenz nicht zwischen den Teilleitern zu finden, sondern zwischen dem Teilleiter mit der höchsten Spannung und dem Blechpaket, ein Teil dessen die Nut ist.
Dies wird durch eine Hauptisolation, die die Teilleiterisolation und den geschichteten Teilleiterverbund zusätzlich gegenüber dem Blechpaket isoliert, erreicht. Z.B. kommt dabei der VPI Prozess zum Einsatz. Wenn nun Schadstellen an der einzelnen Teilleiterisolation und/oder am Teilleiterverbund vorhanden sind, setzt sich diese Schwachstelle durch die ganze Isolation hindurch fort, mit verheerenden Folgen für die Lebensdauer der elektrischen rotierenden Maschine. Daher ist die Technik der Herstellung eines Teilleiterverbunds und/oder der einzelnen Teilleiterisolation ein wichtiger Baustein für die Güte der elektrischen rotierenden Maschine.
Dies umso mehr, weil die auftretenden Teilentladungen zu einer sehr starken lokalen Erhitzung führen, durch die die organischen, Kohlenstof f-haltigen Bestandteile des Isolationssystems sehr stark degradiert werden und in die Gasphase „CCt-Freisetzung" übergehen. Durch die fortwährende Teilentladungsbelastung wird das Isolationssystem so weit beschädigt, bis die Durchschlagsfestigkeit überschritten ist und es zu einem elektrischen Kurzschluss zwischen Teilleiter und Blechpaket kommt und somit zum Ausfall der Maschine. Durch eine fortschreitende Entwicklung von elektrisch rotierenden Maschinen, die auf eine Erhöhung der Leistungsdichte abzielen, wird das Problem der elektrischen Erosion durch Teilentladungsbelastung intensiviert. Dadurch rückt das Thema der Teilentladungsresistenz von Teilleitern stärker in den Fokus.
Aufgabe der Erfindung ist es, eine Technik zur Teilleiterisolation zur Verfügung zu stellen, die die Teilentladungsresistenz, insbesondere die Teilentladungsresistenz an den Kanten und Radien der Teilleiter, erhöht, sowohl
- mechanisch gegenüber dem Verletzen oder Beschädigen der Teilleiterisolation beim Einzug oder dem Einlegen der Teilleiterverbunde in die Nuten, weil die Kanten beim Einbringen in die - ebenfalls kantige - Nut die verletzlichste Stelle des Teilleiterverbunds sind, als auch - dielektrisch und materialtechnisch von der Zusammensetzung und dem Aufbau der Teilleiterisolation her gegenüber den im Betrieb insbesondere an den Kanten auftretenden Teilentladungen, weil dort der Bereich einer geometrischen Feldüberhöhung ist.
Die oben gestellte Aufgabe wird durch den Gegenstand der vorliegenden Erfindung, wie er in der Figur, den Ansprüchen und der Beschreibung offenbart ist, gelöst.
Dementsprechend ist Gegenstand der vorliegenden Erfindung eine Teilleiterisolation aus einem Prepreg, die einen festen Isolationswerkstoff in einer Prepreg-Matrix umfasst, wobei fester Isolationswerkstoff in Form von Lagen, Laminatlagen, Bändern, als Papier und/oder in Form von verbundenen Barrierewerkstof f-Partikel in der Prepreg-Matrix vorliegt, der feste Isolationswerkstoff zumindest teilentladungsresistentes Material, gegebenenfalls mit einem Bandkleber, umfasst, wobei
- die Prepreg-Matrix auf Kohlenstof f-Verbindungen basiert, obwohl bis zu 45Gew%, bevorzugt bis zu 35Gew% und insbesondere bevorzugt bis zu 25Gew% des Gesamtgewichtes der Prepreg-Matrix durch eine oder mehrere Siliziumhaltige (n) Komponente (n) , ersetzt ist, wobei
- der feste Isolationswerkstoff in der Prepreg-Matrix eingebettet ist und im vorgehärteten B-Zustand „B-stage" verarbeitbar ist.
Unter „Prepreg-Matrix" wird ein - gemäß der Erfindung zumindest teilweise durch Silizium-haltiges Harz substituiertes - kohlenstoffhaltiges Kunstharz oder Duromer, wie z.B. Epoxid, Polyester, Polyamid, Polyamidimid, Polyetherimid und/oder eine beliebige Mischung und/oder Copolymer dieser Kohlenstoffbasierten Verbindungen, insbesondere Harze, verstanden, die nach Härtung einen Kunststoff, also in voll ausgehärtetem Zustand ein Duromer, ergeben. Nach einer vorteilhaften Ausführungsform der Erfindung wird die eine oder mehrere Silizium-haltige (n) Komponente (n) ausgewählt ist aus der folgenden Gruppe:
Siloxan, Polysiloxan, Silsesquioxan und/oder Polysilsesquio- xan sowie beliebige Kombinationen, Blends, Copolymere und/oder Mischungen der vorgenannten Silizium-haltigen Verbindungen .
Nach einer vorteilhaften Ausführungsform wird das Prepreg durch Wicklung verarbeitet, indem ein Leitungselement, wie beispielsweise ein Kupfer-Runddraht, mit einem Prepreg zur Isolation umwickelt wird. Dabei entstehen die so genannten Teilleiterisolationen.
Bei der Umwicklung eines Stapels von isolierten Teilleitern entsteht ein Teilleiterverbund.
Typischerweise können Duromere nicht unzersetzt geschmolzen werden, sondern zersetzen sich, ohne vorher weich zu werden. Dies ist auf die dreidimensionale Vernetzung der, das Duromer durch Härtung bildenden, Monomereinheiten zurückzuführen. Vor dieser vollständigen Härtung „C-Zustand" befinden sich die Monomereinheiten in einem „B-Zustand”, in dem zwar Vernetzung vorliegt, so dass die Monomeren nicht mehr fließfähig sind, aber eben eine unzersetzt schmelzbare, also „verf lüssigbare” Vernetzung. Beispielsweise liegt eine lineare Kettenvernetzung vor, aber noch keine Quervernetzung. Diese Vorvernetzung ist der B-Zustand der Prepreg-Matrix bei Verarbeitung. Die reinen Epoxidharze sind gut vorvernetzbar, sind aber leicht dünnflüssig und fließen daher - vor allem an den Kanten - bei geringer Erwärmung wieder ab. Die Prepregs gemäß der Erfindung befinden sich im B-Zustand in einem nicht ausgehärteten, flexiblen Zustand, der einem Abfließen von den Kanten entgegenwirkt.
Allgemeine Erkenntnis der Erfindung ist es, dass durch Zugabe sterisch komplexer Polysiloxane und/oder Silsesquioxane der B-Zustand der Prepreg-Matrix eine ganz andere Rheologie auf- weist als der allein Kohlenstof f-basierte , weil diese -z.B. sterisch komplexen - Silizium-basierten Monomereinheiten im B-Zustand bereits eine hohe Festigkeit des Kunstharzes bei Beibehaltung der vollen Flexibilität des B-Zustands bewirken. Somit sind sie sowohl besser verarbeitbar als auch mechanisch stabiler und vor allem geeignet, das Harz beispielsweise an den Kanten länger im B-Zustand zu halten, als es bei reinen Kohlenstof f-basierten Kunstharzen der Fall ist.
Nach einer vorteilhaften Ausführungsform der Erfindung wird das Prepreg in Form von flächigem Werkstoff, wie Lagen, insbesondere bandförmigen Lagen, auch „Bandlagen" genannt, auf die Teilleiter aufgebracht. Beispielsweise wird das Prepreg in Form von zumindest zwei Lagen um die Teilleiter gewickelt.
Dabei wird ein Barrierewerkstoff, insbesondere Glimmer oder Glimmer-haltig, als teilentladungsresistentes Material in das Prepreg eingearbeitet. Der Barrierewerkstoff kann dabei mit einem Träger, wie ein Fasergewebe, verbunden in die Matrix eingebracht werden. Nach einer beispielhaften Ausführungsform - nicht notwendigerweise- ist der Barrierewerkstoff dabei mit zusätzlichem Kleber mit dem Träger verbunden. Dieser verbundene Barrierewerkstoff, also beispielsweise Glimmerpapier, und/oder die Kombination aus Träger und Barrierewerkstoff, bildet den so genannten festen Isolationswerkstoff, beispielsweise ein Wickelband für eine Wickelbandisolation. Der feste Isolationswerkstoff liegt in Form von Bändern und/oder in Lagen - z.B. auch in Form von Laminatlagen - vor und wird mit der Formulierung, die nach Vorhärtung eine Pre- preg-Matrix nach der Erfindung bildet, zur Herstellung des Prepregs imprägniert und vorgehärtet in den B-Zustand gebracht wird.
Dieses Produkt, also der feste Isolationswerkstoff in der Matrix aus kohlenstof f-basiertem Kunstharz, in dem bis zu 45Gew% der Kohlenstof f-Verbindungen durch Silizium- Verbindungen substituiert sind, eingebettet und dieses Vorprodukt dann bis zum B-Zustand der Matrix angehärtet, ent- spricht dem Prepreg. Das Prepreg wird z.B. als Teilleiterisolation um beispielsweise eine Kupferflachdraht, eine Spule in der Hairpin-Technologie und/oder ein vergleichbares Leiterelement eines Elektromotors als Isolation gewickelt. Dabei entsteht die so genannte Teilleiterisolation durch Umwickeln des Leitungselements, wie einem Flachdraht, mit dem Prepreg - beispielsweise - in Form von Bandagen.
Ein Verbund aus einem Stapel solcher isolierter Teilleiter nennt man einen Teilleiterverbund, der wiederum durch Umwickeln des Stapels mit beispielsweise dem Prepreg als Laminat, herstellbar z.B. aus einem Laminatlagenstapel aus dem Bänder ausgeschnitten sind, gebildet wird.
Dabei reicht in der Regel die Prepreg-Matrix aus, damit der Glimmer im Prepreg chemisch und physikalisch lager-stabil und homogen verteilt vorliegt, optional kann aber noch ein Bandkleber vorgesehen sein.
Bei der Aufbringung der Prepregs in Form von Bandlagen ist es vorteilhaft, wenn die Bandlagen anstoßend und/oder in gleichsinniger Richtung um den oder die Teilleiter gewickelt werden .
Hier ist es besonders vorteilhaft, wenn die zweite Bandlage um 40% bis 60% versetzt über der ersten Bandlage um den oder die Teilleiter gewickelt wird.
Monomereinheiten für Epoxidharze, die Epoxidgruppen auf einem Kohlenstof f-Gerüst tragen, sind durch die Umsetzung von einer Verbindung mit Hydroxygruppen und/oder Aminen und/oder Amiden und Epichlorhydrin herstellbar. Als Verbindungen mit Hydroxygruppen eignen sich beispielsweise aliphatische Diole, Phenole, phenolische Verbindungen und/oder Dicarbonsäuren. Als Phenole werden Verbindungen wie Bisphenol -A, -F und/oder No- volake verwendet. Als mehrwertige Alkohole werden Verbindungen wie 1 , 4-Budandiol eingesetzt. Di- und Polyole führen zu Diglycid-Polyethern. Die Prepreg-Matrix umfasst zudem eine Mischung von Harz und Härter im Fall einer Additionspolymerisation im stöchiometrischen Verhältnis und im Falle einer Homopolymerisation mit einem geringen Anteil - beispielsweise kleiner 10Gew% - bevorzugt kleiner 5Gew%, insbesondere bevorzugt kleiner 2Gew%, besonders bevorzugt innerhalb eines Bereichs von 0,5 bis 1,5 Gew% , bezogen auf die Gesamtmasse der jeweiligen Prepreg- Matrix, an Initiator.
Als B-stage oder B-Zustand bezeichnet man einen Zustand der Vorhärtung des Kunstharzes, in der die Prepreg-Matrix zwar fest vorliegt und somit als Teilleiterisolation verarbeitbar ist, aber die dennoch unzersetzt schmelzbar ist. Das Prepreg wird im B-Zustand verarbeitet und dann mit Bildung der Hauptisolation - beispielsweise unter Druck und Wärme - durch Heißpressen zur vollständig ausgehärteten Teilleiterisolation und/oder zum vollständig ausgehärteten Teilleiterverbund durchgehärtet .
Gemäß der Erfindung wird in der Prepreg-Matrix ein nicht unerheblichen Teil der Kohlenstof f-basierten Harzanteil Prepreg-Matrix durch Monomereinheiten, die Epoxidgruppen an einer Silizium-haltigen Komponente tragen, substituiert. Als „Silizium-haltige Komponente” werden beispielsweise Verbindungsklassen wie Siloxan, Polysiloxan, Silsesquioxan und/oder Polysilsesquioxan bezeichnet.
Die Silizium-haltige Komponente ist in der Prepreg-Matrix mit einem Mengenanteil von größer/gleich 2 Gew%, also beispielsweise 2%, 3%, 4%, 5%, 6 %, 7 %, 8 %, 9 %, 10 %, 11 %, 12 %,
13 %, 14 %, 15 %, 16 %, 17 %, 18 %, 19 %, 20 %, 21 %, 22 %,
23 %, 24 %, 25 %, 26 %, 27 %, 28 %, 29 %, 30 %, 31 %, 32 %,
33 %, 34 %, 35 %, 36 %, 37 %, 38 %, 39 %, 40 %, 41 %, 42 %,
43 % , 44 % , 45 % , 46 % , 47 % , haben. Es versteht sich, dass sich die Stoffmengenanteile aller Verbindungen der Harzformulierung immer und ausschließlich zu 100 Gew.-% ergänzen. Der Kohlenstof f-basierte Harzanteil ist in der Prepreg-Matrix mit einem Mengenanteil von größer/gleich 8Gew%, also bei- spielsweise 8 %, 9 %, 10 % , 11 % , 12 % , 13 % , 14 %, 15 %,
16 %, 17 %, 18 %, 19 %, 20 %, 21 %, 22 %, 23 %, 24 %, 25 %, 26 %, 27 %, 28 %, 29 %, 30 %, 31 %, 32 %, 33 %, 34 %, 35 %, 36 %, 37 %, 38 %, 39 %, 40 %, 41 %, 42 %, 43 %, 44 %, 45 %, 46 %, 47 %, 48 %, 49 %, 50 %, 51 %, 52 %, 53 %, 54 %, 55 %, 56 %, 57 %, 58 %, 59 %, 60 %, 61 %, 62 %, 63 %, 64 %, 65 %, 66 %, 67 %, 68 %, 69 %, 70 %, 71 %, 72 %, 73 %, 74 %, 75 %, 76 %, 77 %, 78 %, 79 %, 80 %, 81 %, 82 %, 83 %, 84 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %,
96 %, 97 %, 98 % oder 99 % enthalten.
Eine verbesserte elektrische und mechanische Beständigkeit wird nach einer vorteilhaften Ausführungsform dadurch ermöglicht, dass die Prepreg-Matrix zusätzlich zum Kohlenstoffbasierten Basisharz wenigstens eine Silizium-haltige Komponente mit zumindest einer gesättigten und/oder ungesättigten Epoxycycloalkylgruppe umfasst, mittels welcher eine Glasübergangstemperatur des Isolationsmaterials gegenüber einer Imprägnierformulierung ohne die Silizium-haltige Komponente erhöht ist.
Mit anderen Worten ist es erfindungsgemäß vorgesehen, dass die Prepreg-Matrix mindestens zwei Bestandteile enthält, nämlich ein Kohlenstoff-haltiges Basisharz und eine Siliziumhaltige Komponente, die bevorzugt eine oder mehrere Epoxycycloalkylgruppen aufweist, wobei jede der Epoxycycloalkylgruppen gesättigt oder ein- oder mehrfach ungesättigt sein kann. Ungesättigte Epoxycycloalkylgruppen können auch als Epoxycyc- loalkenylgruppen bezeichnet werden. Die cycloaliphatische (n) Epoxidfunktionalität (en) der Silizium-haltigen Komponente ist bzw. sind sterisch sehr anspruchsvoll und weist bzw. weisen einen hohen Raumbedarf aufgrund der nicht-planaren cycloaliphatischen Ringstruktur auf. Daher führt der Einbau dieser Struktur (en) in das polymere Netzwerk des ausgehärteten Isolationsmaterials im Vergleich zu einer Matrix, welche die wenigstens eine Silizium-haltige Komponente nicht enthält, ansonsten aber gleich zusammengesetzt ist, zu höheren Glasübergangstemperaturen bei gleichzeitig erhöhter elektrischer Beständigkeit des ausgehärteten Isolationsmaterials.
Der Glasübergang erfolgt in der Regel nicht bei einem scharfen Temperaturwert, sondern in einem Glasübergangstemperaturbereich. Als Glasübergangstemperatur wird in einem solchen Fall der mittlere Temperaturwert des Glasübergangstemperaturbereichs verwendet. Das molar-stöchiometrische Verhältnis von Harzformulierung zu Härter - bei Additionspolymerisation- kann nach Bedarf eingestellt werden, wobei üblicherweise ein Verhältnis im Bereich von etwa 1:0, 9 bis etwa 1:1,1 verwendet wird .
Generell sind „ein/eine" im Rahmen dieser Offenbarung als unbestimmte Artikel zu lesen, also ohne ausdrücklich gegenteilige Angabe immer auch als „mindestens ein/mindestens eine”. Umgekehrt können „ein/eine” auch als „nur ein/nur eine” verstanden werden. Entsprechend kann der Begriff „umfassen” generell so verstanden werden, dass neben den genannten Elementen weitere Elemente vorhanden sein können. Umgekehrt kann der Begriff „umfassen” generell aber auch im Sinne von „bestehen aus” verstanden werden, das heißt dass neben den genannten Elementen keine weiteren Elemente vorhanden sein dürfen .
In einer vorteilhaften Ausgestaltung der Erfindung umfasst eine Silizium-haltige Komponente mindestens 2 und vorzugsweise zwischen 8 und 12 gesättigte und/oder ungesättigte Epoxycycloalkylgruppen. Mit anderen Worten weist eine Siliziumhaltige Komponente mehrere gesättigte und/oder ungesättigte Epoxycycloalkylgruppen, nämlich beispielsweise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 oder mehr auf. Hierdurch kann die Silizium-haltige Komponente als multifunktioneller Vernetzer mit einstellbarem Raumbedarf verwendet werden, wodurch die Glasübergangstemperatur des ausgehärteten Isolationsmaterials besonders präzise einstellbar ist. Alternativ oder zusätzlich ist es vorgesehen, dass wenigstens eine Epoxycycloalkylgruppe über einen Spacer an ein Strukturelement einer Silizium-haltigen Komponente gebunden ist. Der Spacer kann beispielsweise ein Ci-Ci2-Alkylrest sein und generell an jeder geeigneten Position der Cycloalkylgruppe angebunden sein. Dies ermöglicht ebenfalls eine besonders präzise Einstellung der Glasübergangstemperatur und erleichtert im Einzelfall die Anordnung mehrerer Epoxycycloalkylgruppen am Strukturelement einer in der Prepreg-Matrix enthaltenen Silizium-haltigen Komponente.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass wenigstens eine der enthaltenen Epoxycycloalkylgruppe ausgewählt ist aus einer Gruppe, die Epo- xy-C3-C8-Cycloalklygruppen umfasst. Mit anderen Worten kann wenigstens eine Epoxycycloalkylgruppe eine Epoxycyclopropyl-, Epoxycyclobutyl-, Epoxycyclopentyl- , Epoxycyclohexyl- , Epo- xycycloheptyl- oder Epoxycyclooctylgruppe sein. Auch hierdurch kann der Raumbedarf der Silizium-haltigen Komponente und damit die Glasübergangstemperatur des ausgehärteten Prepregs und/oder Isolationsmaterials besonders präzise eingestellt werden.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Prepreg-Matrix wenigstens ein Epoxycycloal- kylgruppen-haltiges Polysilsesquioxan umfasst. Polysilsesqui- oxane sind Siliziumharze, die unter Verwendung trifunktionaler Organosilanverbindungen synthetisiert werden können und ein organisch-anorganisches Hybridmaterial darstellen, das die anorganischen Eigenschaften der Siloxanbindung (Si-O-Si) , die die Hauptkette bildet, und die organischen Eigenschaften der organischen Funktionsgruppe, die die Seitenkette (n) bildet bzw. bilden, kombiniert. Dieser molekulare, bei Raumtemperatur "flüssige Sand", der üblicherweise Partikeldurchmesser ^1 nm besitzt, kann generell mit einer oder mehreren Epoxycycloalkylfunktionalitäten modifiziert werden, wobei jede Epoxycycloalkylgruppe gegebenenfalls über einen Spacer wie etwa eine Methyl-, Ethyl-, Propylgruppe etc. an ein Siliziu- matom als Strukturelement des Polysilsesquioxans gebunden sein kann.
Hierdurch weisen derartige Polysilsesquioxan-Derivate einerseits eine gute Löslichkeit in Epoxidharzen auf, andererseits sind ihre UV-Stabilität sowie Hydrophobizität vorteilhaft erhöht .
Dabei werden Teile des Kohlensotf f-basierten Diglycidylether s durch beispielsweise glycidylether-f unktionalisierte po- lyedrische Silsesquioxane ersetzt.
Die cycloaliphatischen Epoxyfunktionalität (en) dieser Hybridmoleküle können beispielsweise mit einem anhydridhaltigen Basis-Epoxidharz copolymerisieren und werden so vollständig und hochdispers in der resultierenden Prepreg-Matrix eingebaut. Die cycloaliphatische (n) Epoxidf unktionalität (en) weist bzw. weisen die bereits erwähnte hohe Sterik aufgrund der nicht-aromatischen Ringstruktur (en) auf und führen bei Einbau der Silizium-haltigen Komponente in das polymere Netzwerk zu höheren Glasübergangstemperaturen. Da das Rückgrat dieser als Additive dienenden Polysilsesquioxan-Derivate aus einem (Poly) Oligosiloxan besteht — also organischmodifiziertes Silizum - das beispielsweise gemäß der Formel (Epoxycyclohe- xylethyl) 3-12 (SiOi.5) g-12 bereits 1,5-fach oxidiert vorliegt — ist die Stufe zum vollständig oxidierten und quasi organisch eingebetteten Siliziumdioxid durch Teilentladungsbeschuss im Betrieb einer zugeordneten elektrischen Maschine sehr schnell erreicht, sodass diese Polysilsesquioxan-Derivate in der Prepreg-Matrix unter elektrischer Belastung in-situ in ein hochaktives Anti-Erosionsadditiv umgewandelt werden.
Die genannten Polysilsesquioxan-Derivate weisen zudem weitere vorteilhafte Eigenschaften wie Transparenz, Hitzebeständigkeit, Härte, elektrische Widerstandsfähigkeit, Dimensionsstabilität (geringe Wärmeausdehnung) und Flammschutzverhalten auf. Neben einer oder mehreren cycloaliphatischen Epoxyfunktionalität (en) können grundsätzlich eine oder mehrere abwei- chende Funktionsgruppen vorgesehen sein, über welche weitere Eigenschaften wie Kompatibilität mit dem Epoxidbasisharz und/oder der Härterformulierung, Dispersionsstabilität, Lagerstabilität, Bruchfaktor sowie Reaktivität eingestellt werden können.
Weitere Vorteile ergeben sich, indem das wenigstens eine Epo- xycycloalkylgruppen-haltige Polysilsesquioxan eine zufällige Struktur, eine Leiterstruktur und/oder eine Käfigstruktur besitzt. Hierdurch kann gezielt Einfluss auf die resultierende Glasübergangstemperatur der Prepreg-Matrix zur Teilleiterisolation genommen werden. Beispielsweise kann das Epoxycycloal- kylgruppen-haltige Polysilsesquioxan eine Käfigstruktur mit 6, 8, 10 oder 12 Si-Vertices aufweisen.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Prepreg-Matrix ein cycloaliphatisches Epoxidharz, insbesondere 3 , 4-Epoxycyclohexylmethyl- 3 ' , 4 ' -epoxycyclohexancarboxylat , umfasst oder ist. Auch dies stellt ein vorteilhaftes Glasübergangsmodifizierungsmittel dar, mittels welchem die Glasübergangstemperatur des ausgehend von der Prepreg-Matrix später dann ausgehärteten Isolationsmaterials vorteilhaft gesteigert werden kann.
Weitere Vorteile ergeben sich, indem die Prepreg-Matrix zusätzlich wenigstens ein Polysiloxan, insbesondere ein Digly- cidylether-terminiertes Poly (dialkylsiloxan) und/oder ein Diglycidylether-terminiertes Poly (phenylsiloxan) , umfasst. Polysiloxane können wie Polysilsesquioxane im ausgehärteten Isolationsmaterial ein -SiR2-0-Rückgrat bilden. Dabei steht „R" für alle Arten organischer Reste, die sich zur Härtung und/oder zur Vernetzung zu einem Isolationsmaterial eignen. Insbesondere steht R für -Aryl, -Alkyl, -Heterocyclen, Stickstoff, Sauerstoff und/oder Schwefel substituierte Aryle und/oder Alkyle. Insbesondere kann jedes R gleich oder ungleich gewählt sein und generell für folgende Gruppen stehen: - Alkyl, beispielsweise -Methyl, -Propyl, -isoPropyl, -Butyl, -isoButyl, -tertButyl, -Pentyl, -isoPentyl, -Cyclopentyl so- wie alle weiteren Analoge bis zu Dodecyl, also das Homologe mit 12 C-Atomen;
- Aryl, beispielsweise: Benzyl-, Benzoyl-, Biphenyl-, Toluyl- , Xylole etc. , insbesondere beispielsweise alle Arylreste, deren Aufbau der Definition von Hückel für die Aromatizität entspricht
- Heterozyklen: insbesondere schwefelhaltige Heterozyklen wie Thiophen, Tetrahydrothiophen , 1, 4-Thioxan und Homologe und/oder Derivate davon,
- Sauerstoffhaltige Heterozyklen wie z.B. Dioxane, - stickstoffhaltige Heterozyklen wie z.B. -CN, -CNO,-CNS, -N3 (Azid) etc .
- Schwefel substituierte Aryle und/oder Alkyle: z.B. Thio- phen, aber auch Thiole.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Kunstharz ausgewählt ist aus einer Gruppe, die phthalsäureanhydridderivathaltige Epoxidharze und phthalsäureanhydridderivatfreie Epoxidharze, insbesondere Bi- sphenol-A-Diglycidylether (BADGE) , Bisphenol-F- Diglycidylether (BFDGE) , Epoxy-Novolak, Epoxy-Phenol-Novolak, Epoxy-Polyurethane oder eine beliebige Mischung hieraus umfasst. Beispielsweise kann das Epoxidbasisharz undestillierter und/oder destillierter, ggf. reaktivverdünnter Bisphenol- A-Diglycidylether , undestillierter und/oder destillierter, ggf. reaktivverdünnter Bisphenol-F-Diglycidylether , hydrierter Bisphenol-A-Diglycidylether und/oder hydrierter Bi- sphenol-F-Diglycidylether , reiner und/oder mit Lösemitteln verdünnter Epoxy-Novolak und/oder Epoxy-Phenol-Novolak, cycloaliphatische Epoxidharze wie 3 , 4-Epoxycyclohexylmethyl-3 , 4 - epoxycyclohexylcarboxylat z.B. CY179, ERL-4221; Celloxide 2021P, Bis (3, 4-epoxycyclohexylmethyl) adipat, z.B. ERL-4299; Celloxide 2081, Vinylcyclohexendiepoxid, z.B. ERL-4206; Celloxide 2000, 2- (3, 4-epoxycyclohexyl-5, 5-spiro-3, 4-epoxy) - cyclohexan-meta-dioxan z.B. ERL-4234; Hexahydrophthalsäure- diglycidylester , z.B. CY184, EPalloy 5200; Tetrahydrophthal- säurediglycidylether z.B. CY192; glycidierte Aminoharze (N,N- Diglycidylpara-glycidyloxyanilin z.B. MY0500, MY0510, N,N- Diglycidylmeta-glycidyloxyanilin z.B. MY0600, MY0610, N, N, N ' , N ' -Tetraglycidyl-4 , 4 ' -methylendianilin z.B. MY720, MY721, MY725, sowie beliebiger Mischungen der vorgenannten Verbindungen sein.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Härter - für den Fall der Additionspolymerisation - und/oder die Initiatoren - für den Fall einer Homopolymerisation und gegebenenfalls auch für den Fall einer Additionspolymerisation - ausgewählt ist aus einer Gruppe, die kationische und anionische Härtungskatalysatoren, Amine, Säureanhydride, insbesondere Methylhexahydrophthalsäureanhydrid, Siloxan-basierte Härter, oxirangruppenhaltige Härter, insbesondere Glycidylether , Supersäuren, Epoxy- f unktionalisierte Härter oder eine beliebige Mischung hieraus umfasst, und/oder ein tertiäres Amin und/oder ein organisches Zinksalz, umfasst. Beispielsweise kann als Initiator ein oder mehrere organische Salze, wie organische Ammonium-, Sulphoni- um-, lodonium-, Phosphonium- und/oder Imidazolium-salze und Amine, wie tertiäre Amine, Pyrazole und/oder Imidazol- Verbindungen vorliegen. Beispielhaft genannt sei hier 4,5- Dihydroxymethyl-2-phenylimidazol und/oder 2-Phenyl-4-methyl- 5-hydroxymethylimidazol .
Es wurde gefunden, dass organische, zum Teil dünnflüssige glycidyletherf unktionalisierte Methyl- /Phenyl- Polysiloxane und/oder Silsesquioxane in anhydridhaltigen, aber auch in anhydridfreien Kohlenstof f-basierten Kunstharz-Gemischen, wie z.B. Epoxidharzen, Polyimiden, Polyamiden..., bei thermischer Vor-Härtung zu vorteilhaften Prepreg-Matrizen für Teilleiterisolationen führen.
Die unter Verwendung von Polysiloxan-haltigen und/oder Poly- silsesquioxan-haltigen Kunstharzen auf Glycidyletherbasis hergestellten Prepreg-Matricen eignen sich wesentlich besser als die rein Kohlenstof f-basierten zur Haftung des Prepregs auf den Teilleitern und insbesondere auf den Teilleiter- Kanten und zur Bildung des Teilleiterverbunds, insbesondere auch im Hinblick auf die Einbringung des Teilleiterverbunds in eine Nut.
Als festen Isolationswerkstoff umfasst der Lack beispielsweise Barrierewerkstoff, insbesondere aus oder mit Glimmerpartikel, SiC>2 Nanopartikel und/oder ähnlichen Teilentladungsresistenten, insbesondere auch mineralischen, Partikel.
Beispielsweise können zur Erzielung des technischen Effekts folgende Prepreg-Matrices eingesetzt werden:
Beispiel 1:
40 Gew.-% polysiloxansubstituierte Epoxidharzkomponente (1,3- Bis (3-glycidyl-oxypropyl) tetramethyldisiloxan) , 10 Gew.- % cycloaliphatische Epoxidharz-Komponente (3,4- Epoxycyclohexylmethyl-3 ' , 4' -epoxycyclohexancarboxylat ) , 50 Gew.-% Bisphenol-A-Diglycidylether als Epoxidbasisharz;
Beispiel 2 :
40 Gew.-% polysiloxansubstituierte Epoxidharzkomponente (1,3- Bis (3-glycidyl-oxypropyl) tetramethyldisiloxan) , 20 Gew.- % cycloaliphatische Epoxidharz-Komponente (3,4- Epoxycyclohexylmethyl-3 ' , 4' -epoxycyclohexancarboxylat) , 40 Gew.-% Bisphenol-A-Diglycidylether als Epoxidbasisharz;
Beispiel 3:
30 Gew.-% polysiloxansubstituierte Epoxidharzkomponente (1,3- Bis (3-glycidyl-oxypropyl) tetramethyldisiloxan) , 30 Gew.- % cycloaliphatische Epoxidharz-Komponente (3,4- Epoxycyclohexylmethyl-3 ' , 4' -epoxycyclohexancarboxylat) , 40 Gew.-% Bisphenol-A-Diglycidylether als Epoxidbasisharz;
Beispiel 4 : 20 Gew.-% polysiloxansubstituierte Epoxidharzkomponente (1,3- Bis (3-glycidyl-oxypropyl) tetramethyldisiloxan) , 40 Gew.- % cycloaliphatische Epoxidharz-Komponente (3,4- Epoxycyclohexylmethyl-3 ' , 4' -epoxycyclohexancarboxylat ) , 40 Gew.-% Bisphenol-A-Diglycidylether als Epoxidbasisharz .
Als Härter kann in allen Beispielen ein Anhydrid, beispielsweise ein Phthalsäureanhydrid, wie z.B. Methylhexahydrophthalsäureanhydrid, verwendet werden. Als Initiator kann in allen Beispielen beispielsweise Benzyldimethylamin mit 0,8 Gew.-% bezogen auf die Gesamtmasse der jeweiligen Pre- preg-Matrix verwendet werden.
Durch die hier erstmals vorgestellten Teilleiterisolation und/oder den Teilleiterverbund herstellbar über Prepregs wird die Schaffung von Teilleiterisolationen möglich, die wegen ihrer guten mechanischen Eigenschaften und ihrer hohen Teilentladungsresistenz der extremen elektrischen Belastung an den Kanten und/oder Radien der Teilleiter entgegenwirken und damit zu einer Verbesserung des gesamten Isolationssystems an der Schwachstelle der Teilleiterisolation und insbesondere bei der Teilleiterisolation an den Kanten und/oder Radien, führen. Unter anderem ist mittels Elementaranalyse jederzeit nachweisbar, ob Si-Atome in der Teilleiterisolation eingesetzt wurden oder nicht.

Claims

Patentansprüche
1. Teilleiterisolation aus einem Prepreg, die einen festen Isolationswerkstoff in einer Prepreg-Matrix umfasst, wobei fester Isolationswerkstoff in Form von Lagen, Laminatlagen, Bändern, als Papier und/oder in Form von verbundenen Barrierewerkstof f-Partikel in der Prepreg-Matrix vorliegt, der feste Isolationswerkstoff zumindest teilentladungsresistentes Material, gegebenenfalls mit einem Bandkleber, umfasst, wobei
- die Prepreg-Matrix auf Kohlenstof f-Verbindungen basiert, obwohl bis zu 45Gew%, bevorzugt bis zu 35Gew% und insbesondere bevorzugt bis zu 25Gew% des Gesamtgewichtes der Prepreg-Matrix durch eine oder mehrere Siliziumhaltige (n) Komponente (n) , ersetzt ist, wobei
- der feste Isolationswerkstoff in der Prepreg-Matrix eingebettet ist und im vorgehärteten B-Zustand „B-stage" als Teilleiterisolation und/oder zum Teilleiterverbund verarbeitet, insbesondere gewickelt, ist.
2. Teilleiterisolation nach Anspruch 1, wobei die eine oder mehrere Silizium-haltige (n) Komponente (n) ausgewählt ist aus der folgenden Gruppe:
Siloxan, Polysiloxan, Silsesquioxan und/oder Polysilsesquio- xan sowie beliebige Kombinationen, Blends, Copolymere und/oder Mischungen der vorgenannten Silizium-haltigen Verbindungen .
3. Teilleiterisolation nach Anspruch 1 oder 2, wobei zumindest eine Silizium-haltige Komponente in der Prepreg-Matrix umfasst ist, die mindestens 2 und vorzugsweise zwischen 8 und 12 gesättigte und/oder ungesättigte Epoxycycloalkylgruppen umfasst .
4. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei wenigstens eine Epoxycycloalkylgruppe in der Prepreg-Matrix ausgewählt ist aus einer Gruppe, die Epoxy-C3-C8- Cycloalklygruppen umfasst und/oder wobei wenigstens eine Epo- xycycloalkylgruppe über einen Spacer an ein Strukturelement einer Silizium-haltigen Komponente gebunden ist.
5. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei eine Silizium-haltige Komponente in der Prepreg- Matrix wenigstens ein Epoxycycloalkylgruppen-haltiges Poly- silsesquioxan umfasst.
6. Teilleiterisolation nach Anspruch 5, wobei das wenigstens eine Epoxycycloalkylgruppen-haltige Polysilsesquioxan in der Prepreg-Matrix eine zufällige Struktur, eine Leiter Struktur oder eine Käfigstruktur besitzt.
7. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei eine Silizium-haltige Komponente ein cycloaliphatisches Epoxidharz, insbesondere 3 , 4 -Epoxycyclohexylmethyls' , 4' -epoxycyclohexancarboxylat, umfasst .
8. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei die Prepreg-Matrix wenigstens ein Polysiloxan, insbesondere ein Diglycidylether-terminiertes Poly (dialkylsiloxan) und/oder ein Diglycidylether-terminiertes Poly (phenylsiloxan ) , umfasst.
9. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei das Kohlenstof f-haltige Basisharz in der Prepreg- Matrix ausgewählt ist aus einer Gruppe, die Anhydridderivathaltige Epoxidharze und Anhydridderivat-freie Epoxidharze, insbesondere ein Epoxidharz ausgewählt aus der Gruppe der folgenden Verbindungen: Bisphenol-A-Diglycidylether (BADGE) , Bisphenol-F-Diglycidylether (BFDGE) , Epoxy-Novolak, Epoxy- Phenol-Novolak, Polyurethane, Polyester, Polyamid, Polyamidi- mid, Polyetherimid und/oder eine beliebige Mischung und/oder Copolymer dieser Kohlenstof f-basierten Harze umfasst.
10. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei die Prepreg-Matrix einen Härter, ausgewählt aus einer Gruppe, die kationische und anionische Härtungskataly- satoren, Amine, Säureanhydride, insbesondere Methylhexahydrophthalsäureanhydrid, Siloxan-basierte Härter, oxirangruppen- haltige Härter, insbesondere Glycidylether , Supersäuren, Epo- xi-f unktionalisierte Härter oder eine beliebige Mischung hieraus umfasst, und/oder dass die Prepreg-Matrix wenigstens eine Beschleunigersubstanz , insbesondere ein tertiäres Amin und/oder ein organisches Zinksalz, umfasst.
11. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei die Prepreg-Matrix ein Kohlenstof f-haltiges Basisharz in einer Menge von 10Gew% oder mehr aufweist.
12. Teilleiterisolation nach einem der vorhergehenden Ansprüche, wobei die Prepreg-Matrix eine Silizium-haltige Komponente in einer Menge von 5Gew% oder mehr aufweist.
13. Teilleiterisolation für elektrische Leiter einer elektrischen rotierenden Maschine in Flachdrahtform, herstellbar durch Umwicklung der elektrisch leitfähigen Flachdrähte mit einem Prepreg nach einem der Ansprüche 1 bis 12.
14. Teilleiterisolation nach Anspruch 13, herstellbar durch Wicklung von Prepreg in Form von Lagen nach einem der Ansprüche 1 bis 12 um den Teilleiter herum.
15. Teilleiterverbund, erhältlich durch Wicklung aus isolierten Teilleitern mit einem Prepreg nach einem der Ansprüche 1 bis 12 in Form von Bandlagen.
16. Elektrische rotierende Maschine umfassend eine Teilleiterisolation umfassend eine Teilleiterisolation nach einem der Ansprüche 13 bis 15.
PCT/EP2023/055831 2022-03-08 2023-03-08 Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine WO2023170112A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022202324.2A DE102022202324A1 (de) 2022-03-08 2022-03-08 Prepreg, Teilleiterisolation und elektrische rotierende Maschine mit Teilleiterisolation
DE102022202324.2 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023170112A1 true WO2023170112A1 (de) 2023-09-14

Family

ID=85772871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/055831 WO2023170112A1 (de) 2022-03-08 2023-03-08 Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine

Country Status (2)

Country Link
DE (1) DE102022202324A1 (de)
WO (1) WO2023170112A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400676A (en) * 1979-12-07 1983-08-23 Tokyo Shibaura Denki Kabushiki Kaisha Electrically insulated coil
WO2011138413A2 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung
EP2910587A1 (de) * 2012-10-19 2015-08-26 Mitsubishi Gas Chemical Company, Inc. Harzzusammensetzung, prepreg, laminat, metallfolienkaschiertes laminat und leiterplatte
WO2019057601A1 (de) * 2017-09-20 2019-03-28 Siemens Aktiengesellschaft Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
WO2020094328A1 (de) * 2018-11-06 2020-05-14 Siemens Aktiengesellschaft Elektrisches betriebsmittel mit isolationssystem, sowie verfahren zur herstellung des isolationssystems
WO2020259963A1 (de) * 2019-06-27 2020-12-30 Siemens Aktiengesellschaft Imprägnierformulierung, isolationsmaterial, verfahren zum herstellen eines isolationsmaterials und elektrische maschine mit einem isolationsmaterial

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69839896D1 (de) 1997-10-29 2008-09-25 Hitachi Chemical Co Ltd Siloxanmodifizierte Polyamidharzzusammensetzungsklebefolie, CSP Leiterplatte und Folie und hergestelltes Halbleiterbauelement
US7601429B2 (en) 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
KR102166235B1 (ko) 2012-11-28 2020-10-15 히타치가세이가부시끼가이샤 실록산 화합물, 변성 이미드 수지, 열경화성 수지 조성물, 프리프레그, 수지 부착 필름, 적층판, 다층 프린트 배선판 및 반도체 패키지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400676A (en) * 1979-12-07 1983-08-23 Tokyo Shibaura Denki Kabushiki Kaisha Electrically insulated coil
WO2011138413A2 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Elektrisches isolationsmaterial und isolationsband für eine elektrische isolation einer mittel- und hochspannung
EP2910587A1 (de) * 2012-10-19 2015-08-26 Mitsubishi Gas Chemical Company, Inc. Harzzusammensetzung, prepreg, laminat, metallfolienkaschiertes laminat und leiterplatte
WO2019057601A1 (de) * 2017-09-20 2019-03-28 Siemens Aktiengesellschaft Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
WO2020094328A1 (de) * 2018-11-06 2020-05-14 Siemens Aktiengesellschaft Elektrisches betriebsmittel mit isolationssystem, sowie verfahren zur herstellung des isolationssystems
WO2020259963A1 (de) * 2019-06-27 2020-12-30 Siemens Aktiengesellschaft Imprägnierformulierung, isolationsmaterial, verfahren zum herstellen eines isolationsmaterials und elektrische maschine mit einem isolationsmaterial

Also Published As

Publication number Publication date
DE102022202324A1 (de) 2023-09-14

Similar Documents

Publication Publication Date Title
DE60109422T2 (de) Mit verbesserter dielektrischer stärke glimmerbänder
DE202016008773U1 (de) Fester, insbesondere bandförmiger lsolationswerkstoff, Verwendung davon und elektrische Maschine
EP1303567B2 (de) Volumenmodifizierte vergussmassen auf der basis polymerer matrixharze
WO2013041363A1 (de) Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu
DE102011083409A1 (de) Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu
EP1300439A1 (de) Füllstoff für die Verwendung in elektrischen Feststoff-Isolatoren
EP3656039A1 (de) Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
EP4183028A1 (de) Pulverlack-formulierung für ein isolationssystem einer elektrischen maschine, elektrische maschine mit einem solchen isolationssystem und verfahren zum herstellen eines solchen isolationssystems
WO2020094328A1 (de) Elektrisches betriebsmittel mit isolationssystem, sowie verfahren zur herstellung des isolationssystems
DE602004001781T2 (de) Elektrische leitung beschichtet mit einer haftenden schicht und herstellungsprozess davon
DE102018202058A1 (de) Formulierung zur Herstellung eines Isolationssystems, elektrische Maschine und Verfahren zur Herstellung eines Isolationssystems
EP3091049A1 (de) Lagerungsstabile imprägnierharze und elektroisolationsbänder
DE102012202161A1 (de) Elektroisolierharz auf Basis von Isohexiddioldiglycidethern
WO2023170112A1 (de) Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine
DE102013205117A1 (de) Vergussmasse, Verwendung der Vergussmasse, thermisch gehärteter Komposit erhältlich aus der Vergussmasse und elektrische Maschine mit der Vergussmasse
DE102007062035A1 (de) Reaktionsharzsystem
WO2020259963A1 (de) Imprägnierformulierung, isolationsmaterial, verfahren zum herstellen eines isolationsmaterials und elektrische maschine mit einem isolationsmaterial
DE102018202061A1 (de) Isolation, elektrische Maschine und Verfahren zur Herstellung der Isolation
WO2015090935A1 (de) Durchschlag- und überschlagsichere giessharzzusammensetzung
JP2908431B1 (ja) 電気絶縁コイルの製造方法
WO2022175303A1 (de) Isolationssystem für elektrische rotierende maschinen und verfahren zur herstellung dazu
EP4208882A1 (de) Glimmschutzband für rotierende elektrische hochspannungsmaschine, verwendung dazu und elektrische maschine
WO2024088848A1 (de) Formulierung für ein isolationssystem, verwendung dazu und formkörper
DE102014204416A1 (de) Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes
EP4362048A1 (de) Formulierung für ein isolationssystem, verwendung dazu und formkörper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23713310

Country of ref document: EP

Kind code of ref document: A1