WO2011012405A2 - Flächenisolierfolie und anwendung dazu - Google Patents
Flächenisolierfolie und anwendung dazu Download PDFInfo
- Publication number
- WO2011012405A2 WO2011012405A2 PCT/EP2010/059575 EP2010059575W WO2011012405A2 WO 2011012405 A2 WO2011012405 A2 WO 2011012405A2 EP 2010059575 W EP2010059575 W EP 2010059575W WO 2011012405 A2 WO2011012405 A2 WO 2011012405A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- film
- surface insulating
- insulating material
- films
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/447—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/46—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/28—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
Definitions
- the invention relates to novel electrical insulating films with improved thermal and hydrolytic resistance, and to the use of such a surface insulating film in the electrical industry.
- Electrical machines motors, generators, transformers
- film materials are used as insulation in different areas. Examples are the sub-conductor, main and slot insulation or winding insulation of transformer coils.
- Polymer films are used as insulation materials in the slot insulation or as wound insulation.
- the object and object of the present invention is therefore a legislativenisolierstoff for reducing the tendency to embrittlement thermooxidativen, comprising as a carrier material, a fabric material or a film which has at least one one-sided or multi-side wet-coat coatable with elasticizing elements in a polymeric matrix, said Coating in a layer thickness of at least 0.5 microns is present.
- the subject of the invention is the use of a surface insulating material according to one of the preceding claims for the insulation of electrical machines such as motors, generators, transformers.
- an epoxy resin and / or an acrylate is used for the matrix material of the coating.
- the materials can be silicone-based or silicone-modified.
- the use of the material in the form of, for example, nanoscale or elastically modified polymer on this basis comes into question.
- nanoscale means that nanoparticles are used to adjust the properties.
- TPE thermoplastic elastomers
- TPU thermoplastic polyurethane
- Polyamide copolymers PEBA. Furthermore, silicone rubber and other rubbers such as EPDM, NBR, BR, chloroprene and all other polymeric base materials with a hardness Shore D ⁇ 70 and elongation at break> 4% are used. Also chemical and physical mixtures of o. G. Polymers can be used.
- the thickness of the coating is in a range from 0.5 to 100 .mu.m, in particular from 0.5 to 15 .mu.m, particularly preferably around 7 .mu.m.
- the coating is applied on both sides of the film.
- the coating increases the thermo-oxidative and hydrolytic resistance of the electrical insulating film.
- the coating is designed so that it shows a high elastic deformability.
- anti-aging additives in the form of compounds which react with diffusing or diffused oxygen and water vapor are incorporated into the elasticized coating.
- liquid and / or particulate additives come into question, which cause an improvement in the thermo-oxidative and hydrolytic aging resistance of the thus modified coated films compared to the uncoated starting films.
- primary antioxidants in particular phenols, but also amines, phosphites, sterically hindered amines, are used.
- Hydroxyphenylpropionates eg, pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionate) have proven to be particularly advantageous All types of particle-incorporated anti-aging additives should have the abovementioned particle sizes.
- Particulate aging protection additives should have particle sizes which are ⁇ 1 ⁇ m, preferably in the range 10 - 500 nm. Concentrations of the anti-aging additives are in the range up to 10 wt .-%, preferably at about 1 wt .-%.
- the elastic properties of the entire electrical insulating film are improved by reducing their tendency to embrittlement, whereby the thermo-oxidative aging takes place with a delay.
- the coating is wet-chemically processable according to the invention, which means that it is applied with or without added solvent on the support.
- the solvent is then withdrawn, for example, via an annealing step.
- the coating is applied wet-chemically.
- the coating can be carried out by one of the common wet-chemical methods such as printing, knife coating, dipping, spin coating, spin coating, spraying, etc.
- the solvent present is removed, for example, thermally or by lowering the pressure, and the material is hardened.
- the coating When hardened, the coating has a high elastic deformability. Among other things, this deformability serves to compensate inhomogeneities on the film surface, inter alia, by the coating according to the invention. Additionally or alternatively, the coating can also compensate for stresses between the PET film and the barrier layer (s) due to mechanical stresses, shrinkage, etc.
- the coating has an elongation at break of> 4%.
- the invention makes it possible for the first time to considerably increase the aging resistance of the surface insulating materials for electric motors, generators, transformers by simple and cost-effective measures. This makes it possible to operate the electrical machines with higher operating temperatures and / or with higher electrical potential differences.
- PET films continue to offer significant cost advantages, even after coating, compared to PEN and PI films, as PEN films are 7-10 times more expensive than PET films, depending on the manufacturer. Rough estimates show that the cost of the PET film increases by a factor of 2 to 3. Tests were conducted comparing the aging behavior of uncoated PET films with coated ones.
- Uncoated and coating film ended in terms of tensile strength still the same: both are about 150MPa.
- the uncoated film shows values below 40% in terms of elongation at break, whereas the coated film shows values around 80%.
- Uncoated film After 250 h at 190 ° C: tensile strength Uncoated film:
- coated film about 140MPa. Elongation at break uncoated film near 0%, whereas the coated film still has about 40%.
- the thickness of the coating was 3 ⁇ m in this case.
- the invention makes it possible for the first time to use a film as a surface insulating material for electrical machines To increase their thermal, oxidative and hydrolytic resistance by a simple, double-sided coating, significantly.
- the coating achieves both the reduction of chemical degradation by oxygen and moisture and also compensates for stresses on the film surface through the coating.
- the proposed technology can be applied to any film, fabric and committeenisolierstoffen.
- the surface insulating material according to the invention has in particular a high elasticity and a low hardness. This is achieved in particular by the wet-chemical coating. Due to the properties such as thickness and mechanics, such as stress load and elasticizing effect, the surface insulation material is suitable for reducing the thermo-oxidative embrittlement tendency of the film.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Insulating Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Durch die Erfindung ist es erstmals möglich, eine Folie als Flächenisolierstoff für Elektromotoren zur Verfügung zu stellen, deren thermische, oxidative und hydrolytische Beständigkeit durch eine einfache, beispielsweise auch beidseitige, Beschichtung, erheblich zu steigern. Durch die Beschichtung wird sowohl die Verringerung der chemischen Degradation durch Sauerstoff und Feuchte erreicht, als auch Spannungen an der Folienoberfläche durch die Beschichtung ausgeglichen werden können.
Description
Beschreibung
Flächenisolierfolie und Anwendung dazu Die Erfindung betrifft neuartige Elektroisolierfolien mit verbesserter thermischer und hydrolytischer Beständigkeit, sowie die Anwendung einer derartigen Flächenisolierfolie in der Elektroindustrie. Elektrische Maschinen (Motoren, Generatoren, Transformatoren) besitzen je nach Leistung und Konstruktionsprinzip ein komplexes Isolierungssystem. Dabei werden in unterschiedlichen Bereichen Folienwerkstoffe als Isolierung eingesetzt. Beispiele sind die Teilleiter-, Haupt- und Nutisolierung oder Wickelisolierungen von Transformatorspulen. Polymerfolien werden als Isolationsmaterialien in der Nutisolierung oder als Wickelisolierung eingesetzt.
Diese Folienisolierstoffe bestehen aus thermoplastischen oder vernetzten Polymerfolien. Es kommt eine überschaubare Anzahl von Folienwerkstoffen in Frage, welche die mechanischen, elektrischen und thermischen Anforderungen erfüllen. So kommen hauptsächlich PET-, PEN- und PI-Folien zum Einsatz. Bei thermisch gering belasteten Systemen eignen sich auch PP- Folien. Im Falle der Haupt- und Teilleiterisolierung werden die Folien um den Leiter gewickelt. Bei elektrisch hochbelasteten Systemen wird ein Glimmerband um den Leiter gewickelt. So werden als Teilleiterisolierung auch glimmerhaltige Wickelbänder eingesetzt. Für die reinen Folien steigt die ther- mische Beständigkeit von PP, PET über PEN bis hin zu PI. Analog liegt eine deutliche preisliche Stufung für diese Materialien vor.
Deshalb ist es Aufgabe der vorliegenden Erfindung, die ther- mische Beständigkeit der vorhandenen Folien durch kostengünstige Lösungen zu steigern.
Die Lösung der Aufgabe und Gegenstand der vorliegenden Erfindung ist daher ein Flächenisolierstoff zur Verringerung der thermooxidativen Versprödungsneigung, als Trägermaterial ein Gewebematerial oder eine Folie umfassend, der zumindest eine einseitige oder mehrseitig nasschemisch aufbringbare Be- schichtung mit elastifizierenden Elementen in einer polymeren Matrix hat, wobei die Beschichtung in einer Schichtdicke von zumindest 0,5 μm vorliegt. Zudem ist Gegenstand der Erfindung die Anwendung eines Flächenisolierstoffs nach einem der vor- stehenden Ansprüche zur Isolierung von elektrischen Maschinen wie Motoren, Generatoren, Transformatoren.
Nach einer vorteilhaften Ausführungsform wird für das Matrixmaterial der Beschichtung beispielsweise ein Epoxidharz und/oder ein Acrylat eingesetzt. Die Materialien können Silikonbasiert oder Silikon-modifiziert eingesetzt werden. Ebenso kommt die Verwendung des Materials in Form von, beispielsweise nanoskaligem oder elastisch modifiziertem Polymer auf dieser Basis in Frage. „Nanoskalig" heißt vorliegend, dass Nano- partikel eingesetzt werden, um die Eigenschaften anzupassen.
Auch andere typische Matrixmaterialien können erfindungsgemäß verwendet werden, wie temperaturstabile Polyurethane, elasti- fizierte Thermoplaste wie Thermoplastische Elastomere (TPE) , z. B. Thermoplastisches Polyurethan (TPU), Polyether-
Polyamid-Copolymere (PEBA) . Weiterhin Silikonkautschuk und weitere Kautschuke wie EPDM, NBR, BR, Chloropren und alle weiteren polymeren Basismaterialien mit einer Härte Shore D < 70 und Reißdehnung > 4% eingesetzt werden. Auch chemische und physikalische Mischungen aus o. g. Polymeren können eingesetzt werden.
Nach einer vorteilhaften Ausführungsform der Erfindung liegt die Dicke der Beschichtung in einem Bereich von 0,5 bis 100 μm, insbesondere von 0,5 bis 15 μm, insbesondere bevorzugt um die 7 μm.
Nach einer vorteilhaften Ausführungsform der Erfindung ist die Beschichtung beidseitig auf der Folie aufgebracht.
Durch die Beschichtung wird die thermo-oxidative und hydroly- tische Beständigkeit der Elektroisolierfolie gesteigert.
Nach einer vorteilhaften Ausführungsform der Erfindung ist die Beschichtung so konzipiert, dass sie eine hohe elastische Verformbarkeit zeigt.
Nach einer besonders bevorzugten Ausführungsform Alterungsschutzadditive in Form von Verbindungen, die mit eindiffundierendem oder eindiffundiertem Sauerstoff und Wasserdampf reagieren, in die elastifizierte Beschichtung eingearbeitet. Dafür kommen flüssige und/oder partikuläre Additive in Frage, die eine Verbesserung der thermooxidativen und hydrolytischen Alterungsbeständigkeit der so modifiziert beschichteten Folien im Vergleich zu den unbeschichteten Ausgangsfolien bewirken. Beispielsweise werden dazu primäre Antioxidantien, insbesondere Phenole, aber auch Amine, Phosphite, sterisch gehinderte Amine, eingesetzt. Als besonders vorteilhaft haben sich Hydroxyphenylpropionate (z. B. Pentaerythritol Tetrakis (3- (3, 5-di-tert-butyl-4-hydroxyphenyl) -propionat) erwiesen. Alle Arten von partikulär eingebrachten Alterungsschutzadditiven sollten die oben genannten Partikelgrößen haben.
Partikuläre Alterungsschutzadditive sollten Partikelgrößen aufweisen, die < 1 μm betragen, bevorzugt im Bereich 10 - 500 nm liegen. Konzentrationen der Alterungsschutzadditive liegen im Bereich bis 10 Gew.-%, bevorzugt bei ca. 1 Gew.-%.
Bereits ohne Zugabe von Alterungsschutzadditiven werden die elastischen Eigenschaften der gesamten Elektroisolierfolie verbessert, indem deren Versprödungsneigung verringert wird, wobei die thermo-oxidative Alterung verzögert stattfindet.
Die Beschichtung ist gemäß der Erfindung nasschemisch prozessierbar, das heißt, dass sie mit oder ohne zugesetztem Lösungsmittel auf dem Träger appliziert wird. Das Lösungsmittel
wird dann, beispielsweise, über einen Temperschritt, abgezogen .
Nach einer bevorzugten Ausführungsform wird die Beschichtung nasschemisch aufgebracht. Beispielsweise kann die Beschichtung durch eine der gängigen nasschemischen Methoden wie Bedrucken, Rakeln, Eintauchen, Spin-coating, Aufschleudern, Besprühen, etc. erfolgen. Nach dem Aufbringen wird je nach Materiallösung vorhandenes Lösungsmittel beispielsweise ther- misch oder durch Druckerniedrigung entfernt und das Material gehärtet .
In gehärtetem Zustand besitzt die Beschichtung eine hohe elastische Verformbarkeit. Diese Verformbarkeit dient unter anderem dazu, dass durch die Beschichtung nach der Erfindung auch unter anderem Inhomogenitäten auf der Folienoberfläche ausgeglichen werden können. Zusätzlich oder alternativ kann die Beschichtung auch Spannungen zwischen PET-Folie und Barriereschicht (en) aufgrund von mechanischen Belastungen, Schrumpf etc. ausgleichen.
Nach einer vorteilhaften Ausführungsform der Erfindung hat die Beschichtung eine Bruchdehnung von >4%. Durch die Erfindung ist es erstmals möglich, die Alterungsbeständigkeit der Flächenisolierstoffe für Elektromotoren, Generatoren, Transformatoren durch einfache und kostengünstige Maßnahmen erheblich zu steigern. Dadurch wird es möglich, die elektrischen Maschinen mit höheren Betriebstemperaturen und/oder mit höheren elektrischen Potentialunterschieden zu betreiben. PET-Folien bieten weiterhin, auch nach der Beschichtung, deutliche Kostenvorteile im Vergleich zu PEN und PI-Folien, da PEN-Folien je nach Hersteller 7-10 mal teuerer als PET-Folien sind. Überschlägige Abschätzungen zeigen eine Verteuerung der PET-Folie durch die Beschichtung um Faktor 2- 3.
Es wurden Tests durchgeführt, in denen das Alterungsverhalten unbeschichteter PET-Folien mit beschichteten verglichen wurde. Dabei konnte durch mikroskopische Aufnahmen belegt werden, dass die beschichtete PET-Folie in der Aufnahme nach 250 Stunden bei 1700C fast gleich aussieht wie die neue unbeschichtete Folie, wohingegen eine unbeschichtete Folie nach Alterung von 250 Stunden bei 1700C erhebliches Ausbluten „Bleeding" von Verarbeitungsadditive der PET-Folie bemerkbar ist .
Zudem wurde die Reißdehnung und die Zugfestigkeit der beschichteten und unbeschichteten Folie mit der einer ungealterten Folie verglichen wobei wiederum deutlich wurde, dass die beschichtete und gealterte PET-Folie zwar nicht mehr die gleichen Werte zeigt wie die ungealterten PET-Folie, aber doch deutlich bessere als die unbeschichtete PET-Folie unter gleichen Alterungsbedingungen. Im Einzelnen ergaben sich folgende Werte (ungefähre Angaben) : Ungealterte Folie: Zugfestigkeit ca. 245 MPa, Reißdehnung ca. 102%
für beschichtete und unbeschichtete Folien
250h bei 1700C gealterte Folien: Unbeschichtete und beschich- tete Folie in punkto Zugfestigkeit noch gleich: beide liegen bei ca. 150MPa. Die unbeschichtete Folie zeigt in punkto Reißdehnung Werte unter 40%, wohingegen die beschichtete Folie Werte um die 80% zeigt. Nach 250 h bei 190°C: Zugfestigkeit Unbeschichtete Folie:
80MPa, beschichtete Folie ca. 140MPa. Reißdehnung unbeschichtete Folie nahe 0%, wohingegen die beschichtete Folie noch ca. 40% hat. Die Dicke der Beschichtung betrug in dem Fall 3 μm.
Durch die Erfindung ist es erstmals möglich, eine Folie als Flächenisolierstoff für elektrische Maschinen zur Verfügung
zu stellen, deren thermische, oxidative und hydrolytische Beständigkeit durch eine einfache, beidseitige, Beschichtung, erheblich zu steigern. Durch die Beschichtung wird sowohl die Verringerung der chemischen Degradation durch Sauerstoff und Feuchte erreicht, als auch Spannungen an der Folienoberfläche durch die Beschichtung ausgeglichen.
Die vorgeschlagene Technologie kann auf beliebigen Folien, Gewebe und Flächenisolierstoffen angewendet werden. Der Flä- chenisolierstoff nach der Erfindung weist insbesondere eine hohe Elastizität und eine geringe Härte auf. Dies wird insbesondere durch die nasschemische Beschichtung erreicht. Durch die Eigenschaften wie Dicke und Mechanik, wie Stressbelastung und elastifizierende Wirkung ist der Flächenisolierstoff ge- eignet, die thermooxidative Versprödungsneigung der Folie zu verringern .
Claims
1. Flächenisolierstoff zur Verringerung der thermooxidati- ven Versprödungsneigung, als Trägermaterial ein Gewebemateri- al oder eine Folie umfassend, der zumindest eine einseitige oder mehrseitig nasschemisch aufbringbare Beschichtung mit elastifizierenden Elementen in einer Polymermatrix hat, wobei die Beschichtung in einer Schichtdicke von zumindest 0,5 μm vorliegt .
2. Flächenisolierstoff nach Anspruch 1, wobei das Material der Beschichtung eine Mischung ist aus einem Matrixmaterial mit verschiedenen Alterungsschutzadditiven, die partikulär eingearbeitet, einpolymerisiert und/oder über Lösung eingear- beitet sein können.
3. Flächenisolierstoff nach einem der vorstehenden Ansprüche 1 oder 2, wobei das polymere Matrixmaterial der Beschichtung beispielsweise ein elastifiziertes Epoxidharz und/oder ein Acrylat ist.
4. Flächenisolierstoff nach einem der vorstehenden Ansprüche, wobei die Beschichtung silikonbasiert oder Silikonmodifiziert vorliegt.
5. Flächenisolierstoff nach einem der vorstehenden Ansprüche, wobei die Dicke der Beschichtung bei maximal 150 μm liegt .
6. Flächenisolierstoff nach einem der vorstehenden Ansprüche, bei dem die Dicke der Beschichtung kleiner 15 μm ist.
7. Anwendung eines Flächenisolierstoffs nach einem der vorstehenden Ansprüche zur Isolierung von elektrischen Maschinen wie Motoren, Generatoren, Transformatoren.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10732907A EP2459373A2 (de) | 2009-07-29 | 2010-07-05 | Flächenisolierfolie und anwendung dazu |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009035097.7 | 2009-07-29 | ||
DE200910035097 DE102009035097A1 (de) | 2009-07-29 | 2009-07-29 | Flächenisolierfolie und Anwendung dazu |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011012405A2 true WO2011012405A2 (de) | 2011-02-03 |
WO2011012405A3 WO2011012405A3 (de) | 2011-04-14 |
Family
ID=43402521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/059575 WO2011012405A2 (de) | 2009-07-29 | 2010-07-05 | Flächenisolierfolie und anwendung dazu |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2459373A2 (de) |
DE (1) | DE102009035097A1 (de) |
WO (1) | WO2011012405A2 (de) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4332836A (en) * | 1980-09-10 | 1982-06-01 | General Electric Company | Process for producing composite insulating material |
DE4022234A1 (de) * | 1990-07-12 | 1992-01-16 | Herberts Gmbh | Verfahren zur herstellung von schutz-, hilfs- und isoliermaterialien auf faserbasis, fuer elektrische zwecke und optische leiter unter verwendung von durch energiereiche strahlung haertbaren impraegniermassen |
EP0680657A1 (de) * | 1992-10-09 | 1995-11-08 | Minnesota Mining And Manufacturing Company | Epoxy impregnierte bandrückschicht |
WO1995017755A1 (de) * | 1993-12-22 | 1995-06-29 | Abb Patent Gmbh | Verfahren zur herstellung einer isolation |
US20010018122A1 (en) * | 2000-01-20 | 2001-08-30 | Shin-Etsu Chemical Co., Ltd. | Adhesive composition |
DE202004019761U1 (de) * | 2004-12-22 | 2006-05-04 | Coroplast Fritz Müller Gmbh & Co. Kg | Technisches Klebeband |
JP2008081681A (ja) * | 2006-09-28 | 2008-04-10 | Fujikura Ltd | エポキシ系接着剤、カバーレイ、プリプレグ、金属張積層板、プリント配線基板 |
WO2009062543A1 (en) * | 2007-11-13 | 2009-05-22 | Abb Research Ltd | Fiber-reinforced composite system as electrical insulation |
-
2009
- 2009-07-29 DE DE200910035097 patent/DE102009035097A1/de not_active Withdrawn
-
2010
- 2010-07-05 EP EP10732907A patent/EP2459373A2/de not_active Withdrawn
- 2010-07-05 WO PCT/EP2010/059575 patent/WO2011012405A2/de active Application Filing
Non-Patent Citations (1)
Title |
---|
None |
Also Published As
Publication number | Publication date |
---|---|
EP2459373A2 (de) | 2012-06-06 |
WO2011012405A3 (de) | 2011-04-14 |
DE102009035097A1 (de) | 2011-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012212222B4 (de) | Dielektrisches Elastomer auf Fluorosilicon-Basis und Verfahren zu seiner Herstellung | |
EP2721616B1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
WO2013041363A1 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit, verfahren zur herstellung dazu | |
DE3049940C2 (de) | ||
DE102016118453A1 (de) | Polyrotaxan-umfassende Zusammensetzung und Produkt, das diese enthält | |
DE102009039457A1 (de) | Leitereinrichtung, elektrische Maschine sowie Traktionsmaschine | |
DE102015209594A1 (de) | Widerstandsbelag für einen Glimmschutz einer elektrischen Maschine | |
DE2453436C3 (de) | Elektrischer Isolierstoff | |
DE102012207535A1 (de) | Isolierband-Material, Verfahren zur Herstellung und Verwendung dazu | |
WO2012013543A2 (de) | Isoliersysteme mit verbesserter teilentladungsbeständigkeit | |
DE69604378T2 (de) | Sandwich-Isolierung für verbesserten Korona-Schutz | |
EP2459373A2 (de) | Flächenisolierfolie und anwendung dazu | |
DE102009039456A1 (de) | Leitereinrichtung sowie elektrische Maschine | |
DE102010041594A1 (de) | Füllstoff zur Steuerung von elektrischen Potentialen in Transformatoren, Generatoren oder dergleichen | |
WO2016083132A1 (de) | Verfahren zum herstellen einer hochspannungsisolierung | |
EP2742513B1 (de) | Beschichtung mit hoher koronabeständigkeit, sowie herstellungsverfahren dazu | |
DE202021106928U1 (de) | Isolationssystem und elektrische Maschine mit Isolationssystem | |
DE102017125178B4 (de) | Elektrisches Bauteil mit selbstheilender Lackeschichtung, Verfahren zu dessen Herstellung, Verfahren zur Selbstheilung des elektrischen Bauteils nach elektrischem Durchschlag sowie Verwendung einer Lackbeschichtung als selbstheilende Beschichtung | |
DE102020208760A1 (de) | Isolationssystem aus festem Isolationsstoff und Imprägnierharz | |
DE3631584C2 (de) | Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels elektrischer Koronaentladung | |
DE102011001833B4 (de) | Beschichtungsmaterial, dessen Verwendung und Verfahren zur Beschichtung von Feinstdrähten | |
DE102019209346A1 (de) | Imprägnierformulierung, Isolationsmaterial, Verfahren zum Herstellen eines Isolationsmaterials und elektrische Maschine mit einem Isolationsmaterial | |
WO2015135719A2 (de) | Isolationsband, dessen verwendung als elektrische isolation für elektrische maschinen, die elektrische isolation und verfahren zur herstellung des isolationsbandes | |
EP1711952A1 (de) | Halbleitendes band und verwendung davon | |
EP4199006A1 (de) | Isolationssystem, verwendung eines polymerblends und elektrische maschine mit isolationssystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10732907 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010732907 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |