EP3656039A1 - Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus - Google Patents

Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus

Info

Publication number
EP3656039A1
EP3656039A1 EP18779235.3A EP18779235A EP3656039A1 EP 3656039 A1 EP3656039 A1 EP 3656039A1 EP 18779235 A EP18779235 A EP 18779235A EP 3656039 A1 EP3656039 A1 EP 3656039A1
Authority
EP
European Patent Office
Prior art keywords
insulation
backbone
base resin
sir
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18779235.3A
Other languages
English (en)
French (fr)
Inventor
Jürgen Huber
Steffen Lang
Niels Müller
Michael Nagel
Matthias ÜBLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innomotics GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3656039A1 publication Critical patent/EP3656039A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the invention relates to an electrical insulation material and / or impregnating resin for the winding tape insulation and an insulation system, for example an insulation system for a rotating electrical machine, in particular a ⁇ tel or high voltage machine.
  • EP 1 981 150 A2 describes a generator with a rotatable rotor and a stator arranged around the rotor.
  • the stator has a rotationally symmetrically configured laminated core, wherein electrically conductive winding rods run in grooves on the laminated core.
  • a winding head which connects the winding rods via connecting webs to a closed winding.
  • An insulation system has the task electrical conductors, such as wires, coils and winding rods, permanently against each other and against the laminated core of the stator or to isolate the environment.
  • the insulation system has an insulation between partial conductors (partial conductor insulation), between the conductors or winding bars (conductor or winding insulation). tion) and between the conductors and the ground potential in the slot and winding head area (main insulation).
  • the preformed coils made of insulated partial conductors are wrapped with mica tapes and impregnated with a resin as part of a vacuum pressure impregnation (VPI process).
  • Mica tapes are used in the form of mica paper.
  • the cavities in the mica paper between the individual particles and / or strip folds are filled with the insulating material.
  • the composite of impregnating resin and mica paper is hardened, forming the insulating material, which is then processed in the insulation system and provides the mechanical strength of the insulation system.
  • the electrical strength results from the many ⁇ number of solid-solid interfaces of the mica inn.
  • the VPI process therefore requires even the smallest cavities in the insulation to be filled with resin to minimize the number of internal gas-solid interfaces.
  • a conventional insulation system an impregnated winding of mica tape with tape adhesive and tape accelerator, a base resin, for example an epoxy resin and one or more hardeners, optionally also epoxy-functionalized hardener, is in the range of 0.5 to 6 mm thick.
  • the thickness of the insulation system is basically as small as possible to choose, in order to achieve high torquesgra ⁇ de of the machines.
  • it is endeavored to reduce the thickness of the insulation system, for example by about 20%.
  • This inevitably leads to increasing electric field strengths in the insulation system from - again, for example, 3.5 kV / mm to 4.5 kV / mm and thus to an increased electrical see partial discharge activity.
  • the commonly used insulation systems allow permanent operating field strengths of 3.5kV / mm with a technically possible lifetime of at least 20 years.
  • Previously used carbon-based as base resins for electrical insulation and in particular as impregnating resins for winding tape insulation preferred epoxy resins which are in liquid form on a carbon-based (-CR 2 -) n _ return ⁇ grat all possible functional groups, for example also carry epoxy groups. These are reacted with hardener to a thermosetting plastic, which forms a casting and / or, for example, the impregnation of Wickelbandiso ⁇ lation.
  • the object of the invention is to provide an approach for improving insulation systems for medium and high-voltage machines by providing a new and better, in particular partial discharge-resistant insulating material.
  • the present invention is therefore a Isola ⁇ tion material and / or impregnating resin for a Wickelbandiso ⁇ -regulation, at least a base resin, a curing agent and optionally additives comprising, characterized, in that at ⁇ least a portion of one of the insulation system to
  • Duromer curing base resin is a siloxane-containing compound ⁇ tion, which forms a -SiR 2 -0-backbone in the duromer, is.
  • the subject matter of the present invention is an insulation system, for example an insulation system for a rotating electrical machine, in particular a medium or high-voltage machine, which can be produced using the insulation material according to the invention.
  • R stands for all types of organic radicals which are suitable for curing and / or crosslinking to an insulating material which is suitable for an isolation system. ⁇ br/> In particular, R represents -aryl, -alkyl, -heterocycles, nitrogen, oxygen and / or sulfur-substituted aryls and / or alkyls.
  • R may be the same or different and represent the following groups:
  • Alkyl for example methyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, cyclopentyl and all other analogs up to dodecyl, ie the homolog with 12 carbon atoms;
  • Aryl for example: benzyl, benzoyl, biphenyl,
  • Heterocycles in particular sulfur-containing heterocycles such as thiophene, tetrahydrothiophene, 1,4-thioxane and homologues and / or derivatives thereof,
  • Oxygen-containing heterocycles e.g. Dioxane
  • Nitrogen-containing heterocycles e.g. -CN, -CNO, -CNS, - N3 (azide) etc.
  • Sulfur-substituted aryls and / or alkyls e.g. Thiophene, but also thiols.
  • the Hückel rule for aromatic compounds refers to the context that planar, cyclic Wegkonjugator molecules comprising a number of ⁇ -electrons, which can be represented in the form of 4n + 2 comprises, have a special sta ⁇ ity, which also is called aromaticity.
  • the resin in addition to the monomer-functionalized and / or oligomeric component functionalized for polymerization, which has a -SiR 2 -O-backbone, the resin also comprises at least one monomeric or oligomeric resin component functionalized for the polymerization a hydrocarbon so (CR 2 -) units comprising backbone.
  • Epoxidfunktionali ⁇ catalyzed components such as bisphenol F diglycidyl ether (BFDGE) or bisphenol A diglycidyl ether (BADGE), polyurethane and mixtures thereof.
  • BFDGE bisphenol F diglycidyl ether
  • BADGE bisphenol A diglycidyl ether
  • epoxy resins based on bisphenol F diglycidyl ether (BFDGE), bisphenol A diglycidyl ether (BADGE) or mixtures thereof.
  • the monomer or oligomeric component functionalized for polymerization which has a -SiR 2 -O-backbone, is combined with one or more compounds selected from the group of the following compounds for the base resin:
  • Glycidyl-based and / or epoxy-terminated aryl and / or alkyl siloxanes are suitable as polymerization-functionalized monomeric or oligomeric component having a -SiR 2 -O-backbone.
  • a siloxane such as 1,3-bis (3-glycidyl-oxypropyl) tetramethyldisiloxane, the DGTMS or glycidoxy-terminated phenyl-dimethylsiloxane in monomer and / or in oligomeric form, and in any mixtures and / or in the form of derivatives . It has been shown that at least doubly functionalized siloxane monomers, which can be used for the production of thermosets, are suitable here.
  • suitable cationic and anionic Härtungska gas catalytic converters such as organic salts such as organic ⁇ specific ammonium, sulphonium, iodonium, phosphonium and / or imidazolium salts, and amines, such as tertiary amines, pyrazoles and / or imidazole Links .
  • organic salts such as organic ⁇ specific ammonium, sulphonium, iodonium, phosphonium and / or imidazolium salts
  • amines such as tertiary amines, pyrazoles and / or imidazole Links .
  • 4, 5-dihydroxymethyl-2-phenylimidazole and / or 2-phenyl-4-methyl-5-hydroxymethylimidazole may be mentioned here. But it can also
  • oxirane group-containing compounds such as
  • Glycidyl ether can be used as a hardener.
  • acid anhydrides are also used successfully as hardeners in the insulation materials.
  • their toxicology is no longer quite uncontroversial.
  • the carbon-based curing agent is also to be replaced in whole or in part by siloxane-based hardeners having the same functionalities.
  • the insulating material and / or impregnating resin for a winding tape insulation also includes additives, such as sintering aids, reactive accelerators and / or fillers, which can be used both as nanoparticles. may lie angle and as a filler in the micrometer range before ⁇ .
  • a ratio of -S1R 2 -O return ⁇ grat to (-CR 2 -) backbone, such as 1: 8 to 1: 4 is most favorable, i.e. that in the insulation material concerned, the hydrocarbon-based compounds are present quantitatively 4 to 8 times as the siloxane-based compounds.
  • the proportions are based on the stoichiometry, ie are mole percentages.
  • the siloxane-containing component is thus present in an amount of 10 to 50 mol% in the base resin of the insulating material.
  • the amount of siloxane-containing component in the base resin is not more than 20 mol%, in particular not more than 18 mol% and particularly preferably not more than 15 mol%.
  • the partial discharge resistance of the insulating material is virtually increased by the presence of a certain amount of S1R 2 -O- forming monomers or oligomers in the base resin.
  • Figure 1 shows the comparison of discharge volumes to elekt ⁇ -driven aging at 10 kV. On the x-axis, the proportion of S1R 2 -O- forming compound in the base resin is applied, the zero line is at 100% (-CR 2 -) backbone or backbone-forming base resin.
  • the hardened insulation material was deliberately exposed to electrical discharges. After a certain time, the eroded volumes were scanned by a laser and thus the eroded volume - or Ero ⁇ sion depth - evaluated.
  • the paging parameters were as follows:
  • Bisphenol A diglycidyl ether (BADGE) can be observed through a SiR 2 -0-containing product "Silres®” and / or Silikoftal with an at least two functionalized, glycidoxy-terminated phenyl-dimethylsiloxane monomer, as shown in FIG.
  • substitution of -CR 2 - backbone forming compound be ⁇ acts but in the cured insulation material a deterioration of mechanical properties, so that as little as possible and as much as necessary SUC ⁇ gen of substitution should.
  • the ⁇ form a -CR 2 backbone by corresponding functionalized compounds having a -SiR 2 0 backbone ausbil ⁇ substituted ⁇ .
  • the mechanical properties of the cured insulating material are quite as good as those of the insulating material without compounds that form a -S1R 2 -O- backbone.
  • the resulting glass transition temperatures and the memory modules of the substi tuted ⁇ insulating substance are almost identical with those of the forth ⁇ conventional insulation material without substitutions.
  • the memory modules and derived glass transition temperatures as a function of degree of substitution are epoxy resin component 2 -0 backbone, represented by a, a -SiR from ⁇ -forming compound such as the "Silres®”.
  • the highest glass transition temperature is to be measured at the 25% substitution.
  • an insulation material and / or an impregnating resin for a Wickelbandiso ⁇ -regulation is first introduced, by the presence of compounds in the cured resin constituting 2 -0 backbone a -SiR shows an interpreting ⁇ Lich increased partial discharge resistance.
  • the thickness of the insulation system can be drastically reduced, for example by up to 20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Die Erfindung betrifft ein elektrisches Isolationsmaterial und/oder Imprägnierharz für die Wickelbandisolierung sowie ein Isolationssystem, beispielsweise ein Isolationssystem für eine rotierende elektrische Maschine, insbesondere eine Mittel- oder Hochspannungsmaschine. Durch die vorliegende Erfindung wird erstmals ein Isolationsmaterial und/oder ein Imprägnierharz für eine Wickelbandisolierung vorgestellt, das durch Vorliegen von Verbindungen im gehärteten Harz, die ein -SiR2-O-Rückgrat bilden, eine deutlich erhöhte Teilentladungsresistenz zeigt. Dadurch kann die Dicke des Isolationssystems drastisch, also beispielsweise um bis zu 20% reduziert werden.

Description

Beschreibung
Elektrisches Isolationsmaterial und/oder Imprägnierharz für die Wickelbandisolierung einer Mittel- und/oder Hochspannungsmaschine sowie ein Isolationssystem daraus
Die Erfindung betrifft ein elektrisches Isolationsmaterial und/oder Imprägnierharz für die Wickelbandisolierung sowie ein Isolationssystem, beispielsweise ein Isolationssystem für eine rotierende elektrische Maschine, insbesondere eine Mit¬ tel- oder Hochspannungsmaschine.
Zur Erzeugung von elektrischer Energie werden typischerweise rotierende Hochspannungsmaschinen in Form von Generatoren eingesetzt. Die EP 1 981 150 A2 beschreibt einen Generator mit einem drehbaren Läufer und einem um den Läufer angeordneten Ständer. Der Ständer weist ein rotationssymmetrisch ausgestaltetes Blechpaket auf, wobei elektrisch leitende Wick- lungsstäbe in Nuten am Blechpaket verlaufen. An das Blechpa¬ ket schließt sich beidseitig ein Wicklungskopf an, der die Wicklungsstäbe über Verbindungsstege zu einer geschlossenen Windung verbindet. Im Betrieb von Hochspannungsmaschinen mit Leistungen von über 500 MVA können Bemessungsspannungen von über 10 kV erreicht werden. Die Komponenten sind entsprechend hohen mechanischen, thermischen und elektrischen Belastungen ausgesetzt. Die Zuverlässigkeit des Isolationssystems der elektrischen Leiter ist daher maßgeblich für die Betriebssicherheit verantwort¬ lich.
Ein Isolationssystem hat die Aufgabe elektrische Leiter, wie Drähte, Spulen und Wicklungsstäbe, dauerhaft gegeneinander und gegen das Blechpaket des Ständers oder die Umgebung zu isolieren. Dazu weist das Isolationssystem eine Isolierung zwischen Teilleitern (Teilleiterisolierung) , zwischen den Leitern oder Wicklungsstäben (Leiter- oder Wicklungsisolie- rung) und zwischen den Leitern und dem Massenpotential im Nut- und Wicklungskopfbereich (Hauptisolierung) auf.
Das grundlegende Problem bei derart elektrisch belasteten Isolationen liegt in der teilentladungsinduzierten Erosion mit sich ausbildenden „Teering"-Kanälen, die letztlich zum elektrischen Durchschlag der Isolation führen. Üblicherweise kommen zur dauerhaften Isolation der spannungsführenden Leiter in rotierenden Maschinen glimmerbasierte Isolierungen zum Einsatz.
Zum Ausbilden der Hauptisolation werden die aus isolierten Teilleitern hergestellten Formspulen mit Glimmerbändern umwickelt und im Rahmen einer Vakuum-Druck-Imprägnierung (Vacuum- Pressure-Impregnation, VPI-Prozess) mit einem Harz imprägniert. Dabei werden Glimmerbänder in Form von Glimmerpapier eingesetzt .
Durch die Imprägnierung werden die im Glimmerpapier zwischen den einzelnen Partikeln und/oder Bandfalten befindliche Hohlräume mit dem Isolationsmaterial gefüllt. Der Verbund aus Imprägnierharz und Glimmerpapier wird gehärtet, bildet den Isolationsstoff, der dann im Isolationssystem verarbeitet wird und die mechanische Festigkeit des Isolationssystems liefert. Die elektrische Festigkeit ergibt sich aus der Viel¬ zahl der Feststoff-Feststoff-Grenzflächen des Glimmers inn. Durch den VPI-Prozess müssen daher auch kleinste Hohlräume in der Isolierung mit Harz ausgefüllt werden, um die Anzahl innerer Gas-Feststoff-Grenzflächen zu minimieren.
Insgesamt stellt dies allerhöchste elektrische, thermische und mechanische Anforderungen an die Isolation der Leiter einer Wicklung untereinander, der Wicklung gegen das Blechpaket sowie auch der am Austritt der Leiter aus dem Blechpaket ge- bildeten Gleitanordnung. In der Maschinenisolierung unterscheidet man die Innenpotentialsteuerung IPS zwischen dem Kupferleiterverband und der Hochspannungsisolierung, den Au- ßenglimmschutz (AGS) , zwischen der Wicklung und dem Blechpa- ket, sowie den Endenglimmschutz (EGS) am Austritt der Wicklungsstäbe aus dem Blechpaket.
Ein herkömmliches Isolationssystem, eine imprägnierte Wick- lung aus Glimmerband mit Bandkleber und Bandbeschleuniger, ein Basisharz, beispielsweise ein Epoxidharz und einen oder mehrere Härter, gegebenenfalls auch Epoxi-funktionalisierten Härter, umfassend, ist im Bereich 0,5 bis 6 mm dick. Während des Betriebs der elektrisch rotierenden Maschine kommt es im Laufe der Zeit zu elektrischen Entladungen, die wiederum den Kunststoff in der Isolation angreifen.
Dabei wird der Kunststoff lokal zerstört und es kommt zu elektrischen Erosionserscheinungen. Diese Zerstörung des Iso- liersystems wird durch den plättchenförmigen teilentladungs- resistenten Glimmer im Isolationssystem durch eine Erosionswegverlängerung verzögert, so dass eine Mindestlebensdauer von 20 Jahren gewährleistet werden kann. Dennoch bildet sich ein Erosionsweg stetig im Laufe der Lebensdauer durch das Isolationssystem hindurch, bis es letztendlich zum Erdschluss in der elektrisch rotierenden Maschine kommt. Würde nun die elektrische Feldstärke von 3,5 kv/mm auf - beispielsweise 4,5 kV/mm angehoben, würde der elektrische Erosionsweg frühzeiti¬ ger ausgebildet und nach beispielsweise schon 5 Jahren be- reits zum Erdschluss und damit zum Totalausfall führen.
Die Dicke des Isolationssystems ist dabei grundsätzlich so gering wie nur irgend möglich zu wählen, um hohe Wirkungsgra¬ de der Maschinen zu erzielen. Um die Leistungsdichte im Gene- rator und Elektromotor zu erhöhen, ist man bestrebt, die Dicke des Isolationssystems zu reduzieren, beispielsweise um ca. 20%. Das führt zwangsläufig zu steigenden elektrischen Feldstärken im Isolationssystem von - wiederum beispielsweise 3,5kV/mm auf 4,5kV/mm und damit zu einer erhöhten elektri- sehen Teilentladungsaktivität. Die herkömmlich eingesetzten Isolationssysteme erlauben dauerhafte Betriebsfeldstärken von 3,5kV/mm bei einer technisch möglichen Lebensdauer von mindestens 20 Jahren. Bisher werden als Basisharze für elektrische Isolationen und insbesondere auch als Tränkharze für Wickelbandisolierungen bevorzugt Epoxidharze auf Kohlenstoffbasis eingesetzt, die in flüssiger Form an einem Kohlenstoff-basierten (-CR2-)n _ Rück¬ grat alle möglichen funktionellen Gruppen, beispielsweise auch Epoxidgruppen tragen. Diese werden mit Härter zu einem duroplastischen Kunststoff umgesetzt, der einen Verguss und/oder beispielsweise die Imprägnierung der Wickelbandiso¬ lierung bildet. Aufgabe der Erfindung ist es, einen Ansatz zur Verbesserung von Isolationssystemen für Mittel- und Hochspannungsmaschinen bereitzustellen, indem ein neues und besseres, insbesondere Teilentladungs-resistenteres Isolationsmaterial zur Verfügung gestellt wird. Dies ist insbesondere deshalb von großem Inte- resse, da die Reduktion des Isolationssystems um 20% etwa 600 kg - beispielsweise bei einem 370 MVA Generator - an Isola¬ tionsmaterial, wie Kunststoff, Glimmer und/oder Glasgewebe einsparen lässt. Diese Aufgabe wird durch den Gegenstand der vorliegend be¬ schriebenen und beanspruchten Erfindung, wie er in der Beschreibung, den Figuren und den Ansprüchen offenbart ist, gelöst. Gegenstand der vorliegenden Erfindung ist deshalb ein Isola¬ tionsmaterial und/oder Imprägnierharz für eine Wickelbandiso¬ lierung, zumindest ein Basisharz, einen Härter sowie gegebenenfalls Additive umfassend, dadurch gekennzeichnet, dass zu¬ mindest ein Teil des für das Isolationssystem zu einem
Duromer härtenden Basisharzes eine Siloxan-haltige Verbin¬ dung, die im Duromer ein -SiR2-0-Rückgrat bildet, ist. Außerdem ist Gegenstand der vorliegenden Erfindung ein Isolationssystem, beispielsweise ein Isolationssystem für eine rotierende elektrische Maschine, insbesondere eine Mittel- oder Hochspannungsmaschine, das unter Verwendung des erfindungsge- mäßen Isolationsmaterials herstellbar ist.
Dabei steht „R" für alle Arten organischer Reste, die sich zur Härtung und/oder Vernetzung zu einem für ein Isolationssystem brauchbaren Isolationsstoff eignen. Insbesondere steht R für -Aryl, -Alkyl, -Heterocyclen, Stickstoff, Sauerstoff und/oder Schwefel substituierte Aryle und/oder Alkyle.
Insbesondere kann R gleich oder ungleich sein und für folgende Gruppen stehen:
- Alkyl, beispielsweise -Methyl, -Propyl, -isoPropyl, - Butyl, -isoButyl, -tertButyl, -Pentyl, -isoPentyl, - Cyclopentyl sowie alle weiteren Analoge bis zu Dodecyl, also das Homologe mit 12 C-Atomen;
- Aryl, beispielsweise: Benzyl-, Benzoyl-, Biphenyl-,
Toluyl-, Xylole etc., insbesondere beispielsweise alle
Arylreste, deren Aufbau der Definition von Hückel für die Aromatizität entspricht
- Heterozyklen : insbesondere schwefelhaltige Heterozyklen wie Thiophen, Tetrahydrothiophen, 1,4-Thioxan und Homolo- ge und/oder Derivate davon,
- Sauerstoffhaltige Heterozyklen wie z.B. Dioxane
- Stickstoffhaltige Heterozyklen wie z.B. -CN, -CNO,-CNS, - N3 (Azid) etc.
- Schwefel substituierte Aryle und/oder Alkyle: z.B. Thio- phen, aber auch Thiole.
Die Hückel-Regel für aromatische Verbindungen bezieht sich auf den Zusammenhang, dass planare, cyclisch durchkonjugierte Moleküle, die eine Anzahl von Π-Elektronen, die sich in Form von 4n + 2 darstellen lässt, umfasst, eine besondere Stabili¬ tät besitzen, die auch als Aromatizität bezeichnet wird. Nach einer vorteilhaften Ausführungsform der Erfindung um- fasst das Harz neben der zur Polymerisation funktionalisier- ten monomer und/oder oligomer vorliegenden Komponente, die ein -SiR2-0-Rückgrat hat, auch zumindest eine zur Polymerisa- tion funktionalisierte monomere oder oligomere Harzkomponente mit einem Kohlenwasserstoff-also (-CR2-) Einheiten umfassenden Rückgrat. Dazu eignen sich beispielsweise Epoxidfunktionali¬ sierte Komponenten, wie Bisphenol-F-Diglycidylether (BFDGE) oder Bisphenol-A-Diglycidylether (BADGE) , Polyurethan sowie Mischungen hieraus. Bevorzugt sind Epoxidharze basierend auf Bisphenol-F-Diglycidylether (BFDGE) , Bisphenol-A- Diglycidylether (BADGE) oder Mischungen hieraus.
Beispielsweise wird die zur Polymerisation funktionalisierte monomere oder oligomere Komponente, die ein -SiR2-0-Rückgrat hat mit einem oder mehreren Verbindungen, ausgewählt aus der Gruppe folgender Verbindungen zum Basisharz kombiniert:
undestillierter und/oder destillierter, ggf. reaktivverdünnter Bisphenol-A-Diglycidylether, undestillierter und/oder destillierter, ggf. reaktivverdünnter Bisphenol-F- Diglycidylether, hydrierter Bisphenol-A-Diglycidylether und/oder hydrierter Bisphenol-F-Diglycidylether, reiner und/oder mit Lösemitteln verdünnter Epoxy-Novolak und/oder Epoxy-Phenol-Novolak, cycloaliphatische Epoxidharze wie 3,4- epoxycyclohexylmethyl-3, 4-epoxycyclohexylcarboxylat z.B.
CY179, ERL-4221; Celloxide 2021P, Bis (3,4- epoxycyclohexylmethyl ) adipat, z.B. ERL-4299; Celloxide 2081, Vinylcyclohexendiepoxid, z.B. ERL-4206; Celloxide 2000, 2- (3, 4-epoxycyclohexyl-5, 5-spiro-3, 4-epoxy) -cyclohexan-meta- dioxan z.B. ERL-4234; Hexahydrophthalsäurediglycidylester, z.B. CY184, EPalloy 5200; Tetrahydrophthalsäurediglycidyl- ether z.B. CY192; glycidierte Aminoharze (N, N-Diglycidyl- para-glycidyloxyanilin z.B. MY0500, MY0510, N, N-Diglycidyl- meta-glycidyloxyanilin z.B. MY0600, MY0610, Ν,Ν,Ν',Ν'- Tetraglycidyl-4, 4 ' -methylendianilin z.B. MY720, MY721, MY725, sowie beliebiger Mischungen der vorgenannten Verbindungen. Als zur Polymerisation funktionalisierte monomere oder oligomere Komponente, die ein -SiR2-0-Rückgrat hat eignen sich glycidyl-basierte und/oder epoxy-terminierte Aryl- und/oder Alkyl-Siloxane, wie beispielsweise glycidoxy funkti- onalisierte, insbesondere glycidoxyterminierte Siloxane. So eignet sich beispielsweise ein Siloxan wie das 1,3-Bis(3- glycidyl-oxypropyl ) tetramethyldisiloxan, das DGTMS oder das glycidoxyterminierte Phenyl-Dimethylsiloxan in Monomerer und/oder in oligomerer Form, sowie in beliebigen Mischungen und/oder in Form von Derivaten. Es hat sich gezeigt, dass zumindest zweifach funktionalisierte Siloxan- Monomere, die zur Herstellung von Duroplasten einsetzbar sind, hier geeignet sind . Als Härter eignen sich kationische und anionische Härtungska¬ talysatoren, wie beispielsweise organische Salze, wie organi¬ sche Ammonium-, Sulphonium-, Iodonium-, Phosphonium- und/oder Imidazolium-salze und Amine, wie tertiäre Amine, Pyrazole und/oder Imidazol-Verbindungen . Beispielhaft genannt sei hier 4, 5-Dihydroxymethyl-2-phenylimidazol und/oder 2-Phenyl-4- methyl-5-hydroxymethylimidazol . Es können aber auch
oxirangruppenhaltige Verbindungen, wie beispielsweise
Glycidylether als Härter eingesetzt werden. Herkömmlich werden auch Säureanhydride als Härter in den Isolationsmaterialien erfolgreich eingesetzt. Deren Toxikologie ist jedoch mittlerweile nicht mehr ganz unumstritten.
Nach einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, den Kohlenstoff-basierten Härter auch ganz oder teilweise durch Siloxan-basierte Härter mit den gleichen Funktionalitäten zu ersetzen.
Nach einer vorteilhaften Ausführungsform der Erfindung um- fasst das Isolationsmaterial und/oder Imprägnierharz für eine Wickelbandisolierung auch Additive wie Sinterhilfen, Reaktivbeschleuniger und/oder Füllstoffe, die sowohl als Nanoparti- kel als auch als Füllstoffpartikel im Mikrometerbereich vor¬ liegen können.
Es hat sich herausgestellt, dass im Isolationsstoff, der das gehärtete Basisharz umfasst, ein Verhältnis von -S1R2-O Rück¬ grat zu (-CR2-) -Rückgrat wie 1:8 bis 1:4 am günstigsten ist, das heißt dass in dem betreffenden Isolationsmaterial die Kohlenwasserstoff-basierten Verbindungen mengenmäßig 4 bis 8 mal vorliegen wie die Siloxanbasierten Verbindungen. Die An- teile beziehen sich dabei auf die Stöchiometrie, sind also Molprozente .
Die Siloxan-haltige Komponente liegt also in einer Menge von 10 bis 50 Mol% im Basisharz des Isolationsmaterials vor. Ins- besondere bevorzugt ist, wenn die Menge an Siloxan-haltiger Komponente im Basisharz nicht mehr als 20 Mol%, insbesondere nicht mehr als 18 Mol% und besonders bevorzugt nicht mehr als 15 Mol% beträgt. Die Teilentladungsresistenz des Isolationsstoffes wird durch Vorhandensein einer gewissen Menge an S1R2-O- bildenden Monomeren oder Oligomeren im Basisharz geradezu sprunghaft erhöht . Figur 1 zeigt den Vergleich der Erosionsvolumina nach elekt¬ rischer Auslagerung bei 10 kV. Auf der x-Achse ist der Anteil an S1R2-O- bildender Verbindung im Basisharz aufgetragen, die Nulllinie liegt dabei bei 100% (-CR2-) Rückgrat oder Backbone bildendes Basisharz.
Zu erkennen ist, dass zwischen 0 und 10 Mol% an „ausgetauschter -CR2- Verbindung" das Erosionsvolumen, aufgetragen auf der y-Achse, sprunghaft von ca. 37 auf 6 abfällt. Das heißt hier geht das Erosionsvolumen praktisch um einen Faktor 9 zu- rück. Bei 20mol% an S1R2-O- bildender Verbindung mit 80mol% - CR2- Verbindung im Basisharz ergibt sich ein Minimum, das bis ca. 30mol% an S1R2-O- bildender Verbindung bestehen bleibt. Im vorliegenden Fall wurde zum Austausch der herkömmlichen Harzkomponente durch ein -SiR2~0-haltiges Monomer das 1,3- Bis (3-glycidyloxypropyl ) tetramethyldisiloxan eingesetzt . Zur Vermessung wurde der gehärtete Isolationsstoff gezielt und definiert elektrischen Entladungen ausgesetzt. Nach einer bestimmten Zeit wurden die erodierten Volumina durch einen Laser abgetastet und so das erodierte Volumen - oder die Ero¬ sionstiefe - ausgewertet. Die Auslagerungsparameter waren wie folgt:
Temperatur: Raumtemperatur; Atmosphäre Luft 50% RH; Dauer 100h; Spannung lOkV.
Es hat sich gezeigt, dass bereits bei einer geringen Substi- tution des herkömmlichen Epoxidharzes, wie des Bisphenol-A- Diglycidylether (BADGE) durch ein S1R2-O- haltiges Monomer nach erfolgter Härtung eine deutliche Erhöhung der Teilentladungsresistenz erzielt werden kann, was in einem deutlich reduzierten erodierten Volumen resultiert.
Das gleiche Phänomen konnte bei der Substitution des
Bisphenol-A-Diglycidylether (BADGE) durch ein SiR2-0-haltige Produkt „Silres®" und/oder Silikoftal mit einem mindestens zweifach funktionalisiertem, glycidoxyterminiertem Phenyl- Dimethylsiloxan-Monomer beobachtet werden, wie in Figur 2 gezeigt .
In beiden Figuren ist ein Optimum des reduzierten Erosionsvolumens bei einer Substitution der -CR2- Rückgrat bildenden Verbindung von 20 Mol% bis 30 Mol% durch die -SiR2-0- enthaltende Rückgrat bildende Verbindung zu erkennen.
Die Substitution der -CR2- Rückgrat bildenden Verbindung be¬ wirkt jedoch im ausgehärteten Isolationsstoff eine Ver- schlechterung der mechanischen Eigenschaften, so dass so wenig wie möglich und so viel wie nötig an Substitution erfol¬ gen sollte. Nach einer bevorzugten Ausführungsform der Erfindung werden daher bis zu 10 Mol%, bevorzugt bis zu 15 Mol% und insbeson¬ dere bevorzugt bis zu 20 Mol% der Verbindung (en) im Basis¬ harz, die ein -CR2~Rückgrat bilden, durch entsprechend funk- tionalisierte Verbindungen, die ein -SiR2~0-Rückgrat ausbil¬ den, substituiert.
In diesem Bereich sind die mechanischen Eigenschaften des gehärteten Isolationsstoffs durchaus vergleichbar gut wie die des Isolationsstoffes ohne Verbindungen, die ein -S1R2-O- Rückgrat ausbilden. Insbesondere sind die resultierenden Glasübergangstemperaturen und die Speichermodule des substi¬ tuierten Isolationsstoffes fast identisch mit denen des her¬ kömmlichen Isolationsstoffes ohne Substitutionen.
In Figur 3 sind die Speichermodule und daraus abgeleitete Glasübergangstemperaturen als Funktion des Substitutionsgrades Epoxidharzanteils durch eine, ein -SiR2-0-Rückgrat aus¬ bildende, Verbindung wie das „Silres®", dargestellt.
Zu erkennen ist, dass die höchste Glasübergangstemperatur bei der 25 %-igen Substitution zu messen ist.
Durch die vorliegende Erfindung wird erstmals ein Isolations- material und/oder ein Imprägnierharz für eine Wickelbandiso¬ lierung vorgestellt, das durch Vorliegen von Verbindungen im gehärteten Harz, die ein -SiR2-0-Rückgrat bilden, eine deut¬ lich erhöhte Teilentladungsresistenz zeigt. Dadurch kann die Dicke des Isolationssystems drastisch, also beispielsweise um bis zu 20% reduziert werden.
Es ergeben sich dadurch verschiedene vorteilhafte Optionen zur Produktentwicklung. Zum einen ist es möglich, bei gleichbleibend dicken Leitern den Umfang, das Gewicht und die Kos- ten der isolierten Leiter zu drosseln. Zum zweiten kann der eingesparte Raum durch erhöhte Leiterdicke ausgefüllt werden und damit die Leistung pro Masse der elektrischen Maschine gesteigert werden. Im Moment sind herkömmliche Isolationssysteme für Hochspan¬ nungsmaschinen darauf ausgelegt, dass sie dauerhafte Be¬ triebsfeldstärken von 3,5 kV/mm für mindestens 20 Jahre aus- halten. Mit den hier vorgestellten Isolationsmaterialien könnten diese Betriebsfeldstärken signifikant gesteigert werden auf bis zu 4,5kV/mm für ähnliche lange Lebensdauern.

Claims

Patentansprüche
1. Isolationsmaterial und/oder Imprägnierharz für eine Wickelbandisolierung, zumindest ein Basisharz, einen Härter so- wie gegebenenfalls Additive umfassend, dadurch gekennzeich¬ net, dass zumindest ein Teil des für das Isolationssystem zu einem Duromer härtenden Basisharzes eine Siloxan-haltige Ver¬ bindung, die im Duromer ein -SiR2-0-Rückgrat bildet, ist.
2. Isolationsmaterial und/oder Imprägnierharz nach Anspruch 1, wobei die Verbindungen des Basisharzes monomer vorliegen.
3. Isolationsmaterial und/oder Imprägnierharz nach Anspruch 1, wobei die Verbindungen im Basisharz oligomer vorliegen.
4. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei das Basisharz zumindest zu 10 Mol%, insbesondere zumindest zu 15 Mol% eine Verbindung um- fasst, die ein -SiR2-0-Rückgrat bildet.
5. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei der Härter eine Siloxan-haltige Komponente, die ein -SiR2-0-Rückgrat bildet, das die entspre¬ chenden, zur Härtung des Basisharzes geeigneten Funktionali- täten trägt, umfasst.
6. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz Verbindungen, die ein -SiR2-0-Rückgrat bilden mit Verbindungen, die ein -CR2- Rückgrat bilden, in einem stöchiometrischem Verhältnis von 1:4 bis 1:8 vorliegen.
7. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz Verbindungen, die ein -CR2~Rückgrat bilden, prozentual in größerem Mol% vorlie¬ gen als Verbindungen, die ein -SiR2-0-Rückgrat ausbilden.
8. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz eine glycidyl- und/oder glycidoxy-funktionalisierte Verbindung, die ein - SiR2-0-Rückgrat bildet, vorliegt.
9. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz eine
Glycidyletherverbindung und/oder ein Novolak-Derivat vorliegen .
10. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz ein
cycloaliphatisches Epoxidharz vorliegt.
11. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz ein epoxy- terminiertes Aryl- und/oder Alkyl-Siloxan als Verbindung, die ein -SiR2-0-Rückgrat bildet, vorliegt.
12. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz 1,3-Bis(3- glycidyloxyalkyltetramethyldisiloxan) , als Verbindung, die ein -SiR2-0-Rückgrat bildet, vorliegt.
13. Isolationsmaterial und/oder Imprägnierharz nach einem der vorstehenden Ansprüche, wobei im Basisharz 1,3-Bis(3- glycidyloxypropyl ) tetra-methyl-di-siloxan als Verbindung, die ein -SiR2-0-Rückgrat bildet, vorliegt.
14. Isolationssystem, insbesondere für eine Mittel- und/oder Hochspannungsmaschine, umfassend einen Isolationsstoff er¬ hältlich durch Härtung eines Isolationsmaterials nach einem der Ansprüche 1 bis 13.
EP18779235.3A 2017-09-20 2018-09-13 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus Pending EP3656039A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17192058.0A EP3460959A1 (de) 2017-09-20 2017-09-20 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
PCT/EP2018/074752 WO2019057601A1 (de) 2017-09-20 2018-09-13 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus

Publications (1)

Publication Number Publication Date
EP3656039A1 true EP3656039A1 (de) 2020-05-27

Family

ID=59923298

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17192058.0A Withdrawn EP3460959A1 (de) 2017-09-20 2017-09-20 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
EP18779235.3A Pending EP3656039A1 (de) 2017-09-20 2018-09-13 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17192058.0A Withdrawn EP3460959A1 (de) 2017-09-20 2017-09-20 Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus

Country Status (4)

Country Link
US (1) US20210376681A1 (de)
EP (2) EP3460959A1 (de)
CN (1) CN111133661B (de)
WO (1) WO2019057601A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202061A1 (de) 2018-02-09 2019-08-14 Siemens Aktiengesellschaft Isolation, elektrische Maschine und Verfahren zur Herstellung der Isolation
DE102018202058A1 (de) * 2018-02-09 2019-08-14 Siemens Aktiengesellschaft Formulierung zur Herstellung eines Isolationssystems, elektrische Maschine und Verfahren zur Herstellung eines Isolationssystems
DE102019209346A1 (de) * 2019-06-27 2020-12-31 Siemens Aktiengesellschaft Imprägnierformulierung, Isolationsmaterial, Verfahren zum Herstellen eines Isolationsmaterials und elektrische Maschine mit einem Isolationsmaterial
DE102022202324A1 (de) * 2022-03-08 2023-09-14 Siemens Aktiengesellschaft Prepreg, Teilleiterisolation und elektrische rotierende Maschine mit Teilleiterisolation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576903A (en) * 1968-04-29 1971-04-27 Minnesota Mining & Mfg Epoxy-terminated adducts of carboxy terminated polyesters and polyepoxides
US4082719A (en) * 1976-02-23 1978-04-04 Dow Corning Corporation Silicone epoxy curable compositions
JPS5681906A (en) * 1979-12-07 1981-07-04 Toshiba Corp Heat resisting electrical insulated coil
JPS5917218A (ja) * 1982-07-21 1984-01-28 Toshiba Corp 電気絶縁線輪
US4533713A (en) * 1983-05-06 1985-08-06 Minnesota Mining And Manufacturing Company Fluoroaliphaticsulfonamides containing oxirane groups and/or N-β-hydroxyalkylene groups
US4910050A (en) * 1988-08-04 1990-03-20 Hughes Aircraft Company Method and composition for providing electrostatic discharge protection for spacecraft
EP1172408A1 (de) * 2000-07-14 2002-01-16 Abb Research Ltd. Volumenmodifizierte Vergussmassen auf der Basis polymerer Matrixharze
EP1808949B1 (de) 2006-01-11 2009-09-02 Siemens Aktiengesellschaft Ständer einer elektrischen Großmaschine
GB0803129D0 (en) * 2008-02-21 2008-03-26 Univ Manchester insulating medium and its use in high voltage devices
KR20130069574A (ko) * 2010-04-29 2013-06-26 훈츠만 어드밴스트 머티리얼스(스위처랜드) 게엠베하 경화성 조성물
DE102010019724A1 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Elektrisches Isolationsmaterial und Isolationsband für eine elektrische Isolation einer Mittel- und Hochspannung
US8657413B2 (en) * 2011-01-18 2014-02-25 Funai Electric Co., Ltd. Die attach composition for silicon chip placement on a flat substrate having improved thixotropic properties
US9249294B2 (en) * 2011-09-05 2016-02-02 Namics Corporation Conductive resin composition and cured product thereof
EP3168268B1 (de) * 2015-11-13 2018-09-26 Schwering & Hasse Elektrodraht GmbH Elektroisolierlack und verfahren zur herstellung eines elektroisolierlackes

Also Published As

Publication number Publication date
EP3460959A1 (de) 2019-03-27
CN111133661A (zh) 2020-05-08
WO2019057601A1 (de) 2019-03-28
US20210376681A1 (en) 2021-12-02
CN111133661B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
EP3656039A1 (de) Elektrisches isolationsmaterial und/oder imprägnierharz für die wickelbandisolierung einer mittel- und/oder hochspannungsmaschine sowie ein isolationssystem daraus
EP3245657B1 (de) Isolationssystem, verwendungen dazu, sowie elektrische maschine
US10563007B2 (en) Impregnating resin, conductor arrangement, electrical coil and electrical machine
EP3844218A1 (de) Elektrisches betriebsmittel mit isolationssystem, sowie verfahren zur herstellung des isolationssystems
WO2019154932A1 (de) Formulierung zur herstellung eines isolationssystems, elektrische maschine und verfahren zur herstellung eines isolationssystems
DE102010019724A1 (de) Elektrisches Isolationsmaterial und Isolationsband für eine elektrische Isolation einer Mittel- und Hochspannung
DE102014219844A1 (de) Isolationssystem für elektrische Maschinen
WO2013117373A1 (de) Selbstheilende isolierschicht für eine elektrische maschine
EP4183028A1 (de) Pulverlack-formulierung für ein isolationssystem einer elektrischen maschine, elektrische maschine mit einem solchen isolationssystem und verfahren zum herstellen eines solchen isolationssystems
EP3593361B1 (de) Glimmschutzband für elektrische hochspannungsmaschine
DE102018202061A1 (de) Isolation, elektrische Maschine und Verfahren zur Herstellung der Isolation
WO2020259963A1 (de) Imprägnierformulierung, isolationsmaterial, verfahren zum herstellen eines isolationsmaterials und elektrische maschine mit einem isolationsmaterial
WO2023170112A1 (de) Teilleiterisolation und teilleiterverbund einer elektrischen rotierenden maschine
WO2015090935A1 (de) Durchschlag- und überschlagsichere giessharzzusammensetzung
EP4294885A1 (de) Isolationssystem für elektrische rotierende maschinen und verfahren zur herstellung dazu
WO2022096429A1 (de) Glimmschutzband für rotierende elektrische hochspannungsmaschine, verwendung dazu und elektrische maschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210318

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INNOMOTICS GMBH