EP2795204B1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- EP2795204B1 EP2795204B1 EP12824900.0A EP12824900A EP2795204B1 EP 2795204 B1 EP2795204 B1 EP 2795204B1 EP 12824900 A EP12824900 A EP 12824900A EP 2795204 B1 EP2795204 B1 EP 2795204B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- compressor
- pressure
- discharge device
- refrigerant discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims description 192
- 238000007906 compression Methods 0.000 claims description 77
- 230000006835 compression Effects 0.000 claims description 73
- 238000005057 refrigeration Methods 0.000 claims description 35
- 238000010276 construction Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 2
- 230000010349 pulsation Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 2
- 238000013016 damping Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 238000009413 insulation Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B25/00—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/123—Fluid connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/072—Intercoolers therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/11—Reducing heat transfers
Definitions
- the invention relates to a compressor according to the preamble of claim 1 and a refrigeration system according to claim 15.
- Compressors as they are known from the preamble of claim 1, have a drive device and a compression device.
- the drive device is often an electric motor, for example.
- the compression device is designed in one or more stages, which means that the compressor, for example, in a first stage compresses refrigerant from a low pressure (suction pressure) to an intermediate pressure, the refrigerant at intermediate pressure then being fed to a second stage in which it is applied to a High pressure (final pressure) is compressed.
- Such or similar compressors are for example from the JP 2002 106 989 A , of the U.S. 3,913,346 A , of the WO 2011/049 767 A2 , of the EP 1 562 012 A1 , of the US 2011/203304 A1 , as well as the DE 10 2005 009 173 A1 known.
- a compressor has a compressor housing, a drive device and a compression device with one or more compression stages for compressing a refrigerant.
- the compressor also has at least one refrigerant supply device for supplying refrigerant to the compression device and at least one refrigerant discharge device for discharging refrigerant from the compression device, at least one section of the refrigerant supply device being arranged thermally separated from the refrigerant discharge device or the refrigerant discharge devices.
- Such a construction ensures that there is no excessive heat transfer from the compressed refrigerant to be discharged, which has been heated by a preceding compression process, to the refrigerant flowing through a section of the supply device.
- such a construction largely prevents the heat transfer from a compressed refrigerant, which is heated by the compression process, to an uncompressed refrigerant.
- the entire devices ie the devices over their entire extent, are completely thermally separated from one another, which leads to a minimal heat transfer.
- compressors that have several refrigerant supply devices, i.e. for example multi-stage compressors
- at least sections of all refrigerant supply devices for supplying refrigerant to the compression device from one, several or preferably all of the existing refrigerant discharge devices (for example device for discharging under an intermediate pressure or under high pressure) are preferred or final compression pressure standing refrigerant) arranged thermally separated. This reduces the heat transfer for all refrigerant supply devices, i.e. for example for the supplies to all stages of the compressor.
- compressors that have a plurality of refrigerant supply devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant supply devices are each thermally separated from one another at least over sections of the same.
- the refrigerant to be supplied to a compression stage is provided for cooling, for example, a drive device of the compressor, thermal decoupling from the other or the other refrigerant supply devices is often desired.
- thermal decoupling from the other or the other refrigerant supply devices is often desired.
- such a construction should always be considered when the corresponding refrigerant supply devices carry refrigerants of different temperatures.
- compressors that have several refrigerant discharge devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant discharge devices are thermally separated from one another at least over sections of the same.
- the respective refrigerant discharge devices carry refrigerants at different temperatures.
- a two-stage compressor is conceivable for this case, in which the refrigerant at the outlet of one compression stage can possibly have a temperature that is different from that at the outlet of the other compression stage (s).
- a transfer of heat to the colder refrigerant, which is discharged from the first compression stage, can thus be prevented. This contributes to increasing the efficiency of the system.
- a compressor according to the invention in which at least sections of one or more refrigerant supply device (s) are thermally separated or decoupled from one or more of the one or more refrigerant discharge device (s) present in the compressor enables an increase in the efficiency of the compressor.
- An optional further (additional) thermal separation between the refrigerant supply devices and from the refrigerant discharge devices, as well as the refrigerant discharge devices from one another, can further improve the efficiency of the respective compressor designs, especially in the case of temperature differences in the individual devices.
- Thermally separated in the context of the present application means thermally not coupled or thermally relatively weakly coupled, ie provided with the lowest possible heat transfer. This can be achieved, for example, by spacing corresponding components and / or designing them as separate components. It is also an alternative to separate the individual sections from one another with an insulating material. This can also be used when several of the supply devices and the discharge devices for refrigerant are to be designed as an integral component.
- the entire component is made of a material with a low thermal conductivity, preferably lower than the thermal conductivity of C-45 steel, further preferably lower than a thermal conductivity of 20 W / mK, in particular preferably lower than a thermal conductivity of 10 W. / mK to produce. Wall thicknesses of a few mm are effective.
- two-component structures with, for example, insulating layers, in which case the components are again spaced apart from one another by the insulating layer.
- Possibilities for minimizing the heat transfer are therefore avoiding contact surfaces, minimizing existing or required surfaces, choosing a less conductive material for required surfaces, in particular contact surfaces, and thermal insulation of surfaces, in particular contact surfaces, using appropriate materials or substances (solid-state insulation , Gas insulation, if necessary insulation by liquid) and / or by a corresponding spacing from one another.
- a compressor according to the invention is explained in the following description of the figures using the example of a multistage radial piston compressor, the construction according to the invention can be applied to any single-stage and multistage compressor regardless of its compression principle.
- radial piston compressors axial piston compressors, scroll compressors, screw compressors, turbo compressors, rotary compressors, etc. may be mentioned as examples.
- the illustrated first embodiment of a compressor according to the invention is a radial piston compressor 10 which has a drive device or drive unit in the form of an electric motor 12 and a compression device or compression unit 14. Both the electric motor and the compression unit 14 are arranged in a compressor housing 15, which is composed of two parts, namely a motor housing 15-1 and a pressure cover 15-2.
- the motor housing 15-1 is connected to the pressure cover 15-2 in a gas-tight manner.
- the two housing components are welded to one another, other thermal connection methods such as brazing etc. or other suitable gas-tight connection methods such as flanging, gluing etc. also being conceivable.
- the compression unit 14 has six pistons 18 which extend away from a central axis 16 in the radial direction and which are arranged in corresponding cylinders or cylinder bores 19 such that they can be displaced back and forth in the radial direction.
- the drive of the compression unit 14 takes place via a drive shaft 16 which is connected to the electric motor 12 in a rotationally fixed manner and which is in operative engagement with the piston 18 via an eccentric mechanism and a connecting rod.
- any number of pistons other than six is conceivable.
- the number of pistons is determined on the basis of the desired specifications and the desired area of application.
- the functioning of the compression process itself is possible both for the radial piston compressor described here and for all others Compressor types are well known and will not be further described here.
- the compressor 10 is a two-stage compressor, the compression unit 14 of which is designed to compress refrigerant in two stages.
- the compressor 10 is supplied with refrigerant for a first compression stage 14-1 via a low-pressure refrigerant supply device 20 which limits a low-pressure volume of the compressor 10 (suction volume) and is compressed in this to a predetermined intermediate pressure.
- a low-pressure refrigerant supply device 20 which limits a low-pressure volume of the compressor 10 (suction volume) and is compressed in this to a predetermined intermediate pressure.
- the compressor according to the invention can of course alternatively also be designed as a single-stage compressor and also as a different type of compressor (scroll compressor, etc., in a single-stage and multi-stage design).
- a reciprocating piston compressor is used because it can be used advantageously because of, among other things, its high degree of tightness, which is due to the use of cylinders (good sealing via the piston rings). Furthermore, the areas around the cylinder, that is, for example, some heavily loaded areas, are only thermally loaded during the compression moment, i.e. when the cylinder is filled with refrigerant and the piston is approaching top dead center (due to the heating caused by the compression of the refrigerant caused). Afterwards, cooling takes place immediately, for example by inflowing refrigerant, so that the material load is kept as low as possible.
- the low-pressure refrigerant supply device 20 has a plurality of subregions. This is a first low-pressure refrigerant supply device sub-area 20-1 formed and defined by a tubular wall or a pipe, which extends outside the compressor housing 15 from the compressor housing 15 to a low-pressure connection 22, one in turn through a tubular wall or . By a pipe formed and defined second low-pressure refrigerant supply device sub-area 20-2, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third, formed in the compression unit 14 low-pressure refrigerant supply device sub-area 20-3 on.
- the subregions are each formed by separate components which are each connected in a gas-tight manner at the ends to a corresponding end of one of the other components. It should be noted at this point that the entire low-pressure refrigerant supply device 20 can alternatively be formed in one piece or can have one of three different numbers of components. The extent of the above-mentioned sub-areas does not have to coincide with the extent of the components.
- the refrigerant After being fed to the first compression stage 14-1, which is formed by four of the six cylinders, the refrigerant is compressed to an intermediate pressure in the first compression stage.
- the refrigerant After compression by the first compression stage 14-1, the refrigerant is ejected into an intermediate-pressure refrigerant discharge device 24, which in turn has three sub-areas: a first intermediate-pressure refrigerant discharge device sub-area 24-1, which is again delimited by a tubular wall or a pipe extends outside the compressor housing 15 from the compressor housing 15 to a first intermediate pressure connection 26; a second intermediate-pressure refrigerant discharge device sub-area 24-2, likewise bounded by a tubular wall or pipe, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third intermediate-pressure refrigerant discharge device sub-area 24-3, which is formed in the compression unit 14 and serves to connect the second intermediate-pressure refrigerant discharge device section 24-2 to the cylinders, more precisely, to the outlets of the
- the intermediate pressure refrigerant discharge device sub-areas are in turn connected in a gastight manner to the first intermediate pressure connection 26 and the cylinders of the first compression stage 14-1 in a gas-tight manner analogous to the low pressure sub-areas at respective ends and at corresponding other ends.
- the statements for the low-pressure feed device 20 also apply analogously with regard to the number of components.
- the intermediate pressure refrigerant is led out of the compressor via the intermediate pressure refrigerant discharge device 24 and made available at the first intermediate pressure connection 26 for transfer to an intermediate cooler 28 (see FIG Fig. 2 ).
- the compressor 10 is connected via the first intermediate pressure connection 26 by means of a first pipe 30 to the intermediate cooler, in which the intermediate pressure refrigerant is cooled.
- the cooled, intermediate-pressure refrigerant is then supplied via a second intermediate-pressure connection connected to the second pipe 32 34 brought into an intermediate pressure refrigerant supply device 36 of the compressor 10.
- the intermediate pressure refrigerant supply device 36 has two sub-areas connected to one another in a gas-tight manner: a first intermediate-pressure refrigerant supply device sub-area 36-1, which is again tubular and which is arranged between the compressor housing 15 and the second intermediate pressure connection 34 and is connected to it in a gas-tight manner, a tubular second intermediate-pressure refrigerant supply device sub-area 36-2, which extends from the compressor housing 15 in a 90 ° curve towards the electric motor 12 and ends in the area of the electric motor 12.
- the electric motor 12 is cooled by the cooled refrigerant at intermediate pressure.
- a third intermediate-pressure refrigerant supply device sub-area 36-3 arranged in the compression unit 14 After flowing through and cooling the engine, the cooled refrigerant is then supplied to a second compression stage 14-2 consisting of two cylinders, in which it is fed to one high pressure (high pressure) is compressed.
- the cylinders of the second compression stage 14-2 are connected in a gas-tight manner on an inlet side to the third intermediate-pressure refrigerant supply device section 36-3.
- the intermediate-pressure refrigerant supply device 36 can also consist of any number of components that do not have to match the corresponding subregions.
- the high-pressure refrigerant discharge device 38 has five high-pressure refrigerant discharge device subareas, each connected to one another in a gas-tight manner: a first tubular high-pressure refrigerant discharge device subarea 38-1, which extends outside the compressor housing 15 from the compressor housing 15 to a high-pressure connection 40; a likewise tubular second high-pressure refrigerant discharge device sub-area 38-2, which extends within the compressor housing 15 from the compressor housing 15 to a third high-pressure refrigerant discharge device sub-area 38-3; the third high-pressure refrigerant discharge device section 38-3, which is roughly cuboid, that is, is designed with a rectangular cross-section and serves to dampen pulsations in the high-pressure volume 38; a fourth high pressure refrigerant discharge device section 38-4 extending from the third high pressure
- the refrigerant is in the exemplary refrigeration system of Fig. 2 is fed via a third pipe 42 to a gas cooler 43 in which it is cooled.
- the cooled refrigerant which is at high pressure, then flows via a fourth pipe 44 into a first expansion element 46, where it is expanded to a mean pressure which does not have to correspond to the intermediate pressure.
- the refrigerant then flows via a fifth pipe 48 into a collector 50, from where it flows via a sixth pipe 52 into a second expansion element 54, in which it is expanded to low pressure (suction pressure), and then via a seventh pipe 56 to an evaporator 58 arrives.
- the refrigerant then flows from the evaporator 58 via a further, eighth pipe 60 to the compressor 10, more precisely to the low-pressure connection 22 of the compressor 10.
- each refrigerant supply device 20, 36 is arranged to be thermally separated from the refrigerant discharge devices. It is in the present Embodiment here to sections which begin at respective connections for the refrigerant (low pressure connection 22, second intermediate pressure connection 34) and in the case of the low pressure refrigerant supply device comprises the first low pressure refrigerant supply device sub-area 20-1 and the second low pressure refrigerant supply device sub-area 20-2 . In the case of the intermediate-pressure refrigerant supply device 36, the first and the second intermediate-pressure refrigerant supply device sub-regions 36-1 and 36-2 are included.
- intermediate-pressure refrigerant discharge device 24 and the high-pressure refrigerant discharge device 38 are also thermally separated from one another.
- the corresponding section comprises the first and second intermediate-pressure refrigerant discharge device subareas 24-1 and 24-2, and in the high-pressure refrigerant discharge device 38 the first to fourth high-pressure refrigerant discharge device subareas 38-1 to 38-4 .
- the respective sections which are arranged thermally separated from one another, are arranged at a distance from one another and thermally separated or decoupled from one another by the respective ambient atmosphere (in the compressor refrigerant, either under intermediate pressure or under suction pressure, outside the compressor ambient atmosphere).
- FIG. 2 a corresponding pressure-enthalpy diagram for the refrigeration system is shown, with the states marked with single-digit numbers in the pressure-enthalpy diagram occurring at the single-digit points in the system in circles.
- the states in the respective pressure-enthalpy diagrams are analogous Figures 3 to 7 marked. In the following, reference is no longer made to this individually, but rather, as already explained, it is assumed that the respective in the Figures 3 to 7
- the pressure-enthalpy diagrams shown represent the states in the refrigeration systems shown in the same figure.
- the states identified by a number are in each case at the point of the refrigeration system provided with a number in a circle.
- FIG. 3 a further exemplary refrigeration system is shown, which has a second possible embodiment of a compressor according to the invention.
- the compressor 110 is again designed in two stages, and essentially corresponds to the compressor 10 of FIG first described embodiment according to Fig. 1 . At this point, the differences to the compressor 10 are above all in accordance with Fig. 1 described.
- the compressor 110 has two compression stages 114-1 and 114-2.
- the first compression stage 114-1 compresses a main coolant flow at low pressure (suction pressure), which is made available to the compressor 110 via a low-pressure connection 122 and a low-pressure volume that corresponds in structure and function to that of the first embodiment will, at high pressure.
- the second compression stage 114-2 is arranged, which also compresses the intermediate pressure refrigerant of a secondary coolant flow to high pressure.
- the intermediate pressure refrigerant is supplied to the compressor 110 via an intermediate pressure connection 134, which corresponds to the second intermediate pressure connection 34 of the first embodiment, and an associated intermediate pressure volume, which corresponds in structure and function to the second intermediate pressure volume of the first embodiment.
- the intermediate pressure refrigerant is used to cool the electric motor of the compressor.
- the cylinders (cylinder outlets) of both compression stages 114-1 and 114-2 are connected to a common high-pressure sub-volume 138-5, which is the fifth high-pressure sub-volume 38-5 of the first embodiment, which is only connected to the Cylidern (cylinder outlets) of the second compression stage 14-2 is connected, replaced;
- the remaining partial volumes of the high pressure volume of the second embodiment are designed analogously to those of the first embodiment;
- a high pressure connection 140 corresponding to the first embodiment is also provided.
- the first intermediate pressure volume 24 via which the refrigerant compressed in the first compression stage 14-1 of the compressor according to the first embodiment was supplied to the intercooler without replacement is thus omitted.
- the refrigerant flows from the high-pressure connection 140 (again via pipelines in each case) to a gas cooler 143, which corresponds to the gas cooler 43 in terms of structure and functionality and is cooled there.
- the refrigerant flow is then divided into the main flow H and the secondary flow N, the secondary flow passing through a first expansion element 146-1, where it is expanded to the intermediate pressure of the compressor.
- the secondary stream N is then fed to a heat exchanger 162.
- the main stream H initially does not pass through an expansion device but is fed directly to the heat exchanger 162, so that the main stream H is further cooled by the secondary stream N.
- the secondary flow is then led to the second compression stage 114-2, more precisely to the intermediate pressure connection 134, while the main flow H passes through an expansion element 146-2, which expands the refrigerant of the main flow or the main flow to a mean pressure that is different from the intermediate pressure can.
- an expansion element 146-2 which expands the refrigerant of the main flow or the main flow to a mean pressure that is different from the intermediate pressure can.
- the rotor of the electric motor 12 functions as an oil separator.
- the compressor housing 15 consists of two parts that are thermally connected to one another in a non-removable manner after the drive device and the compression unit have been introduced. This leads to a high level of stability of the compressor, since loosening of connections, for example due to vibrations, is unlikely.
- more than two parts can also be used to form the housing 15, which, in spite of a higher number of parts and slightly higher manufacturing costs, may increase the ease of assembly and thus ensure cost savings elsewhere.
- a third refrigeration system based on the compressor 10, which is a modification of the in Fig. 2 refrigeration system shown is in Fig. 4 shown.
- the third refrigeration system has a connecting line in the form of a pipe 64 between the collector 50 and the pipe 32, which is arranged between the intercooler 28 and the second intermediate pressure connection 34. This creates a secondary refrigerant flow from collector 50 to the second Compression level 14-2 allows.
- FIG Fig. 5 Another (fourth) refrigeration system based on the compressor 10 is shown in FIG Fig. 5 shown.
- the intercooler 28 and the pipelines assigned to it are omitted, but otherwise the fourth refrigeration system is identical to the third refrigeration system according to FIG Fig. 4 .
- FIG. 6 A fifth, in Fig. 6
- the refrigeration system shown is based on the refrigeration system of Figure 2 (two-stage compressor with serially arranged compression stages), whereby the refrigerant flow after the gas cooler 43 (analogous to the refrigeration system, which in Fig. 3 is shown) divided into a main flow H and a secondary flow N, the secondary flow passing through a first expansion element 46-1, where it is expanded to the intermediate pressure of the compressor.
- the secondary stream N is then fed to a heat exchanger 62.
- the main stream H initially does not run through an expansion element but is fed directly to the heat exchanger 62, so that the main stream H is further cooled by the secondary stream N.
- the secondary flow is then led to the second compression stage 14-2, more precisely to the intermediate pressure connection 34, while the main flow H passes through an internal heat exchanger 66 and then an expansion element 54, the refrigerant of the main flow H then passes via the evaporator 58, another collector 68 and the internal heat exchanger 66 back to the low pressure connection of the compressor 10.
- FIG. 7 Finally, another (sixth) refrigeration system is shown, which has a compressor 110 (ie a compressor with parallel compression stages 114-1 and 114-2). In contrast to the refrigeration system according to Fig. 3 however, the sixth refrigeration system does not have a heat exchanger which transfers heat from a main refrigerant flow to a secondary refrigerant flow. The total refrigerant flow passes through, similar to the refrigeration system Fig. 5 an expansion element 146 and then passes into a separator or collector 150.
- a compressor 110 ie a compressor with parallel compression stages 114-1 and 114-2
- the sixth refrigeration system does not have a heat exchanger which transfers heat from a main refrigerant flow to a secondary refrigerant flow.
- the total refrigerant flow passes through, similar to the refrigeration system Fig. 5 an expansion element 146 and then passes into a separator or collector 150.
- a connection in the form of a pipe 164 extends from the collector 150 to the inlet of the compression stage 114-2, whereby a secondary flow N is fed to the compression stage 114-2, whereas a main flow H is supplied is fed to the expansion element 154 and via the evaporator 58 arranged thereafter to the first compression stage 114-1.
- a compressor 10 is a compressor 10 with an eccentric mechanism.
- the corresponding engine will be discussed in more detail, although this is an example of a compressor according to the invention, which by no means has to be a reciprocating compressor, but may also be a scroll compressor, a screw compressor or any other known type of compressor.
- the drive unit described below is an advantageous variant.
- the compressor 10 (which can also be used as the compressor 110) has six pistons 18 which are arranged in corresponding cylinder bores or cylinder sleeves 216 such that they can be moved back and forth in a radial direction.
- the cylinder bores or cylinder liners 216 themselves are designed as corresponding recesses in a cylinder block 218.
- the pistons 18 are designed to be movable to and fro in the radial direction.
- the compressor 10 serves to compress R744 (CO 2 ) as a refrigerant. It should be noted, however, that any other refrigerant (for example R134a, etc.) can also be used.
- the compressor 10 has the drive device in the form of the drive shaft 16 (cf. for example FIG Fig. 9 ), by means of which the drive of the compressor 10 takes place.
- the drive shaft 16 is coupled to the electric motor 12, but in alternative embodiments it can also be coupled to a corresponding belt drive device or some other device.
- the axial extent of the drive shaft 16 can also be significantly shorter than in the embodiment shown in the figures, in which the drive shaft 24 is in operative engagement with the electric motor and extends through it.
- the drive device in the form of the drive shaft 16 is in operative engagement with an eccentric 228. More precisely, the drive shaft 16 is formed eccentrically in a corresponding region (eccentric section of the drive shaft 16).
- the eccentric 228 is thus formed integrally and in one piece with and on the drive shaft 16.
- the eccentric 228 can also be designed as a separate component and attached to the drive shaft 16, in particular articulated or supported accordingly.
- the eccentric 228, cut perpendicular to the axial direction, has a circular cross section and radially outwardly directed eccentric surfaces 230 which are arranged in a region of an eccentric active section 232.
- the eccentric active section 232 serves to drive the pistons 18 and is in operative engagement therewith via a connecting rod 234 assigned to each piston 18.
- the connecting rods 234 are articulated to the piston 18 by means of connecting rod eyes 236, which are formed on the sides of the connecting rods 234 facing the pistons 18.
- the connecting rods 234 On the side facing the eccentric 228, the connecting rods 234 have an active connecting rod section 238 which is used for operative engagement with the eccentric 228.
- the eccentric 228 is in active engagement with the connecting rod active sections 238 via a bearing in the form of a needle bearing 240, which is arranged (fitted) on the eccentric active section 232 (circular cross section) and there on the eccentric surface 230.
- a needle bearing 240 As an alternative to the needle bearing 240, other bearings, in particular plain bearings or roller bearings in any possible design, are conceivable.
- the bearing 240 ensures a low-friction transfer and a conversion of the movement (rotary movement) of the eccentric 228 into a movement in the radial direction of a connecting rod active section receptacle 242, which is in operative engagement with the bearing by means of a corresponding fit.
- the corresponding movement in the radial direction is then correspondingly applied to the connecting rods 234 and the pistons 18 articulated thereon transfer.
- the connecting rod active sections 238 corresponding to the circular outer circumference of the bearing 240 which are configured in the manner of a segment of a circle on their side facing the bearing 240, have for this purpose a widened extension in the axial direction at their end facing the bearing, so that they can be expanded by means of two, im Cross-section of L-shaped shells 244, which form the connecting rod active section receptacle 242, are securely arranged on the bearing 240.
- the connecting rod active sections of all connecting rods 234 are arranged on a circular path around the eccentric 228 and thus also around the eccentric active section 232, which is concentric therewith.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
Die Erfindung betrifft einen Verdichter gemäß dem Oberbegriff des Patentanspruchs 1, sowie eine Kälteanlage gemäß Anspruch 15.The invention relates to a compressor according to the preamble of
Verdichter, wie sie aus dem Oberbegriff des Patentanspruchs 1 bekannt sind, weisen eine Antriebsvorrichtung und eine Verdichtungsvorrichtung auf. Die Antriebsvorrichtung ist beispielsweise oftmals ein Elektromotor. Die Verdichtungsvorrichtung ist ein- oder mehrstufig ausgelegt, was bedeutet, dass der Verdichter beispielsweise in einer ersten Stufe Kältemittel von einem Niederdruck (Saugdruck) auf einen Zwischendruck verdichtet, wobei das auf Zwischendruck befindliche Kältemittel dann einer zweiten Stufe zugeführt wird, in der es auf einen Hochdruck (Enddruck) verdichtet wird. Derartige oder auch ähnliche Verdichter sind beispielsweise aus der
Häufig ist jedoch der Wirkungsgrad zweistufiger Verdichter nicht optimal. Diese Tatsache gewinnt zusehends an Bedeutung wenn "neue, natürliche" Kältemittel, also beispielsweise R744 (CO2) zur Verwendung gelangen sollen, welche besondere Anforderungen an die Bedingungen des Verdichtungsvorgangs stellen.However, the efficiency of two-stage compressors is often not optimal. This fact becomes increasingly important when "new, natural" refrigerants, for example R744 (CO 2 ), are to be used, which place special demands on the conditions of the compression process.
Ausgehend vom vorstehend diskutierten Stand der Technik ist es demnach Aufgabe der vorliegenden Erfindung, einen Verdichter anzugeben, der im Vergleich zu den Verdichtern gemäß dem Stand der Technik einen erhöhten Wirkungsgrad aufweist bzw. energetisch für einen Betrieb mit allen gängigen Kältemitteln geeignet ist. Weiterhin ist es eine Aufgabe der vorliegenden Erfindung, eine entsprechend ausgelegte Kälteanlage anzugebenOn the basis of the prior art discussed above, it is accordingly the object of the present invention to specify a compressor which, compared to the compressors according to the prior art, has an increased degree of efficiency or, in terms of energy, for one Operation with all common refrigerants is suitable. Furthermore, it is an object of the present invention to specify a correspondingly designed refrigeration system
Diese Aufgabe wird erfindungsgemäß durch einen Verdichter gemäß dem Patentanspruch 1, sowie eine Kälteanlage gemäß Anspruch 15 gelöst.This object is achieved according to the invention by a compressor according to
Erfindungsgemäß weist ein Verdichter ein Verdichtergehäuse, eine Antriebsvorrichtung und eine Verdichtungsvorrichtung mit einer oder mehreren Verdichtungsstufen zum Verdichten eines Kältemittels auf. Der Verdichter weist weiterhin wenigstens eine Kältemittelzuführvorrichtung zum Zuführen von Kältemittel zu der Verdichtungsvorrichtung und wenigstens eine Kältemittelabführvorrichtung zum Abführen von Kältemittel von der Verdichtungsvorrichtung auf, wobei wenigstens ein Abschnitt der Kältemittelzuführvorrichtung thermisch getrennt von der Kältemittelabführvorrichtung oder den Kältemittelabführvorrichtungen angeordnet ist.According to the invention, a compressor has a compressor housing, a drive device and a compression device with one or more compression stages for compressing a refrigerant. The compressor also has at least one refrigerant supply device for supplying refrigerant to the compression device and at least one refrigerant discharge device for discharging refrigerant from the compression device, at least one section of the refrigerant supply device being arranged thermally separated from the refrigerant discharge device or the refrigerant discharge devices.
Durch eine derartige Konstruktion wird erreicht, dass kein zu großer Wärmeübergang von abzuführendem, verdichtetem Kältemittel, welches durch einen vorangehenden Verdichtungsvorgang erwärmt wurde, auf das einen Abschnitt der Zuführvorrichtung durchströmende Kältemittel stattfindet. In anderen Worten gesagt wird durch eine derartige Konstruktion der Wärmeübertrag von einem verdichteten und durch den Verdichtungsvorgang erwärmten Kältemittel auf ein unverdichtetes Kältemittel weitestgehend verhindert. Je besser die jeweiligen Abschnitte der Kältemittelzuführvorrichtung(en) von denjenigen der entsprechenden Kältemittelabführvorrichtung(en) thermisch getrennt bzw. entkoppelt sind, umso geringer ist der Wärmeübertrag. Idealerweise sind nicht nur Abschnitte, sondern jeweils die gesamten Vorrichtungen, d.h. die Vorrichtungen über ihre gesamte Erstreckung hin vollständig thermisch voneinander getrennt, was zu einem minimalen Wärmeübertrag führt. Es sei jedoch an dieser Stelle darauf hingewiesen, dass einzelne Berührpunkte oder Berührbereiche (Wärmeübertragungsflächen) der jeweiligen Vorrichtungen konstruktiv nahezu unumgänglich sind, die hierüber übertragenen Wärmemengen jedoch relativ gering sind und somit geduldet werden können. Hinsichtlich der Größe der Berührbereiche (Wärmeübertragungsflächen) kann im Einzelfall das jeweilige wirtschaftlichste Konzept, das sowohl die Herstellungskosten als auch die Betriebskosten berücksichtigt, gewählt werden. Es sei an dieser Stelle ferner erwähnt, dass beispielsweise auch durch eine möglichst kleine Ausgestaltung der Flächen der Kältemittelabführvorrichtung(en) ein minimaler Wärmeaustausch mit der Umgebung der Kältemittelabführvorrichtung(en) erreicht werden kann.Such a construction ensures that there is no excessive heat transfer from the compressed refrigerant to be discharged, which has been heated by a preceding compression process, to the refrigerant flowing through a section of the supply device. In other words, such a construction largely prevents the heat transfer from a compressed refrigerant, which is heated by the compression process, to an uncompressed refrigerant. The better the respective sections of the refrigerant supply device (s) are thermally separated or decoupled from those of the corresponding refrigerant discharge device (s), the lower the heat transfer. Ideally, not only sections but in each case the entire devices, ie the devices over their entire extent, are completely thermally separated from one another, which leads to a minimal heat transfer. However, it should be pointed out at this point that individual points of contact or areas of contact (heat transfer surfaces) of the respective devices are structurally almost inevitable, but the amounts of heat transferred via this are relatively small and can therefore be tolerated. With regard to the size of the contact areas (heat transfer surfaces), the most economical concept in each case, which takes into account both the manufacturing costs and the operating costs, can be selected. It should also be mentioned at this point that, for example, by designing the surfaces of the refrigerant discharge device (s) as small as possible a minimal heat exchange with the environment of the refrigerant discharge device (s) can be achieved.
Bevorzugt sind bei Verdichtern, die mehrere Kältemittelzuführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens Abschnitte von allen Kältemittelzuführvorrichtungen zum Zuführen von Kältemittel zu der Verdichtungsvorrichtung von einer, mehreren oder vorzugsweise allen der vorhandenen Kältemittelabführvorrichtungen (beispielsweise Vorrichtung zum Abführen von unter einem Zwischendruck oder unter Hochdruck bzw. Verdichtungsenddruck stehendem Kältemittel) thermisch getrennt angeordnet. Dadurch wird der Wärmeübertrag für sämtliche Kältemittelzuführvorrichtungen, d.h. beispielsweise für die Zuführungen aller Stufen des Verdichters verringert.In the case of compressors that have several refrigerant supply devices, i.e. for example multi-stage compressors, at least sections of all refrigerant supply devices for supplying refrigerant to the compression device from one, several or preferably all of the existing refrigerant discharge devices (for example device for discharging under an intermediate pressure or under high pressure) are preferred or final compression pressure standing refrigerant) arranged thermally separated. This reduces the heat transfer for all refrigerant supply devices, i.e. for example for the supplies to all stages of the compressor.
In einer weiteren bevorzugten Ausführungsform sind bei Verdichtern, die mehrere Kältemittelzuführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens zwei oder mehrere der Kältemittelzuführvorrichtungen jeweils zumindest über Abschnitte derselben hinweg thermisch voneinander getrennt. Insbesondere dann, wenn das einer Verdichtungsstufe zuzuführende Kältemittel zur Kühlung beispielsweise einer Antriebsvorrichtung des Verdichters vorgesehen ist, ist oftmals eine thermische Entkoppelung von der anderen oder den anderen Kältemittelzuführvorrichtungen erwünscht. Allgemein kann man festhalten, dass eine solche Konstruktion immer dann in Betracht gezogen werden sollte, wenn die entsprechenden Kältemittelzuführvorrichtungen Kältemittel unterschiedlicher Temperatur führen.In a further preferred embodiment, in compressors that have a plurality of refrigerant supply devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant supply devices are each thermally separated from one another at least over sections of the same. In particular, when the refrigerant to be supplied to a compression stage is provided for cooling, for example, a drive device of the compressor, thermal decoupling from the other or the other refrigerant supply devices is often desired. In general, it can be stated that such a construction should always be considered when the corresponding refrigerant supply devices carry refrigerants of different temperatures.
In einer weiteren bevorzugten Ausführungsform sind bei Verdichtern, die mehrere Kältemittelabführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens zwei oder mehrere der Kältemittelabführvorrichtungen untereinander jeweils zumindest über Abschnitte derselben hinweg thermisch getrennt. Dies ist beispielsweise dann von Vorteil, wenn die jeweiligen Kältemittelabführvorrichtungen Kältemittel mit unterschiedlicher Temperatur führen. Denkbar ist für diesen Fall beispielsweise ein zweistufiger Verdichter, in dem das Kältemittel am Ausgang einer Verdichtungsstufe ggf. eine Temperatur aufweisen kann, die von derjenigen am Ausgang der anderen Verdichtungsstufe(n) unterschiedlich ist. Ein Wärmeübertrag auf das kältere Kältemittel, das aus der ersten Verdichtungsstufe abgeführt wird, kann damit verhindert werden. Dies trägt zur Effizienzsteigerung der Anlage bei.In a further preferred embodiment, in compressors that have several refrigerant discharge devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant discharge devices are thermally separated from one another at least over sections of the same. This is advantageous, for example, when the respective refrigerant discharge devices carry refrigerants at different temperatures. For example, a two-stage compressor is conceivable for this case, in which the refrigerant at the outlet of one compression stage can possibly have a temperature that is different from that at the outlet of the other compression stage (s). A transfer of heat to the colder refrigerant, which is discharged from the first compression stage, can thus be prevented. This contributes to increasing the efficiency of the system.
Zusammenfassend kann festgehalten werden, dass ein erfindungsgemäßer Verdichter, in dem wenigstens Abschnitte einer oder mehrerer Kältemittelzuführvorrichtung(en) thermisch von einer oder mehreren der einen oder mehreren im Verdichter vorhandenen Kältemittelabführvorrichtung(en) getrennt oder entkoppelt sind eine Steigerung des Wirkungsgrades des Verdichters ermöglicht. Durch eine optionale weitere (zusätzliche) thermische Trennung zwischen den Kältemittelzuführvorrichtungen untereinander und gegenüber den Kältemittelabführvorrichtungen, sowie der Kältemittelabführvorrichtungen untereinander kann auf jeweilige Verdichterkonstruktionen, insbesondere im Fall von in den einzelnen Vorrichtungen herrschenden Temperaturunterschieden eine weitere Verbesserung des Wirkungsgrads erreicht werden.In summary, it can be stated that a compressor according to the invention in which at least sections of one or more refrigerant supply device (s) are thermally separated or decoupled from one or more of the one or more refrigerant discharge device (s) present in the compressor enables an increase in the efficiency of the compressor. An optional further (additional) thermal separation between the refrigerant supply devices and from the refrigerant discharge devices, as well as the refrigerant discharge devices from one another, can further improve the efficiency of the respective compressor designs, especially in the case of temperature differences in the individual devices.
An dieser Stelle sei die Definition für den Wortlaut "thermisch getrennt", wie er in der vorliegenden Anmeldung Verwendung findet, näher erläutert. Thermisch getrennt im Sinne der vorliegenden Anmeldung bedeutet thermisch nicht oder thermisch relativ schwach gekoppelt, d.h. mit einem möglichst geringen Wärmeübergang versehen. Dies kann beispielsweise durch eine Beabstandung entsprechender Komponenten und/oder eine Ausbildung als separate Bauteile erreicht werden. Eine Alternative ist es auch, die einzelnen Abschnitte durch ein Isoliermaterial voneinander zu trennen. Dies ist auch dann anwendbar, wenn mehrere der Zuführvorrichtungen und der Abführvorrichtungen für Kältemittel als ein integrales Bauteil ausgebildet werden sollen. Es ist vorstellbar, das gesamte Bauteil aus einem Material mit einer geringen Wärmeleitfähigkeit, vorzugsweise geringer als die thermische Leitfähigkeit von C-45 Stahl, weiterhin vorzugsweise geringer als eine thermische Leitfähigkeit von 20 W/mK, insbesondere vorzugsweise geringer als eine thermische Leitfähigkeit von 10 W/mK herzustellen. Dabei sind schon Wandstärken von wenigen mm wirkungsvoll. Alternativ wäre es auch denkbar, zweikomponentige Aufbauten mit beispielsweise Isolierschichten anzuwenden, wobei in diesem Fall die Bauteile durch die Isolierschicht wiederum voneinander beabstandet sind. Möglichkeiten zum Minimieren des Wärmeübergangs sind demnach eine Vermeidung von Kontaktflächen, eine Minimierung von vorhandenen bzw. erforderlichen Flächen, die Wahl eines wenig leitfähigen Materials für erforderliche Flächen, insbesondere Kontaktflächen, und die thermische Isolation von Flächen, insbesondere Kontaktflächen durch entsprechende Materialien oder Stoffe (Festkörperisolierung, Gasisolierung, ggf. Isolierung durch Flüssigkeit) und/oder durch eine entsprechende Beabstandung zueinander.At this point, the definition of the wording "thermally separated" as it is used in the present application is explained in more detail. Thermally separated in the context of the present application means thermally not coupled or thermally relatively weakly coupled, ie provided with the lowest possible heat transfer. This can be achieved, for example, by spacing corresponding components and / or designing them as separate components. It is also an alternative to separate the individual sections from one another with an insulating material. This can also be used when several of the supply devices and the discharge devices for refrigerant are to be designed as an integral component. It is conceivable that the entire component is made of a material with a low thermal conductivity, preferably lower than the thermal conductivity of C-45 steel, further preferably lower than a thermal conductivity of 20 W / mK, in particular preferably lower than a thermal conductivity of 10 W. / mK to produce. Wall thicknesses of a few mm are effective. Alternatively, it would also be conceivable to use two-component structures with, for example, insulating layers, in which case the components are again spaced apart from one another by the insulating layer. Possibilities for minimizing the heat transfer are therefore avoiding contact surfaces, minimizing existing or required surfaces, choosing a less conductive material for required surfaces, in particular contact surfaces, and thermal insulation of surfaces, in particular contact surfaces, using appropriate materials or substances (solid-state insulation , Gas insulation, if necessary insulation by liquid) and / or by a corresponding spacing from one another.
Obwohl in der folgenden Figurenbeschreibung ein erfindungsgemäßer Verdichter am Beispiel eines mehrstufigen Radialkolbenverdichters erläutert wird, ist die erfindungsgemäße Konstruktion auf jeden beliebigen einstufigen und mehrstufigen Verdichter unabhängig von dessen Verdichtungsprinzip anwendbar. Neben Radialkolbenverdichtern seien beispielhaft Axialkolbenverdichter, Scroll-Verdichter, Schraubenverdichter, Turboverdichter, Rotationsverdichter etc. genannt.Although a compressor according to the invention is explained in the following description of the figures using the example of a multistage radial piston compressor, the construction according to the invention can be applied to any single-stage and multistage compressor regardless of its compression principle. In addition to radial piston compressors, axial piston compressors, scroll compressors, screw compressors, turbo compressors, rotary compressors, etc. may be mentioned as examples.
Weitere Merkmale der Erfindung sind in den Unteransprüchen angegeben.Further features of the invention are specified in the subclaims.
Die Erfindung wird im Folgenden mit Bezug auf die beiliegenden Zeichnungen anhand von bevorzugten Ausführungsformen beispielhaft beschrieben. In den Zeichnungen zeigen:
-
Fig. 1 eine erste mögliche Ausführungsform eines erfindungsgemäßen Verdichters; -
Fig. 2 eine schematische Darstellung einer Kälteanlage, welche einen Verdichter gemäß der ersten möglichen Ausführungsform aufweist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; und -
Fig. 3 eine schematische Darstellung einer Kälteanlage, welche einen Verdichter gemäß einer zweiten möglichen erfindungsgemäßen Ausführungsform, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm aufweist; -
Fig. 4 eine weitere schematische Darstellung einer (dritten) Kälteanlage, welche eine abgewandelte Kälteanlage derFig. 2 , sowie ein hierfür gültiges Enthalpie-Druck-Diagramm darstellt; -
Fig. 5 eine schematische Darstellung einer (vierten) Kälteanlage, welche wiederum eine Abwandlung der Kälteanlage gemäßFig. 2 ist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; -
Fig. 6 eine schematische Darstellung einer (fünften) Kälteanlage, welche wiederum eine Abwandlung der Kälteanlage gemäßFig. 2 ist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; -
Fig. 7 eine sechste Kälteanlage in einer schematischen Darstellung, welche eine Abwandlung der Anlage gemäßFig. 3 darstellt, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; und -
Fig. 8 eine Ansicht eines Triebwerks des Verdichters gemäß der ersten Ausführungsform, geschnitten senkrecht zur axialen Richtung; und -
Fig. 9 eine weitere Schnittdarstellung des Verdichters gemäßFig. 8 , geschnitten parallel zu der axialen Richtung;
-
Fig. 1 a first possible embodiment of a compressor according to the invention; -
Fig. 2 a schematic representation of a refrigeration system which has a compressor according to the first possible embodiment, as well as a valid enthalpy-pressure diagram; and -
Fig. 3 a schematic representation of a refrigeration system, which has a compressor according to a second possible embodiment according to the invention, as well as a valid enthalpy-pressure diagram; -
Fig. 4 a further schematic representation of a (third) refrigeration system, which is a modified refrigeration system ofFig. 2 , as well as a valid enthalpy-pressure diagram; -
Fig. 5 a schematic representation of a (fourth) refrigeration system, which in turn is a modification of the refrigeration system according to FIGFig. 2 is, as well as a valid enthalpy-pressure diagram; -
Fig. 6 a schematic representation of a (fifth) refrigeration system, which in turn is a modification of the refrigeration system according to FIGFig. 2 is, as well as a valid enthalpy-pressure diagram; -
Fig. 7 a sixth refrigeration system in a schematic representation, which shows a modification of the system according toFig. 3 represents, as well as a valid enthalpy-pressure diagram; and -
Fig. 8 a view of an engine of the compressor according to the first embodiment, cut perpendicular to the axial direction; and -
Fig. 9 a further sectional view of the compressor according toFig. 8 , cut parallel to the axial direction;
Bei der in
Die Verdichtungseinheit 14 weist in der hier beschriebenen Ausführungsform sechs sich von einer Mittelachse 16 in radialer Richtung wegerstreckende Kolben 18 auf, welche in korrespondierenden Zylindern bzw. Zylinderbohrungen 19 in radialer Richtung hin-und her- verschiebbar angeordnet sind. Der Antrieb der Verdichtungseinheit 14 erfolgt über eine mit dem Elektromotor 12 drehfest verbundene Antriebswelle 16, die mit den Kolben 18 über einen Exzenter-Mechanismus und Pleuel in Wirkeingriff steht. In alternativen Ausführungsformen ist jede von sechs abweichende Anzahl von Kolben denkbar. Die Anzahl der Kolben wird aufgrund der erwünschten Spezifikationen und des gewünschten Einsatzgebiets festgelegt. Die Funktionsweise des Verdichtungsvorgangs selbst ist sowohl für den hier beschriebenen Radialkolbenverdichter als auch für sämtliche andere mögliche Verdichterbauarten wohlbekannt und sei an dieser Stelle nicht weiter beschrieben.In the embodiment described here, the
Bei dem Verdichter 10 handelt es sich um einen zweistufigen Verdichter, dessen Verdichtungseinheit 14 ausgelegt ist, Kältemittel in zwei Stufen zu verdichten. Dazu wird dem Verdichter 10 über eine Niederdruck-Kältemittelzuführvorrichtung 20, die ein Niederdruckvolumen des Verdichters 10 (Saugvolumen) begrenzt, Kältemittel für eine erste Verdichtungsstufe 14-1 zugeführt und in dieser auf einen vorbestimmten Zwischendruck verdichtet. Es sei an dieser Stelle angemerkt, dass der erfindungsgemäße Verdichter alternativ selbstverständlich auch als ein einstufiger Verdichter sowie auch als ein anderer Verdichter-Typ (Scroll-Verdichter etc., in einstufiger und mehrstufiger Ausführung) ausgelegt sein kann. In der beschriebenen Ausführungsform kommt ein Hubkolbenverdichter zum Einsatz, da dieser unter anderem wegen seiner hohen Dichtigkeit, die durch die Verwendung von Zylindern (gute Abdichtung über die Kolbenringe) bedingt ist, vorteilhaft eingesetzt werden kann. Weiterhin sind die Bereiche um die Zylinder, d.h. beispielsweise z.T. stark belastete Bereiche auch nur im Verdichtungsmoment, d.h. wenn der Zylinder mit Kältemittel gefüllt ist, und der Kolben sich dem oberen Totpunkt nähert, thermisch belastet (durch die Erwärmung, die durch die Verdichtung des Kältemittels verursacht wird). Danach erfolgt umgehend eine Kühlung beispielsweise durch einströmendes Kältemittel, so dass die Materialbelastung möglichst gering gehalten wird.The
Die Niederdruck-Kältemittelzuführvorrichtung 20 weist mehrere Teilbereiche auf. Dabei handelt es sich um einen ersten durch eine röhrenförmige Wandung bzw. durch ein Rohr ausgebildeten und definierten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem Niederdruckanschluß 22 erstreckt, einen wiederum durch eine röhrenförmige Wandung bzw. durch ein Rohr ausgebildeten und definierten zweiten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu der Verdichtungseinheit 14 hin erstreckt, und einen dritten, in der Verdichtungseinheit 14 ausgebildeten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-3 auf. Die Teilbereiche sind in der beschriebenen Ausführungsform durch jeweils separate Bauteile gebildet, welche an den Enden jeweils mit einem korrespondierenden Ende eines der anderen Bauteile gasdicht verbunden sind. Es sei an dieser Stelle angemerkt, dass die gesamte Niederdruck-Kältemittelzuführvorrichtung 20 alternativ einstückig ausgebildet sein kann oder eine von drei verschiedene Anzahl von Bauteilen aufweisen kann. Die Erstreckung der oben genannten Teilbereiche muss nicht mit der Erstreckung der Bauteile übereinstimmen.The low-pressure
Nach der Zuführung zu der ersten Verdichtungsstufe 14-1, die durch vier der sechs Zylinder gebildet wird, wird das Kältemittel in der ersten Verdichtungsstufe auf einen Zwischendruck verdichtet. Nach der Verdichtung durch die erste Verdichtungsstufe 14-1 wird das Kältemittel in eine Zwischendruck-Kältemittelabführvorrichtung 24 ausgestoßen, welche wiederum drei Teilbereiche aufweist: einen wiederum durch eine röhrenförmige Wandung bzw. ein Rohr begrenzten ersten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem ersten Zwischendruckanschluß 26 erstreckt; einen ebenfalls durch eine röhrenförmige Wandung bzw. ein Rohr begrenzten zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu der Verdichtungseinheit 14 hin erstreckt, sowie einen dritten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-3, welcher in der Verdichtungseinheit 14 ausgebildet ist und der Verbindung des zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereichs 24-2 mit den Zylindern, genauer gesagt, den Ausgängen der Zylinder der ersten Verdichtungsstufe 14-1 dient. Die Zwischendruck-Kältemittelabführvorrichtungs-Teilbereiche sind wiederum analog zu den Niederdruck- Teilbereichen an jeweiligen Enden miteinander und an entsprechenden anderen Enden mit dem ersten Zwischendruckanschluß 26 und den Zylindern der ersten Verdichtungsstufe 14-1 gasdicht verbunden. Auch hinsichtlich der Anzahl der Bauteile gelten die Ausführungen für die Niederdruck-Zuführvorrichtung 20 analog.After being fed to the first compression stage 14-1, which is formed by four of the six cylinders, the refrigerant is compressed to an intermediate pressure in the first compression stage. After compression by the first compression stage 14-1, the refrigerant is ejected into an intermediate-pressure
Über die Zwischendruck-Kältemittelabführvorrichtung 24 wird das auf Zwischendruck befindliche Kältemittel aus dem Verdichter herausgeführt und am ersten Zwischendruckanschluss 26 zur Verbringung zu einem Zwischenkühler 28 bereitgestellt (vgl. hierzu
Die Zwischendruck-Kältemittelzuführvorrichtung 36 weist in der beschriebenen Ausführungsform zwei gasdicht miteinander verbundene Teilbereiche auf: einen ersten wiederum röhrenförmig ausgebildeten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-1, welcher zwischen dem Verdichtergehäuse 15 und dem zweiten Zwischendruckanschluss 34 angeordnet und mit diesem gasdicht verbunden ist, und einen röhrenförmig ausgebildeten zweiten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-2, welcher sich vom Verdichtergehäuse 15 in einem 90°-Bogen gekrümmt zum Elektromotor 12 hin erstreckt und im Bereich des Elektromotors 12 endet. Dadurch wird in der beschriebenen möglichen Ausführungsform für eine Kühlung des Elektromotors 12 durch das auf Zwischendruck befindliche gekühlte Kältemittel gesorgt. Über einen, in der Verdichtungseinheit 14 angeordneten dritten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-3 wird das auf Zwischendruck befindliche, gekühlte Kältemittel nach dem Durchströmen und Kühlen des Motors dann einer aus zwei Zylindern bestehenden zweiten Verdichtungsstufe 14-2 zugeführt, in der dieses auf einen hohen Druck (Hochdruck) verdichtet wird. Die Zylinder der zweiten Verdichtungsstufe 14-2 sind dazu an einer Einlaßseite gasdicht mit dem dritten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-3 verbunden. Auch die Zwischendruck-Kältemittelzuführvorrichtung 36 kann aus einer beliebigen Anzahl von Bauteilen bestehen, die nicht mit den entsprechenden Teilbereichen übereinstimmen müssen.In the embodiment described, the intermediate pressure
Nach der Verdichtung auf Hochdruck wird das Kältemittel dann aus den Zylindern (Auslässe) der zweiten Verdichtungsstufe 14-2 in eine Hochdruck-Kältemittelabführvorrichtung 38 ausgestossen. Die Hochdruck-Kältemittelabführvorrichtung 38 weist fünf jeweils gasdicht miteinander verbundene Hochdruck-Kältemittelabführvorrichtungs-Teilbereiche auf: einen ersten röhrenförmigen Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem Hochdruckanschluß 40 erstreckt; einen ebenfalls röhrenförmig ausgebildeten zweiten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3 hin erstreckt; den dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3, welcher in etwa quaderförmig, d.h. mit einem rechteckigen Querschnitt ausgebildet ist und der Pulsationsdämpfung im Hochdruckvolumen 38 dient; einen vierten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-4, der sich von dem dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3 zu der Verdichtungseinheit 14 hin erstreckt; und einen fünften in der Verdichtungseinheit 14 ausgebildeten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-5, der mit Zylinderausgängen der zweiten Verdichtungsstufe 14-2 verbunden ist und der Abfuhr von Kältemittel auf Hochdruck bzw. Verdichtungsenddruck dient. Wiederum können beliebig viele Bauteile Verwendung finden, die Anzahl der Teilbereiche muss nicht mit derjenigen der Bauteile übereinstimmen und die Teilbereichsgrenzen müssen nicht mit Bauteilgrenzen übereinstimmen, wie dies im übrigen auch für die anderen Zuführ- und Abführvorrichtungen gilt.After compression to high pressure, the refrigerant is then expelled from the cylinders (outlets) of the second compression stage 14 - 2 into a high pressure
Vom Hochdruckanschluß 40 wird das Kältemittel in der beispielhaften Kälteanlage der
Für die Verdichtung von Kältemitteln und insbesondere für die Verdichtung von natürlichen Kältemitteln, wie z.B. CO2, welches in der hier beschriebenen Ausführungsform als Kältemittel zum Einsatz kommt, ist es von Bedeutung, dass das (gasförmige) Kältemittel vor Eintritt in die jeweilige Verdichtungsstufe nicht unnötig aufgeheizt wird. Da die zulässige Verdichtungsendtemperatur beschränkt ist, bedeutet jede Aufheizung vor der eigentlichen Verdichtung eine Beschränkung des erreichbaren Verdichtungsverhältnisses und eine Erhöhung des Arbeitsaufwandes pro Masse verdichteten Kältemittels.For the compression of refrigerants and in particular for the compression of natural refrigerants such as CO2, which is used as a refrigerant in the embodiment described here, it is important that the (gaseous) refrigerant is not unnecessarily heated before entering the respective compression stage becomes. Since the permissible final compression temperature is limited, any heating before the actual compression means a limitation of the compression ratio that can be achieved and an increase in the workload per mass of compressed refrigerant.
Deshalb ist ein Abschnitt jeder Kältemittelzuführvorrichtung 20, 36 von den Kältemittelabführvorrichtungen thermisch getrennt angeordnet. Es handelt sich in der vorliegenden Ausführungsform dabei um Abschnitte, welche an jeweiligen Anschlüssen für das Kältemittel (Niederdruckanschluß 22, zweiter Zwischendruckanschluss 34) beginnen und im Falle der Niederdruck-Kältemittelzuführvorrichtung den ersten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-1 und den zweiten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-2 umfasst. Im Falle der Zwischendruck-Kältemittelzuführvorrichtung 36 sind der erste und der zweite Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-1 und 36-2 umfasst.Therefore, a portion of each
Zusätzlich sind auch die Zwischendruck-Kältemittelabführvorrichtung 24 und die Hochdruck-Kältemittelabführvorrichtung 38 thermisch voneinander getrennt. Bei der Zwischendruck-Kältemittelabführvorrichtung 24 umfasst der entsprechende Abschnitt den ersten und den zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-1 und 24-2, bei der Hochdruck-Kältemittelabführvorrichtung 38 den ersten bis vierten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-1 bis 38-4.In addition, the intermediate-pressure
Die jeweiligen Abschnitte, die thermisch voneinander getrennt angeordnet sind, sind voneinander beabstandet angeordnet und durch die jeweilige Umgebungsatmosphäre (im Verdichter Kältemittel, entweder unter Zwischendruck oder unter Saugdruck, außerhalb des Verdichters Umgebungsatmosphäre) thermisch voneinander getrennt bzw. entkoppelt.The respective sections, which are arranged thermally separated from one another, are arranged at a distance from one another and thermally separated or decoupled from one another by the respective ambient atmosphere (in the compressor refrigerant, either under intermediate pressure or under suction pressure, outside the compressor ambient atmosphere).
Ferner ist in
In
Abweichend von der ersten möglichen Ausführungsform verdichtet die erste Verdichtungsstufe 114-1 einen auf Niedrigdruck (Saugdruck) befindlichen Kühlmittel-Hauptstrom, welcher dem Verdichter 110 über einen Niederdruckanschluß 122 und ein Niederdruckvolumen, das in Aufbau und Funktion demjenigen der ersten Ausführungsform entspricht, zur Verfügung gestellt wird, auf Hochdruck. Parallel hierzu ist die zweite Verdichtungsstufe 114-2 angeordnet, die auf Zwischendruck befindliches Kältemittel eines Kühlmittel-Nebenstroms ebenfalls auf Hochdruck verdichtet. Das auf Zwischendruck befindliche Kältemittel wird dem Verdichter 110 über einen Zwischendruckanschluss 134, welcher dem zweiten Zwischendruckanschluss 34 der ersten Ausführungsform entspricht, und ein damit verbundenes Zwischendruck- Volumen, welches in Aufbau und Funktion dem zweiten Zwischendruckvolumen der ersten Ausführungsform entspricht, zugeführt. Auch hier dient das auf Zwischendruck befindliche Kältemittel der Kühlung des Elektromotors des Verdichters.In contrast to the first possible embodiment, the first compression stage 114-1 compresses a main coolant flow at low pressure (suction pressure), which is made available to the
Im Gegensatz zum Verdichter 10 der ersten Ausführungsform sind beim Verdichter 110 die Zylinder (Zylinderauslässe) beider Verdichtungsstufen 114-1 und 114-2 mit einem gemeinsamen Hochdruckteilvolumen 138-5 verbunden, das das fünfte HochdruckTeilvolumen 38-5 der ersten Ausführungsform, das nur mit den Zylidern (Zylinderauslässen) der zweiten Verdichtungsstufe 14-2 verbunden ist, ersetzt; Die verbleibenden Teilvolumina des Hochdruckvolumens auch der zweiten Ausführungsform sind analog zu denjenigen der ersten Ausführungsform ausgebildet; auch ein zur ersten Ausführungsform korrespondierender Hochdruckanschluss 140 ist vorgesehen.In contrast to the
Beim Verdichter 110 der zweiten Ausführungsform entfällt damit das erste Zwischendruckvolumen 24, über das das in der ersten Verdichtungsstufe 14-1 des Verdichters gemäß der ersten Ausführungsform verdichtetet Kältemittel dem Zwischenkühler zugeführt wurde ersatzlos.In the case of the
Vom Hochdruckanschluss 140 strömt das Kältemittel (wiederum jeweils über Rohrleitungen) zu einem Gaskühler 143, der in Aufbau und Funktionalität dem Gaskühler 43 entspricht und wird dort abgekühlt. Danach wird der Kältemittelstrom in den Hauptstrom H und den Nebenstrom N aufgeteilt, wobei der Nebenstrom ein erstes Expansionsorgan 146-1 durchläuft, wo er auf den Zwischendruck des Verdichters entspannt wird. Danach wird der Nebenstrom N einem Wärmetauscher 162 zugeführt. Der Hauptstrom H durchläuft zunächst kein Expansionsorgan sondern wird direkt dem Wärmetauscher 162 zugeführt, so dass der Hauptstrom H durch den Nebenstrom N weiter abgekühlt wird.The refrigerant flows from the high-pressure connection 140 (again via pipelines in each case) to a
Der Nebenstrom wird dann zu der zweiten Verdichtungsstufe 114-2, genauer gesagt zu dem Zwischendruckanschluss 134 geführt, während der Hauptstrom H ein Expansionsorgan 146-2 durchläuft, das das Kältemittel des Hauptstroms bzw. den Hauptstrom auf einen Mitteldruck entspannt, der vom Zwischendruck unterschiedlich sein kann. Nach Durchlaufen eines Sammlers 150, der in Aufbau und Funktion dem Sammler 50 der ersten Ausführungsform entspricht und eines weiteren Expansionsorgans 154, das in Aufbau und Funktion dem Expansionsorgan 54 der ersten Ausführungsform entspricht, gelangt das Kältemittel des Hauptstroms H dann über den Verdampfer 158 zurück zum Niederdruckanschluss des Verdichters 110.The secondary flow is then led to the second compression stage 114-2, more precisely to the
Es sei an dieser Stelle angemerkt, dass in beiden beschriebenen Ausführungsformen eines erfindungsgemäßen Verdichters der Rotor des Elektromotors 12 als Ölabscheider fungiert. In den beschriebenen Ausführungsformen besteht das Verdichtergehäuse 15 aus zwei Teilen, die nach dem Einbringen der Antriebsvorrichtung und der Verdichtungseinheit nicht demontierbar thermisch miteinander verbunden werden.Dies führt zu einer hohen Standfestigkeit des Verdichters, da eine Lockerung von Verbindungen, beispielsweise aufgrund von Vibrationen unwahrscheinlich ist. Alternativ können auch mehr als zwei Teile zur Bildung des Gehäuses 15 dienen, was ggf. trotz einer höheren Teilezahl und geringfügig höheren Herstellungskosten die Montagefreundlichkeit erhöhen und somit an anderer Stelle für Kosteneinsparungen sorgen kann.It should be noted at this point that in both of the described embodiments of a compressor according to the invention, the rotor of the
Eine auf dem Verdichter 10 basierende dritte Kälteanlage, welche eine Abwandlung der in
Eine weitere auf dem Verdichter 10 basierende (vierte) Kälteanlage ist in
Eine fünfte, in
Der Nebenstrom wird dann zu der zweiten Verdichtungsstufe 14-2, genauer gesagt zu dem Zwischendruckanschluss 34 geführt, während der Hauptstrom H einen internen Wärmetauscher 66 und dann ein Expansionsorgan 54 durchläuft, gelangt das Kältemittel des Hauptstroms H dann über den Verdampfer 58, einen weiteren Sammler 68 und den internen Wärmetauscher 66 zurück zum Niederdruckanschluss des Verdichters 10.The secondary flow is then led to the second compression stage 14-2, more precisely to the
In
Wie bereits obenstehend angedeutet handelt es sich in der beschriebenen ersten Ausführungsform eines Verdichters 10 um einen Verdichter 10 mit einem Exzentermechanismus. In der Folge sei noch etwas näher auf das entsprechende Triebwerk eingegangen, obwohl dieses beispielhaft für einen erfindungsgemäßen Verdichter ist, der keineswegs ein Hubkolbenverichter sein muss, sondern auch ein Scroll-Verdichter, ein Schraubenverdichter oder jede andere bekannte Bauart von Verdichter sein mag. Insbesondere aber für Fälle, in denen Radialkolbenverdichter aufgrund technischer Vorgaben oder aber auch aufgrund von Kundenwünschen und dgl. zum Einsatz kommen sollen bzw. müssen, stellt das nachstehend beschriebene Triebwerk eine vorteilhafte Variante dar.As already indicated above, the described first embodiment of a
Wie
Ferner weist der Verdichter 10 die Antriebsvorrichtung in Form der Antriebswelle 16 (vgl. hierzu z.B.
Im Rahmen der Aus- und Einrückbewegungen der Kolben wird Kältemittel bei einer Einrückbewegung der Kolben 18 in die Zylinderbohrungen bzw. Zylinderbuchsen 216 eingesaugt, bei einer Durchführung der Ausrückbewegung verdichtet und dann ausgestoßen.During the disengaging and engaging movements of the pistons, refrigerant is sucked into the cylinder bores or
Die Antriebsvorrichtung in Form der Antriebswelle 16 steht mit einem Exzenter 228 in Wirkeingriff. Genauer gesagt ist die Antriebswelle 16 in einem entsprechenden Bereich (Exzenterabschnitt der Antriebswelle 16) exzentrisch ausgebildet. Der Exzenter 228 ist damit integral und einstückig mit und an der Antriebswelle 16 ausgebildet. In alternativen Ausführungsformen kann der Exzenter 228 auch als separates Bauteil ausgebildet und an der Antriebswelle 16 befestigt, insbesondere angelenkt oder entsprechend gelagert sein.The drive device in the form of the
Der Exzenter 228 weist, senkrecht zu der axialen Richtung geschnitten, einen kreisförmigen Querschnitt und radial nach außen gerichtete Exzenter-Flächen 230 auf, die in einem Bereich eines Exzenter-Wirkabschnitts 232 angeordnet sind. Der Exzenter-Wirkabschnitt 232 dient dem Antrieb der Kolben 18 und steht mit diesen jeweils über ein jedem Kolben 18 zugeordnetes Pleuel 234 in Wirkeingriff. Hierzu sind die Pleuel 234 mittels Pleuelaugen 236, die an den den Kolben 18 zugewandten Seiten der Pleuel 234 ausgebildet sind, an den Kolben 18 angelenkt.The eccentric 228, cut perpendicular to the axial direction, has a circular cross section and radially outwardly directed
Auf der dem Exzenter 228 zugewandten Seite weisen die Pleuel 234 einen Pleuel-Wirkabschnitt 238 auf, der dem Wirkeingriff mit dem Exzenter 228 dient. Der Exzenter 228 steht mit den Pleuel-Wirkabschnitten 238 über ein Lager in Form eines Nadellagers 240 in Wirkeingrif, welches am Exzenter-Wirkabschnitt 232 (kreisförmiger Querschnitt) und dort auf der Exzenter-Fäche 230 angeordnet (eingepaßt) ist. Alternativ zum Nadellager 240 sind andere Lager, insbesondere Gleitlager oder Wälzlager in jeglicher möglicher Ausbildung denkbar.On the side facing the eccentric 228, the connecting
Das Lager 240 sorgt für einen reibungsarmen Übertrag und eine Umwandlung der Bewegung (Drehbewegung) des Exzenters 228 in eine in radialer Richtung gerichtete Bewegung einer Pleuel-Wirkabschnitt-Aufnahme 242, die mit dem Lager mittels einer entsprechenden Passung in Wirkeingriff steht. Die entsprechende Bewegung in radialer Richtung wird dann entsprechend auf die Pleuel 234 und die daran angelenkten Kolben 18 übertragen. Die zu dem kreisförmigen Außenumfang des Lagers 240 korrespondierend ausgebildeten Pleuel-Wirkabschnitte 238, welche an ihrer dem Lager 240 zugewandten Seite kreissegmentartig ausgebildet sind, weisen hierzu an ihrem dem Lager zugewandten Ende eine in axialer Richtung verbreiterte Ausdehnung auf, so dass sie mittels zweier, im Querschnitt L-förmig ausgebildeter Schalen 244, die die Pleuel-Wirkabschnitt-Aufnahme 242 bilden, sicher am Lager 240 angeordnet sind. Die Pleuel-Wirkabschnitte aller Pleuel 234 sind auf einer Kreisbahn um den Exzenter 228 und damit auch um den Exzenter-Wirkabschnitt 232 angeordnet, welche mit demselben konzentrisch ist.The
Aufgrund dessen, dass der Pendelpunkt der Vorrichtung aufgrund der Verwendung des Exzenters 228 azentrisch angeordnet ist, kann durch die vorliegende Konstruktion, in der kreissegmentartige Pleuel-Wirkabschnitte238 zum Einsatz kommen und die Pleuel 234 somit in Ihrer Bewegung voneinander entkoppelt sind, im Bereich der jeweiligen Kolben18 eine jeweils unterschiedliche Bewegung erfolgen. Wären die Pleuel 18 starr gekoppelt, so käme es zu einem Fehler in der Hubbewegung und somit zu einem erhöhten Schadraum im Bereich der Kolben 18, die dem Pendelpunkt fern liegen.Due to the fact that the pendulum point of the device is arranged eccentrically due to the use of the eccentric 228, the present construction, in which circular segment-like connecting rod
Obwohl die Erfindung anhand von Ausführungsformen mit festen Merkmalskombinationen beschrieben wird, umfasst sie jedoch auch die denkbaren weiteren vorteilhaften Kombinationen, wie sie durch die Unteransprüche angegeben sind.Although the invention is described on the basis of embodiments with fixed combinations of features, it also encompasses the further conceivable advantageous combinations as indicated by the subclaims.
- 10, 11010, 110
- Verdichtercompressor
- 1212th
- ElektomotorElectric motor
- 1414th
- VerdichtungsvorrichtungCompaction device
- 14-1, 114-114-1, 114-1
- erste Verdichtungsstufefirst compression stage
- 14-2, 114-214-2, 114-2
- zweite Verdichtungsstufesecond compression stage
- 1616
- Antriebswelledrive shaft
- 1818th
- Kolbenpiston
- 1919th
- Zylindercylinder
- 2020th
- Niederdruck-KältemittelzuführvorrichtungLow pressure refrigerant supply device
- 2222nd
- NiederdruckanschlußLow pressure connection
- 2424
- Zwischendruck-KältemittelabführvorrichtungIntermediate pressure refrigerant discharge device
- 2626th
- erster Zwischendruckanschlußfirst intermediate pressure connection
- 2828
- ZwischenkühlerIntercooler
- 30,3230.32
- RohrleitungPipeline
- 3434
- zweiter Zwischendruckanschlußsecond intermediate pressure connection
- 3636
- Zwischendruck-KältemittelzuführvorrichtungIntermediate pressure refrigerant supply device
- 3838
- Hochdruck-KältemittelabführvorrichtungHigh pressure refrigerant discharge device
- 40, 14040, 140
- HochdruckanschlussHigh pressure connection
- 4242
- RohrleitungPipeline
- 43, 14343, 143
- GaskühlerGas cooler
- 4444
- RohrleitungPipeline
- 46, 14646, 146
- ExpansionsorganExpansion device
- 4848
- RohrleitungPipeline
- 50, 15050, 150
- SammlerCollector
- 5252
- RohrleitungPipeline
- 54, 15454, 154
- ExpansionsorganExpansion device
- 5656
- RohrleitungPipeline
- 58, 15858, 158
- VerdampferEvaporator
- 6060
- RohrleitungPipeline
- 62, 16262, 162
- WärmetauscherHeat exchanger
- 6464
- RohrleitungPipeline
- 6666
- interner Wärmetauscherinternal heat exchanger
- 6868
- SammlerCollector
- 216216
- Zylinderbohrungen/ZylinderbuchsenCylinder bores / cylinder liners
- 218218
- ZylinderblockCylinder block
- 220220
- Pfeilarrow
- 222222
- Pfeilarrow
- 228228
- Exzentereccentric
- 230230
- Exzenter-FlächeEccentric surface
- 232232
- Exzenter-WirkabschnittEccentric effective section
- 234234
- PleuelConnecting rod
- 236236
- PleuelaugeConnecting rod eye
- 238238
- Pleuel-WirkabschnittConnecting rod effective section
- 240240
- (Nadel-)Lager(Needle) bearings
- 242242
- Pleuel-Wirkabschnitt-AufnahmeConnecting rod active section recording
- 244244
- SchaleBowl
Claims (16)
- A compressor (10, 110), having a compressor housing (15), having a drive device (12) and having a compression device (14) with one or more compression stages (14-1, 14-2) for compressing a refrigerant, wherein the compressor (10, 110) furthermore has one or more refrigerant feed devices (20, 36) for feeding refrigerant to the compression device (14) and one or more refrigerant discharge devices (24, 38) for discharging refrigerant from the compression device (14), wherein
at least one section of the one refrigerant feed device or at least one section of at least one, in particular each of the multiple refrigerant feed devices (20, 36) is arranged so as to be thermally separate from the one refrigerant discharge device or at least one, in particular each of the multiple refrigerant discharge devices (24, 38) characterized in that
the high-pressure refrigerant discharge device (38) has five high-pressure refrigerant discharge device sub-regions which are each connected to one another in gas-tight fashion, namely a first, tubular high-pressure refrigerant discharge device sub-region (38-1) which extends outside the compressor housing (15) from the compressor housing (15) to a high-pressure port (40); a second high-pressure refrigerant discharge device sub-region (38-2) which is likewise of tubular form and which extends within the compressor housing (15) from the compressor housing (15) to a third high-pressure refrigerant discharge device sub-region (38-3); the third high-pressure refrigerant discharge device sub-region (38-3) which is of approximately cuboidal form, that is to say has a rectangular cross section, and which serves for pulsation damping in the high-pressure volume; a fourth high-pressure refrigerant discharge device sub-region (38-4) which extends from the third high-pressure refrigerant discharge device sub-region (38-3) to the compression unit (14); and a fifth high-pressure refrigerant discharge device sub-region (38-5) which is formed in the compression unit (14) and which is connected to cylinder outlets of the compression stage (14-2) and which serves for the discharge of refrigerant at high pressure or compression end pressure. - The compressor (10, 110) as claimed in claim 1, characterized in that- the compressor has more than one refrigerant feed device,- is in particular of multi-stage design, and- at least one section of each refrigerant feed device (20, 36) is arranged so as to be thermally separate from the one or more refrigerant discharge devices (24, 38).
- The compressor (10, 110) as claimed in claim 1, characterized in that- the compressor has more than one refrigerant feed device,- is in particular of multi-stage design, and- at least one section of each refrigerant feed device (20, 36) is arranged so as to be thermally separate from every other refrigerant feed device (20, 36) that is provided.
- The compressor (10, 110) as claimed in in claim 1, characterized in that- the compressor has more than one refrigerant discharge device,- is in particular of multi-stage design, and- at least one section of each refrigerant discharge device (24, 38) is arranged so as to be thermally separate from every other refrigerant discharge device (24, 38) that is provided.
- The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
the one or more sections that are arranged so as to be thermally separate from the other refrigerant feed device(s) (20, 36) or refrigerant discharge device(s) (24, 38), or separate from sections thereof, are formed separately from these and/or are arranged so as to have no contact surface or a minimized contact surface with respect to one another and/or so as to be spaced apart from these and/or so as to be separated from these by a thermally insulating material or a material that exhibits low thermal conductivity. - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
one or more of the sections that are arranged so as to be thermally separate from other refrigerant feed device(s) or refrigerant discharge device(s) (24, 38) extend from the inner side of the compressor housing (15) to the compression device (14) . - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
one refrigerant feed device (20, 36) opens out in the compressor housing, in particular in the region of or adjacent to the drive device (12). - The compressor (10, 110) as claimed in claim 7,
characterized in that
the refrigerant feed device that opens out in the compressor housing (15) is a refrigerant feed device (20, 36) for refrigerant which is at low pressure or for refrigerant which is at an intermediate pressure. - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
at least one refrigerant discharge device (24, 38), in particular a refrigerant discharge device for refrigerant (24) which is at an intermediate pressure, is provided for connecting to an inlet of a refrigerant intercooler (28) of a refrigeration system or can be in fluid communication with an inlet of a refrigerant intercooler of the compressor (10, 110). - The compressor (10, 110) as claimed in one of claims 7 to 9,
characterized in that
the refrigerant feed device (36) that opens out in the compressor housing (15) is provided for connecting to an outlet of a refrigerant intercooler (28) of a refrigeration system or can be in fluid communication with an outlet of a refrigerant intercooler of the compressor (10, 110) . - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
the drive device has an electric motor (12) with a rotor and a stator, wherein the rotor serves as an oil separator for refrigerant that is supplied thereto. - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
the compressor (10, 110) is of two-stage design and has a refrigerant feed device (20) for refrigerant at low pressure and a refrigerant feed device (36) for refrigerant at intermediate pressure and a refrigerant discharge device (24) for refrigerant at intermediate pressure and a refrigerant discharge device (38) for refrigerant at high pressure, wherein in each case at least sections, in particular sections arranged within the compressor (10, 110), of each refrigerant feed device (20, 36) and of each refrigerant discharge device (24, 38) are arranged so as to be spaced apart from one another. - The compressor as claimed in one of the preceding claims,
characterized in that
the compressor (10, 110) is provided for R744 as refrigerant. - The compressor (10, 110) as claimed in one of the preceding claims,
characterized in that
the compressor (10, 110) has at least two housing components (15-1, 15-2) which are connected to one another in gas-tight and non-disassemblable fashion, and/or the compressor (10, 110) is of a hermetic or semi-hermetic type of construction. - A refrigeration system,
characterized in that
it has a compressor (10, 110) as claimed in one of the preceding claims. - The refrigeration system as claimed in claim 15,
characterized in that
it has an intercooler (28) for cooling refrigerant that is provided by a refrigerant discharge device (24, 38) of the compressor (10, 110).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110122248 DE102011122248A1 (en) | 2011-12-23 | 2011-12-23 | compressor |
DE102012005297A DE102012005297A1 (en) | 2012-03-19 | 2012-03-19 | Compressor unit, as well as compressors |
PCT/EP2012/005379 WO2013091899A2 (en) | 2011-12-23 | 2012-12-24 | Compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2795204A2 EP2795204A2 (en) | 2014-10-29 |
EP2795204B1 true EP2795204B1 (en) | 2021-03-10 |
Family
ID=48669628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12824900.0A Active EP2795204B1 (en) | 2011-12-23 | 2012-12-24 | Compressor |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150300337A1 (en) |
EP (1) | EP2795204B1 (en) |
CN (1) | CN104114959B (en) |
WO (1) | WO2013091899A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3775716A1 (en) * | 2018-03-27 | 2021-02-17 | BITZER Kühlmaschinenbau GmbH | Refrigeration system |
WO2020025135A1 (en) * | 2018-08-01 | 2020-02-06 | Bitzer Kühlmaschinenbau Gmbh | Refrigerant circuit |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2650018A (en) * | 1945-02-23 | 1953-08-25 | Joy Mfg Co | Compressor |
US3913346A (en) * | 1974-05-30 | 1975-10-21 | Dunham Bush Inc | Liquid refrigerant injection system for hermetic electric motor driven helical screw compressor |
JPS5614877A (en) * | 1979-07-13 | 1981-02-13 | Hitachi Ltd | Closed type motor compressor |
US4487555A (en) * | 1981-02-13 | 1984-12-11 | Mitsubishi Denki Kabushiki Kaisha | Hermetic motor compressor |
IT1191513B (en) * | 1986-01-10 | 1988-03-23 | Necchi Spa | SILENCER FOR HERMETIC COMPRESSOR |
US5330329A (en) * | 1993-06-01 | 1994-07-19 | Copeland Corporation | Suction conduit assembly mounting |
JP3102292B2 (en) * | 1995-03-23 | 2000-10-23 | 株式会社豊田自動織機製作所 | Reciprocating piston compressor |
US6584784B2 (en) * | 1999-02-05 | 2003-07-01 | Midwest Research Institute | Combined refrigeration system with a liquid pre-cooling heat exchanger |
KR20010014817A (en) * | 1999-07-06 | 2001-02-26 | 다카노 야스아키 | refrigerant compressor and refrigeration cooling apparatus using the same |
JP2002106989A (en) * | 2000-09-29 | 2002-04-10 | Mitsubishi Electric Corp | Two-stage compressor, refrigerating cycle device and refrigerator |
TW200406547A (en) * | 2002-06-05 | 2004-05-01 | Sanyo Electric Co | Internal intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method |
US20040234386A1 (en) * | 2003-05-19 | 2004-11-25 | Chumley Eugene Karl | Discharge muffler having an internal pressure relief valve |
JP4020068B2 (en) * | 2003-11-17 | 2007-12-12 | 株式会社豊田自動織機 | Thermal insulation structure in a compressor |
TWI325949B (en) * | 2004-02-09 | 2010-06-11 | Sanyo Electric Co | Refrigerant system |
KR100575678B1 (en) * | 2004-05-18 | 2006-05-03 | 엘지전자 주식회사 | Vibration reduction type refrigerator |
ATE393880T1 (en) * | 2004-12-22 | 2008-05-15 | Acc Austria Gmbh | HERMETIC REFRIGERANT COMPRESSOR |
DE102005009173A1 (en) * | 2005-02-17 | 2006-08-24 | Bitzer Kühlmaschinenbau Gmbh | refrigeration plant |
EP2021703A4 (en) * | 2006-06-01 | 2012-02-15 | Carrier Corp | Multi-stage compressor unit for a refrigeration system |
CN101576083B (en) * | 2008-05-08 | 2013-07-17 | 童夏民 | Cooling cylinder compression cycle of rotor-type compressor |
BRPI0903515A2 (en) * | 2009-09-16 | 2011-05-24 | Whirlpool Sa | thermal insulation, suitable for insulation of a gas discharge pipe from a refrigeration compressor and process of mounting insulation on the gas discharge pipe |
CN105157266B (en) * | 2009-10-23 | 2020-06-12 | 开利公司 | Operation of refrigerant vapor compression system |
US20110203304A1 (en) * | 2010-02-25 | 2011-08-25 | Mayekawa Mfg, Co., Ltd. | Heat pump unit and reciprocating compressor for refrigerant |
CN201811498U (en) * | 2010-09-29 | 2011-04-27 | 中原工学院 | Double heat source type multi-compression high temperature heat pump |
-
2012
- 2012-12-24 EP EP12824900.0A patent/EP2795204B1/en active Active
- 2012-12-24 US US14/367,839 patent/US20150300337A1/en not_active Abandoned
- 2012-12-24 CN CN201280064073.6A patent/CN104114959B/en active Active
- 2012-12-24 WO PCT/EP2012/005379 patent/WO2013091899A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2795204A2 (en) | 2014-10-29 |
WO2013091899A3 (en) | 2013-10-17 |
WO2013091899A2 (en) | 2013-06-27 |
CN104114959A (en) | 2014-10-22 |
CN104114959B (en) | 2021-02-05 |
US20150300337A1 (en) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3545195B1 (en) | Spiral-type positive displacement device, method for operating a positive displacement device, positive displacement spiral, vehicle air-conditioning system, and vehicle | |
DE4115905C2 (en) | Refrigeration circuit arrangement with two compressors driven simultaneously | |
EP3404264B1 (en) | Spiral compressor and its operating method | |
EP2806164B1 (en) | Scroll compressor and CO2 vehicle air conditioner with a scroll compressor | |
EP2806165B1 (en) | Scroll compressor and CO2 vehicle air conditioner with a scroll compressor | |
WO2007022988A1 (en) | Multi-cylinder, dry-running piston compressor comprising a cooling air flow | |
EP2185819B1 (en) | Coolant compressor | |
DE202016004933U1 (en) | Lubrication system for an electric compressor | |
EP2795204B1 (en) | Compressor | |
EP1812759B1 (en) | Combined piston-expander compressor | |
DE102014008288A1 (en) | Spindle compressors for compression refrigerators | |
EP2710263A1 (en) | Compressor device and cooling device fitted therewith and cooler unit fitted therewith | |
DE112004002958T5 (en) | linear compressor | |
DE102020120772A1 (en) | Compressor module | |
DE102021102648B4 (en) | Piston compressor, in particular for a heat pump | |
DE102008008860A1 (en) | Compressor e.g. for compressing cooling agents, has lubrication hole arranged with movable base plate part and which intermittently communicates to lubrication hole of movable pin | |
DE102017102645B4 (en) | Refrigerant Scroll Compressor for use inside a heat pump | |
EP3596309B1 (en) | Axial-piston motor and cyclic process device | |
DE102019208680A1 (en) | Displacement machine based on the spiral principle, especially scroll compressors for a vehicle air conditioning system | |
DE102011122248A1 (en) | compressor | |
EP4341561A1 (en) | Piston compressor, in particular radial piston compressor | |
WO2022008529A1 (en) | Lubricant reservoir, compressor system, and heat pump | |
DE102020210453A1 (en) | Scroll compressor of an electric refrigerant drive | |
DE10221396B4 (en) | C02 axial piston compressor for vehicle air conditioning systems | |
DE10342422B4 (en) | Plunger compressor for refrigerants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140620 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190409 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200921 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1370245 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012016669 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012016669 Country of ref document: DE Owner name: DANFOSS A/S, DK Free format text: FORMER OWNER: GEA BOCK GMBH, 72636 FRICKENHAUSEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502012016669 Country of ref document: DE Owner name: BOCK GMBH, DE Free format text: FORMER OWNER: GEA BOCK GMBH, 72636 FRICKENHAUSEN, DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210611 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210610 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210610 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BOCK GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210712 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210710 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012016669 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
26N | No opposition filed |
Effective date: 20211213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211224 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1370245 Country of ref document: AT Kind code of ref document: T Effective date: 20211224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230624 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231102 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231108 Year of fee payment: 12 Ref country code: DE Payment date: 20231031 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012016669 Country of ref document: DE Owner name: DANFOSS A/S, DK Free format text: FORMER OWNER: BOCK GMBH, 72636 FRICKENHAUSEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210310 |