EP2699783B1 - Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs - Google Patents

Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs Download PDF

Info

Publication number
EP2699783B1
EP2699783B1 EP12709871.3A EP12709871A EP2699783B1 EP 2699783 B1 EP2699783 B1 EP 2699783B1 EP 12709871 A EP12709871 A EP 12709871A EP 2699783 B1 EP2699783 B1 EP 2699783B1
Authority
EP
European Patent Office
Prior art keywords
injector
excitation
injection
determined
test injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12709871.3A
Other languages
English (en)
French (fr)
Other versions
EP2699783A1 (de
Inventor
Michael Walter
Stefan Bollinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2699783A1 publication Critical patent/EP2699783A1/de
Application granted granted Critical
Publication of EP2699783B1 publication Critical patent/EP2699783B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Definitions

  • the invention relates to a method and a device for calibrating a fuel metering system of an internal combustion engine, in particular of a motor vehicle.
  • the small amounts of fuel in the part injections mentioned require a precise metering of the respective injection quantities. Falls a partial injection completely away, for example, because a present injection component, injectors in common-rail injection systems, due to conventional tolerances at an underlying drive signal is not yet injected, this has a significant impact on the operation of the engine, which, for example, by increased Noise during combustion manifests.
  • An essential one The tolerance source for the quantity accuracy of the pilot injection is a so-called drift of the respective injector.
  • pressure generation and injection are decoupled from one another by means of a high-pressure accumulator, wherein the injection pressure is generated independently of the engine speed and the injection quantity and is available for injection in the high-pressure accumulator.
  • the respective injection time and the respective injection quantity are calculated in an electronic engine control unit and added by the respective injectors of each cylinder of the internal combustion engine via remote-controlled valves. It has to be ensured that the said partial injections are always realized with the highest possible precision.
  • the injectors of a fuel metering system When manufacturing injectors of a corresponding fuel metering system occurring manufacturing tolerances cause differences in the operating characteristics of the individual injectors, which often occur only over the life of the respective injectors or the fuel metering system or are even enhanced during the life.
  • the injectors of a fuel metering system usually have different quantity maps, d. H. different dependencies between injection quantities, rail pressure and activation duration. As a result, the various injectors fill the combustion chamber with different amounts of fuel, even with very precise control.
  • a metering of said minimum amounts is based on a so-called zero-quantity calibration.
  • This is, for example, in the publication DE 199 45 618 A1 described.
  • a single injector is activated and the actuation period is increased stepwise until a change in a quantity substitute signal (short: quantity signal) occurs at a minimum actuation time, for example a torque increase measurable on the internal combustion engine, on the basis of which now that an injection or injection has taken place.
  • the control duration then present corresponds to an operating state in which the injection for the relevant internal combustion engine, ie the cylinder of the internal combustion engine, is being used. This approach will apply to all Injectors or cylinders of the internal combustion engine carried out accordingly.
  • control periods thus obtained are stored in a so-called control map, which is used in a subsequent control of the injectors in the context of a zero-quantity calibration, wherein a current value of the control period is respectively converted into a correction value for the amount of fuel to be supplied.
  • a method and a device for calibrating a fuel metering system of an internal combustion engine in which at least one injector with a first test injection is activated with a first test injection quantity and a resulting resulting first quantity signal is detected.
  • a first emergencyan Taverndauer is determined and it is further provided that the at least one injector with at least one second injection injection is controlled with a deviating from the first injection amount second injection quantity and thereby resulting at least second quantity signal is detected, wherein at least this second injection quantity an at least secondISan Taverndauer is determined.
  • a regression calculation is performed.
  • the zero-rate calibration learning process can be improved by reducing the time required to learn a calibration value.
  • the DE 103 59 306 A1 discloses another method for calibrating a fuel metering system of an internal combustion engine.
  • test injections with variable actuation duration are carried out in the thrust on a cylinder or the injector associated therewith.
  • the associated quantity replacement signal which can be obtained, for example, by processing the measured speed signal, is calculated.
  • the control period is varied so long until a predetermined setpoint of the quantity signal is reached.
  • a drive duration learning value is calculated and stored non-volatile. The method is used individually for each injector at several rail pressure levels.
  • An object of the present invention was now to accelerate the determination of the above learning values.
  • a first injector with a first test injection and a first activation duration and a second injector with a second test injection and a second activation duration are provided for calibrating a fuel metering system of an internal combustion engine, in particular a motor vehicle, and a resulting overall excitation as a superimposition of a first injector Detecting excitation of the first injector and a second excitation of the second injector. From this, a total vibration is then determined, from which the first excitation of the first injector and the second excitation of the second injector are reconstructed. On the basis of the respective excitation as a respective quantity signal for the respective injector, a zero quantity calibration is then carried out independently of the other injector, whereby a respective minimum actuation duration is determined for a respective injector.
  • the learning values are determined as in the normal zero-quantity calibration in the thrust.
  • the proposed method with respect to the learning process is carried out independently on two injectors in parallel. From each test injection of the two injectors results in a stimulation of the drive train. These suggestions, as parallel or approximately at the same time, are superimposed on the drive train. A corresponding speed signal evaluation determines a total vibration with magnitude and phase. From this, the excitation of the respective individual injectors can then be reconstructed according to the principle of vector addition. On the basis of the quantity signal reconstructed for the respective injector, a calibration for each injector then takes place independently as in the case of a previously mentioned "normal" zero-quantity calibration.
  • Advantage of the proposed method is the ability to double the calibration without having to accept a deterioration in the signal-to-noise ratio in purchasing.
  • the first test injection for the first injector and the second test injection for the second injector are made in the thrust and in approximately the same time.
  • the first injector or the first cylinder assigned to it and the second injector or the second cylinder assigned to it are mutually orthogonal.
  • first injector and the second injector and the respective cylinders may also be in opposite phase to each other or according to yet another embodiment also to each other so that they include an angle ⁇ , where ⁇ is not equal to a multiple of 90 °.
  • the determined respective excitations are entered as respective quantity signals for a respective injector in a respective drive duration map and stored in this.
  • two injectors are simultaneously subjected to respective test injections during thrust.
  • Each of these test injections excites the vibratory components of the powertrain.
  • the resulting superposition of these two excited vibrations can be measured by means of a speed sensor.
  • the amplitudes of the individual signals belonging to the respective injectors are then reconstructed from the superimposed signal.
  • the invention further relates to a device for calibrating a Kraftstoffzumesssystems an internal combustion engine, in particular a motor vehicle.
  • the device comprises control means for driving a first injector with a first test injection having a first drive duration and a second injector with a second test injection having a second drive duration.
  • Further Sensor means are provided which are configured to detect a resulting total excitation as a superposition of a first excitation of the first injector and a second excitation of the second injector and to determine a resulting overall vibration.
  • the proposed device comprises computing means which are configured to reconstruct from the overall vibration the first excitation of the first injector and the second excitation of the second injector.
  • a zero quantity calibration can be carried out independently of the other injector on the basis of a respective excitation as a respective quantity signal for a respective injector, whereby a respective minimum actuation duration can be determined for a respective injector.
  • the proposed device can be used in particular in a common rail diesel injection system.
  • FIG. 1 As part of an embodiment of the method according to the invention, a reconstruction of excitations of two injectors acted upon at the same time by respective test injections from a measured excitation of oscillatable components of the drive train within an internal combustion engine, in particular of a motor vehicle is shown.
  • the measured excitation or oscillation results as a superimposition of oscillations, excited by the respective individual two injectors loaded with respective test injections.
  • the two injectors loaded with respective test injections or the correspondingly assigned cylinders are orthogonal to one another.
  • the first injector or the associated cylinder 1 is characterized by the ordinate
  • the second injector or cylinder 2 is represented by the abscissa.
  • the now measured oscillation is first represented by an amplitude A12 and a corresponding phase ⁇ . This can be done, for example, as a Fourier transformation of a corresponding speed signal.
  • the respective phases of a pure excitation or oscillation on the first cylinder 1 or the second cylinder 2 are known from the prior art and are, as already mentioned above, used as axes in the coordinate system shown here.
  • A12 is the amplitude of the total vibration d. H. the superposition of the two oscillations caused by the respective injectors, A1 is the reconstructed amplitude of cylinder 1 and A2 represents the reconstructed amplitude of cylinder 2. ⁇ results from the phase or phase shift of the measured excitation with respect to the phase of cylinder 2 or cylinder 1.
  • a search algorithm according to the prior art is performed for each of the two injectors, the first injector 1 and the second injector 2, wherein a drive duration of a respective injector is tracked until a predetermined target amount is reached and then it becomes a above-mentioned Learning value determined according to the prior art.
  • FIG. 2 is a test result again, which was obtained on a motor vehicle with a 4-cylinder engine after performing the method according to the invention.
  • a received drive characteristic map of a second injector 2 was determined three times.
  • the respective activation duration of a first injector 1 was used as a parameter and assumed in each case the activation duration 140 ⁇ s, 180 ⁇ s and 220 ⁇ s.
  • the three determined drive duty curves 10, 20, 30 are in this case in a graph showing a respective specific quantity signal S2 of the second injector 1 over the drive time T, measured in ⁇ s, registered.
  • the Anberichtdauerkennfeld 10 represents the Antechnischdauerkennfeld the second injector 2, at a drive time of the first injector of 140 microseconds.
  • the drive duration map 20 was recorded at a drive duration of the first injector of 180 .mu.s, and the drive duration map 30 was recorded for a drive duration of the first injector of 220 .mu.s.
  • the three determined control duration maps of the second injector 2 are exactly within the measurement accuracy of the speed evaluation used.
  • FIG. 3 a corresponding graph for corresponding control duration maps of the first injector 1 is shown, here almost opposite FIG. 2 Injector 1 and injector 2 have their roles "swapped".
  • a respective specific quantity signal S1 of the first injector 1 was plotted over the activation duration T, measured in ⁇ s.
  • the drive duration of the second injector 2 was used as a parameter and amounted to drive actuation characteristic 10 '140 microseconds, for drive duration map 20' 180 microseconds and for An confusedauerkennfeld 30 '220 microseconds.
  • the three Anberichtdauerkennfelder determined for injector 1 in the measurement accuracy of the Drehiereauswertmies exactly to each other.
  • FIG. 4 Now shows a made according to the method of the invention reconstruction of each of a first injector and a second injector excited vibrations from a result of the two oscillations and measured total vibration.
  • the injectors 1 and 2 enclose an angle ⁇ which is not equal to a multiple of 90 °.
  • FIG. 1 This constellation is also shown in a coordinate system, wherein the second cylinder 2 and injector 2 on a horizontal axis and the first cylinder 1 and injector 1 is marked on a relative to the horizontal axis rotated by ⁇ axis.
  • the coordinate axes of this coordinate system therefore include an angle ⁇ .
  • the measured signal is in turn converted into a representation with amplitude and phase and drawn accordingly in this coordinate system.
  • a reconstruction of the individual amplitudes A1 and A2 results here by application of the sine theorem analogous to the reconstruction in FIG. 1 , This results in a generalized evaluation relationship as follows:
  • a ⁇ 1 A ⁇ 12 ⁇ sin ⁇ / sin 180 ⁇ ° - ⁇
  • a ⁇ 2 A ⁇ 12 ⁇ sin ⁇ - ⁇ / sin 180 ⁇ ° - ⁇
  • FIG. 5 shows a simplified block diagram of an embodiment of an inventive device for controlling a fuel metering system.
  • an internal combustion engine 10 which receives a certain amount of fuel from a Kraftstoffzumessaku 30 at a given time.
  • sensor means in the form of various sensors 40, in particular a rotational speed sensor, are present, which detect measured values 15 which characterize the operating state of the internal combustion engine 10 and forward them accordingly to a control unit 20.
  • the control unit 20 moreover, output signals 25 of other existing sensors 45, which detect quantities that characterize the state of the fuel metering unit 30 and / or environmental conditions.
  • Such a size 25 is, for example, a given driver's request. In the other sizes 25, for example, may also be the pressure and temperature of the ambient air.
  • the control unit 20 calculates, on the basis of the measured values 15 and the further variables 25, control pulses 35 with which the fuel metering unit 30 is acted upon.
  • the internal combustion engine is preferably a direct injection and / or a self-igniting internal combustion engine.
  • the fuel metering unit 30 may be configured differently. It may, for example, be designed as a previously mentioned and described common rail injection system. In such a system, a high pressure pump compresses fuel in a reservoir. From this memory then the fuel passes through injectors into respective combustion chambers of the internal combustion engine. The duration and / or the beginning of the fuel injection is controlled by the injectors.
  • the injectors preferably each include a solenoid valve or a piezoelectric actuator.
  • an electrically actuated valve is provided in each case.
  • the solenoid valve and / or the piezoelectric actuator, which affects the fuel metering is referred to as an electrically actuable valve.
  • An electrically operable valve is arranged so that an amount of fuel to be injected is determined by opening time or by closing time of the valve.
  • control unit 20 For the calibration of the fuel metering system, the control unit 20 according to the invention now has control means 50 for driving a first injector with a first test injection having a first drive duration by means of drive pulse 35_1 and for driving a second injector with a second test injection having a second drive duration by means of drive pulse 35_2.
  • the sensors 40 in particular a provided speed sensor, are configured to detect a total excitation resulting therefrom as a superposition of a first excitation of the first injector and a second excitation of the second injector and to determine a resulting overall vibration.
  • the control unit 20 further has computing means 55 which are configured to reconstruct from the overall vibration the first excitation of the first injector and the second excitation of the second injector and based on the respective excitations as a respective quantity signal for the respective injector independently of the other injector to perform a zero-quantity calibration. As a result, a respective minimum activation duration is determined for a respective injector.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs.
  • Stand der Technik
  • In modernen Kraftstoffeinspritzsystemen der hier betroffenen Art, wie bspw. in Common-Rail-Diesel-Einspritzsystemen, erfolgen zur Verbesserung einer Gemischaufbereitung zeitgleich vor oder nach einer entsprechenden Haupteinspritzung Teileinspritzungen mit relativ kleinen Kraftstoffmengen. Die genannte Haupteinspritzung wird dabei in der Regel auf Basis einer Momentenanforderung eines entsprechenden Fahrers berechnet. Die Einspritzmengen der genannten Teileinspritzungen sollen möglichst gering sein, um Emissionsnachteile zu vermeiden. Andererseits müssen die Einspritzmengen groß genug sein, damit unter Berücksichtigung aller Toleranzquellen stets die für den entsprechenden Verbrennungsprozess notwendige Mindestmenge abgesetzt wird. Eine derart verbesserte Gemischaufbereitung ermöglicht reduzierte Abgasemissionen sowie verringerte Verbrennungsgeräusche.
  • Die geringen Kraftstoffmengen bei den genannten Teileinspritzungen erfordern eine präzise Zumessung der jeweiligen Einspritzmengen. Fällt eine Teileinspritzung gänzlich weg, bspw. weil eine vorliegende Einspritzkomponente, bei Common-Rail-Einspritzsystemen ein Injektor, aufgrund von üblichen Toleranzen bei einem zugrundeliegenden Ansteuersignal noch nicht einspritzt, hat dies erhebliche Auswirkungen auf den Betrieb der Brennkraftmaschine, was sich bspw. durch erhöhte Geräuschentwicklung bei der Verbrennung äußert. Eine wesentliche Toleranzquelle für die Mengengenauigkeit der Voreinspritzung ist eine sogenannte Drift des jeweiligen Injektors.
  • Bei den genannten Common-Rail-Diesel-Einspritzsystemen werden mittels eines Hochdruckspeichers, eines sogenannten "Rails" Druckerzeugung und Einspritzung voneinander entkoppelt, wobei der Einspritzdruck unabhängig von der Motordrehzahl und der Einspritzmenge erzeugt wird und in dem Hochdruckspeicher für die Einspritzung zur Verfügung steht. Der jeweilige Einspritzzeitpunkt und die jeweilige Einspritzmenge werden dabei in einem elektronischen Motorsteuergerät berechnet und von den entsprechenden Injektoren jedes Zylinders der Brennkraftmaschine über ferngesteuerte Ventile zugesetzt. Es ist dabei zu gewährleisten, dass die genannten Teileinspritzungen stets mit möglichst hoher Präzision verwirklicht werden.
  • Bei Herstellung von Injektoren eines entsprechenden Kraftstoffzumesssystems auftretende Fertigungstoleranzen bedingen Unterschiede in den Betriebskenngrößen der einzelnen Injektoren, welche oft erst über die Lebensdauer der jeweiligen Injektoren bzw. des Kraftstoffzumessystems auftreten oder während der Lebensdauer sogar noch verstärkt werden. Dazu kommt, dass die Injektoren eines Kraftstoffzumessystems üblicherweise unterschiedliche Mengenkennfelder aufweisen, d. h. unterschiedliche Abhängigkeiten zwischen Einspritzmengen, Raildruck und Ansteuerdauer. Dies führt dazu, dass die verschiedenen Injektoren den entsprechenden Verbrennungsraum auch bei sehr präziser Ansteuerung mit unterschiedlichen Mengen an Kraftstoff füllen.
  • Eine Zumessung der genannten Minimalmengen erfolgt auf Grundlage einer sogenannten Nullmengenkalibrierung. Diese ist bspw. in der Druckschrift DE 199 45 618 A1 beschrieben. Dabei wird im sogenannten Schubbetrieb der jeweiligen Brennkraftmaschine ein einzelner Injektor angesteuert und die Ansteuerdauer so lange schrittweise erhöht, bis sich bei einer Mindestansteuerdauer eine Änderung eines Mengenersatzsignals (kurz: Mengensignal) einstellt, bspw. eine an der Brennkraftmaschine messbare Drehmomentenerhöhung, anhand derer kenntlich ist, dass nunmehr eine Einspritzung bzw. Injektion stattgefunden hat. Die dann vorliegende Ansteuerdauer entspricht einem Betriebszustand, bei dem die Einspritzung für die betreffende Brennkraftmaschine, d. h. den Zylinder der Brennkraftmaschine gerade einsetzt. Diese Vorgehensweise wird bezüglich aller Injektoren bzw. Zylindern der Brennkraftmaschine entsprechend durchgeführt. Die dabei gewonnenen Ansteuerdauern werden in einem sogenannten Ansteuerkennfeld gespeichert, welches bei einer nachfolgenden Ansteuerung der Injektoren im Rahmen einer Nullmengenkalibrierung angewendet wird, wobei ein aktueller Wert der Ansteuerdauer jeweils in einen Korrekturwert für die zuzuführende Kraftstoffmenge umgesetzt wird.
  • Aus der DE 10 2008 002 482 A1 ist ferner ein Verfahren und eine Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine bekannt, bei dem wenigstens ein Injektor mit einer ersten Testeinspritzung mit einer ersten Testeinspritzmenge angesteuert wird und ein sich dabei ergebenes erstes Mengensignal erfasst wird. Dabei wird eine erste Mindestansteuerdauer bestimmt und es ist ferner vorgesehen, dass der wenigstens eine Injektor mit wenigstens einer zweiten Testeinspritzung mit einer von der ersten Einspritzmenge abweichenden zweiten Einspritzmenge angesteuert wird und ein sich dabei ergebenes wenigstens zweites Mengensignal erfasst wird, wobei zu dieser wenigstens zweiten Einspritzmenge eine wenigstens zweite Mindestansteuerdauer bestimmt wird. Auf Grundlage der ersten Mindestansteuerdauer und der wenigstens zweiten Mindestansteuerdauer sowie des ersten Mengensignals und des mindestens zweiten Mengensignals wird sodann eine Regressionsberechnung durchgeführt. Mit Hilfe des darin vorgestellten Verfahrens kann das Lernverfahren bei der Nullmengenkalibrierung verbessert werden, indem die für das Lernen eines Kalibrierwertes benötigte Zeit verringe wird. Die DE 103 59 306 A1 offenbart ein weiteres Verfahren zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine.
  • Offenbarung der Erfindung
  • Bei der oben bereits erwähnten Nullmengenkalibrierung werden im Schub auf einem Zylinder bzw. dem diesem zugeordneten Injektor Testeinspritzungen mit variabler Ansteuerdauer durchgeführt. Zu jeder Ansteuerdauer wird das zugehörige Mengenersatzsignal, das durch Aufbereitung des gemessenen Drehzahlsignals bspw. gewonnen werden kann, berechnet. Die Ansteuerdauer wird hierbei so lange variiert, bis ein vorgegebener Sollwert des Mengensignals erreicht ist. In einem darauffolgenden Schritt wird ein Ansteuerdauer-Lernwert berechnet und nicht flüchtig abgespeichert. Das Verfahren wird dabei für jeden Injektor bei mehreren Raildruckstufen einzeln angewendet.
  • Die Kalibrierung der einzelnen Injektoren bei den einzelnen Raildruckstufen erfolgt demnach sequenziell.
  • Eine Aufgabe der vorliegenden Erfindung war es nunmehr die Ermittlung der obigen Lernwerte zu beschleunigen.
  • Diese Aufgabe wird gelöst durch ein Verfahren gemäß dem unabhängigen Patentanspruch 1 bzw. einer entsprechenden Vorrichtung gemäß dem unabhängigen Patentanspruch 6. Vorteilhafte Ausführungsformen sind in den jeweiligen Unteransprüchen formuliert.
  • Gemäß dem erfindungsgemäßen Verfahren ist vorgesehen zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs einen ersten Injektor mit einer ersten Testeinspritzung und einer ersten Ansteuerdauer und einen zweiten Injektor mit einer zweiten Testeinspritzung und einer zweiten Ansteuerdauer anzusteuern und eine sich daraus ergebende Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen. Daraus wird sodann eine Gesamtschwingung ermittelt, aus der die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors rekonstruiert werden. Auf Basis der jeweiligen Anregung als jeweiligem Mengensignal für den jeweiligen Injektor wird dann unabhängig von dem anderen Injektor eine Nullmengenkalibrierung durchgeführt, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer ermittelt wird.
  • Die Ermittlung von Lernwerten erfolgt dabei wie bei der normalen Nullmengenkalibrierung im Schub. Allerdings wird das vorgeschlagene Verfahren hinsichtlich des Lernvorgangs jeweils autark auf zwei Injektoren parallel durchgeführt. Aus jeder Testeinspritzung der beiden Injektoren ergibt sich eine Anregung des Antriebsstrangs. Diese Anregungen, da parallel bzw. in etwa zeitgleich, werden auf dem Antriebsstrang überlagert. Eine entsprechende Drehzahlsignalauswertung ermittelt daraus eine Gesamtschwingung mit Betrag und Phase. Daraus lässt sich dann nach dem Prinzip der Vektoraddition die Anregung der jeweiligen einzelnen Injektoren rekonstruieren. Auf Basis des für den jeweiligen Injektor rekonstruierten Mengensignals erfolgt sodann eine Kalibrierung für jeden Injektor autark wie bei einer zuvor erwähnten "normalen" Nullmengenkalibrierung.
  • Vorteil des vorgeschlagenen Verfahrens ist die Möglichkeit, die Kalibriergeschwindigkeit zu verdoppeln ohne eine Verschlechterung im Signal-/Rausch-Abstand in Kauf nehmen zu müssen.
  • Gemäß einer Ausführungsform des vorgeschlagenen Verfahrens werden die erste Testeinspritzung für den ersten Injektor und die zweite Testeinspritzung für den zweiten Injektor im Schub und in etwa zeitgleich vorgenommen.
  • Gemäß einer möglichen Ausführungsform des vorgeschlagenen Verfahrens liegen der erste Injektor bzw. der ihm zugeordnete erste Zylinder und der zweite Injektor bzw. der ihm zugeordnete zweite Zylinder dabei zueinander orthogonal.
  • Alternativ dazu können der erste Injektor und der zweite Injektor bzw. die jeweiligen Zylinder auch gegenphasig zueinander liegen oder gemäß einer noch weiteren Ausführungsform auch so zueinander liegen, dass sie einen Winkel τ einschließen, wobei τ ungleich einem Vielfachen von 90° beträgt.
  • Ferner kann vorgesehen sein, dass die ermittelten jeweiligen Anregungen als jeweilige Mengensignale für einen jeweiligen Injektor in ein jeweiliges Ansteuerdauerkennfeld eingetragen und in diesem gespeichert werden.
  • Bei Durchführung des erfindungsgemäßen Verfahrens werden im Schub zwei Injektoren gleichzeitig mit jeweiligen Testeinspritzungen beaufschlagt. Jede dieser Testeinspritzung bewirkt eine Anregung der schwingungsfähigen Bauteile des Antriebsstrangs. Die resultierende Überlagerung dieser beiden angeregten Schwingungen kann mittels eines Drehzahlsensors gemessen werden. Gemäß dem erfindungsgemäßen Verfahren werden sodann aus dem überlagerten Signal die Amplituden der zu den jeweiligen Injektoren gehörenden Einzelsignalen rekonstruiert.
  • Die Erfindung betrifft ferner eine Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs. Die Vorrichtung umfasst Steuermittel zur Ansteuerung eines ersten Injektors mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer und eines zweiten Injektors mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer. Ferner sind Sensormittel vorgesehen, die dazu konfiguriert sind, eine sich daraus ergebende Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen und eine sich daraus ergebende Gesamtschwingung zu ermitteln. Ferner umfasst die vorgeschlagene Vorrichtung Rechenmittel, die dazu konfiguriert sind, aus der Gesamtschwingung die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors zu rekonstruieren. Ferner kann mit Hilfe der vorgesehenen Rechenmittel auf Basis einer jeweiligen Anregung als jeweiligem Mengensignal für einen jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchgeführt werden, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer zu ermitteln ist.
  • Die vorgeschlagene Vorrichtung kann insbesondere in einem Common-Rail-Diesel-Einspritzsystem zur Anwendung kommen.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.
  • Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweiligen angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Kurze Beschreibung der Zeichnungen
  • Figur 1
    zeigt eine grafische Darstellung am Beispiel eines 4-Zylindersystems einer Überlagerung von Amplitudensignalen zweier orthogonaler Injektoren bzw. Zylindern und deren nach einer Ausführungsform des erfindungsgemäßen Verfahrens durchgeführten Separierung in jeweilig einzelne Amplitudensignale der zwei einzelnen Injektoren.
    Figur 2
    zeigt ein Ansteuerdauerkennfeld eines zweiten Injektors der gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zusammen mit einem ersten Injektor parallel kalibriert wurde, wobei die Ansteuerdauer des ersten Injektors dabei als Parameter eingeht.
    Figur 3
    zeigt ein Ansteuerdauerkennfeld eines ersten Injektors, der gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zusammen mit einem zweiten Injektor parallel kalibriert wurde, wobei hier die Ansteuerdauer des zweiten Injektors als Parameter eingeht.
    Figur 4
    zeigt in grafischer Darstellung eine Überlagerung von zwei Amplitudensignalen zweier Injektoren, die so zueinander liegen, dass sie einen Winkel τ einschließen, welcher ungleich einem Vielfachen von 90° ist.
    Figur 5
    zeigt ein Übersichtsblockdiagramm einer Ausführungsform einer erfindungsgemäßen Vorrichtung.
  • In Figur 1 ist als Teil einer Ausführungsform des erfindungsgemäßen Verfahrens ein Rekonstruieren von Anregungen zweier zeitgleich mit jeweiligen Testeinspritzungen beaufschlagten Injektoren aus einer gemessenen Anregung von schwingungsfähigen Bauteilen des Antriebsstrangs innerhalb einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs gezeigt. Die gemessene Anregung bzw. Schwingung ergibt sich dabei als eine Überlagerung von Schwingungen, angeregt durch die jeweiligen einzelnen zwei mit jeweiligen Testeinspritzungen beaufschlagten Injektoren.
  • Im vorliegenden Fall wird nunmehr am Beispiel eines 4-Zylindersystems angenommen, dass die zwei mit jeweiligen Testeinspritzungen beaufschlagten Injektoren bzw. die entsprechend zugeordneten Zylinder orthogonal zueinander liegen. Demnach ist der erste Injektor bzw. der zugehörige Zylinder 1 durch die Ordinate gekennzeichnet, während der zweite Injektor bzw. Zylinder 2 durch die Abszisse dargestellt ist. Die nunmehr gemessene Schwingung wird zunächst durch eine Amplitude A12 und eine entsprechende Phase α dargestellt. Dies kann bspw. als Fouriertransformation eines entsprechenden Drehzahlsignals vorgenommen werden. Die jeweiligen Phasen einer reinen Anregung bzw. Schwingung auf dem ersten Zylinder 1 oder dem zweiten Zylinder 2 sind aus dem Stand der Technik bekannt und werden, wie bereits voranstehend erwähnt, in dem hier dargestellten Koordinatensystem als Achsen verwendet. Das gemessene Signal mit Amplitude A12 und Phase α wird sodann gemäß trigonometrischem Standard auf die beiden Achsen projiziert. Dies lautet dann wie folgt: A 1 = A 12 sin α
    Figure imgb0001
    A 2 = A 12 cos α
    Figure imgb0002

    wobei
  • A12 die Amplitude der Gesamtschwingung d. h. der Überlagerung der beiden durch die jeweiligen Injektoren verursachten Schwingungen ist, A1 die rekonstruierte Amplitude von Zylinder 1 und A2 die rekonstruierte Amplitude von Zylinder 2 darstellt. α ergibt sich aus der Phase bzw. Phasenverschiebung der gemessenen Anregung gegenüber der Phase von Zylinder 2 bzw. Zylinder 1.
  • Dadurch lassen sich in einfacher Weise die beiden die Gesamtanregung verursachenden Einzelanregungen der Injektoren 1 und 2 separieren.
  • Sodann wird für jeden der beiden Injektoren, den ersten Injektor 1 und den zweiten Injektor 2 ein Suchalgorithmus gemäß dem Stand der Technik durchgeführt, wobei eine Ansteuerdauer eines jeweiligen Injektors so lange nachgeführt wird, bis eine vorgegebene Zielmenge erreicht ist und anschließend wird daraus ein voranstehend erwähnter Lernwert gemäß Stand der Technik bestimmt.
  • Figur 2 gibt ein Testergebnis wieder, welches an einem Kraftfahrzeug mit einem 4-Zylinder-Motor nach Durchführung des erfindungsgemäßen Verfahrens erhalten wurde. Dabei wurde ein erhaltenes Ansteuerdauerkennfeld eines zweiten Injektors 2 dreimal ermittelt. Die jeweilige Ansteuerdauer eines ersten Injektors 1 war dabei als Parameter eingesetzt und nahm jeweils die Ansteuerdauer 140 µs, 180 µs und 220 µs an. Die drei ermittelten Ansteuerdauerkennlinien 10, 20, 30 sind hierbei in einem Schaubild, welches ein jeweiliges bestimmtes Mengensignal S2 des zweiten Injektors 1 über die Ansteuerdauer T, gemessen in µs, aufzeigt, eingetragen. Dabei stellt das Ansteuerdauerkennfeld 10 das Ansteuerdauerkennfeld des zweiten Injektors 2 dar, bei einer Ansteuerdauer des ersten Injektors von 140 µs. Das Ansteuerdauerkennfeld 20 wurde bei einer Ansteuerdauer des ersten Injektors von 180 µs aufgenommen und das Ansteuerdauerkennfeld 30 wurde für eine Ansteuerdauer des ersten Injektors von 220 µs aufgenommen. Die drei ermittelten Ansteuerdauerkennfelder des zweiten Injektors 2 liegen dabei im Rahmen der Messgenauigkeiten des eingesetzten Drehzahlauswertverfahrens exakt aufeinander.
  • In Figur 3 ist ein entsprechendes Schaubild für entsprechende Ansteuerdauerkennfelder des ersten Injektors 1 aufgezeigt, wobei hier quasi gegenüber Figur 2 Injektor 1 und Injektor 2 ihre Rollen "getauscht" haben. In dem hier dargestellten Schaubild wurde ein jeweiliges bestimmtes Mengensignal S1 des ersten Injektors 1 über die Ansteuerdauer T, gemessen in µs, aufgetragen. Die Ansteuerdauer des zweiten Injektors 2 war dabei als Parameter verwendet und betrug für Ansteuerdauerkennfeld 10' 140 µs, für Ansteuerdauerkennfeld 20' 180 µs und für Ansteuerdauerkennfeld 30' 220 µs. Auch hier sind die drei für Injektor 1 ermittelten Ansteuerdauerkennfelder im Rahmen der Messgenauigkeiten des Drehzahlauswerteverfahrens exakt aufeinander.
  • Alternativ zum genannten Szenario, in welchem zwei orthogonale Injektoren 1 und 2 bzw. entsprechende Zylinder mit jeweiligen Testeinspritzungen beaufschlagt werden, können auch zwei gegenphasig liegende Injektoren bzw. Zylinder angeregt werden. Die beiden Schwingungen löschen sich dann exakt aus, wenn die Einspritzmengen für die jeweiligen Injektoren gleich groß sind. Dies kann bspw. dazu verwendet werden, zwei Injektoren exakt aufeinander abzugleichen, wenn ein Absolutbetrag der jeweiligen Einspritzung für die der Abgleich erfolgt, nicht relevant ist.
  • Figur 4 zeigt nunmehr eine nach dem erfindungsgemäßen Verfahren vorgenommene Rekonstruktion von durch einen ersten Injektor und einen zweiten Injektor jeweils angeregten Schwingungen aus einer durch die beiden Schwingungen sich ergebenden und gemessenen Gesamtschwingung. Dabei schließen die Injektoren 1 und 2 einen Winkel τ ein, der ungleich eines Vielfachen von 90° beträgt. Entsprechend zu Figur 1 ist diese Konstellation ebenfalls in einem Koordinatensystem dargestellt, wobei der zweite Zylinder 2 bzw. Injektor 2 auf einer horizontalen Achse und der erste Zylinder 1 bzw. Injektor 1 auf einer gegenüber der horizontalen Achse um τ gedrehten Achse gekennzeichnet ist. Die Koordinatenachsen dieses Koordinatensystems schließen demnach einen Winkel τ ein. Das gemessene Signal wird wiederum in eine Darstellung mit Amplitude und Phase umgewandelt und in diesem Koordinatensystem entsprechend eingezeichnet. Dabei ist die Amplitude A12 mit einem Winkel α zum Injektor 2 eingetragen. Eine Rekonstruktion der Einzelamplituden A1 bzw. A2 ergibt sich hier durch Anwendung des Sinussatzes analog zu der Rekonstruktion in Figur 1. Dadurch ergibt sich eine verallgemeinerte Auswertebeziehung wie folgt: A 1 = A 12 sin α / sin 180 ° - τ
    Figure imgb0003
    A 2 = A 12 sin τ - α / sin 180 ° - τ
    Figure imgb0004
  • Figur 5 zeigt eine vereinfachte Blockdarstellung einer Ausführungsform einer erfindungsgemäßen Vorrichtung zur Steuerung eines Kraftstoffzumesssystems. Gezeigt ist eine Brennkraftmaschine 10, die von einer Kraftstoffzumesseinheit 30 eine bestimmte Kraftstoffmenge zu einem bestimmten Zeitpunkt zugemessen bekommt. Dabei sind Sensormittel in Form verschiedener Sensoren 40, insbesondere eines Drehzahlsensors, vorhanden, die Messwerte 15 erfassen, die den Betriebszustand der Brennkraftmaschine 10 charakterisieren und diese entsprechend an ein Steuergerät 20 weiterleiten. Dem Steuergerät 20 werden darüber hinaus Ausgangssignale 25 weiterer vorhandener Sensoren 45 zugeleitet, die Größen erfassen, die den Zustand der Kraftstoffzumesseinheit 30 und/oder Umweltbedingungen charakterisieren. Ein solche Größe 25 ist bspw. ein gegebener Fahrerwunsch. Bei den weiteren Größen 25 kann sich bspw. auch um Druck und Temperatur der Umgebungsluft handeln. Das Steuergerät 20 berechnet ausgehend von den Messwerten 15 und den weiteren Größen 25 Ansteuerimpulse 35, mit denen die Kraftstoffzumesseineheit 30 beaufschlagt wird.
  • Bei der Brennkraftmaschine handelt es vorzugsweise um eine Direkteinspritzung und/oder eine selbstzündende Brennkraftmaschine.
  • Die Kraftstoffzumesseinheit 30 kann verschieden ausgestaltet sein. Sie kann bspw. als voranstehend bereits erwähntes und beschriebenes Common-Rail-Einspritzsystem ausgebildet sein. Bei einem derartigen System verdichtet eine Hochdruckpumpe Kraftsoff in einem Speicher. Von diesem Speicher gelangt dann der Kraftstoff über Injektoren in jeweilige Brennräume der Brennkraftmaschine. Die Dauer und/oder der Beginn der Kraftstoffeinspritzung wird mittels der Injektoren gesteuert. Dabei beinhalten die Injektoren vorzugweise jeweils ein Magnetventil bzw. einen piezoelektrischen Aktor.
  • Pro Zylinder wird jeweils ein elektrisch betätigbares Ventil vorgesehen. Im Folgendem wird das Magnetventil und/oder der piezoelektrischen Aktor, der die Kraftstoffzumessung beeinflusst als elektrisch betätigbares Ventil bezeichnet.
  • Ein elektrisch betätigbares Ventil ist so angeordnet, dass durch Öffnungsdauer bzw. durch Schließdauer des Ventils eine einzuspritzende Kraftstoffmenge festgelegt wird.
  • Zur Kalibrierung des Kraftstoffzumesssystems verfügt nun das Steuergerät 20 erfindungsgemäß über Steuermittel 50 zur Ansteuerung eines ersten Injektors mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer mittels Ansteuerimpuls 35_1 und zur Ansteuerung eines zweiten Injektors mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer mittels Ansteuerimpuls 35_2. Ferner sind die Sensoren 40, insbesondere ein vorgesehener Drehzahlsensor, dazu konfiguriert, eine sich daraus ergebene Gesamtanregung als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors zu erfassen und eine sich daraus ergebende Gesamtschwingung zu ermitteln. Das Steuergerät 20 verfügt des weiteren über Rechenmittel 55, die dazu konfiguriert sind, aus der Gesamtschwingung die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors zu rekonstruieren und auf Basis der jeweiligen Anregungen als jeweiligem Mengensignal für den jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchzuführen. Dadurch wird eine jeweilige Mindestansteuerdauer für einen jeweiligen Injektor bestimmt.

Claims (7)

  1. Verfahren zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, bei dem ein erster Injektor mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer und ein zweiter Injektor mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer angesteuert wird und eine sich daraus ergebende Gesamtschwingungsanregung des Antriebsstrangs als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors erfasst wird, wobei daraus eine Gesamtschwingung ermittelt wird, aus der die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors rekonstruiert werden, und auf Basis der jeweiligen Anregung als jeweiligem Mengensignal für den jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchgeführt wird, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer ermittelt wird, wobei die Gesamtschwingung mit einem Betrag und einer Phase ermittelt wird, woraus durch Anwendung von Vektoraddition die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors rekonstruiert werden, wobei die erste Testeinspritzung für den ersten Injektor und die zweite Testeinspritzung für den zweiten Injektor im Schub und in etwa zeitgleich vorgenommen werden.
  2. Verfahren nach Anspruch 1, wobei der erste Injektor und der zweite Injektor zueinander orthogonal liegen.
  3. Verfahren nach Anspruch 1, wobei der erste Injektor und der zweite Injektor gegenphasig zueinander liegen.
  4. Verfahren nach Anspruch 1, wobei der erste Injektor und der zweite Injektor so zueinander liegen, dass sie einen Winkeln τ einschließen, mit τ ≠ n · 90°, n = 0,1,2,....
  5. Verfahren nach einem der voranstehenden Ansprüche, wobei die ermittelten jeweiligen Anregungen als jeweilige Mengensignale für einen jeweiligen Injektor in ein jeweiliges Ansteuerdauerkennfeld eingetragen und in diesem gespeichert werden.
  6. Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, mit Steuermitteln zur Ansteuerung eines ersten Injektors mit einer ersten Testeinspritzung mit einer ersten Ansteuerdauer und eines zweiten Injektors mit einer zweiten Testeinspritzung mit einer zweiten Ansteuerdauer, mit Sensormitteln zur Erfassung einer sich daraus ergebenden Gesamtschwingungsanregung des Antriebsstrangs als Überlagerung einer ersten Anregung des ersten Injektors und einer zweiten Anregung des zweiten Injektors und zur Ermittlung einer sich daraus ergebenden Gesamtschwingung, und mit Rechenmitteln, die dazu konfiguriert sind, aus der Gesamtschwingung die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors zu rekonstruieren, und auf Basis der jeweiligen Anregung als jeweiligem Mengensignal für den jeweiligen Injektor unabhängig vom anderen Injektor eine Nullmengenkalibrierung durchzuführen, wodurch für einen jeweiligen Injektor eine jeweilige Mindestansteuerdauer zu ermitteln ist, wobei die Gesamtschwingung mit einem Betrag und einer Phase ermittelt wird, woraus durch Anwendung von Vektoraddition die erste Anregung des ersten Injektors und die zweite Anregung des zweiten Injektors rekonstruiert werden, wobei die erste Testeinspritzung für den ersten Injektor und die zweite Testeinspritzung für den zweiten Injektor im Schub und in etwa zeitgleich vorgenommen werden.
  7. Vorrichtung nach Anspruch 6, zur Anwendung in einem Common-Rail-Einspritzsystem.
EP12709871.3A 2011-04-18 2012-03-16 Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs Not-in-force EP2699783B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011007563A DE102011007563A1 (de) 2011-04-18 2011-04-18 Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems eines Kraftfahrzeugs
PCT/EP2012/054641 WO2012143187A1 (de) 2011-04-18 2012-03-16 Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs

Publications (2)

Publication Number Publication Date
EP2699783A1 EP2699783A1 (de) 2014-02-26
EP2699783B1 true EP2699783B1 (de) 2015-06-17

Family

ID=45872962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12709871.3A Not-in-force EP2699783B1 (de) 2011-04-18 2012-03-16 Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs

Country Status (5)

Country Link
EP (1) EP2699783B1 (de)
KR (1) KR101858295B1 (de)
CN (1) CN103492693B (de)
DE (1) DE102011007563A1 (de)
WO (1) WO2012143187A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202121A1 (de) 2014-02-06 2015-08-06 Robert Bosch Gmbh Verfahren zur Bestimmung von Kraftstoffmengen bei einer Direkteinspritzung eines Kraftfahrzeugs
JP5949819B2 (ja) * 2014-03-25 2016-07-13 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
DE102014208992A1 (de) * 2014-05-13 2015-11-19 Robert Bosch Gmbh Verfahren zur Kalibrierung von Nacheinspritzungen in einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102014209587B4 (de) 2014-05-20 2016-03-31 Continental Automotive Gmbh Charakterisierung eines Messkanals zum Vermessen eines Rückkopplungssignals, welches von einem sich in Betrieb befindenden Kraftstoff-Injektor generiert wird

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1284681B1 (it) * 1996-07-17 1998-05-21 Fiat Ricerche Procedimento di taratura per un sistema di iniezione provvisto di iniettori.
DE19945618B4 (de) 1999-09-23 2017-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE10359306A1 (de) * 2003-12-17 2005-07-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP2007064191A (ja) * 2005-09-02 2007-03-15 Toyota Motor Corp ディーゼルエンジンの燃料噴射制御装置
DE102007019099B4 (de) * 2007-04-23 2016-12-15 Continental Automotive Gmbh Verfahren und Vorrichtung zur Kalibrierung von Kraftstoffinjektoren
DE102008002482A1 (de) * 2008-06-17 2009-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102008043165B4 (de) * 2008-10-24 2020-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs

Also Published As

Publication number Publication date
WO2012143187A1 (de) 2012-10-26
KR20140024324A (ko) 2014-02-28
EP2699783A1 (de) 2014-02-26
DE102011007563A1 (de) 2012-10-18
CN103492693A (zh) 2014-01-01
CN103492693B (zh) 2016-06-15
KR101858295B1 (ko) 2018-05-15

Similar Documents

Publication Publication Date Title
DE102011089296B4 (de) Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems eines Kraftfahrzeugs
DE102006006303B3 (de) Verfahren zur Abschätzung einer eingespritzten Kraftstoffmenge
DE102010043989B4 (de) Adaptionsverfahren eines Injektors einer Brennkraftmaschine
DE102008040626A1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Einzeleinspritzung und Vorrichtung zur Durchführung des Verfahrens
EP1712768A2 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in wenigstens einen Brennraum einer Brennkraftmaschine
DE102014215618A1 (de) Bestimmen einer Einspritzmenge von Kraftstoff durch Frequenzanalyse eines Speicherdruckverlaufs
DE102015214780A1 (de) Verfahren zur Erkennung fehlerhafter Komponenten eines Kraftstoffeinspritzsystems
EP2699783B1 (de) Verfahren und vorrichtung zur kalibrierung eines kraftstoffzumesssystems eines kraftfahrzeugs
DE10305523A1 (de) Verfahren und Vorrichtung zur Nullmengenkalibrierung eines Kraftstoffeinspritzsystems eines Kraftfahrzeuges im Fahrbetrieb
DE102005059908A1 (de) Verfahren zur Dosierung von Kraftstoff in Brennräume eines Verbrennungsmotors
DE102005059909B4 (de) Verfahren zur Steuerung eines Verbrennungsmotors
DE102005058445B3 (de) Verfahren zur Ermittlung einer in einen Zylinder einer Brennkraftmaschine mit einer Common-Rail-Einspritzanlage eingespritzten Kraftstoffmemge und Mittel zur Durchführung des Verfahrens
DE102011006915A1 (de) Verfahren zum Kalibrieren einer Einspritzmenge
EP2652300A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP2019195B1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge
DE102015220405A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoff-Einspritzsystems einer Brennkraftmaschine
DE102008005154A1 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
DE102016214286A1 (de) Verfahren zur Nullmengenkalibrierung von mittels Injektoren zugemessenem Kraftstoff in einer Brennkraftmaschine
DE102012201601A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102011006909A1 (de) Verfahren und Vorrichtung zur Kalibrierung einer Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102012206582A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012222101A1 (de) Verfahren zur Steuerung einer Verbrennungskraftmaschine mit Direkteinspritzung
DE102005011836B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10036154B4 (de) Verfahren zum Überprüfen eines Kraftstoffdruckregelsystems
DE102007061732A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 732075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003484

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151019

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151017

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003484

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

26N No opposition filed

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 732075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200325

Year of fee payment: 9

Ref country code: GB

Payment date: 20200325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220525

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012003484

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003