EP2710263A1 - Compressor device and cooling device fitted therewith and cooler unit fitted therewith - Google Patents

Compressor device and cooling device fitted therewith and cooler unit fitted therewith

Info

Publication number
EP2710263A1
EP2710263A1 EP12745677.0A EP12745677A EP2710263A1 EP 2710263 A1 EP2710263 A1 EP 2710263A1 EP 12745677 A EP12745677 A EP 12745677A EP 2710263 A1 EP2710263 A1 EP 2710263A1
Authority
EP
European Patent Office
Prior art keywords
compressor
compressor device
gas
working medium
gas volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12745677.0A
Other languages
German (de)
French (fr)
Other versions
EP2710263B1 (en
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102011080377.7A external-priority patent/DE102011080377B4/en
Priority claimed from DE201220100995 external-priority patent/DE202012100995U1/en
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Publication of EP2710263A1 publication Critical patent/EP2710263A1/en
Application granted granted Critical
Publication of EP2710263B1 publication Critical patent/EP2710263B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/053Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/105Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting liquid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • F04B9/123Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber
    • F04B9/125Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting elastic-fluid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/01Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical

Definitions

  • Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith
  • the invention relates to a compressor device and a cooling device equipped therewith and a refrigeration machine equipped therewith.
  • pulse tube coolers or Gifford-McMahon coolers are used for cooling of magnetic resonance tomographs, cryopumps, etc.
  • Gas and in particular helium compressors are used in combination with rotary valves or rotary valves as shown in FIG. 11.
  • a helium compressor 130 is connected to a rotary valve 136 via a high pressure line 132 and a low pressure line 134.
  • the rotary valve 136 is connected via a gas line 138 to a cooling device 110 in the form of a Gifford-McMahon cooler or a pulse tube cooler.
  • the rotary valve 136 alternately the high and low pressure side of the gas compressor 130 is connected to the pulse tube cooler or the Gifford-McMahon cooler.
  • the rate at which compressed helium is introduced and re-exported to the cooling device 138 is in the range of 1 Hz.
  • a disadvantage of such cooling or compressor systems is that the rotary motorized valve 136 causes losses of approximately 50% of the input power of the compressor.
  • acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonance frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford McMahon coolers to produce very low temperatures in the range of less than 10 K suitable.
  • the compressor device is preferably divided by the compressor element into a first and a second gas volume.
  • the working medium expansion tank is connected via an open in the direction of the first gas volume check valve with the first gas volume - claim 3 - and directly via a gas line to the second gas volume - claim 4 -.
  • a fluid expansion tank are provided, which is connected via a fluid line directly to the second gas volume.
  • the balancing fluid in the fluid reservoir is not the working fluid but another gas or fluid.
  • an oil, in particular hydraulic oil can be used.
  • the manner of compression both in terms of time and in terms of the compressor pressure to the respective working medium be adjusted.
  • the compressor device according to the invention can be adapted to different working media, so that can be compressed with the compressor device a wide variety of gases.
  • the drive means may be mechanically or magnetically coupled to a plurality of compressor means. This leads to a reduction in costs, since only one drive device is necessary.
  • the compressed gas may be in the required frequency range for Gifford-McMahon coolers and pulse tube coolers are provided.
  • the use of high loss rotary valves is therefore unnecessary.
  • a particularly suitable electrohydrostatic drive device comprises a hydraulic cylinder in which a hydraulic piston is arranged linearly movable.
  • the hydraulic cylinder is acted upon by hydraulic fluid, which is supplied or removed via an electrically driven hydraulic pump.
  • the hydraulic piston of the hydraulic cylinder is mechanically, for. B. via a rigid rod, or magnetically coupled to the compressor element of the compressor device.
  • a compressor element both a membrane - claim 21 - or a piston - claims 15 and 16 - are used.
  • a linearly movable piston or a linear piston compressor is used due to the simple construction - claim 16.
  • the advantage of a membrane as a compressor element is that no piston running surface must be sealed.
  • the membrane is made of metal, as a result, the helium tightness can be ensured - claim 22.
  • the direction of movement of the hydraulic cylinder is controlled by the direction of rotation of the electric motor - claim 19.
  • An electrohydrostatic drive device suitable for the present invention is known, for example, from DE 10 2008 025 045 B4.
  • any desired movement, pressure and gas frequency change pattern can be transmitted to the compressor device via the hydraulic cylinder.
  • the gas exchange frequency can be adjusted independently of any resonance frequencies. In this way, the performance of a cooler to be operated with such a compressor device can be optimized and vibrations minimized. Claims 6 and 7.
  • the compression of the working fluid in the compressor device can be made according to any pattern, both in terms of time and the amount of pressure - claim. 7
  • the compressor device can be designed both as a conveying compressor device - claim 14, if it is used, for example, to drive a conventional chiller, or only compress a certain volume of gas and relax repeatedly. The latter is necessary, for example, when operating the aforementioned Gifford McMahon coolers and pulse tube coolers.
  • the advantageous embodiment of the invention according to claim 20 provides a cost-effective compressor device, since the coupling rod between the drive device and compressor device itself is designed as a compressor or displacer; a specially designed compressor element, which is connected to the coupling rod, is therefore unnecessary.
  • the compressor cylinder is designed so that its cross-section is only slightly larger than the cross section of the coupling rod.
  • the distance between the coupling rod and the inside of the compressor cylinder is as small as possible, but no seal between the coupling rod and the inside of the compression cylinder must be made.
  • the sealing and the inclusion of the working medium takes place through the O-ring or the implementation of the coupling rod in the compressor cylinder.
  • FIG. 1 is a schematic representation of the invention in a first embodiment in combination with a cooling device
  • FIG. 2 shows a second embodiment of the invention in combination with a conventional refrigerating machine
  • FIG. 3 shows a third embodiment of the compressor device according to the invention
  • FIG. 4 shows a fourth embodiment of the compressor device according to the invention
  • 5 shows a fifth embodiment of the compressor device
  • FIG. 6 shows a sixth embodiment of the compressor device
  • Fig. 1 1 is a schematic representation of a helium compressor device with rotary valve and a cooling device according to the prior art.
  • the compressor device 1 shows a first embodiment of the present invention with a compressor device 2 which is coupled to a cooling device 4.
  • the compressor device 2 in turn comprises a compressor device 6, which is driven by an electro-hydrostatic drive device 8.
  • the compressor device 6 comprises a gas-tight compressor cylinder 10 in which a compressor element 12 in the form of a piston is arranged to be linearly movable.
  • the piston 12 divides the compressor cylinder into a first and a second gas volume 14, 16.
  • a coupling rod 18 having first and second ends 20, 22 is connected to the piston 12 through its first end.
  • the coupling rod 18 is led out through a sealed passage 24 from the second gas volume 16 of the compressor cylinder 10, so that the second end 22 of the coupling rod 18 is outside of the second gas volume 16.
  • a working medium expansion tank 25 is connected via a first gas line 26 directly to the second gas volume 16 and via a second gas line 27 with a check valve 28 with connected to the first gas volume 14.
  • the check valve 28 is open in the direction of the first gas volume 14.
  • the drive of the compressor device 6 takes place through the electro-hydrostatic drive device 8.
  • the electro-hydrostatic drive device 8 comprises an electric motor 30 which drives a hydraulic pump 32.
  • the hydraulic pump 32 pumps hydraulic fluid via a first hydraulic line 34 into a hydraulic cylinder 36 in which a hydraulic piston 38 is arranged to be linearly movable.
  • the hydraulic piston 38 divides the hydraulic cylinder 36 into a first and a second partial volume 40, 42.
  • the first hydraulic line 34 opens into the first partial volume 40 and from the second partial volume 42 branches off a second hydraulic line 44, which leads back into the hydraulic pump 32.
  • the hydraulic piston 38 is reciprocated in the hydraulic cylinder 36.
  • the hydraulic piston 38 is connected to the second end 22 of the coupling rod 18, which projects into the second partial volume 42 via a liquid-tight passage 46.
  • the movement of the hydraulic piston 38 is transmitted to the piston 12, so that the gaseous working fluid in the first gas volume 14 of the compressor cylinder 10 is periodically compressed by the movement of the hydraulic piston 38 and the coupled thereto movement of the compressor piston 12.
  • This also allows the working pressure range of the compressor device 6 to be stabilized. The volume reduction of the working medium by cooling in the thus operated cooling device 4 can thus be compensated.
  • the first gas volume 14 of the compressor device 6 is connected to the cooling device 4 via a gas line 48.
  • the cooling device 4 is in this case a cooling device which uses periodically compressed gas for its operation.
  • the cooling device is for a Gifford-McMahon cooler or a pulse tube refrigerator.
  • FIG. 1 shows a second embodiment of the invention in which the compressor device 2 is designed as a working medium conveying compressor device and thus drives a thermodynamic cycle 50 of a heat pump or chiller.
  • the first gas volume 14 in the compressor cylinder 10 is connected via the gas line 48 to a condenser 52.
  • the gaseous working medium is condensed with the release of heat.
  • the liquid working medium is fed via a throttle 54 to an evaporator 56.
  • the liquid working medium is vaporized in the evaporator 56 while absorbing heat, and the gaseous working medium is returned to the first gas volume 14 in the compressor cylinder 10 via a gas line 58.
  • the gas exchange into and out of the first gas volume is controlled via a valve control device 60.
  • Fig. 3 shows a third embodiment of the invention with a compressor device 70, which differs from the compressor device 2 according to the first embodiment only in that the hydraulic cylinder 36 and the coupling rod 18 between the hydraulic piston 38 and the compressor element 12 in a common gas-tight envelope 72 are arranged.
  • the passage 24 of the coupling rod 18 from the second gas volume 16 and the passage 46 in the first part volume 40 of the hydraulic cylinder 36 within the gas-tight envelope 72 is arranged. In this way it is prevented that gaseous working medium can escape from the first gas volume 14 via the second gas volume 16 and the passage 24. This is particularly important when helium is used as the working medium since helium is very expensive.
  • the gas-tight envelope 72 also defines the working medium surge tank 25.
  • Fig. 4 shows a fourth embodiment of the invention - Compressor device 75 - which also reduces the problem of helium leakage.
  • the embodiment according to FIG. 4 differs from the embodiment according to FIG. 3 in that the gas-tight envelope 72 extends to the area between the drive device 8 and the compressor device. 6 is restricted.
  • the coupling rod 18, the liquid-tight passage 46 and the gas-tight passage 24 are disposed within the gas-tight envelope 72. Since the gas volume enclosed by the gas-tight envelope 72 is comparatively small, a separate working medium expansion tank 25 is provided in the embodiment according to FIG. 4.
  • Fig. 5 shows a fifth embodiment of the invention, which also reduces the problem of helium leakage.
  • 5 shows a compressor device 80 in which the hydraulic cylinder 36 is connected directly to the compressor cylinder 10 of the compressor device 6.
  • the junction of hydraulic cylinder 36 and compressor cylinder 10 is designed gas-tight with an O-ring 82. In this way, the rigid mechanical connection between hydraulic piston 38 and compressor element 12 - coupling rod 18 - also enclosed within a gas-tight envelope.
  • Fig. 6 shows a sixth embodiment of the invention.
  • the hydraulic cylinder 36 is connected directly to the compressor cylinder 10 and the junction of the hydraulic cylinder 36 and the compressor cylinder 10 is designed gas-tight with an O-ring 82.
  • the end of the coupling rod 18 projecting into the compressor cylinder 10 is designed as a compressor element; a separate compressor element is therefore unnecessary.
  • the compressor cylinder 10 defines only a first gas volume 14, which is periodically reduced and enlarged again.
  • the working medium expansion tank 25 is connected via the gas line 27 with check valve 28 with this gas volume 14.
  • the cross section or the inner diameter of the compressor cylinder 10 is only slightly larger than the cross section or outer diameter of the coupling rod 18.
  • the distance between the coupling rod 18 and inside of the compressor cylinder 10 is as small as possible, but no seal between the coupling rod 18 and the inside of the compression cylinder 10 done.
  • the sealing and the inclusion of the working medium takes place through the O-ring 82 in the implementation of the coupling rod 18 in the compressor cylinder 10.
  • Fig. 7 shows a compressor device 90 of a seventh embodiment of the invention, wherein the compressor device 90 is arranged separately from the drive device.
  • the protruding into the compressor cylinder 10 end of the coupling rod 18 is surrounded by a gas-tight bellows 92 which forms the compressor element of the compressor device 90 together with the protruding into the compressor cylinder 10 end of the coupling rod 18.
  • the bellows 92 is connected in a gastight manner to the inside of the compressor cylinder 10. In this way, the passage 24 for the coupling rod 18 in the compressor cylinder 10 must not be made gas-tight. The sealing of the gas volume to be compressed 14 takes place through the bellows 92.
  • the volume 96 within the bellows 92 must be connected directly to a further fluid expansion tank 98 via a gas line 94.
  • the balancing fluid in the fluid reservoir 98 is not the working fluid but another gas or fluid.
  • an oil, in particular hydraulic oil can be used.
  • Fig. 8 shows a compressor device 100 of an eighth embodiment of the invention.
  • the compressor device 100 differs from the compressor device 90 only in that at the end of the coupling rod 10, a compressor element in the form of a piston 12 is again arranged and the bellows 92 is connected to the compressor element 12.
  • the piston 12 divides the compressor cylinder 10 into the first and second gas volumes 14, 16 and the working medium balancing container 25 is connected via a gas line 26 directly to the second gas volume 16 and via the gas line 27 with check valve 28 to the first gas volume 14.
  • the gas volume 96 trapped by the bellows 92 must be connected to a surge tank 98 when the duct 24 is gas tight.
  • FIG. 9 shows a compressor device 110 of a ninth embodiment of the invention.
  • the compressor device 1 10 differs from the compressor device 6 according to FIG. 1 in that the compressor element is designed not as a piston but as a piston. tallmembran 1 12 is configured.
  • the end of the coupling rod 18 is centrally connected to the membrane 1 12.
  • the membrane 1 12 divides the compressor cylinder 10 into the first and second gas volumes 14, 16 and the working medium balancing container 25 is connected via a gas line 26 directly to the second gas volume 16 and via the gas line 27 with check valve 28 to the first gas volume 14.
  • the separated through the membrane 1 12 second gas volume 16 only needs to be connected to a surge tank 98 when the bushing 24 is gas-tight.
  • FIG. 10 shows a tenth embodiment of the invention with a compressor device 120.
  • a plurality of compressor devices in this case a first and a second compressor device 6-1, 6-2, are driven by a single electrohydraulic drive device 8.
  • the hydraulic piston 38 is mechanically coupled via a fork-shaped linkage 122 both to a first compressor element 12-1 of a first compressor cylinder 10-1 and to a second compressor element 12-2 in a second compressor cylinder 10-2.
  • a plurality of compressor devices 6-i and thus a plurality of cooling devices can be operated with an electro-hydrostatic drive device 8.
  • the hydraulic piston 38 and the compressor element 12 can also be magnetically coupled together.
  • the advantage of a magnetic coupling is that in the compressor cylinder 10 of the compressor device and the hydraulic cylinder 36 no implementation 24, 46 are required for the coupling rod 18, whereby the escape of helium from the compressor cylinder 10 is almost impossible.

Abstract

A compressor device and a cooling device fitted therewith and a cooler unit fitted therewith are provided, which unlike known compressor arrangements with a rotary valve, operates with lower losses. The combination of a compressor arrangement, in which a working medium is periodically compressed by a reciprocating compressor element and then expanded again, with a drive arrangement mechanically coupled to the compressor element, allows the compressed gas to be provided within the frequency range required for Gifford-McMahon coolers and pulse-tube coolers. The electro-hydrostatic drive arrangement and the compressor element are coupled by a mechanical or a magnetic coupling. This eliminates the need to use high-loss generating rotary valves. The combination of simple controllability of an electric motor and the force of a hydraulic mechanism can be applied to build an extremely efficient compressor which, due to the absence of a rotary valve when using with Gifford-McMahon coolers or pulse-tube coolers, results in considerably lower losses. A highly-efficient compressor arrangement is thus provided.

Description

Beschreibung  description
Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung und eine damit ausgerüstete Kältemaschine Compressor device and a cooling device equipped therewith and a refrigerating machine equipped therewith
Die Erfindung betrifft eine Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung und eine damit ausgerüstete Kältemaschine. The invention relates to a compressor device and a cooling device equipped therewith and a refrigeration machine equipped therewith.
Zum Kühlung von Kernspintomographen, Kryo-Pumpen etc. werden Pulsrohrkühler oder Gifford-McMahon-Kühler eingesetzt. Hierbei kommen Gas- und insbesondere Heliumkompressoren in Kombination mit Rotations- bzw. Drehventilen zum Einsatz wie sie in Fig. 1 1 dargestellt ist. Ein Helium-Kompressor 130 wird über eine Hochdruckleitung 132 und eine Niederdruckleitung 134 mit einem Drehventil 136 verbunden. Ausgangsseitig wird das Drehventil 136 über eine Gasleitung 138 mit einer Kühlvorrichtung 1 10 in Form eines Gifford-McMahon-Kühlers oder eines Pulsrohrkühlers verbunden. Dabei wird über das Drehventil 136 abwechselnd die Hoch- bzw. Niederdruckseite des Gaskompressors 130 mit dem Pulsrohrkühler oder dem Gifford-McMahon-Kühler verbunden. Die Rate mit der verdichtetes Helium in die Kühlvorrichtung 138 eingeführt und wieder ausgeführt wird liegt im Bereich von 1 Hz. Nachteilig bei solchen Kühl- bzw. Kompressorsystemen ist, dass das motorisch angetriebene Drehventil 136 Verluste von ca. 50% der Eingangsleistung des Kompressors verursacht. For cooling of magnetic resonance tomographs, cryopumps, etc., pulse tube coolers or Gifford-McMahon coolers are used. Gas and in particular helium compressors are used in combination with rotary valves or rotary valves as shown in FIG. 11. A helium compressor 130 is connected to a rotary valve 136 via a high pressure line 132 and a low pressure line 134. On the output side, the rotary valve 136 is connected via a gas line 138 to a cooling device 110 in the form of a Gifford-McMahon cooler or a pulse tube cooler. In this case, via the rotary valve 136 alternately the high and low pressure side of the gas compressor 130 is connected to the pulse tube cooler or the Gifford-McMahon cooler. The rate at which compressed helium is introduced and re-exported to the cooling device 138 is in the range of 1 Hz. A disadvantage of such cooling or compressor systems is that the rotary motorized valve 136 causes losses of approximately 50% of the input power of the compressor.
Es sind auch akustische Kompressoren oder Hochfrequenzkompressoren bekannt, bei denen ein oder mehrere Kolben durch ein Magnetfeld in lineare Resonanzschwingungen versetzt werden. Diese Resonanzfrequenzen liegen im Bereich von einigen 10 Hz und sind daher nicht für die Verwendung mit Pulsrohrkühlern und Gifford- McMahon-Kühlern zur Erzeugung sehr tiefer Temperaturen im Bereich kleiner 10 K geeignet. There are also known acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonance frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford McMahon coolers to produce very low temperatures in the range of less than 10 K suitable.
Es ist daher Aufgabe der Erfindung eine gegenüber der Kombination von Gaskompressor und Drehventil effizientere Kompressorvorrichtung anzugeben. Weiter ist es Aufgabe der Erfindung eine Kühlvorrichtung und eine Kältemaschine mit einer solchen Kompressorvorrichtung anzugeben. It is therefore an object of the invention to provide a comparison with the combination of gas compressor and rotary valve more efficient compressor device. Next is It is an object of the invention to provide a cooling device and a refrigerating machine with such a compressor device.
Die Lösung dieser Aufgaben erfolgt durch die Merkmale des Anspruchs 1 , 24 bzw.The solution of these objects is achieved by the features of claim 1, 24 or
27. 27th
Durch die Kombination einer Verdichtereinrichtung mit sich hin und her bewegendem Verdichterelement und einer damit magnetisch oder mechanisch gekoppelten Antriebseinrichtung wird eine einfache Alternative zu den üblich Kompressorvorrichtungen mit Drehventil geschaffen. By combining a compressor device with reciprocating compressor element and thus magnetically or mechanically coupled drive means a simple alternative to the usual compressor devices with rotary valve is created.
Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 2 mit einem Arbeitsmedium-Ausgleichsbehälter wird es möglich, dass das Verdichterelement nur in einer Bewegungsrichtung die Verdichtungsarbeit erbringen muss. Auch lässt sich damit der Arbeitsdruckbereich des Verdichters stabilisieren. Die Volumenverminderung des Arbeitsmediums durch Abkühlung in der damit betriebenen Kühlvorrichtung kann damit ausgeglichen werden. Due to the advantageous embodiment of the invention according to claim 2 with a working fluid reservoir, it is possible that the compressor element must perform the compression work only in one direction of movement. Also can thus stabilize the working pressure range of the compressor. The reduction in volume of the working medium by cooling in the thus operated cooling device can thus be compensated.
Vorzugsweise wird hierzu die Verdichtereinrichtung durch das Verdichterelement in ein erstes und ein zweites Gasvolumen unterteilt. Der Arbeitsmedium- Ausgleichsbehälter ist über ein in Richtung erstes Gasvolumen offenes Rückschlagventil mit dem ersten Gasvolumen - Anspruch 3 - und direkt über eine Gasleitung mit dem zweiten Gasvolumen - Anspruch 4 - verbunden. For this purpose, the compressor device is preferably divided by the compressor element into a first and a second gas volume. The working medium expansion tank is connected via an open in the direction of the first gas volume check valve with the first gas volume - claim 3 - and directly via a gas line to the second gas volume - claim 4 -.
Alternativ zu Anspruch 4 kann gemäß Anspruch 5 ein Fluid-Ausgleichsbehälter vorgesehen werden, der über eine Fluid-Leitung direkt mit dem zweiten Gasvolumen verbunden ist. Das in dem Fluid-Ausgleichsbehälter befindliche Ausgleichsfluid ist nicht das Arbeitsmedium, sondern ein anderes Gas oder eine Flüssigkeit. Beispielsweise kann hierfür ein Öl, insbesondere Hydrauliköl verwendet werden. Alternatively to claim 4, according to claim 5, a fluid expansion tank are provided, which is connected via a fluid line directly to the second gas volume. The balancing fluid in the fluid reservoir is not the working fluid but another gas or fluid. For example, for this purpose, an oil, in particular hydraulic oil can be used.
Durch die Steuereinrichtung gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 6 und 7 kann die Art und Weise der Verdichtung sowohl in zeitlicher Hinsicht als auch in Hinblick auf den Verdichterdruck an das jeweilige Arbeitsmedium angepasst werden. Damit kann die erfindungsgemäße Kompressorvorrichtung an unterschiedliche Arbeitsmedien angepasst werden, so dass sich unterschiedlichste Gase mit der Kompressorvorrichtung verdichten lassen. By the control device according to the advantageous embodiment of the invention according to claim 6 and 7, the manner of compression both in terms of time and in terms of the compressor pressure to the respective working medium be adjusted. Thus, the compressor device according to the invention can be adapted to different working media, so that can be compressed with the compressor device a wide variety of gases.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung nach Anspruch 10 kann die Antriebseinrichtung mit einer Mehrzahl von Verdichtereinrichtungen mechanisch oder magnetisch gekoppelt sein. Dies führt zu einer Verringerung der Kosten, da nur eine Antriebseinrichtung nötig ist. According to an advantageous embodiment of the invention according to claim 10, the drive means may be mechanically or magnetically coupled to a plurality of compressor means. This leads to a reduction in costs, since only one drive device is necessary.
Durch die vorteilhafte hafte Ausgestaltung der Erfindung nach Anspruch 1 1 werden Leckagen verringert. Due to the advantageous adhesive embodiment of the invention according to claim 1 1 leaks are reduced.
Durch die Kombination einer Verdichtereinrichtung, in der ein Arbeitsmedium durch ein Verdichterelement periodisch verdichtet und wieder entspannt wird, mit einer elektrohydrostatischen Antriebseinrichtung, die mechanisch mit dem Verdichterelement gekoppelt ist, gemäß Anspruch 17, kann das verdichtete Gas im notwendigen Frequenzbereich für Gifford-McMahon-Kühler und Pulsrohrkühler bereitgestellt werden. Die Kopplung zwischen elektrohydrostatischer Antriebseinrichtung und Verdichterelement erfolgt über eine mechanische oder eine magnetische Kopplung. Die Verwendung von hohe Verluste erzeugenden Drehventilen erübrigt sich daher. Durch die Kombination der einfachen Ansteuerbarkeit eines Elektromotors und der Kraft einer Hydraulik ist es möglich, einen extrem effizienten Kompressor zu bauen, der aufgrund des Fehlens eines Drehventils bei der Verwendung mit Gifford-McMahon-Kühlern oder Pulsrohrkühlern zu einer erheblichen Verringerung der Verluste führt. Es wird daher eine sehr effiziente Kompressoreinrichtung bereit gestellt. By combining a compressor device in which a working fluid is periodically compressed and re-expanded by a compressor element with an electro-hydrostatic drive device mechanically coupled to the compressor element according to claim 17, the compressed gas may be in the required frequency range for Gifford-McMahon coolers and pulse tube coolers are provided. The coupling between electrohydrostatic drive device and compressor element via a mechanical or a magnetic coupling. The use of high loss rotary valves is therefore unnecessary. By combining the ease of actuation of an electric motor and the power of hydraulics, it is possible to build an extremely efficient compressor which, due to the lack of a rotary valve when used with Gifford-McMahon coolers or pulse tube coolers, results in a significant reduction in losses. Therefore, a very efficient compressor device is provided.
Eine besonders geeignete elektrohydrostatische Antriebseinrichtung nach Anspruch 18 umfasst einen Hydraulikzylinder in der ein Hydraulikkolben linear beweglich angeordnet ist. Der Hydraulikzylinder wird mit Hydraulikfluid beaufschlagt, das über eine elektrisch angetriebene Hydraulikpumpe zu- bzw. abgeführt wird. Der Hydraulikkolben des Hydraulikzylinders ist mechanisch, z. B. über eine starre Stange, oder magnetisch mit dem Verdichterelement der Verdichtereinrichtung gekoppelt. Als Verdichterelement kann sowohl eine Membran - Anspruch 21 - oder ein Kolben - Ansprüche 15 und 16 - eingesetzt werden. Vorzugsweise wird aufgrund der einfachen Konstruktion ein linear beweglicher Kolben bzw. ein Linearkolbenverdichter eingesetzt - Anspruch 16. Der Vorteil einer Membran als Verdichterelement besteht darin, dass keine Kolbenlauffläche abgedichtet werden muss. Vorzugsweise besteht die Membran aus Metall, da hierdurch die Heliumdichtheit gewährleistet werden kann - Anspruch 22. A particularly suitable electrohydrostatic drive device according to claim 18 comprises a hydraulic cylinder in which a hydraulic piston is arranged linearly movable. The hydraulic cylinder is acted upon by hydraulic fluid, which is supplied or removed via an electrically driven hydraulic pump. The hydraulic piston of the hydraulic cylinder is mechanically, for. B. via a rigid rod, or magnetically coupled to the compressor element of the compressor device. As a compressor element, both a membrane - claim 21 - or a piston - claims 15 and 16 - are used. Preferably, a linearly movable piston or a linear piston compressor is used due to the simple construction - claim 16. The advantage of a membrane as a compressor element is that no piston running surface must be sealed. Preferably, the membrane is made of metal, as a result, the helium tightness can be ensured - claim 22.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist die Bewegungsrichtung des Hydraulikzylinders durch die Drehrichtung des Elektromotors gesteuert - Anspruch 19. According to an advantageous embodiment of the invention, the direction of movement of the hydraulic cylinder is controlled by the direction of rotation of the electric motor - claim 19.
Einefür die vorliegende Erfindung geeignete elektrohydrostatische Antriebseinrichtung ist beispielsweise aus der DE 10 2008 025 045 B4 bekannt. An electrohydrostatic drive device suitable for the present invention is known, for example, from DE 10 2008 025 045 B4.
Durch die elektrohydrostatische Antriebseinrichtung kann über den Hydraulikzylinder ein beliebiges Bewegungs-, Druck und Gaswechselfrequenzmuster auf die Verdichtereinrichtung übertragen werden. Die Gaswechselfrequenz kann unabhängig von irgendwelchen Resonanzfrequenzen frei eingestellt werden. Auf diese Weise kann die Leistung eines mit einer solchen Kompressoreinrichtung zu betreibenden Kühlers optimiert und Vibrationen minimiert werden - Anspruch 6 und 7. By means of the electrohydrostatic drive device, any desired movement, pressure and gas frequency change pattern can be transmitted to the compressor device via the hydraulic cylinder. The gas exchange frequency can be adjusted independently of any resonance frequencies. In this way, the performance of a cooler to be operated with such a compressor device can be optimized and vibrations minimized. Claims 6 and 7.
Aufgrund der elektrisch betriebenen Hydraulikpumpe kann eine einfache elektronische Steuereinrichtung die Verdichtung des Arbeitsmediums in der Verdichtereinrichtung nach beliebigem Muster erfolgen, sowohl zeitlich als auch nach Höhe des Drucks - Anspruch 7. Due to the electrically operated hydraulic pump, a simple electronic control device, the compression of the working fluid in the compressor device can be made according to any pattern, both in terms of time and the amount of pressure - claim. 7
Die Verdichtereinrichtung kann sowohl als fördernde Verdichtereinrichtung auslegt sein - Anspruch 14, wenn sie beispielsweise mit zum Antrieb einen herkömmlichen Kältemaschine genutzt wird, oder lediglich ein bestimmtes Gasvolumen wiederholt verdichten und entspannen. Letzteres ist z.B. bei Betrieb der bereits genannten Gifford- McMahon-Kühlern und Pulsrohrkühlern nötig. Die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 20 stellt eine kostengünstige Kompressoreinrichtung bereit, da die Kopplungsstange zwischen Antriebseinrichtung und Verdichtereinrichtung selbst als Verdichter- oder Verdrängerelement ausgebildet ist; ein speziell ausgestaltetes Verdichterelement, das mit der Kopplungsstange verbunden ist, erübrigt sich daher. Hierbei ist der Verdichterzylinder so ausgestaltet, dass sein Querschnitt nur unwesentlich größer ist als der Querschnitt der Kopplungsstange. Der Abstand zwischen Kopplungsstange und Innenseite des Verdichterzylinders ist möglichst klein, jedoch muss keine Abdichtung zwischen Kopplungsstange und Innenseite des Verdichtungszylinders erfolgen. Die Abdichtung und der Einschluss des Arbeitsmediums erfolgt durch den O-Ring bzw. der Durchführung der Kopplungsstange in den Verdichterzylinder. Je geringer der Abstand zwischen Kopplungsstange und Innenseite des Verdichterzylinders und je größer der Hub der Kopplungsstange im Verdichterzylinder desto geringer ist das tote Volumen in der Verdichtereinrichtung und desto effizienter ist die Verdichtereinrichtung. The compressor device can be designed both as a conveying compressor device - claim 14, if it is used, for example, to drive a conventional chiller, or only compress a certain volume of gas and relax repeatedly. The latter is necessary, for example, when operating the aforementioned Gifford McMahon coolers and pulse tube coolers. The advantageous embodiment of the invention according to claim 20 provides a cost-effective compressor device, since the coupling rod between the drive device and compressor device itself is designed as a compressor or displacer; a specially designed compressor element, which is connected to the coupling rod, is therefore unnecessary. Here, the compressor cylinder is designed so that its cross-section is only slightly larger than the cross section of the coupling rod. The distance between the coupling rod and the inside of the compressor cylinder is as small as possible, but no seal between the coupling rod and the inside of the compression cylinder must be made. The sealing and the inclusion of the working medium takes place through the O-ring or the implementation of the coupling rod in the compressor cylinder. The smaller the distance between the coupling rod and the inside of the compressor cylinder and the greater the stroke of the coupling rod in the compressor cylinder, the lower the dead volume in the compressor device and the more efficient the compressor device.
Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung. Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung verschiedener Ausführungsformen. The remaining subclaims relate to further advantageous embodiments of the invention. Further details, features and advantages of the invention will become apparent from the following description of various embodiments.
Es zeigt: It shows:
Fig. 1 eine schematische Darstellung der Erfindung in einer ersten Ausführungsform in Kombination mit einer Kühleinrichtung, 1 is a schematic representation of the invention in a first embodiment in combination with a cooling device,
Fig. 2 eine zweite Ausführungsform der Erfindung in Kombination mit einer herkömmlichen Kältemaschine, 2 shows a second embodiment of the invention in combination with a conventional refrigerating machine,
Fig. 3 eine dritte Ausführungsform der erfindungsgemäßen Kompressoreinrichtung, 3 shows a third embodiment of the compressor device according to the invention,
Fig. 4 eine vierte Ausführungsform der erfindungsgemäßen Kompressoreinrichtung, Fig. 5 eine fünfte Ausführungsform der Kompressoreinrichtung, 4 shows a fourth embodiment of the compressor device according to the invention, 5 shows a fifth embodiment of the compressor device,
Fig. 6 eine sechste Ausführungsform der Kompressoreinrichtung, 6 shows a sixth embodiment of the compressor device,
Fig. 7 eine siebte Ausführungsform der Kompressoreinrichtung, 7 shows a seventh embodiment of the compressor device,
Fig. 8 eine achte Ausführungsform der Kompressoreinrichtung, 8 shows an eighth embodiment of the compressor device,
Fig. 9 eine neunte Ausführungsform der Kompressoreinrichtung, 9 shows a ninth embodiment of the compressor device,
Fig. 10 eine zehnte Ausführungsform der Kompressoreinrichtung, und 10 shows a tenth embodiment of the compressor device, and
Fig. 1 1 eine schematische Darstellung einer Heliumkompressoreinrichtung mit Drehventil und einer Kühleinrichtung gemäß dem Stand der Technik. Fig. 1 1 is a schematic representation of a helium compressor device with rotary valve and a cooling device according to the prior art.
Bei der Erläuterung der verschiedenen Ausführungsformen werden gleiche oder einander entsprechende Bauteile mit denselben Bezugszeichen versehen. In the explanation of the various embodiments, the same or corresponding components are given the same reference numerals.
Fig. 1 zeigt eine erste Ausführungsform der vorliegenden Erfindung mit einer Kompressorvorrichtung 2, die mit einer Kühlvorrichtung 4 gekoppelt ist. Die Kompressorvorrichtung 2 wiederum umfasst eine Verdichtereinrichtung 6, die von einer elektro- hydrostatischen Antriebseinrichtung 8 angetrieben wird. Die Verdichtereinrichtung 6 umfasst einen gasdichten Verdichterzylinder 10 in dem ein Verdichterelement 12 in Form eines Kolbens linear beweglich angeordnet ist. Der Kolben 12 teilt den Verdichterzylinder in ein erstes und ein zweites Gasvolumen 14, 16. Durch die Bewegung des Kolbens 12 wird das erste Gasvolumen 14 mit einem Arbeitsgas, z. B. Helium, periodisch verdichtet und wieder entspannt. Eine Kopplungsstange 18 mit einem ersten und einem zweiten Ende 20, 22 ist durch ihr erstes Ende mit dem Kolben 12 verbunden. Die Kopplungsstange 18 wird durch eine abgedichtete Durchführung 24 aus dem zweiten Gasvolumen 16 des Verdichterzylinders 10 herausgeführt, so dass das zweite Ende 22 der Kopplungsstange 18 außerhalb des zweiten Gasvolumens 16 liegt. Ein Arbeitsmedium-Ausgleichsbehälter 25 ist über eine erste Gasleitung 26 direkt mit dem zweiten Gasvolumen 16 und über eine zweite Gasleitung 27 mit einem Rückschlagventil 28 mit dem ersten Gasvolumen 14 verbunden. Das Rückschlagventil 28 ist in Richtung erstes Gasvolumen 14 offen. Durch den Arbeitsmedium-Ausgleichsbehälter 25 kann das in dem zweiten Gasvolumen 16 befindliche Arbeitsmedium bei der Rückbewegung des Kolbens 12 in den Arbeitsmedium-Ausgleichsbehälter 25 strömen. Verdichterarbeit muss daher nur bei der Vorwärtsbewegung des Kolbens 12 und bei der Verdichtung des in dem ersten Gasvolumen 14 befindlichen Arbeitsmedium geleistet werden. 1 shows a first embodiment of the present invention with a compressor device 2 which is coupled to a cooling device 4. The compressor device 2 in turn comprises a compressor device 6, which is driven by an electro-hydrostatic drive device 8. The compressor device 6 comprises a gas-tight compressor cylinder 10 in which a compressor element 12 in the form of a piston is arranged to be linearly movable. The piston 12 divides the compressor cylinder into a first and a second gas volume 14, 16. By the movement of the piston 12, the first gas volume 14 with a working gas, for. B. helium, periodically compressed and relaxed again. A coupling rod 18 having first and second ends 20, 22 is connected to the piston 12 through its first end. The coupling rod 18 is led out through a sealed passage 24 from the second gas volume 16 of the compressor cylinder 10, so that the second end 22 of the coupling rod 18 is outside of the second gas volume 16. A working medium expansion tank 25 is connected via a first gas line 26 directly to the second gas volume 16 and via a second gas line 27 with a check valve 28 with connected to the first gas volume 14. The check valve 28 is open in the direction of the first gas volume 14. Through the working medium expansion tank 25, the working medium contained in the second gas volume 16 can flow in the return movement of the piston 12 into the working medium expansion tank 25. Compressor work must therefore be done only in the forward movement of the piston 12 and in the compression of the working medium located in the first gas volume 14.
Der Antrieb der Verdichtereinrichtung 6 erfolgt durch die elektrohydrostatische Antriebseinrichtung 8. Die elektrohydrostatische Antriebseinrichtung 8 umfasst einen Elektromotor 30, der eine Hydraulikpumpe 32 antreibt. Die Hydraulikpumpe 32 pumpt Hydraulikflüssigkeit über eine erste Hydraulikleitung 34 in einen Hydraulikzylinder 36 in dem ein Hydraulikkolben 38 linear beweglich angeordnet ist. Der Hydraulikkolben 38 unterteilt den Hydraulikzylinder 36 in ein erstes und ein zweites Teilvolumen 40, 42. Die erste Hydraulikleitung 34 mündet in das erste Teilvolumen 40 und aus dem zweiten Teilvolumen 42 zweigt eine zweite Hydraulikleitung 44 ab, die zurück in die Hydraulikpumpe 32 führt. Durch entsprechende Ansteuerung des Elektromotors 30 und damit der Hydraulikpumpe 32 wird der Hydraulikkolben 38 in dem Hydraulikzylinder 36 hin- und herbewegt. Der Hydraulikkolben 38 ist mit dem zweiten Ende 22 der Kopplungsstange 18 verbunden, die über eine flüssigkeitsdichte Durchführung 46 in das zweite Teilvolumen 42 hineinragt. Damit wird die Bewegung des Hydraulikkolbens 38 auf den Kolben 12 übertragen, so dass das gasförmige Arbeitsmedium in dem ersten Gasvolumen 14 des Verdichterzylinders 10 durch die Bewegung des Hydraulikkolbens 38 und der damit gekoppelten Bewegung des Verdichterkolbens 12 periodisch verdichtet wird. Auch lässt sich damit der Arbeitsdruckbereich der Verdichtereinrichtung 6 stabilisieren. Die Volumenverminderung des Arbeitsmediums durch Abkühlung in der damit betriebenen Kühlvorrichtung 4 kann damit ausgeglichen werden. The drive of the compressor device 6 takes place through the electro-hydrostatic drive device 8. The electro-hydrostatic drive device 8 comprises an electric motor 30 which drives a hydraulic pump 32. The hydraulic pump 32 pumps hydraulic fluid via a first hydraulic line 34 into a hydraulic cylinder 36 in which a hydraulic piston 38 is arranged to be linearly movable. The hydraulic piston 38 divides the hydraulic cylinder 36 into a first and a second partial volume 40, 42. The first hydraulic line 34 opens into the first partial volume 40 and from the second partial volume 42 branches off a second hydraulic line 44, which leads back into the hydraulic pump 32. By appropriate control of the electric motor 30 and thus the hydraulic pump 32, the hydraulic piston 38 is reciprocated in the hydraulic cylinder 36. The hydraulic piston 38 is connected to the second end 22 of the coupling rod 18, which projects into the second partial volume 42 via a liquid-tight passage 46. Thus, the movement of the hydraulic piston 38 is transmitted to the piston 12, so that the gaseous working fluid in the first gas volume 14 of the compressor cylinder 10 is periodically compressed by the movement of the hydraulic piston 38 and the coupled thereto movement of the compressor piston 12. This also allows the working pressure range of the compressor device 6 to be stabilized. The volume reduction of the working medium by cooling in the thus operated cooling device 4 can thus be compensated.
Das erste Gasvolumen 14 der Verdichtereinrichtung 6 ist über eine Gasleitung 48 mit der Kühlvorrichtung 4 verbunden. Die Kühlvorrichtung 4 ist hierbei eine Kühlvorrichtung, die periodisch verdichtetes Gas zu ihrem Betrieb nutzt. Insbesondere ist die Kühlvorrichtung für ein Gifford-McMahon -Kühler oder ein Pulsrohrkühler. Bei der Ausführungsform der Erfindung nach Fig. 1 wird daher eine feste Gasmenge periodisch in dem ersten Gasvolumen 14 verdichtet und wieder entspannt. Fig. 2 zeigt eine zweite Ausführungsform der Erfindung bei der die Kompressorvorrichtung 2 als Arbeitsmedium fördernde Kompressorvorrichtung ausgebildet ist und damit einen thermodynamischen Kreisprozess 50 einer Wärmepumpe bzw. Kältemaschine antreibt. Das erste Gasvolumen 14 in dem Verdichterzylinder 10 ist über die Gasleitung 48 mit einem Kondensator 52 verbunden. In dem Kondensator 52 wird das gasförmige Arbeitsmedium unter Abgabe von Wärme kondensiert. Das flüssige Arbeitsmedium wird über eine Drossel 54 einem Verdampfer 56 zugeführt. Das flüssige Arbeitsmedium wird in dem Verdampfer 56 unter Aufnahme von Wärme verdampft und das gasförmige Arbeitsmedium wird über eine Gasleitung 58 wieder dem ersten Gasvolumen 14 in dem Verdichterzylinder 10 zugeführt. Der Gaswechsel in und aus dem ersten Gasvolumen wird über eine Ventilsteuereinrichtung 60 gesteuert. The first gas volume 14 of the compressor device 6 is connected to the cooling device 4 via a gas line 48. The cooling device 4 is in this case a cooling device which uses periodically compressed gas for its operation. In particular, the cooling device is for a Gifford-McMahon cooler or a pulse tube refrigerator. In the embodiment of the invention of FIG. 1, therefore, a fixed amount of gas is periodically compressed in the first gas volume 14 and relaxed again. 2 shows a second embodiment of the invention in which the compressor device 2 is designed as a working medium conveying compressor device and thus drives a thermodynamic cycle 50 of a heat pump or chiller. The first gas volume 14 in the compressor cylinder 10 is connected via the gas line 48 to a condenser 52. In the condenser 52, the gaseous working medium is condensed with the release of heat. The liquid working medium is fed via a throttle 54 to an evaporator 56. The liquid working medium is vaporized in the evaporator 56 while absorbing heat, and the gaseous working medium is returned to the first gas volume 14 in the compressor cylinder 10 via a gas line 58. The gas exchange into and out of the first gas volume is controlled via a valve control device 60.
Nachfolgend werden anhand der Fig. 3 bis 7 verschiedene Ausführungsformen und Varianten der Kompressorvorrichtung 2 erläutert. Different embodiments and variants of the compressor device 2 will be explained below with reference to FIGS.
Fig. 3 zeigt eine ein dritte Ausführungsform der Erfindung mit einer Kompressorvorrichtung 70, die sich von der Kompressorvorrichtung 2 gemäß der ersten Ausführungsform lediglich dadurch unterscheidet, dass der Hydraulikzylinder 36 sowie die Kopplungsstange 18 zwischen dem Hydraulikkolben 38 und dem Verdichterelement 12 in einer gemeinsamen gasdichten Hülle 72 angeordnet sind. Hierbei ist auch die Durchführung 24 der Kopplungsstange 18 aus dem zweiten Gasvolumen 16 und die Durchführung 46 in das erste Teilvolumen 40 des Hydraulikzylinders 36 innerhalb der gasdichten Hülle 72 angeordnet. Auf diese Weise wird verhindert, dass gasförmiges Arbeitsmedium aus dem ersten Gasvolumen 14 über das zweite Gasvolumen 16 und die Durchführung 24 austreten kann. Dies ist insbesondere wichtig, wenn als Arbeitsmedium Helium verwendet wird, da Helium sehr teuer ist. Die gasdichte Hülle 72 definiert auch den Arbeitsmedium-Ausgleichsbehälter 25. Fig. 3 shows a third embodiment of the invention with a compressor device 70, which differs from the compressor device 2 according to the first embodiment only in that the hydraulic cylinder 36 and the coupling rod 18 between the hydraulic piston 38 and the compressor element 12 in a common gas-tight envelope 72 are arranged. In this case, the passage 24 of the coupling rod 18 from the second gas volume 16 and the passage 46 in the first part volume 40 of the hydraulic cylinder 36 within the gas-tight envelope 72 is arranged. In this way it is prevented that gaseous working medium can escape from the first gas volume 14 via the second gas volume 16 and the passage 24. This is particularly important when helium is used as the working medium since helium is very expensive. The gas-tight envelope 72 also defines the working medium surge tank 25.
Fig. 4 zeigt eine vierte Ausführungsform der Erfindung - Kompressorvorrichtung 75 - die ebenfalls das Problem der Heliumleckage verringert. Die Ausführungsform nach Fig. 4 unterscheidet sich von der Ausführungsform nach Fig. 3 dadurch, dass die gasdichte Hülle 72 auf den Bereich zwischen Antriebseinrichtung 8 und Verdichtereinrich- tung 6 eingeschränkt ist. Die Kopplungsstange 18, die flüssigkeitsdichte Durchführung 46 und die gasdichte Durchführung 24 sind innerhalb der gasdichten Hülle 72 angeordnet. Da das von der gasdichten Hülle 72 eingeschlossene Gasvolumen vergleichsweise klein ist, ist bei der Ausführungsform nach Fig. 4 ein getrennter Arbeitsmedium- Ausgleichsbehälter 25 vorgesehen. Fig. 4 shows a fourth embodiment of the invention - Compressor device 75 - which also reduces the problem of helium leakage. The embodiment according to FIG. 4 differs from the embodiment according to FIG. 3 in that the gas-tight envelope 72 extends to the area between the drive device 8 and the compressor device. 6 is restricted. The coupling rod 18, the liquid-tight passage 46 and the gas-tight passage 24 are disposed within the gas-tight envelope 72. Since the gas volume enclosed by the gas-tight envelope 72 is comparatively small, a separate working medium expansion tank 25 is provided in the embodiment according to FIG. 4.
Fig. 5 zeigt eine fünfte Ausführungsform der Erfindung, die ebenfalls das Problem der Heliumleckage verringert. Fig. 5 zeigt eine Kompressorvorrichtung 80, bei der der Hydraulikzylinder 36 direkt mit dem Verdichterzylinder 10 der Verdichtereinrichtung 6 verbunden ist. Die Verbindungsstelle von Hydraulikzylinder 36 und Verdichterzylinder 10 ist mit einem O-Ring 82 gasdicht ausgestaltet. Auf diese Weise ist die starre mechanische Verbindung zwischen Hydraulikkolben 38 und Verdichterelement 12 - Kopplungsstange 18 - ebenfalls innerhalb einer gasdichten Hülle eingeschlossen. Fig. 5 shows a fifth embodiment of the invention, which also reduces the problem of helium leakage. 5 shows a compressor device 80 in which the hydraulic cylinder 36 is connected directly to the compressor cylinder 10 of the compressor device 6. The junction of hydraulic cylinder 36 and compressor cylinder 10 is designed gas-tight with an O-ring 82. In this way, the rigid mechanical connection between hydraulic piston 38 and compressor element 12 - coupling rod 18 - also enclosed within a gas-tight envelope.
Fig. 6 zeigt eine sechste Ausführungsform der Erfindung. Auch bei Kompressorvorrichtung 84 gemäß der sechsten Ausführungsform der Erfindung ist der Hydraulikzylinder 36 direkt mit dem Verdichterzylinder 10 verbunden und die Verbindungsstelle von Hydraulikzylinder 36 und Verdichterzylinder 10 ist mit einem O-Ring 82 gasdicht ausgestaltet. Im Unterschied zu der fünften Ausführungsform der Erfindung nach Fig. 5 ist bei der sechsten Ausführungsform das in den Verdichterzylinder 10 hineinragende Ende der Kopplungsstange 18 als Verdichterelement ausgestaltet; ein getrenntes Verdichterelement erübrigt sich daher. Die Verdichterzylinder 10 definiert nur ein erstes Gasvolumen 14, das periodisch verkleinert und wieder vergrößert wird. Der Arbeitsmedium- Ausgleichsbehälter 25 ist über die Gasleitung 27 mit Rückschlagventil 28 mit diesem Gasvolumen 14 verbunden. Der Querschnitt bzw. der Innendurchmesser des Verdichterzylinders 10 ist nur unwesentlich größer ist als der Querschnitt bzw. Außendurchmesser der Kopplungsstange 18. Der Abstand zwischen Kopplungsstange 18 und Innenseite des Verdichterzylinders 10 ist möglichst klein, jedoch muss keine Abdichtung zwischen Kopplungsstange 18 und der Innenseite des Verdichtungszylinders 10 erfolgen. Die Abdichtung und der Einschluss des Arbeitsmediums erfolgt durch den O-Ring 82 in der Durchführung der Kopplungsstange 18 in den Verdichterzylinder 10. Je geringer der Abstand zwischen Kopplungsstange 18 und Innenseite des Verdichterzylinders 10 und je größer der Hub der Kopplungsstange 18 im Verdichterzylinder 10 desto ge- ringer ist das tote Volumen in der Verdichtereinrichtung 6 und desto effizienter ist die Verdichtereinrichtung 6. Fig. 6 shows a sixth embodiment of the invention. Even in the compressor device 84 according to the sixth embodiment of the invention, the hydraulic cylinder 36 is connected directly to the compressor cylinder 10 and the junction of the hydraulic cylinder 36 and the compressor cylinder 10 is designed gas-tight with an O-ring 82. In contrast to the fifth embodiment of the invention according to FIG. 5, in the sixth embodiment, the end of the coupling rod 18 projecting into the compressor cylinder 10 is designed as a compressor element; a separate compressor element is therefore unnecessary. The compressor cylinder 10 defines only a first gas volume 14, which is periodically reduced and enlarged again. The working medium expansion tank 25 is connected via the gas line 27 with check valve 28 with this gas volume 14. The cross section or the inner diameter of the compressor cylinder 10 is only slightly larger than the cross section or outer diameter of the coupling rod 18. The distance between the coupling rod 18 and inside of the compressor cylinder 10 is as small as possible, but no seal between the coupling rod 18 and the inside of the compression cylinder 10 done. The sealing and the inclusion of the working medium takes place through the O-ring 82 in the implementation of the coupling rod 18 in the compressor cylinder 10. The smaller the distance between the coupling rod 18 and inside of the compressor cylinder 10 and the larger the stroke of the coupling rod 18 in the compressor cylinder 10 the ge - Ringer is the dead volume in the compressor device 6 and the more efficient the compressor device 6.
Fig. 7 zeigt eine Verdichtereinrichtung 90 einer siebten Ausführungsform der Erfindung, wobei die Verdichtereinrichtung 90 getrennt von der Antriebseinrichtung angeordnet ist. Das in den Verdichterzylinder 10 hineinragende Ende der Kopplungsstange 18 ist von einem gasdichten Faltenbalg 92 umgeben, der zusammen mit dem in den Verdichterzylinder 10 hineinragende Ende der Kopplungsstange 18 das Verdichterelement der Verdichtereinrichtung 90 bildet. Der Faltenbalg 92 ist gasdicht mit der Innenseite des Verdichterzylinders 10 verbunden. Auf diese Weise muss die Durchführung 24 für die Kopplungsstange 18 in den Verdichterzylinder 10 nicht gasdicht ausgeführt werden. Die Abdichtung des zu verdichtenden Gasvolumens 14 erfolgt durch den Faltenbalg 92. Wenn allerdings die Durchführung 24 gasdicht ausgeführt ist, muss das Volumen 96 innerhalb des Faltenbalgs 92 über eine Gasleitung 94 direkt mit einem weiteren Fluid-Ausgleichsbehälter 98 verbunden werden. Das in dem Fluid-Ausgleichsbehälter 98 befindliche Ausgleichsfluid ist nicht das Arbeitsmedium, sondern ein anderes Gas oder eine Flüssigkeit. Beispielsweise kann hierfür ein Öl, insbesondere Hydrauliköl verwendet werden. Fig. 7 shows a compressor device 90 of a seventh embodiment of the invention, wherein the compressor device 90 is arranged separately from the drive device. The protruding into the compressor cylinder 10 end of the coupling rod 18 is surrounded by a gas-tight bellows 92 which forms the compressor element of the compressor device 90 together with the protruding into the compressor cylinder 10 end of the coupling rod 18. The bellows 92 is connected in a gastight manner to the inside of the compressor cylinder 10. In this way, the passage 24 for the coupling rod 18 in the compressor cylinder 10 must not be made gas-tight. The sealing of the gas volume to be compressed 14 takes place through the bellows 92. However, if the bushing 24 is gas-tight, the volume 96 within the bellows 92 must be connected directly to a further fluid expansion tank 98 via a gas line 94. The balancing fluid in the fluid reservoir 98 is not the working fluid but another gas or fluid. For example, for this purpose, an oil, in particular hydraulic oil can be used.
Fig. 8 zeigt eine Verdichtereinrichtung 100 einer achten Ausführungsform der Erfindung. Die Verdichtereinrichtung 100 unterscheidet sich von der Verdichtereinrichtung 90 lediglich dadurch, dass am Ende der Kopplungsstange 10 wieder ein Verdichterelement in Form eines Kolbens 12 angeordnet ist und der Faltenbalg 92 mit dem Verdichterelement 12 verbunden ist. Der Kolben 12 unterteilt den Verdichterzylinder 10 in das erste und zweite Gasvolumen 14, 16 und der Arbeitsmedium-Ausgleichsbehlter 25 ist über eine Gasleitung 26 direkt mit dem zweiten Gasvolumen 16 und über die Gasleitung 27 mit Rückschlagventil 28 mit dem ersten Gasvolumen 14 verbunden. Wiederum muss das durch den Faltenbalg 92 eingeschlossene Gasvolumen 96 mit einem Ausgleichsbehälter 98 verbunden sein, wenn die Durchführung 24 gasdicht ausgeführt ist. Fig. 8 shows a compressor device 100 of an eighth embodiment of the invention. The compressor device 100 differs from the compressor device 90 only in that at the end of the coupling rod 10, a compressor element in the form of a piston 12 is again arranged and the bellows 92 is connected to the compressor element 12. The piston 12 divides the compressor cylinder 10 into the first and second gas volumes 14, 16 and the working medium balancing container 25 is connected via a gas line 26 directly to the second gas volume 16 and via the gas line 27 with check valve 28 to the first gas volume 14. Again, the gas volume 96 trapped by the bellows 92 must be connected to a surge tank 98 when the duct 24 is gas tight.
Fig. 9 zeigt eine Verdichtereinrichtung 1 10 einer neunten Ausführungsform der Erfindung. Die Verdichtereinrichtung 1 10 unterscheidet sich von der Verdichtereinrichtung 6 gemäß Fig. 1 dadurch, dass das Verdichterelement nicht als Kolben, sondern als Me- tallmembran 1 12 ausgestaltet ist. Das Ende der Kopplungsstange 18 ist mittig mit der Membran 1 12 verbunden. Die Membran 1 12 unterteilt den Verdichterzylinder 10 in das erste und zweite Gasvolumen 14, 16 und der Arbeitsmedium-Ausgleichsbehlter 25 ist über eine Gasleitung 26 direkt mit dem zweiten Gasvolumen 16 und über die Gasleitung 27 mit Rückschlagventil 28 mit dem ersten Gasvolumen 14 verbunden. Das durch die Membran 1 12 abgetrennte zweite Gasvolumen 16 muss nur dann mit einem Ausgleichsbehälter 98 verbunden sein, wenn die Durchführung 24 gasdicht ausgeführt ist. 9 shows a compressor device 110 of a ninth embodiment of the invention. The compressor device 1 10 differs from the compressor device 6 according to FIG. 1 in that the compressor element is designed not as a piston but as a piston. tallmembran 1 12 is configured. The end of the coupling rod 18 is centrally connected to the membrane 1 12. The membrane 1 12 divides the compressor cylinder 10 into the first and second gas volumes 14, 16 and the working medium balancing container 25 is connected via a gas line 26 directly to the second gas volume 16 and via the gas line 27 with check valve 28 to the first gas volume 14. The separated through the membrane 1 12 second gas volume 16 only needs to be connected to a surge tank 98 when the bushing 24 is gas-tight.
Fig. 10 zeigt eine zehnte Ausführungsform der Erfindung mit einer Kompressoreinrichtung 120. Bei der Kompressorvorrichtung 120 wird durch eine einzige elektrohyd- rostatische Antriebseinrichtung 8 eine Mehrzahl von Verdichtereinrichtungen, hier eine erste und eine zweite Verdichtereinrichtung 6-1 , 6-2, angetrieben. D. h. der Hydraulikkolben 38 ist sowohl mit einem ersten Verdichterelement 12-1 eines ersten Verdichterzylinders 10-1 als auch mit einem zweiten Verdichterelement 12-2 in einem zweiten Verdichterzylinder 10-2 mechanisch über ein gabelförmiges Gestänge 122 gekoppelt. Auf diese Weise können mit einer elektrohydrostatischen Antriebseinrichtung 8 mehrere Verdichtereinrichtungen 6-i und damit mehrere Kühlvorrichtungen betrieben werden. 10 shows a tenth embodiment of the invention with a compressor device 120. In the compressor device 120, a plurality of compressor devices, in this case a first and a second compressor device 6-1, 6-2, are driven by a single electrohydraulic drive device 8. Ie. the hydraulic piston 38 is mechanically coupled via a fork-shaped linkage 122 both to a first compressor element 12-1 of a first compressor cylinder 10-1 and to a second compressor element 12-2 in a second compressor cylinder 10-2. In this way, a plurality of compressor devices 6-i and thus a plurality of cooling devices can be operated with an electro-hydrostatic drive device 8.
Anstelle der starren mechanischen Kopplung über die Kopplungsstange 18 können der Hydraulikkolben 38 und das Verdichterelement 12 auch magnetisch miteinander gekoppelt werden. Der Vorteil einer magnetischen Kopplung besteht darin, dass in dem Verdichterzylinder 10 der Verdichtereinrichtung und dem Hydraulikzylinder 36 keine Durchführung 24, 46 für die Kopplungsstange 18 benötigt werden, wodurch der Austritt von Helium aus dem Verdichterzylinder 10 nahezu unmöglich wird. Instead of the rigid mechanical coupling via the coupling rod 18, the hydraulic piston 38 and the compressor element 12 can also be magnetically coupled together. The advantage of a magnetic coupling is that in the compressor cylinder 10 of the compressor device and the hydraulic cylinder 36 no implementation 24, 46 are required for the coupling rod 18, whereby the escape of helium from the compressor cylinder 10 is almost impossible.
Bezugszeichenliste: LIST OF REFERENCE NUMBERS
2 Kompressorvorrichtung 2 compressor device
4 Kühlvorrichtung  4 cooling device
6 Verdichtereinrichtung  6 compressor device
8 elektrohydrostatische Antriebseinrichtung  8 electrohydrostatic drive device
10 Verdichterzylinder Verdichterelement, Kolben erstes Gasvolumen 10 compressor cylinders Compressor element, piston first gas volume
zweites Gasvolumen second gas volume
Kopplungsstange coupling rod
erstes Ende von 18 first end of 18
zweites Ende von 18 second end of 18
gasdichte Durchführung in 10 Arbeitsmedium-Ausgleichsbehälter erste Gasleitung gas-tight feedthrough in 10 working medium expansion tank first gas line
zweite Gasleitung second gas line
Rückschlagventil Elektromotor Check valve electric motor
Hydraulikpumpe hydraulic pump
erste Hydraulikleitung first hydraulic line
Hydraulikzylinder hydraulic cylinders
Hydraulikkolben hydraulic pistons
erstes Teilvolumen in 28 first partial volume in 28
zweites Teilvolumen in 28 zweite Hydraulikleitung second sub-volume in 28 second hydraulic line
flüssigkeitsdichte Durchführung Gasleitung thermodynamischer Kreisprozess Kondensator liquid-tight conduction gas line thermodynamic cycle capacitor
Drossel throttle
Verdampfer Evaporator
Gasleitung gas pipe
Ventilsteuereinrichtung Kompressorvorrichtung Valve control device Compressor device
gasdichte Hülle 75 Kompressorvorrichtung gastight envelope 75 compressor device
80 Kompressorvorrichtung80 compressor device
82 O-Ring 82 O-ring
84 Kompressorvorrichtung 84 compressor device
90 Verdichtereinrichtung90 compressor device
92 Faltenbalg 92 bellows
94 Gasleitung  94 gas line
96 Volumen innerhalb 92 96 volumes within 92
98 Fluid-Ausgleichsbehälter 98 fluid expansion tank
100 Verdichtereinrichtung 100 compressor device
1 10 Verdichtereinrichtung1 10 compressor device
1 12 Membran 1 12 membrane
120 Kompressorvorrichtung120 compressor device
122 gabelförmiges Gestänge122 fork-shaped linkage
10-1 erster Verdichterzylinder10-1 first compressor cylinder
10-2 zweiter Verdichterzylinder10-2 second compressor cylinder
12-1 erstes Verdichterelement12-1 first compressor element
12-2 zweites Verdichterelement 12-2 second compressor element
130 Helium-Kompressor130 helium compressor
132 Hochdruckleitung 132 high pressure line
134 Niederdruckleitung  134 low pressure line
136 Drehventil  136 rotary valve
138 Gasleitung  138 gas line
140 Kühlvorrichtung  140 cooling device

Claims

Ansprüche claims
1 . Kompressorvorrichtung, mit 1 . Compressor device, with
einer Verdichtereinrichtung (6; 90; 100) in der ein Arbeitsmedium durch ein sich hin und her bewegendes Verdichterelement (12; 92; 1 12) periodisch verdichtet wird, und  a compressor device (6; 90; 100) in which a working medium is periodically compressed by a reciprocating compressor element (12; 92; 1 12), and
einer Antriebseinrichtung (8), die mechanisch oder magnetisch mit dem Verdichterelement (12; 92; 1 12) gekoppelt ist.  a drive device (8) which is mechanically or magnetically coupled to the compressor element (12; 92; 1 12).
2. Kompressorvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Verdichtereinrichtung (6; 90: 100) mit einem Arbeitsmedium-Ausgleichsbehälter (25) verbunden ist. 2. Compressor device according to claim 1, characterized in that the compressor device (6; 90: 100) is connected to a working medium expansion tank (25).
3. Kompressorvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass das Verdichterelement (12; 92; 1 12) die Verdichtereinrichtung (6; 90; 100) in ein erstes und ein zweites Gasvolumen (14, 16) teilt und dass der Arbeitsmedium- Ausgleichsbehälter (25) über ein in Richtung erstes Gasvolumen (14) offenes Rückschlagventil (28) mit dem ersten Gasvolumen (14) verbunden ist. 3. A compressor device according to claim 2, characterized in that the compressor element (12; 92; 1 12) divides the compressor device (6; 90; 100) into a first and a second gas volume (14, 16) and that the working medium reservoir ( 25) is connected to the first gas volume (14) via a non-return valve (28) open in the direction of the first gas volume (14).
4. Kompressorvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Arbeitsmedium-Ausgleichsbehälter (25) direkt mit dem zweiten Gasvolumen (16) verbunden ist. 4. Compressor device according to claim 3, characterized in that the working medium expansion tank (25) is directly connected to the second gas volume (16).
5. Kompressorvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das zweite Gasvolumen (16; 96; 16, 96) über eine Leitung (94) mit einem Fluid- Ausgleichsbehälter (98) verbunden ist. 5. Compressor device according to claim 3, characterized in that the second gas volume (16; 96; 16, 96) via a line (94) with a fluid expansion tank (98) is connected.
6. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (8) eine Steuereinrichtung aufweist, mittels der die Verdichtung des Arbeitsmediums nach einem vorbestimmten Muster erfolgt. 6. Compressor device according to one of the preceding claims, characterized in that the drive device (8) comprises a control device by means of which the compression of the working medium takes place according to a predetermined pattern.
7. Kompressorvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass sich das vorbestimmte Muster zeitlich ändert. 7. A compressor device according to claim 6, characterized in that the predetermined pattern changes over time.
8. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verdichtereinrichtung (6; 90; 100) ein Filter nachgeschaltet ist. 8. Compressor device according to one of the preceding claims, characterized in that the compressor device (6; 90; 100) is followed by a filter.
9. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Arbeitsmedium Helium ist. 9. Compressor device according to one of the preceding claims, characterized in that the working medium is helium.
10. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (8) eine Mehrzahl von Verdichtereinrichtungen (6-1 , 6-2) antreibt. 10. Compressor device according to one of the preceding claims, characterized in that the drive device (8) drives a plurality of compressor devices (6-1, 6-2).
1 1 . Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (8) und die Verdichtereinrichtung (6) jeweils ein gasdichtes Gehäuse (36, 10; 72,10) aufweisen und dass die beiden Gehäuse (36, 10; 72,10) gasdicht miteinander verbunden sind. 1 1. Compressor device according to one of the preceding claims, characterized in that the drive device (8) and the compressor device (6) each have a gas-tight housing (36, 10, 72, 10) and that the two housings (36, 10, 72, 10) are connected to each other in a gastight manner.
12. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Verdichtereinrichtung (6; 90, ; 100) für einen Arbeitsfrequenzbereich zwischen 0,1 und 10 Hz und insbesondere für einen Arbeitsfrequenzbereich zwischen 0,5 und 5 Hz ausgelegt ist. 12. Compressor device according to one of the preceding claims, characterized in that the compressor device (6; 90,; 100) is designed for a working frequency range between 0.1 and 10 Hz and in particular for a working frequency range between 0.5 and 5 Hz.
13. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mechanische Kopplung zwischen Antriebseinrichtung (8) und Verdichterelement (6; 90; 100) über eine starre Kolbenstange (18) erfolgt. 13. Compressor device according to one of the preceding claims, characterized in that the mechanical coupling between the drive device (8) and compressor element (6; 90; 100) via a rigid piston rod (18).
14. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verdichtereinrichtung (6; 90; 100) als fördernde Verdichtereinrichtung ausgebildet ist. 14. Compressor device according to one of the preceding claims, characterized in that the compressor device (6; 90; 100) is designed as a conveying compressor device.
15. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verdichterelement eine Kolbeneinrichtung (12) um- fasst. 15. Compressor device according to one of the preceding claims, characterized in that the compressor element comprises a piston device (12).
16. Kompressorvorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Verdichtereinrichtung (6; 90) ein Linearkolbenverdichter ist. 16. Compressor device according to claim 15, characterized in that the compressor device (6, 90) is a linear piston compressor.
17. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (8) eine elektrohydrostatische Antriebseinrichtung ist. 17. Compressor device according to one of the preceding claims, characterized in that the drive device (8) is an electro-hydrostatic drive device.
18. Kompressorvorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die elektrohydrostatische Antriebseinrichtung (8) einen Elektromotor (30), eine durch den Elektromotor angetriebene Hydraulikpumpe (32), die mit einem Hydraulikzylinder (36) verbunden ist, in dem ein Hydraulikkolben (38) linearbeweglich angeordnet ist, wobei der Hydraulikkolben (38) mechanisch oder magnetisch mit dem Verdichterelement (12) der Verdichtereinrichtung (6) gekoppelt ist. 18. Compressor device according to claim 17, characterized in that the electro-hydrostatic drive device (8) has an electric motor (30), a hydraulic pump (32) driven by the electric motor, which is connected to a hydraulic cylinder (36) in which a hydraulic piston (38) is arranged linearly movable, wherein the hydraulic piston (38) is mechanically or magnetically coupled to the compressor element (12) of the compressor device (6).
19. Kompressorvorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Bewegungsrichtung des Hydraulikzylinders (36) durch die Drehrichtung des Elektromotors (30) gesteuert ist. 19. A compressor device according to claim 18, characterized in that the direction of movement of the hydraulic cylinder (36) by the direction of rotation of the electric motor (30) is controlled.
20. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (8) über eine Kopplungstange (18) mechanisch mit der Verdichtereinrichtung (6; 90) verbunden ist, und dass das von der Antriebseinrichtung (8) abgewandte Ende der Kopplungsstange (18) als Verdichterelement ausgebildet ist. 20. Compressor device according to one of the preceding claims, characterized in that the drive device (8) via a coupling rod (18) is mechanically connected to the compressor device (6; 90), and that of the drive device (8) facing away from the end of the coupling rod ( 18) is designed as a compressor element.
21 . Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verdichterelement (12) eine Membran (1 12) umfasst. 21. Compressor device according to one of the preceding claims, characterized in that the compressor element (12) comprises a membrane (1 12).
22. Kompressorvorrichtung nach Anspruch 21 , dadurch gekennzeichnet, dass die Membran (1 12) aus Metall besteht. 22. Compressor device according to claim 21, characterized in that the membrane (1 12) consists of metal.
23. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verdichterelement einen Faltenbalg (92) umfasst. 23. Compressor device according to one of the preceding claims, characterized in that the compressor element comprises a bellows (92).
24. Kühlvorrichtung mit einer Kompressorvorrichtung nach einem der vorhergehenden Ansprüche und einem Gifford-McMahon-Kühler oder einem Pulsrohrkühler, wobei die Verdichtereinrichtung (6; 90; 100) mit dem Gifford-McMahon-Kühler oder dem Pulsrohrkühler gekoppelt ist. 24. A refrigeration apparatus comprising a compressor device according to any one of the preceding claims and a Gifford-McMahon cooler or a pulse tube refrigerator, wherein the compressor means (6; 90; 100) is coupled to the Gifford-McMahon cooler or the pulse tube refrigerator.
25. Kühlvorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass die Verdichtereinrichtung (6) einen Hochdruckanschluss (102) aufweist und dass der Gifford-McMahon-Kühler oder der Pulsrohrkühler mit dem Hochdruckanschluss (102) der Verdichtereinrichtung (6; 90 ;100) verbunden ist. 25. Cooling device according to claim 24, characterized in that the compressor device (6) has a high-pressure connection (102) and that the Gifford-McMahon cooler or the pulse tube cooler is connected to the high-pressure connection (102) of the compressor device (6; 90; 100) ,
26. Kühlvorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass die Verdichtereinrichtung (6; 90; 100) einen Niederdruckanschluss (104) aufweist und dass der Gifford-McMahon-Kühler oder der Pulsrohrkühler mit dem Niederdruckanschluss (104) der Verdichtereinrichtung (6) verbunden ist. 26. Cooling device according to claim 24, characterized in that the compressor device (6; 90; 100) has a low-pressure connection (104) and that the Gifford-McMahon cooler or the pulse tube cooler is connected to the low-pressure connection (104) of the compressor device (6) ,
27. Kompressorkältemaschine, insbesondere für herkömmliche Kühlschränke, mit einer Kompressorvorrichtung (2; 70; 75; 80; 84; 90; 120) nach einem der vorhergehenden Ansprüche 1 bis 22, einem Verdampfer (56) und einem Kondensator (52). Compressor chiller, in particular for conventional refrigerators, comprising a compressor device (2; 70; 75; 80; 84; 90; 120) according to one of the preceding claims 1 to 22, an evaporator (56) and a condenser (52).
EP12745677.0A 2011-08-03 2012-08-02 Compressor device Active EP2710263B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011080377.7A DE102011080377B4 (en) 2011-08-03 2011-08-03 Cooling device with compressor device and Gifford-McMahon cooler or pulse tube cooler
DE201220100995 DE202012100995U1 (en) 2012-03-20 2012-03-20 compressor device
PCT/EP2012/065183 WO2013017669A1 (en) 2011-08-03 2012-08-02 Compressor device and cooling device fitted therewith and cooler unit fitted therewith

Publications (2)

Publication Number Publication Date
EP2710263A1 true EP2710263A1 (en) 2014-03-26
EP2710263B1 EP2710263B1 (en) 2016-09-14

Family

ID=46640673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12745677.0A Active EP2710263B1 (en) 2011-08-03 2012-08-02 Compressor device

Country Status (4)

Country Link
US (1) US10578099B2 (en)
EP (1) EP2710263B1 (en)
JP (1) JP6209160B2 (en)
WO (1) WO2013017669A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170045042A1 (en) 2014-04-30 2017-02-16 Anthony HURTER Supercritical water used fuel oil purification apparatus and process
FR3068087B1 (en) * 2017-06-21 2020-01-03 Valeo Systemes D'essuyage GAS COMPRESSION SYSTEM FOR DRYING AT LEAST ONE MOTOR VEHICLE SENSOR
DE102022115715A1 (en) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Compressor device and cooling device with compressor device

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1307210A (en) * 1919-06-17 Elttid-pttbtp
CH167609A (en) 1932-04-13 1934-02-28 Schmidt Rudolf Method for operating compression refrigeration machines.
DE633104C (en) * 1935-04-17 1936-07-20 Zehnder Radiatoren & Appbau Ge Refrigerator with refrigerant compressor driven by water power
CH244433A (en) 1945-04-03 1946-09-15 Zehnder Radiatoren & Apparateb Refrigeration system with piston compressor.
US3640082A (en) * 1970-06-08 1972-02-08 Hughes Aircraft Co Cryogenic refrigerator cycle
US4145884A (en) * 1977-07-25 1979-03-27 Childs Willard D Reversible power transmission
US4373865A (en) * 1981-02-10 1983-02-15 Tadeusz Budzich Reciprocating controls of a hydraulically driven piston gas compressor
US4368008A (en) * 1981-02-10 1983-01-11 Tadeusz Budzich Reciprocating controls of a gas compressor using free floating hydraulically driven piston
JPS57157076A (en) * 1981-03-20 1982-09-28 Kyoei Zoki Kk Apparatus for conveying fluid under pressure
US4515516A (en) * 1981-09-30 1985-05-07 Champion, Perrine & Associates Method and apparatus for compressing gases
US4653986A (en) * 1983-07-28 1987-03-31 Tidewater Compression Service, Inc. Hydraulically powered compressor and hydraulic control and power system therefor
JPS6193282A (en) * 1984-10-11 1986-05-12 Kyokuto Kaihatsu Kogyo Co Ltd Operation control device in piston pump for feeding fluid under pressure
IT1187318B (en) * 1985-02-22 1987-12-23 Franco Zanarini VOLUMETRIC ALTERNATE COMPRESSOR WITH HYDRAULIC OPERATION
JPS63309753A (en) * 1987-06-09 1988-12-16 Matsushita Electric Ind Co Ltd Stirliing engine driving compressor
US4911618A (en) * 1988-06-16 1990-03-27 Mitsubishi Denki Kabushiki Kaisha Cryocompressor with a self-centering piston
JPH05203273A (en) * 1992-01-24 1993-08-10 Toshiba Corp Stirling cycle apparatus
US5324175A (en) * 1993-05-03 1994-06-28 Northern Research & Engineering Corporation Pneumatically operated reciprocating piston compressor
JP3403446B2 (en) * 1993-05-10 2003-05-06 株式会社神戸製鋼所 Gas pressure vibration generating method and apparatus, and refrigerator provided with pressure vibration generating apparatus
JP3369636B2 (en) * 1993-05-14 2003-01-20 三洋電機株式会社 Gas compression and expansion machine
JP3566754B2 (en) * 1994-06-30 2004-09-15 エア・ウォーター株式会社 Piston type pulse tube refrigerator using liquid lubricant
JP3291404B2 (en) * 1994-11-30 2002-06-10 三洋電機株式会社 Free piston Vilmier cycle engine
JP2746229B2 (en) * 1995-10-30 1998-05-06 株式会社移動体通信先端技術研究所 Pulse tube refrigerator
US5701742A (en) 1995-12-29 1997-12-30 General Electric Company Configured indium gasket for thermal joint in cryocooler
JPH09236343A (en) * 1996-02-29 1997-09-09 Aisin Seiki Co Ltd Cryogenic cooling device
JPH1073333A (en) * 1996-08-29 1998-03-17 Sumitomo Heavy Ind Ltd Cryogenic cooling apparatus
JPH10274449A (en) * 1997-03-31 1998-10-13 Aisin Seiki Co Ltd Pulse pipe refrigerator
JPH10288158A (en) * 1997-04-10 1998-10-27 Kobe Steel Ltd Piston gas compressor and gas compression equipment
US5993170A (en) * 1998-04-09 1999-11-30 Applied Materials, Inc. Apparatus and method for compressing high purity gas
JP2000186667A (en) * 1998-12-21 2000-07-04 Osaka Shell Kogyosho:Kk Air compression device
JP2001330329A (en) 2000-05-23 2001-11-30 Cryodevice Inc Linear compressor
US20020068929A1 (en) * 2000-10-24 2002-06-06 Roni Zvuloni Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
JP2002349433A (en) * 2001-05-23 2002-12-04 Asahi Eng Co Ltd Compressor
DE10137552C1 (en) 2001-08-01 2003-01-30 Karlsruhe Forschzent Apparatus comprises cryo-generator consisting of cooling device having regenerator and pulse tube with heat exchangers arranged between them
BR0205940A (en) * 2001-08-23 2004-12-28 Neogas Inc Method and apparatus for filling a compressed gas storage flask
DE50202209D1 (en) * 2002-01-17 2005-03-17 Alcan Tech & Man Ag Hydroforming apparatus and use thereof
DE10247549B3 (en) * 2002-10-11 2004-05-06 Rothenberger Ag Expansion tool for hollow bodies with an electro-hydraulic drive
BR0301492A (en) 2003-04-23 2004-12-07 Brasil Compressores Sa Linear compressor resonance frequency adjustment system
JP3864228B2 (en) 2003-07-31 2006-12-27 大学共同利用機関法人 高エネルギー加速器研究機構 Article cooling method using refrigerator and refrigerator
US6938426B1 (en) 2004-03-30 2005-09-06 Praxair Technology, Inc. Cryocooler system with frequency modulating mechanical resonator
DE102004020168A1 (en) * 2004-04-24 2005-11-17 Bruker Biospin Gmbh Magnetic resonance unit has coil refrigerator in cryostat sharing compressor with detection coil cooling refrigerator
US7413418B2 (en) * 2004-07-28 2008-08-19 Honeywell International, Inc. Fluidic compressor
US8783045B2 (en) 2005-01-13 2014-07-22 Sumitomo Heavy Industries, Ltd. Reduced input power cryogenic refrigerator
US8171742B2 (en) * 2005-04-21 2012-05-08 Industrial Research Limited Pressure wave generator
DE102005057986B4 (en) * 2005-12-05 2010-06-17 Vericold Technologies Gmbh Helium compressor unit for cryogenic applications
JP2008291865A (en) * 2007-05-22 2008-12-04 Yuken Kogyo Co Ltd Cylinder driving device
DE102008025045A1 (en) 2007-06-02 2008-12-04 Marquardt Gmbh sensor
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US9080794B2 (en) * 2010-03-15 2015-07-14 Sumitomo (Shi) Cryogenics Of America, Inc. Gas balanced cryogenic expansion engine
US8522538B2 (en) * 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013017669A1 *

Also Published As

Publication number Publication date
JP6209160B2 (en) 2017-10-04
EP2710263B1 (en) 2016-09-14
JP2014526012A (en) 2014-10-02
US20140147296A1 (en) 2014-05-29
US10578099B2 (en) 2020-03-03
WO2013017669A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
EP1828603B1 (en) Hermetic refrigerant compressor
EP2661559B1 (en) Double-action refrigerant compressor
DE102005052873A1 (en) Piston compressor and chiller with the same
DE4320529C2 (en) compressor
DE102017116805A1 (en) TIEFTEMPERATUR EXPANDER WITH COLLAR FOR REDUCING NOISE AND VIBRATION PROPERTIES
EP1812759B1 (en) Combined piston-expander compressor
EP3191712B1 (en) Compressor device, cooling device equipped therewith, and method for operating the compressor device and the cooling device
EP2710263A1 (en) Compressor device and cooling device fitted therewith and cooler unit fitted therewith
WO2011137474A2 (en) Discharge silencer for a hermetically encapsulated refrigerant compressor
DE102011080377B4 (en) Cooling device with compressor device and Gifford-McMahon cooler or pulse tube cooler
DE202012100995U1 (en) compressor device
DE19841686C2 (en) Relaxation facility
EP2877748B1 (en) Compressor device, and cooling device equipped therewith and refrigeration machine equipped therewith
EP2795204B1 (en) Compressor
DE10318391B4 (en) Compressor for a closed refrigerant circuit
DE102006010122B4 (en) Combined piston expander compressor
DE102021102648B4 (en) Piston compressor, in particular for a heat pump
DE102011007673A1 (en) Apparatus for recovering energy from flowing medium, particularly fluid or granular medium, or kinetic energy, has unit for converting flow energy or kinetic energy of fluid, granular medium or solid body into kinetic energy
WO2023247277A1 (en) Compressor device, and cooling device having a compressor device
DE102022000104A1 (en) Device for suppressing and modulating pressure pulsations in gas-carrying pipelines
DE3201496A1 (en) REFRIGERATOR
DE202013010352U1 (en) Cold head for cryogenic refrigerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 829309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008268

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008268

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 829309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012008268

Country of ref document: DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012008268

Country of ref document: DE

Owner name: PRESSURE WAVE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: PRESSURE WAVE SYSTEMS GMBH, 80337 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012008268

Country of ref document: DE

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 12

Ref country code: DE

Payment date: 20230710

Year of fee payment: 12