EP2661559B1 - Double-action refrigerant compressor - Google Patents

Double-action refrigerant compressor Download PDF

Info

Publication number
EP2661559B1
EP2661559B1 EP12700943.9A EP12700943A EP2661559B1 EP 2661559 B1 EP2661559 B1 EP 2661559B1 EP 12700943 A EP12700943 A EP 12700943A EP 2661559 B1 EP2661559 B1 EP 2661559B1
Authority
EP
European Patent Office
Prior art keywords
piston
pressure
refrigerant compressor
double
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12700943.9A
Other languages
German (de)
French (fr)
Other versions
EP2661559A1 (en
Inventor
Werner Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inficon GmbH Deutschland
Original Assignee
Inficon GmbH Deutschland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inficon GmbH Deutschland filed Critical Inficon GmbH Deutschland
Publication of EP2661559A1 publication Critical patent/EP2661559A1/en
Application granted granted Critical
Publication of EP2661559B1 publication Critical patent/EP2661559B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B31/00Free-piston pumps specially adapted for elastic fluids; Systems incorporating such pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • F04B5/02Machines or pumps with differential-surface pistons with double-acting pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/046Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/02Multi-stage pumps of stepped piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0016Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • F04B53/122Valves; Arrangement of valves arranged in or on pistons the piston being free-floating, e.g. the valve being formed between the actuating rod and the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/148Pistons, piston-rods or piston-rod connections the piston being provided with channels which are coacting with the cylinder and are used as a distribution member for another piston-cylinder unit

Definitions

  • the invention relates to a double-acting refrigerant compressor.
  • the required compressors must in this case generate a gas pressure in the bottle, which is above the vapor pressure of the refrigerant at the respective ambient temperatures. This gas pressure can exceed significantly in extreme cases which exceed 30 bar, so that for the further assumptions of a working pressure up to 40bar is assumed.
  • the recycling device In known recycling devices for transferring the refrigerant from a refrigeration system into a recycling container, the recycling device is provided with a compressor and a compressor bypassing the bypass line.
  • the compressor line and the bypass line are each provided with valves, wherein initially the pressurized refrigerant flows through the bypass line into the recycling container. After pressure equalization between recycling container and refrigeration system, the remaining refrigerant is transferred via the compressor of the recycling device in the recycling container, the bypass line is closed.
  • WO 02/40867 A1 to which the preamble of claim 1 refers describes a reciprocating compressor for cooling an electric motor having a variable clearance as a pressure and suction chamber, which is adapted to suck cold air from outside through a suction bore and an inlet check valve and into the interior of the electric motor to cool the engine.
  • the free space over the interior of the electric motor is always connected to the atmosphere.
  • the invention has for its object to provide a refrigerant compressor with simple and inexpensive construction and with the required for the refrigerant recovery high compression performance.
  • the cylinder sections may be components of a one-piece cylinder or separate components. It is crucial that the cylinder sections are not movable relative to each other and that the piston in the cylinder sections freely, that is without a connection with other components, such.
  • Through the piston is an internal flow channel from the one piston end to the opposite end of the piston completely passed.
  • the piston has at least one check valve in the region of the flow channel.
  • Each cylinder section also has at least one check valve.
  • the flow channel is formed along a straight longitudinal axis, along which the check valves are arranged. The flow directions of the check valves are rectified, that is, when flowing through the piston by a refrigerant in a first flow direction, the check valves are open and flow through the piston in a second, opposite to the first flow direction through the check valves lock.
  • the advantage of the refrigerant compressor according to the invention is that a separate bypass line for removing refrigerant from a refrigerant system into a recycling container is not required until pressure equalization.
  • the interior Flow channel can easily, z. B. by a bore.
  • seals for connecting an external mechanism to the piston through the cylinder are not required. The only seals are to be provided in the area of the check valves and the contact areas between the piston and cylinder sections.
  • the piston is provided between its two end-side compression surfaces with an auxiliary compression surface which forms an auxiliary volume together with one of the two cylinder sections, which generates a driving force counteracting a restoring force during a stroke movement of the piston by a driving force.
  • both cylinder sections can be guided as inverse pistons in the piston, wherein the two cylinder sections are immovable relative to each other and only the piston performs a movement.
  • the piston can be touchless by two counter-rotating electromagnets, for. B. as a flat armature drive or as Tauchankerantrieb be driven.
  • the armature plate advantageously protrudes into the magnetic field generated by the electromagnets through the distance between the two cylinder sections.
  • the plunger armature drive the piston can be completely guided as a plunger anchor inside a one-piece cylinder.
  • the design In the coolant recycling mode, the design has the advantage of providing passive pressure equalization between the inlet and the outlet. In use, the bypass conventionally required by the prior art may be eliminated.
  • the design of the double-acting in-line free-piston compressor, the medium through the inlet valve 10, the spill valve 11 and the outlet valve 12 directly overflow. This can be done both as a liquid and as a gaseous fraction.
  • Version 1 The volume is vented to the environment. The pressure is therefore always normal pressure 1 bar.
  • Variant 2 The volume is gas-tight and is designed with a constant pre-pressure p 0 as a gas spring.
  • Variant 3 The volume is connected to the inlet line so that the inlet pressure is equal to the working pressure in the cooling system.
  • Variant 4 The volume is connected to the outlet line so that the secondary pressure in the secondary volume equals the working pressure in the recycling container.
  • the third embodiment results in the FIGS. 5 and 6 with inverse compression chamber.
  • the compressor with inverse compression chamber consists of the piston 25 with the overflow channel 8, the intermediate valve 11 and the inverse compression chamber 6.
  • the piston 25 runs in the cylinder 24, which is closed with the inlet valve plate 2.
  • Intake valve plate 2, cylinder 24 and piston 25 form the low-pressure compression volume 4.
  • An advantage of this arrangement is the direct mechanical access to the piston while maintaining the inline flow of the medium, so that on the one hand the drive of the piston can be done with a forced operation, for example with a crank mechanism, and on the other hand, the medium directly from the inlet through all the valves through to the outlet can flow.
  • both cylinder sections 41 and 42 are guided as inverse pistons in the piston 25.
  • the fifth embodiment according to Fig. 9 shows a flat armature drive for driving the piston.
  • the piston which itself may be made of a material that is not relevant to the drive, is mechanically connected to the armature plate 52 made of magnetically soft iron.
  • armature plate 52 made of magnetically soft iron.
  • a pot magnet consisting of the iron core 50 or 54 and the electric coil 51 and 53 is arranged.
  • By alternating energizing the coils is each generates a magnetic field between the pot magnet and the anchor plate, which puts the anchor in the appropriate movement.
  • this can be a slide switch which switches the current lead to the other coil when a predetermined end position is reached.
  • a magnetic spring drive is used for the piston.
  • the operating principle is a spring-mass oscillator, wherein the piston is excited as mass to an oscillating motion.
  • the work that the machine is supposed to deliver acts as cushioning and must be applied as a synchronous excitation by the magnet.
  • the principle is very effective for smaller work loads. For a vibration to actually take place, the kinetic or potential energy stored in the spring-mass system must be greater than the work to be delivered.
  • a plunger armature is used as a drive for the piston.
  • the coils mutually generate a magnetic flux in the left or in the right area of the plunger coil.
  • the anchor is then pulled each time in the appropriate end position.
  • it depends on an optimized control of the coil in order to avoid unrestrained striking of the armature.
  • the control of the coils is carried out in the same manner as in the flat armature drive.
  • the piston 7 is driven via an eccentric 61 with a shaft 60 by a conventional crank mechanism.
  • the symmetrically arranged shaft 60 of the rotary drive can be converted via known methods into a positively driven oscillation.
  • the method can be used for both normal construction and inverse compression chamber design.
  • the advantage here is the use of normal rotary drives and the positive control of the way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Description

Die Erfindung betrifft einen doppeltwirkenden Kältemittelkompressor.The invention relates to a double-acting refrigerant compressor.

Im Bereich des Recycling von Kältemittel aus Kühlanlagen, insbesondere aus Klimaanlagen, ist der Einsatz externer Kompressoren erforderlich, die in der Lage sind, unter den am Einsatzort der Klimaanlage herrschenden Bedingungen das Kältemittel aus der Kühlanlage abzupumpen und in einen entsprechenden Transportbehälter umzufüllen.In the field of recycling of refrigerants from refrigeration systems, especially from air conditioning systems, the use of external compressors is required, which are able to pump under the conditions prevailing at the site of the air conditioning conditions, the refrigerant from the refrigeration system and transfer to a corresponding transport container.

Die erforderlichen Kompressoren müssen hierbei einen Gasdruck in der Flasche erzeugen, der oberhalb des Dampfdruckes des Kältemittels bei den jeweiligen Umgebungstemperaturen liegt. Dieser Gasdruck kann im Extremfall deutlich über die 30 bar hinausgehen, so dass für die weiteren Annahmen von einem Arbeitsdruck bis maximal 40bar ausgegangen wird.The required compressors must in this case generate a gas pressure in the bottle, which is above the vapor pressure of the refrigerant at the respective ambient temperatures. This gas pressure can exceed significantly in extreme cases which exceed 30 bar, so that for the further assumptions of a working pressure up to 40bar is assumed.

Bei bekannten Recyclinggeräten zur Überführung des Kältemittels aus einer Kälteanlage in einen Recyclingbehälter ist das Recyclinggerät mit einem Kompressor und einer den Kompressor überbrückenden Bypassleitung versehen. Die Kompressorleitung und die Bypassleitung sind jeweils mit Ventilen versehen, wobei zunächst das druckbeaufschlagte Kältemittel durch die Bypassleitung in den Recyclingbehälter strömt. Nach erfolgtem Druckausgleich zwischen Recyclingbehälter und Kälteanlage wird das restliche Kältemittel über den Kompressor des Recyclinggeräts in den Recyclingbehälter überführt, wobei die Bypassleitung verschlossen ist.In known recycling devices for transferring the refrigerant from a refrigeration system into a recycling container, the recycling device is provided with a compressor and a compressor bypassing the bypass line. The compressor line and the bypass line are each provided with valves, wherein initially the pressurized refrigerant flows through the bypass line into the recycling container. After pressure equalization between recycling container and refrigeration system, the remaining refrigerant is transferred via the compressor of the recycling device in the recycling container, the bypass line is closed.

DE 101 25 420 C1 beschreibt einen pneumatischen Kolbenverdichter mit einem über eine Kurbelwelle von einem Antriebsmotor angetriebenen Verdichterkolben. DE 101 25 420 C1 describes a pneumatic piston compressor with a compressor piston driven by a drive motor via a crankshaft.

WO 02/40867 A1 , auf die sich der Oberbegriff von Anspruch 1 bezieht, beschreibt einen Kolbenkompressor zum Kühlen eines elektrischen Motors, mit einem variablen Freiraum als Druck- und Saugkammer, die dazu ausgebildet ist, kalte Luft von außerhalb durch eine Ansaugbohrung und ein Einlassrückschlagventil anzusaugen und in den Innenraum des elektrischen Motors zu bewegen, um den Motor zu kühlen. Dabei ist der Freiraum über das Innere des elektrischen Motors stets mit der Atmosphäre verbunden. WO 02/40867 A1 to which the preamble of claim 1 refers describes a reciprocating compressor for cooling an electric motor having a variable clearance as a pressure and suction chamber, which is adapted to suck cold air from outside through a suction bore and an inlet check valve and into the interior of the electric motor to cool the engine. The free space over the interior of the electric motor is always connected to the atmosphere.

Der Erfindung liegt die Aufgabe zugrunde, einen Kältemittelkompressor mit einfacher und kostengünstiger Bauausführung und mit der für die Kältemittelrückgewinnung erforderlichen hohen Kompressionsleistung zu schaffen.The invention has for its object to provide a refrigerant compressor with simple and inexpensive construction and with the required for the refrigerant recovery high compression performance.

Der erfindungsgemäße Kältemittelkompressor ist definiert durch die Merkmale von Patentanspruch 1. Demnach ist der Kältemittelkompressor ein doppeltwirkender Kältemittelkompressor mit einem frei an zwei einander gegenüberliegenden Zylinderabschnitten geführten Kolben. Die Zylinderabschnitte sind relativ zueinander nicht beweglich. Der Kolben weist einen innen durch den Kolben hindurch verlaufenden Strömungskanal auf. Jeder Zylinderabschnitt und der Kolben weisen entlang des Strömungskanals mindestens ein Rückschlagventil auf, wobei die Durchströmungsrichtungen der Rückschlagventile gleichgerichtet sind.The refrigerant compressor according to the invention is defined by the features of claim 1. Accordingly, the refrigerant compressor is a double-acting refrigerant compressor having a piston guided freely on two opposite cylinder portions. The cylinder sections are relative not movable with each other. The piston has an inside through the piston extending through the flow channel. Each cylinder section and the piston have at least one check valve along the flow channel, wherein the flow directions of the check valves are rectified.

Die Zylinderabschnitte können Bestandteile eines einstückigen Zylinders oder separate Bauteile sein. Entscheidend ist, dass die Zylinderabschnitte relativ zueinander nicht beweglich sind und dass der Kolben in den Zylinderabschnitten frei, das heißt ohne eine Verbindung mit weiteren Bauteilen, wie z. B. Kolbenstangen, und dichtend geführt ist. Durch den Kolben ist ein innenliegender Strömungskanal von dem einen Kolbenende bis zu dessen gegenüberliegendem Kolbenende vollständig hindurchgeführt. Der Kolben weist im Bereich des Strömungskanals mindestens ein Rückschlagventil auf. Jeder Zylinderabschnitt weist ebenfalls mindestens ein Rückschlagventil auf. Vorzugsweise ist der Strömungskanal entlang einer geraden Längsachse ausgebildet, entlang der auch die Rückschlagventile angeordnet sind. Die Durchströmungsrichtungen der Rückschlagventile sind gleichgerichtet, das heißt bei Durchströmung des Kolbens durch ein Kältemittel in einer ersten Strömungsrichtung sind die Rückschlagventile geöffnet und bei Durchströmung des Kolbens in einer zweiten, zu der ersten Durchströmungsrichtung entgegengesetzten Durchströmungsrichtung sperren die Rückschlagventile.The cylinder sections may be components of a one-piece cylinder or separate components. It is crucial that the cylinder sections are not movable relative to each other and that the piston in the cylinder sections freely, that is without a connection with other components, such. B. piston rods, and is sealingly guided. Through the piston is an internal flow channel from the one piston end to the opposite end of the piston completely passed. The piston has at least one check valve in the region of the flow channel. Each cylinder section also has at least one check valve. Preferably, the flow channel is formed along a straight longitudinal axis, along which the check valves are arranged. The flow directions of the check valves are rectified, that is, when flowing through the piston by a refrigerant in a first flow direction, the check valves are open and flow through the piston in a second, opposite to the first flow direction through the check valves lock.

Auf diese Weise wird ermöglicht, dass unter hohem Druck von z. B. 40 bar stehende Kältemittel einer Kältemittelanlage in einen Recyclingbehälter mit niedrigerem Druck überführt werden können, ohne dass eine separate Bypassleitung erforderlich ist. Bei erfolgtem Druckausgleich zwischen Kältemittelanlage und Recyclingbehälter saugt der Kolben während einer Hubbewegung Kältemittel von der Kältemittelanlage in Richtung des Recyclingbehälters durch das Rückschlagventil desjenigen Zylinderabschnitts, der der Kältemittelanlage zugewandt ist, an. Bei der nachfolgenden entgegengesetzten Hubbewegung des Kolbens von dem Recyclingbehälter in Richtung zu der Kältemittelanlage öffnet das Rückschlagventil des Kolbens und das zuvor aus der Kältemittelanlage angesaugte Kältemittel strömt durch den innenliegenden Strömungskanal durch den Kolben hindurch auf dessen gegenüberliegende, dem Recyclingbehälter zugewandte Seite. Bei erneuter Umkehr der Hubbewegung sperrt das Rückschlagventil des Kolbens und der Kolben presst das Kältemittel durch das Rückschlagventil des Zylinderabschnitts, der dem Recyclingbehälter zugewandt ist, hindurch und in Richtung des Recyclingbehälters.In this way it is possible that under high pressure of z. B. 40 bar standing refrigerant a refrigerant system can be transferred to a recycling container with lower pressure without a separate bypass line is required. When pressure equalization between the refrigerant system and the recycling container, the piston sucks refrigerant from the refrigerant system in the direction of the recycling container through the check valve of the cylinder section facing the refrigerant system during a stroke movement. In the subsequent opposite stroke movement of the piston from the recycling container in the direction of the refrigerant system opens the check valve of the piston and the previously sucked from the refrigerant refrigerant flows through the inner flow channel through the piston through its opposite, the recycling container side facing. Upon renewed reversal of the stroke movement, the check valve of the piston locks and the piston presses the refrigerant through the check valve of the cylinder portion, which faces the recycling container, through and in the direction of the recycling container.

Der Vorteil des erfindungsgemäßen Kältemittelkompressors liegt darin, dass eine separate Bypassleitung zur Entnahme von Kältemittel aus einer Kältemittelanlage in einen Recyclingbehälter bis zum Druckausgleich nicht erforderlich ist. Der innenliegende Strömungskanal kann auf einfache Weise, z. B. durch eine Bohrung, hergestellt werden. Durch den in den Zylinderabschnitten jeweils frei geführten Kolben sind Dichtungen zur Verbindung einer äußeren Mechanik mit dem Kolben durch die Zylinder hindurch nicht erforderlich. Die einzigen Dichtungen sind im Bereich der Rückschlagventile und der Kontaktbereiche zwischen Kolben und Zylinderabschnitten vorzusehen.The advantage of the refrigerant compressor according to the invention is that a separate bypass line for removing refrigerant from a refrigerant system into a recycling container is not required until pressure equalization. The interior Flow channel can easily, z. B. by a bore. By virtue of the piston guided freely in the cylinder sections, seals for connecting an external mechanism to the piston through the cylinder are not required. The only seals are to be provided in the area of the check valves and the contact areas between the piston and cylinder sections.

Im Falle rotationssymmetrischer Zylinderabschnitte und Kolben mit Rückschlagventilen und Strömungskanal auf der Mittellängsachse ist eine Herstellung des erfindungsgemäßen Kältemittelkompressors durch Drehen und Bohren besonders einfach.In the case of rotationally symmetrical cylinder sections and piston with check valves and flow channel on the central longitudinal axis production of the refrigerant compressor according to the invention by turning and drilling is particularly simple.

Vorzugsweise ist zwischen den Zylinderabschnitten ein derartiger Abstand vorgesehen, dass ein Bereich des Kolbens von außen frei zugänglich ist, um einen Zugriff auf den Kolben zu dessen Antrieb zu ermöglichen, ohne dass Dichtungen durch die Zylinderabschnitte hindurchzuführen wären.Preferably, such a distance is provided between the cylinder sections, that a region of the piston is freely accessible from the outside, to allow access to the piston to drive it without passing seals through the cylinder sections.

Der Kolben ist zwischen seinen beiden stirnseitigen Kompressionsflächen mit einer Hilfskompressionsfläche versehen, die zusammen mit einem der beiden Zylinderabschnitte ein Hilfsvolumen bildet, welches bei einer Hubbewegung des Kolbens durch eine Antriebskraft eine der Antriebskraft entgegenwirkende Rückstellkraft erzeugt.The piston is provided between its two end-side compression surfaces with an auxiliary compression surface which forms an auxiliary volume together with one of the two cylinder sections, which generates a driving force counteracting a restoring force during a stroke movement of the piston by a driving force.

Von besonderem Vorteil ist es, wenn mindestens einer der beiden Zylinderabschnitte als inverser Kolben in dem Kolben geführt ist, so dass der Kolben den jeweiligen Zylinderabschnitt außen umschließt und dort, z. B. zu dessen Antrieb, frei zugänglich ist. Insbesondere können beide Zylinderabschnitte als inverse Kolben in dem Kolben geführt sein, wobei die beiden Zylinderabschnitte relativ zueinander unbeweglich sind und nur der Kolben eine Bewegung ausführt.It is particularly advantageous if at least one of the two cylinder sections is guided as an inverse piston in the piston, so that the piston surrounds the respective cylinder section on the outside and there, z. B. to its drive, is freely accessible. In particular, both cylinder sections can be guided as inverse pistons in the piston, wherein the two cylinder sections are immovable relative to each other and only the piston performs a movement.

Der Kolben kann berührungslos durch zwei gegenläufig arbeitende Elektromagnete, z. B. als Flachankerantrieb oder als Tauchankerantrieb, angetrieben werden. Im Falle des Flachankerantriebs ragt die Ankerplatte vorteilhafterweise durch den Abstand zwischen den beiden Zylinderabschnitten hindurch in das von den Elektromagneten erzeugte Magnetfeld hinein. Hierbei ist theoretisch grundsätzlich denkbar, einen der beiden Elektromagnete durch einen Federantrieb zu ersetzen. Im Falle des Tauchankerantriebs kann der Kolben vollständig als Tauchanker innen in einen einstückigen Zylinder geführt sein.The piston can be touchless by two counter-rotating electromagnets, for. B. as a flat armature drive or as Tauchankerantrieb be driven. In the case of the flat armature drive, the armature plate advantageously protrudes into the magnetic field generated by the electromagnets through the distance between the two cylinder sections. In theory, it is theoretically conceivable to replace one of the two electromagnets by a spring drive. In the case of the plunger armature drive, the piston can be completely guided as a plunger anchor inside a one-piece cylinder.

Alternativ könnte durch den Abstand zwischen den beiden Zylinderabschnitten eine Exzenterführung eines Kurbeltriebs mit dem Kolben verbunden sein oder ein Rotationsantrieb mit einer Nase in eine 8-förmige Kulissenbahn auf der Oberfläche des Kolbens eingreifen.Alternatively, could be connected by the distance between the two cylinder sections an eccentric guide of a crank mechanism with the piston or engage a rotary drive with a nose in an 8-shaped slide track on the surface of the piston.

Im Folgenden werden anhand der Figuren Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel in einem ersten Betriebszustand,
Fig. 2
das erste Ausführungsbeispiel in einem zweiten Betriebszustand,
Fig. 3
ein zweites Ausführungsbeispiel in einem ersten Betriebszustand,
Fig. 4
das zweite Ausführungsbeispiel in einem zweiten Betriebszustand,
Fig. 5
ein drittes Ausführungsbeispiel in einem ersten Betriebszustand,
Fig. 6
das dritte Ausführungsbeispiel in einem zweiten Betriebszustand,
Fig. 7
ein Ausführungsbeispiel, das nicht Teil der Erfindung ist, in einem ersten Betriebszustand,
Fig. 8
das Ausführungsbeispiel nach Fig. 7 in einem zweiten Betriebszustand,
Fig. 9
ein weiteres Ausführungsbeispiel, das nicht Teil der Erfindung ist,
Fig. 10
ein weiteres Ausführungsbeispiel, das nicht Teil der Erfindung ist,
Fig. 11
ein weiteres Ausführungsbeispiel, das nicht Teil der Erfindung ist,
Fig. 12
ein weiteres Ausführungsbeispiel, das nicht Teil der Erfindung ist, und
Fig. 13
ein weiteres Ausführungsbeispiel, das nicht Teil der Erfindung ist.
Bei dem Kältemittelkompressor des in den Figuren 1 und 2 dargestellten ersten Ausführungsbeispiels besteht das Kompressorsystem aus dem gestuften Zylinder 1 in dem der Kolben 7 mit dem zentralen Überströmkanal 9 in axialer Richtung geführt wird. Der Zylinder ist durch die Einlass-Ventilplatte 2 und die Auslass-Ventilplatte 3 abgeschlossen, in denen das Einlassventil 10 und das Auslassventil 12 eingesetzt ist. Der Überströmkanal 8 wird auf der dem Auslass zugeordneten Seite mit einem weiteren Ventil 11 abgeschlossen.
Hierbei bildet der linke Abschnitt mit vergrößertem Durchmesser des gestuften Zylinders 1 den ersten Zylinderabschnitt 41 und der rechte Abschnitt mit vermindertem Durchmesser den zweiten Zylinderabschnitt 42. Die beiden Zylinderabschnitte 41 und 42 sind also einstückig miteinander verbunden und bilden den Zylinder 1.
Die Grundfunktion des doppeltwirkenden Inline-Freikolbenkompressors wird folgendermaßen beschrieben:
Der Kolben wird durch einen hier noch nicht dargestellten Antrieb in eine lineare Schwingungsbewegung gebracht. Das kann als Resonanzschwingung oder als erzwungene Schwingung geschehen.
Funktionell hat der Kompressor drei charakteristische Volumen, die die Arbeit des Systems beeinflussen und den Kraftverlauf bestimmen:
  • das Niederdruck-Arbeitsvolumen 4
  • das Hochdruck-Arbeitsvolumen 6
  • das Hilfsvolumen 5, welches beim Steuern des Kolbens hilft (am besten mit Bypass zu links vor dem Ventil 10, oder zu rechts vor dem Ventil 12)
Bewegt sich der Kolben 7 nach links, wird im Niederdruck-Arbeitsvolumen 4 das Medium verdrängt. Da das Ventil 10 durch den Druckanstieg schließt, wird das Medium über den Überströmkanal 8 und das Überströmventil 11 in das sich vergrößernde Hochdruck-Arbeitsvolumen 6 gedrückt. Hierdurch wird eine Vorkompression des Mediums erreicht, wobei die Vorkompression näherungsweise vom Verhältnis der Zylinderquerschnitte des Niederdruck-Arbeitszylinders 4 zum Querschnitt des Hochdruck-Arbeitszylinders 6 bestimmt ist.
Hat der Kolben seinen linken Wendepunkt erreicht, kehrt die Bewegung um. Das Medium wird nun aus dem Hochdruck-Arbeitsvolumen 6 verdrängt und gelangt über das Auslassventil 12 in den Auslass. Gleichzeitig vergrößert sich das Niederdruck-Arbeitsvolumen 4. Der Druckabfall im Niederdruck-Arbeitsvolumen 4 und der Druckanstieg im Hochdruck-Arbeitsvolumen 6 führen zum Schließen des Überströmventils 11. Gleichzeitig wird durch das Einlassventil 10 das Medium aus dem Einlass angesaugt.
Hat der Kolben den rechten Wendepunkt erreicht, kehrt die Bewegung wieder um und der Prozess wiederholt sich.In the following, embodiments of the invention will be explained in more detail with reference to FIGS. Show it:
Fig. 1
a first embodiment in a first operating state,
Fig. 2
the first embodiment in a second operating state,
Fig. 3
a second embodiment in a first operating state,
Fig. 4
the second embodiment in a second operating state,
Fig. 5
a third embodiment in a first operating state,
Fig. 6
the third embodiment in a second operating state,
Fig. 7
an embodiment, which is not part of the invention, in a first operating state,
Fig. 8
the embodiment according to Fig. 7 in a second operating state,
Fig. 9
another embodiment, which is not part of the invention,
Fig. 10
another embodiment, which is not part of the invention,
Fig. 11
another embodiment, which is not part of the invention,
Fig. 12
a further embodiment, which is not part of the invention, and
Fig. 13
another embodiment, which is not part of the invention.
In the refrigerant compressor in the Figures 1 and 2 shown first embodiment, the compressor system consists of the stepped cylinder 1 in which the piston 7 is guided with the central overflow channel 9 in the axial direction. The cylinder is closed by the inlet valve plate 2 and the outlet valve plate 3 in which the inlet valve 10 and the outlet valve 12 are inserted. The overflow channel 8 is closed on the outlet side associated with another valve 11.
Here, the left-hand enlarged-diameter portion of the stepped cylinder 1 constitutes the first cylinder portion 41 and the right-hand reduced diameter portion constitutes the second cylinder portion 42. The two cylinder portions 41 and 42 are integrally connected with each other to form the cylinder 1.
The basic function of the double-acting in-line free-piston compressor is described as follows:
The piston is brought by a drive not shown here in a linear oscillatory motion. This can be done as a resonance vibration or as a forced vibration.
Functionally, the compressor has three characteristic volumes that influence the work of the system and determine the force distribution:
  • the low-pressure working volume 4
  • the high pressure working volume 6
  • the auxiliary volume 5, which helps to control the piston (best with bypass to the left in front of the valve 10, or to the right in front of the valve 12)
If the piston 7 moves to the left, the medium is displaced in the low-pressure working volume 4. Since the valve 10 closes due to the increase in pressure, the medium is forced into the increasing high pressure working volume 6 via the overflow channel 8 and the overflow valve 11. As a result, a precompression of the medium is achieved, wherein the precompression is approximately determined by the ratio of the cylinder cross-sections of the low-pressure working cylinder 4 to the cross section of the high-pressure working cylinder 6.
When the piston reaches its left turning point, the movement reverses. The medium is now displaced from the high pressure working volume 6 and passes through the outlet valve 12 in the outlet. At the same time, the low-pressure working volume 4 increases. The pressure drop in the low-pressure working volume 4 and the pressure increase in the high-pressure working volume 6 lead to the overflow valve 11 closing. At the same time, the medium is sucked out of the inlet by the inlet valve 10.
When the piston reaches the right turning point, the movement reverses again and the process repeats itself.

In der Betriebsart für das Kühlmittel-Recycling hat die Konstruktion den Vorteil, dass ein passiver Druckausgleich zwischen dem Einlass und dem Auslass erfolgt. In der Anwendung kann der herkömmlicherweise nach dem Stand der Technik erforderliche Bypass entfallen. Durch die Konstruktion des doppeltwirkenden Inline-Freikolbenkompressors kann das Medium durch das Einlassventil 10, das Überströmventil 11 und das Auslassventil 12 direkt überströmen. Das kann sowohl als flüssige als auch als gasförmige Fraktion erfolgen.In the coolant recycling mode, the design has the advantage of providing passive pressure equalization between the inlet and the outlet. In use, the bypass conventionally required by the prior art may be eliminated. The design of the double-acting in-line free-piston compressor, the medium through the inlet valve 10, the spill valve 11 and the outlet valve 12 directly overflow. This can be done both as a liquid and as a gaseous fraction.

Nach dem Druckausgleich wird im Niederdruck-Arbeitsvolumen 4 und im Hochdruck-Arbeitsvolumen 6 der Dampfdruck des Kühlmittels, welcher vorliegend mit 40 bar angenommen wird, bestehen. Durch den Druck im Nebenvolumen 5 wird nun das Kraft-Weg-Verhalten des Systems erheblich beeinflusst. Variante 1: Das Volumen wird zur Umwelt belüftet. Der Druck ist also stets Normaldruck 1 bar. Variante 2: Das Volumen ist gasdicht und wird mit einem konstanten Vordruck p0 als Gasdruckfeder ausgeführt. Variante 3: Das Volumen wird mit der Einlassleitung verbunden, so dass der Vordruck gleich dem Arbeitsdruck in der Kühlanlage ist. Variante 4: Das Volumen wird mit der Auslassleitung verbunden, so dass der Vordruck im Nebenvolumen gleich dem Arbeitsdruck im Recyclingbehälter. After pressure equalization is in the low-pressure working volume 4 and in the high-pressure working volume 6, the vapor pressure of the coolant, which is presently assumed to be 40 bar exist. Due to the pressure in the secondary volume 5, the force-displacement behavior of the system is now significantly influenced. Version 1: The volume is vented to the environment. The pressure is therefore always normal pressure 1 bar. Variant 2: The volume is gas-tight and is designed with a constant pre-pressure p 0 as a gas spring. Variant 3: The volume is connected to the inlet line so that the inlet pressure is equal to the working pressure in the cooling system. Variant 4: The volume is connected to the outlet line so that the secondary pressure in the secondary volume equals the working pressure in the recycling container.

Eine Modifikation des ersten Ausführungsbeispiels ergibt sich durch die Öffnung des Zylinders in der Mitte, so dass als zweites Ausführungsbeispiel eine Bauform gemäß den Fign. 3 und 4 entsteht, bei der der erste Zylinderabschnitt 41 von dem zweiten Zylinderabschnitt 42 beabstandet ist. Durch die Teilung des Zylinders in zwei voneinander beabstandete Zylinderabschnitte 41, 42 wird ein direkter mechanischer Zugang zu dem Kolben und somit auch ein Antrieb unter Verwendung von Formschluss ermöglicht.A modification of the first embodiment results from the opening of the cylinder in the middle, so that as a second embodiment of a design according to the FIGS. 3 and 4 arises, in which the first cylinder portion 41 is spaced from the second cylinder portion 42. By the division of the cylinder into two spaced-apart cylinder sections 41, 42 is a direct mechanical access to the piston and thus also allows a drive using positive locking.

Aus einer weiteren Modifikation resultiert das dritte Ausführungsbeispiel in den Figuren 5 und 6 mit inverser Kompressionskammer. Der Kompressor mit inverser Kompressionskammer besteht aus dem Kolben 25 mit dem Überströmkanal 8, dem Zwischenventil 11 und der inversen Kompressionskammer 6. Der Kolben 25 läuft in dem Zylinder 24, der mit der Einlassventilplatte 2 abgeschlossen ist. In der Einlassventilplatte 2 ist das Einlassventil 10 eingebaut. Einlassventilplatte 2, Zylinder 24 und Kolben 25 bilden das Niederdruckkompressionsvolumen 4.From a further modification, the third embodiment results in the FIGS. 5 and 6 with inverse compression chamber. The compressor with inverse compression chamber consists of the piston 25 with the overflow channel 8, the intermediate valve 11 and the inverse compression chamber 6. The piston 25 runs in the cylinder 24, which is closed with the inlet valve plate 2. In the intake valve plate 2, the intake valve 10 is installed. Intake valve plate 2, cylinder 24 and piston 25 form the low-pressure compression volume 4.

In der inversen Kompressionskammer 6 ist der feststehende inverse Kolben 23 mit dem Auslasskanal und dem Auslassventil 12 eingesetzt. Zylinder 24 und inverser Kolben 23 sind über ein hier nicht dargestelltes Gestell fest miteinander Verbunden und bilden das stationäre System des Kompressors.In the inverse compression chamber 6, the fixed inverse piston 23 with the outlet channel and the outlet valve 12 is inserted. Cylinder 24 and inverse piston 23 are fixedly connected to each other via a frame, not shown here, and form the stationary system of the compressor.

Vorteilhaft bei dieser Anordnung ist der direkte mechanische Zugang zum Kolben bei Beibehaltung der Inlineströmung des Mediums, so dass einerseits der Antrieb des Kolbens auch mit einer Zwangsführung, beispielsweise mit einem Kurbeltrieb, erfolgen kann und andererseits das Medium direkt vom Einlass durch alle Ventile hindurch zum Auslass strömen kann.An advantage of this arrangement is the direct mechanical access to the piston while maintaining the inline flow of the medium, so that on the one hand the drive of the piston can be done with a forced operation, for example with a crank mechanism, and on the other hand, the medium directly from the inlet through all the valves through to the outlet can flow.

Bei dem vierten Ausführungsbeispiel in den Fign. 7 und 8 sind beide Zylinderabschnitte 41 und 42 als inverse Kolben in dem Kolben 25 geführt.In the fourth embodiment in the FIGS. 7 and 8 both cylinder sections 41 and 42 are guided as inverse pistons in the piston 25.

Das fünfte Ausführungsbeispiel gemäß Fig. 9 zeigt einen Flachankerantrieb zum Antreiben des Kolbens. Der Kolben, der selbst aus einem für den Antrieb nicht relevanten Material gefertigt sein kann, wird mit der aus magnetisch weichem Eisen gefertigten Ankerplatte 52 mechanisch verbunden. Beidseitig wird jeweils ein Topfmagnet bestehend aus dem Eisenkern 50 oder 54 und der Elektrospule 51 bzw. 53 angeordnet. Durch ein wechselseitiges Bestromen der Spulen wird jeweils ein Magnetfeld zwischen dem Topfmagnet und der Ankerplatte erzeugt, die den Anker in die entsprechende Bewegung versetzt. Zur Steuerung der Bestromung sind Positionssensoren für den Kolben erforderlich. Das kann im einfachsten Fall ein Schiebeschalter sein, der die Stromführung beim Erreichen einer vorgegebenen Endposition auf die andere Spule umschaltet.The fifth embodiment according to Fig. 9 shows a flat armature drive for driving the piston. The piston, which itself may be made of a material that is not relevant to the drive, is mechanically connected to the armature plate 52 made of magnetically soft iron. On both sides in each case a pot magnet consisting of the iron core 50 or 54 and the electric coil 51 and 53 is arranged. By alternating energizing the coils is each generates a magnetic field between the pot magnet and the anchor plate, which puts the anchor in the appropriate movement. To control the current flow position sensors for the piston are required. In the simplest case, this can be a slide switch which switches the current lead to the other coil when a predetermined end position is reached.

Andere Konzepte können zusätzliche elektronische Elemente nutzen, die die Umschaltung nicht nur positionsabhängig realisieren, sondern auch beispielsweise die Geschwindigkeit und die Last in die Steuerung einbeziehen. Vorteilhaft an dem Antrieb ist, dass der Flachanker einen Kraft-Weg-Verlauf hat, der gut an den des Kompressors angepasst werden kann. Mit kleiner werdendem Luftspalt zwischen Anker und Magnet steigt die Kraft überproportional an, so dass insbesondere die hohen Kräfte in den Kolbenendlagen aufgebracht werden können.Other concepts can use additional electronic elements that not only realize the switching position-dependent, but also include, for example, the speed and the load in the control. An advantage of the drive is that the flat armature has a force-displacement curve that can be well adapted to that of the compressor. With decreasing air gap between armature and magnet, the force increases disproportionately, so that in particular the high forces can be applied in the Kolbenendlagen.

Bei dem sechsten Ausführungsbeispiel in Fig. 10 wird ein Magnet-Feder-Antrieb für den Kolben angewendet. Das Wirkprinzip ist ein Feder-Masse-Schwinger, wobei der Kolben als Masse zu einer oszillierenden Bewegung angeregt wird. Die Arbeit, die die Maschine abgeben soll, wirkt als Dämpfung und muss als synchrone Anregung durch den Magneten aufgebracht werden.Das Prinzip ist für kleinere Arbeitsleistungen sehr wirkungsvoll. Damit eine Schwingung tatsächlich stattfinden kann, muss die im Feder-Masse-System gespeicherte kinetische bzw. potentielle Energie größer sein, als die abzugebende Arbeit.In the sixth embodiment in Fig. 10 a magnetic spring drive is used for the piston. The operating principle is a spring-mass oscillator, wherein the piston is excited as mass to an oscillating motion. The work that the machine is supposed to deliver acts as cushioning and must be applied as a synchronous excitation by the magnet. The principle is very effective for smaller work loads. For a vibration to actually take place, the kinetic or potential energy stored in the spring-mass system must be greater than the work to be delivered.

Bei dem siebten Ausführungsbeispiel in Fig. 11 wird ein Tauchanker als Antrieb für den Kolben verwendet. Die Spulen erzeugen wechselseitig einen magnetischen Fluss im linken oder im rechten Bereich der Tauchspule. Der Anker wird dann jedes Mal in die entsprechende Endlage gezogen. Auch hier kommt es auf eine optimierte Ansteuerung der Spule an, um ein ungebremstes Anschlagen des Ankers zu vermeiden. Die Steuerung der Spulen erfolgt in gleicher Weise, wie beim Flachanker-Antrieb.In the seventh embodiment in Fig. 11 a plunger armature is used as a drive for the piston. The coils mutually generate a magnetic flux in the left or in the right area of the plunger coil. The anchor is then pulled each time in the appropriate end position. Here, too, it depends on an optimized control of the coil in order to avoid unrestrained striking of the armature. The control of the coils is carried out in the same manner as in the flat armature drive.

Bei dem Ausführungsbeispiel nach Fig. 12 ist der Kolben 7 über eine Exzenterführung 61 mit einer Welle 60 durch einen herkömmlichen Kurbeltrieb angetrieben. Die symmetrisch angeordnete Welle 60 des Rotationsantriebes kann über ebenfalls bekannte Verfahren in eine zwangsgeführte Oszillation umgesetzt werden. Das Verfahren ist sowohl für die normale Bauausführung als auch für die Ausführung mit inverser Kompressionskammer einsetzbar. Vorteilhaft ist hierbei der Einsatz normaler Rotationsantriebe und die Zwangssteuerung des Weges.According to the embodiment Fig. 12 the piston 7 is driven via an eccentric 61 with a shaft 60 by a conventional crank mechanism. The symmetrically arranged shaft 60 of the rotary drive can be converted via known methods into a positively driven oscillation. The method can be used for both normal construction and inverse compression chamber design. The advantage here is the use of normal rotary drives and the positive control of the way.

Alternativ kann als herkömmlicher Antrieb auch ein Rotationsantrieb 71 wie in Fig. 13, dessen Rotationsachse der Mittellängsachse des Kolbens 7 entspricht, dazu dienen, mit einer innenliegenden Nase 72 in eine auf der äußeren Umfangsfläche des Kolbens 7 angeordnete Kulissenbahn 73 in Form einer "8" zu greifen, um durch Rotation des Rotationsantriebs 71 den Kolben 7 in eine oszillierende Hubbewegung zu versetzen.Alternatively, as a conventional drive, a rotary drive 71 as in Fig. 13 , whose axis of rotation corresponds to the central longitudinal axis of the piston 7, serve to engage with an inner nose 72 in a arranged on the outer peripheral surface of the piston 7 slide track 73 in the form of an "8" to rotate the rotary drive 71, the piston 7 in a to offset oscillating stroke movement.

Claims (8)

  1. A double-acting refrigerant compressor comprising a piston (7) freely guided on two cylinder portions (41,42) arranged opposite to each other and being immobile relative to each other, said piston comprising a flow channel (8) extending internally through the piston (7), each cylinder portion (41,42) and the piston (7) comprising, along the flow channel (8), respectively at least one back-check valve (10,11,12), wherein the back-check valves (10,11,12) are arranged in such a manner that their flow directions are unidirectional, wherein the piston (7) on an end side thereof comprises a low-pressure compression face adjacent to a compressible low-pressure working volume (4), and on the opposite side thereof comprises a high-pressure compression face adjacent to a compressible high-pressure working volume (6), said high-pressure compression face being smaller than the low-pressure compression face, wherein the compressible low-pressure working volume (4) is formed between the low-pressure compression face, an inlet valve plate (2) comprising a first back-check valve (10) as an inlet valve, and a first cylinder portion (41), and wherein the compressible high-pressure working volume (6) is formed between the high-pressure compression face, an outlet valve plate (3) comprising a second back-check valve (11) as an outlet valve, and a second cylinder portion (42),
    characterized in
    that that the piston (7) comprises, between the low-pressure compression face and the high-pressure compression face, an auxiliary compression surface which together with the first cylinder portion (41) forms an auxiliary volume (5) that is designed, in case of a stroke movement of the piston caused by a drive force, to generate a restoring force acting against the drive force and thereby to assist in the control of the piston in that the auxiliary volume (5)
    - can be brought into a first state in which the auxiliary volume (5) is vented toward the ambience of the refrigerant compressor so that an atmospheric normal pressure is caused to prevail in the auxiliary volume,
    - can be brought into a second state in which the auxiliary volume (5), while being gas-tight and having a constant pre-pressure p0, is operative as a gas pressure spring,
    - can be brought into a third state in which the auxiliary volume (5) is connected to an inlet line connected to a refrigerating system so that the pre-pressure in the auxiliary volume (5) is equal to the working pressure in the refrigerating system, and
    - can be brought into a fourth state in which the auxiliary volume (5) is connected to an outlet line connecting to a recycling bin so that the pre-pressure in the auxiliary volume is equal to the working pressure in the recycling bin.
  2. The double-acting refrigerant compressor according to claim 1, characterized in that the piston (7) and the cylinder portions (41,42) are formed with rotational symmetry, wherein the back-check valves (10, 11,12) and the flow channel (8) are arranged on the central longitudinal axis of the piston (7) and the cylinder portions (41,42).
  3. The double-acting refrigerant compressor according to claim 1 or 2, characterized in that the cylinder portions (41,42) are spaced from each other in such a manner that a region of the piston (7) is freely accessible from outside the cylinder portions (41,42).
  4. The double-acting refrigerant compressor according to any one of the preceding claims, characterized in that the valve of the piston (7) is formed in the high-pressure compression face.
  5. The double-acting refrigerant compressor according to any one of the preceding claims, characterized in that at least one cylinder portion (41,42) is guided as an inverse piston (23) in the piston (7).
  6. The double-acting refrigerant compressor according to any one of claims 1 to 5, characterized in that the piston (7) is driven in a contactless manner by two solenoids operating in opposite senses.
  7. The double-acting refrigerant compressor according to any one of claims 1 to 5, characterized in that the piston (7) is guided by a crank drive via an eccentric guide arrangement (61).
  8. The double-acting refrigerant compressor according to any one of claims 1 to 5, characterized in that the piston (7) is provided with an "8"-shaped sliding track (73) engaged by a nose (72) of a rotary drive (71) for driving the piston (7).
EP12700943.9A 2011-01-07 2012-01-05 Double-action refrigerant compressor Active EP2661559B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011008086A DE102011008086A1 (en) 2011-01-07 2011-01-07 Double-acting refrigerant compressor
PCT/EP2012/050150 WO2012093160A1 (en) 2011-01-07 2012-01-05 Double-acting refrigeration compressor

Publications (2)

Publication Number Publication Date
EP2661559A1 EP2661559A1 (en) 2013-11-13
EP2661559B1 true EP2661559B1 (en) 2018-09-19

Family

ID=45529072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12700943.9A Active EP2661559B1 (en) 2011-01-07 2012-01-05 Double-action refrigerant compressor

Country Status (8)

Country Link
US (2) US9777717B2 (en)
EP (1) EP2661559B1 (en)
JP (1) JP5976673B2 (en)
CN (1) CN103282656B (en)
DE (1) DE102011008086A1 (en)
RU (1) RU2615547C2 (en)
TW (1) TWI589777B (en)
WO (1) WO2012093160A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466678B2 (en) 2013-11-07 2022-10-11 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
US10323628B2 (en) * 2013-11-07 2019-06-18 Gas Technology Institute Free piston linear motor compressor and associated systems of operation
JP6403529B2 (en) * 2014-10-07 2018-10-10 住友重機械工業株式会社 Movable body support structure, linear compressor, and cryogenic refrigerator
US10492711B2 (en) * 2015-05-31 2019-12-03 Michael W. Wolfe Handheld portable impulse oscillometer
KR102333982B1 (en) * 2015-07-01 2021-12-02 엘지전자 주식회사 A linear compressor
JP6580450B2 (en) * 2015-10-23 2019-09-25 住友重機械工業株式会社 Valve structure, non-lubricated linear compressor, and cryogenic refrigerator
CN105570039A (en) * 2016-02-06 2016-05-11 罗涛 Safe energy-saving heat source air pressure feed supercharging apparatus
CN105697312A (en) * 2016-02-06 2016-06-22 罗涛 Electromagnetic equipment for efficiently and safely pressure feeding heat source gas with energy conservation
CN105569955A (en) * 2016-02-06 2016-05-11 罗涛 Efficient energy-saving heat source air conveying supercharging apparatus
CN105604898A (en) * 2016-02-06 2016-05-25 罗涛 High-efficiency energy-saving safe heat source gas pressurized transmission device
CN105715500A (en) * 2016-02-06 2016-06-29 罗涛 Safe and energy-saving heat source gas pressurization equipment
CN105697314A (en) * 2016-02-06 2016-06-22 罗涛 Energy-saving safety equipment for efficiently pressurizing heat source gas
CN105570038A (en) * 2016-02-06 2016-05-11 罗涛 Energy-saving efficient safe heat source air apparatus
CN105569954A (en) * 2016-02-06 2016-05-11 罗涛 Efficient energy-saving electromagnetic heat source air conveying supercharging apparatus
CN105569953A (en) * 2016-02-06 2016-05-11 罗涛 Electromagnetic efficient energy-saving heat source air conveying supercharging apparatus
CN105736313A (en) * 2016-02-06 2016-07-06 罗涛 Efficient and energy-saving safety equipment for supercharging heat source gas
CN105697313A (en) * 2016-02-06 2016-06-22 罗涛 Electromagnetic equipment for efficiently pumping heat source gas with energy conservation
GB2541485B (en) * 2016-04-14 2017-08-23 Libertine Fpe Ltd Actuator module
NL2016835B1 (en) * 2016-05-26 2017-12-13 Oldenamp B V Double acting positive displacement fluid pump
CN106089630B (en) * 2016-06-14 2018-07-20 浙江瑞翔机电科技股份有限公司 A kind of double rank supercharging air compressor machines
CN107101409B (en) * 2017-05-17 2018-01-23 宁利平 Double acting α type sterlin refrigerators
CN108412722A (en) * 2018-03-13 2018-08-17 李永超 Li Shi electromagnetic pumps, heat production piping network, hot channel network, Constant-temp. pipeline network and its control system
CN113825906B (en) * 2019-05-21 2024-02-13 采埃孚商用车系统欧洲有限公司 Piston pump driving device
CN112012905B (en) * 2019-05-31 2023-08-25 青岛海尔空调器有限总公司 Compressor and Refrigeration Equipment
US11913441B2 (en) * 2021-12-29 2024-02-27 Transportation Ip Holdings, Llc Air compressor system having a hollow piston forming an interior space and a check valve in a piston crown allowing air to exit the interior space
CN117231470A (en) * 2023-11-13 2023-12-15 瑞纳智能设备股份有限公司 Gas bearing device of compressor and compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040867A1 (en) * 2000-11-18 2002-05-23 Continental Ag Single or multiple-stage piston compressor and method for cooling an electric motor for a single or multiple-stage piston compressor
US20070260111A1 (en) * 2004-06-11 2007-11-08 Erbe Elektromedizin Gmbh Rinsing Device and Method for the Operation Thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US184603A (en) * 1876-11-21 Improvement in pumps
US1500391A (en) * 1923-06-28 1924-07-08 Eastman Kodak Co Camera bellows
US1822242A (en) * 1928-07-27 1931-09-08 Schongut Gustav Pump for liquids
GB421508A (en) * 1933-03-17 1934-12-21 British Thomson Houston Co Ltd Improvements in and relating to air or gas compressors
CH447818A (en) * 1967-02-21 1967-11-30 Glutz Blotzheim Nachfolger Ag Electromagnetic oscillating armature pump
US3809507A (en) * 1972-03-01 1974-05-07 B Baglai Nonpulsating fluid-flow pump
US4051877A (en) * 1975-10-24 1977-10-04 Nasa Gas compression apparatus
JPS5378407A (en) * 1976-12-22 1978-07-11 Aritoshi Tomita Compressor
US4413953A (en) * 1981-12-21 1983-11-08 General Motors Corporation Two-stage hydraulic piston pump
SU1174590A1 (en) 1982-05-06 1985-08-23 Предприятие П/Я Г-4371 Electromagnetic piston compressor
JPS61286540A (en) * 1985-06-14 1986-12-17 Nippon Denso Co Ltd Fuel injection controller
CN1043805C (en) * 1992-03-14 1999-06-23 钱人倩 Sleeve pump
US5525044A (en) * 1995-04-27 1996-06-11 Thermo Power Corporation High pressure gas compressor
US5818131A (en) * 1997-05-13 1998-10-06 Zhang; Wei-Min Linear motor compressor and its application in cooling system
JP2000097152A (en) * 1998-09-22 2000-04-04 Sanyo Electric Co Ltd Linear compressor
DE10125420C1 (en) 2001-05-25 2002-10-24 Pnp Luftfedersysteme Gmbh Multi-stage reciprocating compressor with interconnected high- and low pressure cylinders, employs plastic disc closure in non return valve
DE10301093A1 (en) * 2003-01-14 2004-07-22 J. Eberspächer GmbH & Co. KG Dosing pump for a motor vehicle heater has valve separated inlet and outlet channels and a two position piston to minimize the volume of either the inlet or outlet
DE10314007A1 (en) * 2003-03-28 2004-10-07 Leybold Vakuum Gmbh Piston vacuum pump for pumping gas, has sensor that detects speed of switching supply of energizing current between electrical coils by magnet arrangement
CN2623901Y (en) * 2003-05-09 2004-07-07 西安交通大学 Direct current differential piston reciprocating compressor
KR100539770B1 (en) 2004-08-16 2006-01-10 엘지전자 주식회사 Refrigerants suction guide structure for reciprocating compressor
US20080226477A1 (en) * 2004-10-05 2008-09-18 Chau-Chuan Wu Electromagnetic oscillating fluid pump
JP4432788B2 (en) * 2005-01-31 2010-03-17 横浜ゴム株式会社 Pressure regulator
RU2296241C1 (en) 2005-09-26 2007-03-27 Государственное Образовательное Учреждение Высшего Профессионального Образования "Омский Государственный Технический Университет" Piston compressor
CN100467866C (en) * 2006-09-21 2009-03-11 王汝武 Piston type thermal steam press
TW200844328A (en) 2007-05-03 2008-11-16 Wen-Ting Liao Air pressure differential energy saving pump device
CN201116519Y (en) * 2007-10-09 2008-09-17 何正文 Double-cylinder electromagnetic compressor
RU151691U1 (en) * 2014-07-22 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Чеченский государственный университет (ФГБОУ ВПО Чеченский государственный университет) PISTON ENGINE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040867A1 (en) * 2000-11-18 2002-05-23 Continental Ag Single or multiple-stage piston compressor and method for cooling an electric motor for a single or multiple-stage piston compressor
US20070260111A1 (en) * 2004-06-11 2007-11-08 Erbe Elektromedizin Gmbh Rinsing Device and Method for the Operation Thereof

Also Published As

Publication number Publication date
TW201235564A (en) 2012-09-01
US9777717B2 (en) 2017-10-03
US20170211557A1 (en) 2017-07-27
TWI589777B (en) 2017-07-01
RU2013136686A (en) 2015-02-20
CN103282656B (en) 2016-05-18
US20130287611A1 (en) 2013-10-31
EP2661559A1 (en) 2013-11-13
RU2615547C2 (en) 2017-04-05
DE102011008086A1 (en) 2012-07-12
JP5976673B2 (en) 2016-08-24
JP2014501884A (en) 2014-01-23
CN103282656A (en) 2013-09-04
WO2012093160A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
EP2661559B1 (en) Double-action refrigerant compressor
DE10190484B3 (en) EXPANDER OF THE GM TYPE FOR USE IN A CRYOGENIC COOLING SYSTEM
DE69617173T2 (en) OIL FEEDER FOR THE FRICTION PART OF A LINEAR COMPRESSOR
DE69617609T2 (en) COOLANT FEEDER FOR LINEAR COMPRESSOR
EP3523537B1 (en) Semi-hermetic coolant compressor
WO2004053331A1 (en) Piston compressor
DE102006009256A1 (en) Compressor apparatus for household cooling equipment e.g. refrigerator, freezer has linear drive having adjustable rotor zero position, and linear compressor having adjustable piston zero position
EP1991779A1 (en) Linear compressor with a gas spring
DE4218631A1 (en) COOLING COMPRESSOR WITH A PROFILED PISTON
DE102011007672A1 (en) Pump device i.e. passive pump device, for conveying e.g. lubrication oil for refrigerating machine, has piston movable relative to cylinder, where fluid in fluid path of suction line is conveyable/pumped into pressure line over workspace
DE102006009270A1 (en) Linear compressor for cooling equipment e.g. refrigerator, freezer has linkage having spring, and which couples compressor piston to drive
EP1812759B1 (en) Combined piston-expander compressor
EP3071834A1 (en) Cooling circuit
WO2013017669A1 (en) Compressor device and cooling device fitted therewith and cooler unit fitted therewith
DE68911285T2 (en) Valve actuator with improved performance.
DE102009038767B4 (en) Friction clutch for operation with a flowable pressure medium
AT511238A1 (en) PISTON COMPRESSORS WITH CONVEYOR RANGE CONTROL
DE10323509B4 (en) piston compressor
WO2022167326A1 (en) Piston compressor, more particularly for a heat pump
DE102011007673A1 (en) Apparatus for recovering energy from flowing medium, particularly fluid or granular medium, or kinetic energy, has unit for converting flow energy or kinetic energy of fluid, granular medium or solid body into kinetic energy
EP1991784B1 (en) Linear compressor with carbon fibre reinforced spring
DE102015101726B4 (en) Stirling machine and arrangement for generating electrical energy
DE202012100995U1 (en) compressor device
DE10249215A1 (en) Linear compressor unit
DE102005039069A1 (en) Solenoid driven piston pump for vehicle air conditioner has solenoid body built on pump housing and the pistons fill pump space completely in transverse direction to the axis and component changes piston movement status

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160509

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180416

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013460

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013460

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1043561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240131

Year of fee payment: 13