EP2699020B1 - Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts - Google Patents

Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts Download PDF

Info

Publication number
EP2699020B1
EP2699020B1 EP13171684.7A EP13171684A EP2699020B1 EP 2699020 B1 EP2699020 B1 EP 2699020B1 EP 13171684 A EP13171684 A EP 13171684A EP 2699020 B1 EP2699020 B1 EP 2699020B1
Authority
EP
European Patent Office
Prior art keywords
signal
strength
wyi
weight
wxi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13171684.7A
Other languages
English (en)
French (fr)
Other versions
EP2699020A2 (de
EP2699020A3 (de
Inventor
Eghart Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102013201043.5A external-priority patent/DE102013201043B4/de
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2699020A2 publication Critical patent/EP2699020A2/de
Publication of EP2699020A3 publication Critical patent/EP2699020A3/de
Application granted granted Critical
Publication of EP2699020B1 publication Critical patent/EP2699020B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the invention relates to a method for determining an amplification factor of a hearing aid.
  • the method comprises the following steps: determining a strength of an approximately undisturbed signal, determining a strength of a noise signal, determining a strength of a disturbed signal, and generating the amplification factor.
  • the strength of the approximately undisturbed signal and / or the strength of the interfering signal and / or the strength of the disturbed signal may each be, for example, a moving average of an instantaneous power, a moving average of an effective value or a moving average of a time course of another amplitude value (for example a sound pressure, a voltage or a current signal).
  • the moving average can be generated for example by means of a sampling of a voltage signal and a subsequent filtering by means of a low-pass filter.
  • the voltage signal may be a voltage signal that is generated, for example, by means of a half-wave rectifier or by means of a bridge rectifier.
  • the rectified voltage signal can also be fed (without sampling) directly to low-pass filtering.
  • the invention relates to a corresponding device.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external handset (RIC: receiver in the canal ) and in-the-ear hearing aids (IDO), for example Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external handset
  • IDO in-the-ear hearing aids
  • ITE canal hearing aids
  • the hearing aids listed by way of example are on the outer ear or in the auditory canal carried.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for carrying behind the ear, one or more microphones 2 for receiving the sound from the environment are installed.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • a poor signal-to-noise ratio is understood here and below to mean a small ratio Xpi / Ypi between the determined magnitude Xpi of the approximately undisturbed signal Xi and the determined magnitude Ypi of the disturbed signal Yi.
  • the invention has for its object to provide an alternative method by which a reliable determination of a gain factor can be performed even with poor signal-to-noise ratios.
  • this object is achieved in that the generation of the amplification factor comprises the following steps: determining a strength of an approximately undisturbed signal, determining a strength of a spurious signal, determining a strength of a disturbed signal and generating the amplification factor.
  • Generating the gain factor comprises the steps of: forming a counter, the counter comprising a sum having a first sum component formed by multiplying the magnitude of the approximately undisturbed signal by a first weight, and a second sum component obtained by multiplying the magnitude forming the denominated signal with a second weight, forming a denominator comprising as a first summand the counter and as a second summand the strength of the interfering signal, and determining the amplification factor by forming a quotient of the numerator divided by the denominator.
  • the device is prepared for carrying out the method according to the invention.
  • the range of values of the amplification factor (under boundary conditions, which are explained in the figure description) to a numerically good manageable range (for example, between 0.5 and 1) implicitly and in a continuously differentiable manner can be limited.
  • a continuously differentiable manner is meant that a non-continuously differentiable dependence of the gain on a magnitude of the distorted signal and / or on a strength of the interfering signal is avoided.
  • the method also comprises the step of determining a strength of a disturbed signal and in that the forming of the counter comprises adding up the first summation component and a second summation component which is formed by multiplying the strength of the disturbed signal by a second weighting Influence of the approximately undisturbed signal on a signal sink increases when a good signal-to-noise ratio is present, and the influence of the approximately undisturbed signal on the signal sink is reduced if there is a poor signal-to-noise ratio.
  • the signal sink can be, for example, the ear of a hearing aid wearer, for whom an acoustic signal is generated in consideration of the disturbed signal.
  • the second weighting is determined by subtracting the first weighting from a constant value. In this way, an attenuation of one of the two signals is adapted to an attenuation of the other signal by means of an operation which can be carried out quickly and efficiently with minimal effort.
  • a further embodiment provides that the first weighting by means of a handle by hand is adjustable.
  • the first weighting can be adjustable by means of an automatic control.
  • the automatic control or regulation can set the first weighting, for example, as a function of an evaluation of the approximately undisturbed signal and / or the interference signal and / or the disturbed signal.
  • the automatic control or regulation it is also conceivable for the automatic control or regulation to set the first weighting as a function of an evaluation of the first signal defined below and / or of the second signal defined below and / or of the third signal defined below. Accordingly, the feature combinations described for adjustability of the first weighting can alternatively or additionally also be provided for adjustability of the second weighting.
  • the approximately undisturbed signal is a band-limited part of a first signal and / or that the interference signal is a band-limited part of a second signal and / or that the disturbed signal is a band-limited part of a third signal.
  • the method specifically those signal components of the disturbed signal which have a poor signal-to-noise ratio can be attenuated, while those signal components of the disturbed signal which have a good signal-to-noise ratio are attenuated or are not attenuated.
  • the interfering signal is detected from a second signal received from a second spatial direction that deviates from a first spatial direction from which a first signal is received from which the approximate one undisturbed signal is derived.
  • signals are preferably supplied to the signal sink which are received from the first spatial direction, with signals received from the second direction being suppressed.
  • the second spatial direction is opposite to the first spatial direction.
  • a preferred embodiment results when the perturbed signal is derived from a third signal received with a directional selectivity that is less than a directional selectivity with which the second signal is received.
  • the disturbed signal is derived from a third signal which is received with a directional selectivity which is less than a directional selectivity with which the first signal is received.
  • the first, second and / or third signal is an acoustic signal which is detected by means of a hearing aid.
  • the method can be used to improve a benefit of a hearing aid.
  • FIG. 1 shows in a simplified block diagram the structure of a hearing aid according to the prior art.
  • Hearing aids have in principle as essential components one or more input transducers, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, such as a microphone, or an electromagnetic receiver, such as an induction coil.
  • the output transducer is usually as an electro-acoustic transducer, eg miniature speaker or handset, or as an electromechanical transducer, eg bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit.
  • FIG. 1 illustrated by the example of a behind-the-ear hearing aid 1.
  • two microphones 3 and 4 are installed for receiving the sound from the environment.
  • a signal processing unit 5 which is also integrated into the hearing aid housing 2, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 5 is transmitted to a loudspeaker or earpiece 6, which outputs an acoustic signal. If necessary, the sound is transmitted to the eardrum of the hearing aid wearer via a sound tube, which is fixed in the auditory canal with an earmold.
  • the power supply of the hearing device and in particular of the signal processing unit 5 is effected by a likewise integrated into the hearing aid housing 2 battery. 7
  • FIG. 2 Device 10 for determining a gain factor of a hearing aid shown has three inputs EYi, ESSi, EXi for each microphone signal Y ', SS', X '.
  • the first input EXi is provided for a bandpass-limited microphone signal Xi which is received from a direction RX in which there is an acoustic useful source QX whose sound signal X "is to be supplied to an ear 20 of a hearing aid wearer in a conditioned form.
  • Si is provided for a bandpass-limited microphone signal SSi, which is received from a direction RSS, in which there is an acoustic interference source QSS, whose sound signal
  • the third input EYi is for a bandpass-limited microphone signal Yi which is received with an omnidirectional characteristic, ie one or more sound sources QZ, QSS, which are in one or more arbitrary indeterminate directions which are not coincide with the direction RX.
  • the double microphone preferably comprises a first and a second microphone, each having an omnidirectional receiving characteristic.
  • the two microphones are arranged at a distance of 6 to 10 mm in the direction RX one behind the other.
  • the units FX, FY and FSS are filter banks which are prepared to convert the respective microphone signal X ', Y' or SS 'into a plurality of band-limited input signals Xi, Yi, SSi which are adjacent in the frequency domain.
  • the letter i in the reference numbers indicates that the circuit parts between the filter banks FSS, FX, FY and the frequency multiplexer C are executed several times.
  • the signal strength detectors PXi, PYi and PSSi are prepared from the band-limited input signals Xi, Yi, SSi each to determine a signal strength Xpi, Ypi, SSpi.
  • At least one of the units FX, FY, FSS or each of the units FX, FY, FSS can be designed to convert the microphone signal X ', Y' or SS 'supplied thereto in the time domain by means of a Fourier transformer into an amplitude distribution density function over the frequency and to sample their signal strength in (preferably equidistant) frequency intervals.
  • the apparatus 10 comprises a differential adder DAi which adds up the two signal strengths Xpi and Ypi and provides the added signal strength value as a first intermediate signal Zi (counter Zi). Prior to adding the signal strengths of the two signal strengths Xpi, Ypi, the differential adder DAi applies a first weight WXi to the signal strength Xpi of the approximately undisturbed signal Xi and a second weight WYi to the signal strength Ypi of the disturbed signal Yi.
  • the differential adder DAi has an input EWi for a weighting signal WXSi whose value WXi can be set manually and / or whose value WXi is set by means of an automatic control or regulation (not shown in the figures).
  • the first weight WXi corresponds to the value of the weighting signal WXSi.
  • the device 10 comprises a summer Si, which adds the first intermediate signal Zi (counter Zi) and the signal strength of the interference signal SSi. The result is a second intermediate signal ZS2i.
  • a zero-avoidance unit NVEi converts the second intermediate signal ZS2i into a zero-set third intermediate signal Ni (denominator Ni). This avoids a subsequent division by zero.
  • the device 10 comprises a quotient generator QBi, the one Amplification factor Qi (quotient Qi) by dividing the first intermediate signal Zi (counter Zi) by the third intermediate signal Ni (denominator Ni) generated.
  • the device 10 comprises a multiplier Mi for applying the gain Qi to the approximately undisturbed signal Xi and forming a frequency band specific output Xai. Furthermore, the device 10 comprises a frequency multiplexer C for combining the frequency band-specific output signals Xai of the different frequency bands into a synthesized output signal Xa '.
  • the synthesized output signal Xa ' is supplied to a sound generator SG, which converts the synthesized output signal Xa' into a corresponding sound signal Xa ", which is supplied to an ear 20 of a hearing aid wearer.
  • the 3, 4 . 5 show in dB (ie in logarithmic representation) for different values of the weighting signal WXi such as a gain Qi of a first level difference V1 between a signal strength Xpi of the approximately undisturbed signal Xi and a signal strength Ypi of the disturbed signal Yi and a second level difference V2 between a signal strength SSpi of the interfering signal SSi and the signal strength Ypi of the disturbed signal Yi.
  • the first weight WXi is set so that the signal strength Ypi of the perturbed signal Yi does not enter into the gain Qi.
  • the first weighting WXi is set such that approximately the signal strength Ypi of the undisturbed signal Xi is not included in the gain factor Qi.
  • the first weighting WXi is set so that the signal strength Xpi, Ypi of the approximately undisturbed signal Xi and of the perturbed signal Yi are each half in the amplification factor Qi.
  • the gain Qi is high regardless of the weight WXi in any case when the second level difference V2 is low.
  • the gain Qi is high regardless of the weight WXi in each case in which the first level difference V1 is low and at the same time the second level difference V2 is high.
  • the weight WXi thus has a significant effect on the gain Qi only if the second level difference V2 is not small. In this case, the larger the first level difference V1, the greater the effect on the gain Qi.
  • the method 100 for determining an amplification factor of a hearing aid shown comprises the following steps: In a first step 110, a signal strength Xpi of an approximately undisturbed signal Xi is determined. In a second step 120, a signal strength SSpi of an interference signal SSi is determined. In a third step 130, a signal strength Ypi of a disturbed signal Yi is determined. In a fourth step 140, a gain factor Qi is generated. The generation 140 of the amplification factor Qi comprises the following substeps. In a first sub-step 142, a counter Zi is formed.
  • the counter Zi comprises a sum having a first sum component formed by multiplying the signal strength Xpi of the approximately undisturbed signal Xi by a first weight WXi, and a second sum component obtained by multiplying the signal strength Ypi of the distorted signal Yi by a second weight WYi is formed.
  • a denominator Ni is formed which comprises the counter Zi as a first summand and the signal strength SSpi of the interference signal SSi as a second summand.
  • a gain factor Qi is determined by forming a quotient Qi from the counter Zi divided by the denominator Ni.
  • the second weighting WYi is determined by subtracting the first weighting WXi from a constant value.
  • first weighting WXi can be set manually by means of a handle and / or if the first weighting WXi can be set by means of an automatic control or and / or if the second weighting WYi can be set manually by means of a handle and / or when the second weighting WYi is adjustable by means of an automatic control.
  • the approximately undisturbed signal Xi is a band-limited part of a first microphone signal X 'and / or if the interference signal SSi is a band-limited part of a second microphone signal SS' and / or if the disturbed signal Yi is a band-limited part of a third microphone signal Y '.
  • the interference signal SSi is determined from a second signal SS ', which is received from a second spatial direction RSS, which deviates from a first spatial direction RX, from which a first signal X' is received from which the approximately undisturbed signal Xi is derived.
  • the first spatial direction RX is opposite to the second spatial direction RSS.
  • the disturbed signal Yi is derived from a third signal Y 'which is received with a directional selectivity which is less than a directional selectivity with which the second signal SS' is received.
  • the first X ', second SS', and / or third signal Y ' is typically an audible signal detected by a hearing aid 10.
  • WYi is set to a value greater than 0.1, preferably greater than 0.2, more preferably greater than 0.4. Alternatively or additionally, WYi is set to a value which is less than 0.9, preferably greater than 0.8, more preferably less than 0.6.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts. Das Verfahren umfasst folgende Schritte: Ermitteln einer Stärke eines näherungsweise ungestörten Signals, Ermitteln einer Stärke eines Störsignals, Ermitteln einer Stärke eines gestörten Signals, und Erzeugen des Verstärkungsfaktors. Die Stärke des näherungsweise ungestörten Signals und/oder die Stärke des Störsignals und/oder die Stärke des gestörten Signals kann jeweils beispielsweise ein gleitender Mittelwert einer Momentanleistung, ein gleitender Mittelwert eines Effektivwerts oder ein gleitender Mittelwert eines zeitlichen Verlaufs eines anderen Amplitudenwerts (beispielsweise eines Schalldrucks, eines Spannungs- oder eines Stromsignals) sein. Der gleitende Mittelwert kann beispielsweise mittels einer Abtastung eines Spannungssignals und einer nachfolgenden Filterung mittels eines Tiefpasses erzeugt werden. Das Spannungssignal kann ein Spannungssignal sein, das beispielsweise mittels eines Einweggleichrichters oder mittels eines Brückengleichrichters erzeugt wird. Das gleichgerichtete Spannungssignal kann auch (ohne Abtastung) direkt einer Tiefpassfilterung zugeführt werden.
  • Außerdem betrifft die Erfindung eine entsprechende Vorrichtung.
  • Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.
  • Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.
  • Geräuschverringerungsalgorithmen, die in heutigen Hörhilfegeräten verwendet werden, basieren meistens auf der folgenden Gleichung für ein Wiener-Filter. Hierbei berechnet sich ein Verstärkungsfaktor Q1 als Quotient aus einer ermittelten Stärke Xpi eines näherungsweise ungestörten Signals Xi geteilt durch eine Summe aus der ermittelten Stärke Xpi des näherungsweise ungestörten Signals X und einer ermittelten Stärke SSpi eines Störsignals SSi: Q1 = Xpi/(Xpi+SSpi).
  • Bei einem schlechten Signal-Rausch-Verhältnis wird der Verstärkungsfaktor sehr klein und kann somit numerisch schwer handhabbar werden (beispielsweise aufgrund von Quantisierungsfehlern). Unter einem schlechten Signal-Rausch-Verhältnis wird hier und im Folgenden ein kleines Verhältnis Xpi/Ypi zwischen der ermittelten Stärke Xpi des näherungsweise ungestörten Signals Xi und der ermittelten Stärke Ypi des gestörten Signals Yi verstanden.
  • Aus diesem Grund ist es bei Anwendung obiger Gleichung für ein Wiener-Filter heute üblich, den Verstärkungsfaktor Q1 nach unten zu begrenzen, indem eine Dämpfung auf 6 dB oder auf 10 dB begrenzt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, ein alternatives Verfahren bereitzustellen, mit dem eine zuverlässige Ermittlung eines Verstärkungsfaktors auch bei schlechten Signal-Rausch-Verhältnissen durchgeführt werden kann.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass das Erzeugen des Verstärkungsfaktors folgende Schritte umfasst: Ermitteln einer Stärke eines näherungsweise ungestörten Signals, Ermitteln einer Stärke eines Störsignals, Ermitteln einer Stärke eines gestörten Signals und Erzeugen des Verstärkungsfaktors. Das Erzeugen des Verstärkungsfaktors umfasst folgende Schritte: Bilden eines Zählers, wobei der Zähler eine Summe mit einer ersten Summenkomponente umfasst, die mittels Multiplikation der Stärke des näherungsweise ungestörten Signals mit einer ersten Wichtung gebildet wird, und eine zweite Summenkomponente umfasst, die mittels Multiplikation der Stärke des gestörten Signals mit einer zweiten Wichtung gebildet wird, Bilden eines Nenners, der als einen ersten Summanden den Zähler und als einen zweiten Summanden die Stärke des Störsignals umfasst, und Ermitteln des Verstärkungsfaktors mittels Bildung eines Quotienten aus dem Zähler geteilt durch den Nenner.
  • In Bezug auf die Vorrichtung wird die Aufgabe dadurch gelöst, dass die Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens vorbereitet ist.
  • Durch die spezielle Form des Nenners des Quotienten ist der Wertebereich des Verstärkungsfaktors (unter Randbedingungen, die in der Figurenbeschreibung erläutert werden) auf einen numerisch gut handhabbaren Bereich (der beispielsweise zwischen 0,5 und 1 liegt) implizit und in stetig differenzierbarer Weise begrenzbar. Mit Begrenzen in 'stetig differenzierbarer Weise' ist gemeint, dass eine nicht stetig differenzierbare Abhängigkeit des Verstärkungsfaktors von einer Stärke des gestörten Signals und/oder von einer Stärke des Störsignals vermieden wird.
  • Dadurch, dass das Verfahren auch den Schritt eines Ermittelns einer Stärke eines gestörten Signals umfasst und dass das Bilden des Zählers ein Aufaddieren der ersten Summenkomponente und einer zweiten Summenkomponente umfasst, die mittels Multiplikation der Stärke des gestörten Signals mit einer zweiten Wichtung gebildet wird, wird ein Einfluss des näherungsweise ungestörten Signals auf eine Signalsenke erhöht, wenn ein gutes Signal-Rausch-Verhältnis vorliegt, und der Einfluss des näherungsweise ungestörten Signals auf die Signalsenke wird verringert, wenn ein schlechtes Signal-Rausch-Verhältnis vorliegt. Die Signalsenke kann beispielsweise das Ohr eines Hörgeräteträgers sein, für den ein akustisches Signal unter Berücksichtigung des gestörten Signals erzeugt wird.
  • Es kann auch vorteilhaft sein, wenn die zweite Wichtung mittels Subtraktion der ersten Wichtung von einem konstanten Wert ermittelt wird. Hierdurch wird eine Dämpfung eines der beiden Signale an eine Dämpfung des anderen Signals mittels einer Operation angepasst, die mit minimalem Aufwand schnell und effizient durchführbar ist.
  • Eine Weiterbildung sieht vor, dass die erste Wichtung mittels einer Handhabe von Hand einstellbar ist. Alternativ oder zusätzlich kann die erste Wichtung mittels einer selbsttätigen Steuerung oder Regelung einstellbar sein. Die selbsttätige Steuerung oder Regelung kann die erste Wichtung beispielsweise in Abhängigkeit einer Auswertung des näherungsweise ungestörten Signals und/oder des Störsignals und/oder des gestörten Signals einstellen. Alternativ oder zusätzlich ist es auch vorstellbar, dass die selbsttätige Steuerung oder Regelung die erste Wichtung in Abhängigkeit einer Auswertung des im Folgenden definierten ersten Signals und/oder des im Folgenden definierten zweiten Signals und/oder des im Folgenden definierten dritten Signals einstellt. Entsprechend können die für eine Einstellbarkeit der ersten Wichtung beschriebenen Merkmalskombinationen alternativ oder zusätzlich auch für eine Einstellbarkeit der zweiten Wichtung vorgesehen sein.
  • Eine alternative oder zusätzliche Weiterbildung sieht vor, dass das näherungsweise ungestörte Signal ein bandbegrenzter Teil eines ersten Signals ist und/oder dass das Störsignal ein bandbegrenzter Teil eines zweiten Signals ist und/oder dass das gestörte Signal ein bandbegrenzter Teil eines dritten Signals ist. Mittels einer frequenzabschnittsweisen Anwendung des Verfahrens können gezielt speziell diejenigen Signalanteile des gestörten Signals gedämpft werden, die ein schlechtes Signal-Rausch-Verhältnis aufweisen, während diejenigen Signalanteile des gestörten Signals nicht oder weniger stark gedämpft werden, die ein gutes Signal-Rausch-Verhältnis aufweisen.
  • Für eine Anwendung im akustischen Bereich kann es zweckmäßig sein, wenn das Störsignal aus einem zweiten Signal ermittelt wird, das aus einer zweiten räumlichen Richtung empfangen wird, die von einer ersten räumlichen Richtung abweicht, aus der ein erstes Signal empfangen wird, aus dem das näherungsweise ungestörte Signal abgeleitet wird. Hierdurch werden der Signalsenke bevorzugt Signale zugeführt, die aus der ersten räumlichen Richtung empfangen werden, wobei Signale die aus der zweiten Richtung empfangen werden, unterdrückt werden.
  • Insbesondere bevorzugt ist, wenn die zweite räumliche Richtung der ersten räumlichen Richtung entgegengerichtet ist. Hierdurch ist eine optimale Unterdrückung eines Störsignals möglich, das nicht von der Nutzquelle stammt.
  • Eine bevorzugte Ausführungsform ergibt sich, wenn das gestörte Signal aus einem dritten Signal abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das zweite Signal empfangen wird.
  • Eine alternativ oder zusätzlich mögliche Weiterbildung besteht darin, dass das gestörte Signal aus einem dritten Signal abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das erste Signal empfangen wird. Jede der beiden vorgenannten Maßnahmen stellt einen Beitrag dafür dar, dass der Signalsenke auch ungedämpfte oder mit einer geringen Dämpfung gedämpfte Signale zuführbar sind, die aus anderen Richtungen als der ersten Richtung kommen.
  • Besonders bevorzugt ist, wenn das erste, zweite und/oder dritte Signal ein akustisches Signal ist, das mittels eines Hörhilfegeräts erfasst wird. Hierdurch kann das Verfahren dazu genutzt werden, einen Nutzen eines Hörhilfegeräts zu verbessern.
  • Die Erfindung ist anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:
  • FIG 1
    ein Hörhilfegerät gemäß dem Stand der Technik im stark vereinfachten Blockschaltbild,
    FIG 2
    ein schematisches Blockschaltbild einer Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts,
    FIG 3
    ein dreidimensionales Diagramm über die Abhängigkeit des Verstärkungsfaktors von einer ersten Pegeldifferenz zwischen einem Pegel des näherungsweise ungestörten Signals und einem Pegel des gestörten Signals und einer zweiten Pegeldifferenz zwischen einem Pegel des Störsignals und einem Pegel des gestörten Signals für den Fall, dass das gestörte Signal nicht berücksichtigt wird,
    FIG 4
    ein dreidimensionales Diagramm über die Abhängigkeit des Verstärkungsfaktors von einer ersten Pegeldifferenz zwischen einem Pegel des näherungsweise ungestörten Signals und einem Pegel des gestörten Signals und einer zweiten Pegeldifferenz zwischen einem Pegel des Störsignals zu einem Pegel des gestörten Signals für den Fall, dass das näherungsweise ungestörte Signal nicht berücksichtigt wird,
    FIG 5
    ein dreidimensionales Diagramm über die Abhängigkeit des Verstärkungsfaktors von einer ersten Pegeldifferenz zwischen einem Pegel des näherungsweise ungestörten Signals und einem Pegel des gestörten Signals und einer zweiten Pegeldifferenz zwischen einem Pegel des Störsignals und einem Pegel des gestörten Signals für den Fall, dass das näherungsweise ungestörte und das gestörte Signal je zur Hälfte berücksichtigt werden, und
    FIG 6
    ein schematisches Ablaufdiagramm eines Verfahrens zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts.
  • Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
  • FIG 1 zeigt im stark vereinfachten Blockschaltbild den Aufbau eines Hörhilfegerätes nach dem Stand der Technik. Hörhilfegeräte besitzen prinzipiell als wesentliche Komponenten einen oder mehrere Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z.B. ein Mikrofon, oder ein elektromagnetischer Empfänger, z.B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z.B. Miniaturlautsprecher bzw. Hörer, oder als elektromechanischer Wandler, z.B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgerätes 1 dargestellt. In ein Hörgerätegehäuse 2 zum Tragen hinter dem Ohr sind zwei Mikrofone 3 und 4 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 5, die ebenfalls in das Hörgerätegehäuse 2 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 5 wird an einen Lautsprecher bzw. Hörer 6 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Hörgeräteträgers übertragen. Die Energieversorgung des Hörgerätes und insbesondere die der Signalverarbeitungseinheit 5 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 2 integrierte Batterie 7.
  • Die in FIG 2 gezeigte Vorrichtung 10 zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts weist drei Eingänge EYi, ESSi, EXi für je ein Mikrofonsignal Y', SS', X' auf. Der erste Eingang EXi ist für ein bandpassbegrenztes Mikrofonsignal Xi vorgesehen, das aus einer Richtung RX empfangen wird, in der sich eine akustische Nutzquelle QX befindet, deren Schallsignal X" einem Ohr 20 eines Hörgeräteträgers in aufbereiteter Form zugeführt werden soll. Der zweite Eingang ES-Si ist für ein bandpassbegrenztes Mikrofonsignal SSi vorgesehen, das aus einer Richtung RSS empfangen wird, in der sich eine akustische Störquelle QSS befindet, deren Schallsignal SS" als reines Störsignal anzusehen ist. Der dritte Eingang EYi ist für ein bandpassbegrenztes Mikrofonsignal Yi vorgesehen, das mit einer Rundumcharakteristik, also von einer oder mehreren Schallquellen QZ, QSS empfangen wird, die sich in einer oder mehreren beliebigen unbestimmten Richtungen befinden, die nicht mit der Richtung RX übereinstimmen.
  • Der Übersicht halber sind in der FIG 2 unterschiedliche Mikrofone MX, MY, MSS zur Erzeugung der Mikrofonsignale Y', Y' und SS' eingezeichnet. Typischerweise werden jedoch alle drei Mikrofonsignale Y', Y' und SS' mittels eines einzigen Doppelmikrophons erzeugt, dessen Richtcharakteristik elektronisch variierbar ist. Die Spitzen der Richtungspfeile RX, RY und RSS von den verschiedenen Schallquellen QSS, QX, QZ enden also typischerweise am selben Ort.
  • Das Doppelmikrophon umfasst vorzugsweise ein erstes und ein zweites Mikrophon, das jeweils eine Rundstrahl-Empfangscharakteristik aufweist. Typischerweise sind die beiden Mikrophone in einem Abstand von 6 bis 10 mm auf Richtung RX bezogen hintereinander angeordnet. Mittels einer Laufzeitverzögerung des elektrischen Ausgangssignals eines der beiden Mikrophone, die an einen akustischen Laufzeitunterschied in RX-Richtung angepasst ist, und einer Subtraktion des laufzeitverzögerten Ausgangssignals von dem Ausgangssignals des anderen Mikrophons (oder mittels einer umgekehrten Subtraktion) erhält das Doppelmikrophon in seinem Klemmenverhalten eine Nieren-Empfangscharakteristik.
  • Die Einheiten FX, FY und FSS sind Filterbänke, die dazu vorbereitet sind, das jeweilige Mikrofonsignal X', Y' bzw. SS' in mehrere bandbegrenzte Eingangssignale Xi, Yi, SSi zu wandeln, die im Frequenzbereich benachbart sind. Mit dem Buchstaben i in den Bezugszeichen wird daran erinnert, dass die Schaltungsteile zwischen den Filterbänken FSS, FX, FY und dem Frequenzmultiplexer C mehrfach ausgeführt ist.
  • Die Signalstärkenermittler PXi, PYi und PSSi sind dazu vorbereitet aus den bandbegrenzten Eingangssignalen Xi, Yi, SSi jeweils eine Signalstärke Xpi, Ypi, SSpi zu ermitteln.
  • Alternativ kann mindestens eine der Einheiten FX, FY, FSS oder jede der Einheiten FX, FY, FSS dazu ausgebildet sein, das ihr zugeführte Mikrofonsignal X', Y' bzw. SS' im Zeitbereich mittels eines Fouriertransformators jeweils in eine Amplitudenverteilungsdichtefunktion über der Frequenz umzuwandeln und deren Signalstärke in (vorzugsweise äquidistanten) Frequenzabständen abzutasten.
  • Die Vorrichtung 10 umfasst einen Differentialaddierer DAi, der die beiden Signalstärken Xpi und Ypi aufaddiert und den aufaddierten Signalstärkenwert als ein erstes Zwischensignal Zi (Zähler Zi) bereitstellt. Vor dem Aufaddieren der Signalstärken der beiden Signalstärken Xpi, Ypi wendet der Differentialaddierer DAi auf die Signalstärke Xpi des näherungsweise ungestörten Signals Xi eine erste Wichtung WXi an und auf die Signalstärke Ypi des gestörten Signals Yi eine zweite Wichtung WYi an. Der Differentialaddierer DAi weist einen Eingang EWi für ein Wichtungssignal WXSi auf, dessen Wert WXi von Hand eingestellt werden kann und/oder dessen Wert WXi mittels einer (in den Figuren nicht dargestellten) selbsttätigen Steuerung oder Regelung eingestellt wird. Die erste Wichtung WXi entspricht dem Wert des Wichtungssignals WXSi. Der Differentialaddierer DAi ermittelt die zweite Wichtung WYi = 1-WXi mittels einer Subtraktion der ersten Wichtung WXi von 1.
  • Die Vorrichtung 10 umfasst einen Summierer Si, der das erste Zwischensignal Zi (Zähler Zi) und die Signalstärke des Störsignals SSi aufaddiert. Das Ergebnis ist ein zweites Zwischensignal ZS2i. Eine Nullstellenvermeidungseinheit NVEi wandelt das zweite Zwischensignal ZS2i in ein nullstellenfreies drittes Zwischensignal Ni (Nenner Ni) um. Damit wird eine nachfolgende Division durch Null vermieden. Außerdem umfasst die Vorrichtung 10 einen Quotientenbildner QBi, der einen Verstärkungsfaktor Qi (Quotient Qi) mittels Teilung des ersten Zwischensignals Zi (Zähler Zi) durch das dritte Zwischensignal Ni (Nenner Ni) erzeugt. Darüberhinaus umfasst die Vorrichtung 10 einen Multiplizierer Mi, um den Verstärkungsfaktor Qi auf das näherungsweise ungestörte Signal Xi anzuwenden und ein frequenzbandspezifisches Ausgangssignal Xai zu bilden. Des Weiteren umfasst die Vorrichtung 10 einen Frequenzmultiplexer C, um die frequenzbandspezifischen Ausgangssignale Xai der verschiedenen Frequenzbänder zu einem synthetisierten Ausgangssignal Xa' zusammenzufassen. Das synthetisierten Ausgangssignal Xa' wird einem Schallgeber SG zugeführt, der das synthetisierte Ausgangssignal Xa' in ein entsprechendes Schallsignal Xa" umwandelt, das einem Ohr 20 eines Hörhilfegeräteträgers zugeführt wird.
  • Die FIG 3, 4, 5 zeigen in dB (also in dreifachlogarithmischer Darstellung) für unterschiedliche Werte des Wichtungssignals WXi wie ein Verstärkungsfaktor Qi von einer ersten Pegeldifferenz V1 zwischen einer Signalstärke Xpi des näherungsweise ungestörten Signals Xi und einer Signalstärke Ypi des gestörten Signals Yi und von einer zweiten Pegeldifferenz V2 zwischen einer Signalstärke SSpi des Störsignals SSi und der Signalstärke Ypi des gestörten Signals Yi abhängt.
  • In FIG 3 ist die erste Wichtung WXi so eingestellt, dass die Signalstärke Ypi des gestörten Signals Yi nicht in den Verstärkungsfaktor Qi eingeht. In FIG 4 ist die erste Wichtung WXi so eingestellt, dass näherungsweise die Signalstärke Ypi des ungestörten Signals Xi nicht in den Verstärkungsfaktor Qi eingeht. Bei FIG 5 ist die erste Wichtung WXi so eingestellt, dass die Signalstärke Xpi, Ypi des näherungsweise ungestörten Signals Xi beziehungsweise des gestörten Signals Yi je zur Hälfte in den Verstärkungsfaktor Qi eingehen.
  • Wie die rechte obere Kante 32 des Verstärkungsfaktorverlaufs QiV aller drei Diagramme zeigt, ist der Verstärkungsfaktor Qi unabhängig von der Wichtung WXi in jedem Fall hoch, wenn die zweite Pegeldifferenz V2 niedrig ist.
  • Wie die untere Ecke 34 des Verstärkungsfaktorverlaufs QiV aller drei Diagramme zeigt, ist der Verstärkungsfaktor Qi unabhängig von der Wichtung WXi in jedem Fall hoch, in dem die erste Pegeldifferenz V1 niedrig ist und zugleich die zweite Pegeldifferenz V2 hoch ist.
  • Die Wichtung WXi hat also nur dann eine erhebliche Auswirkung auf den Verstärkungsfaktor Qi, wenn die zweite Pegeldifferenz V2 nicht klein ist. In diesem Fall ist die Auswirkung auf den Verstärkungsfaktor Qi um so größer, je größer die erste Pegeldifferenz V1 ist.
  • Das in der FIG 6 gezeigte Verfahren 100 zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts umfasst folgende Schritte: In einem ersten Schritt 110 wird eine Signalstärke Xpi eines näherungsweise ungestörtes Signals Xi ermittelt. In einem zweiten Schritt 120 wird eine Signalstärke SSpi eines Störsignals SSi ermittelt. In einem dritten Schritt 130 wird eine Signalstärke Ypi eines gestörten Signals Yi ermittelt. In einem vierten Schritt 140 wird ein Verstärkungsfaktor Qi erzeugt. Das Erzeugen 140 des Verstärkungsfaktors Qi umfasst folgende Teilschritte. In einem ersten Teilschritt 142 wird ein Zähler Zi gebildet. Der Zähler Zi umfasst eine Summe mit einer ersten Summenkomponente, die mittels Multiplikation der Signalstärke Xpi des näherungsweise ungestörten Signals Xi mit einer ersten Wichtung WXi gebildet wird, und eine zweite Summenkomponente, die mittels Multiplikation der Signalstärke Ypi des gestörten Signals Yi mit einer zweiten Wichtung WYi gebildet wird. In einem zweiten Teilschritt 144 wird ein Nenner Ni gebildet, der als einen ersten Summanden den Zähler Zi und als einen zweiten Summanden die Signalstärke SSpi des Störsignals SSi umfasst. In einem dritten Teilschritt 146 wird ein Verstärkungsfaktor Qi mittels Bildung eines Quotienten Qi aus dem Zähler Zi geteilt durch den Nenner Ni ermittelt.
  • Besonders bevorzugt ist, wenn die zweite Wichtung WYi mittels Subtraktion der ersten Wichtung WXi von einem konstanten Wert ermittelt wird.
  • Auch ist es zweckmäßig, wenn die erste Wichtung WXi mittels einer Handhabe von Hand einstellbar ist und/oder wenn die erste Wichtung WXi mittels einer selbsttätigen Steuerung oder Regelung einstellbar ist und/oder wenn die zweite Wichtung WYi mittels einer Handhabe von Hand einstellbar ist und/oder wenn die zweite Wichtung WYi mittels einer selbsttätigen Steuerung oder Regelung einstellbar ist.
  • In Akustikanwendungen kann es von Vorteil sein, wenn das näherungsweise ungestörte Signal Xi ein bandbegrenzter Teil eines ersten Mikrofonsignals X' ist und/oder wenn das Störsignal SSi ein bandbegrenzter Teil eines zweiten Mikrofonsignals SS' ist und/oder wenn das gestörte Signal Yi ein bandbegrenzter Teil eines dritten Mikrofonsignals Y' ist.
  • Zum richtungsspezifischen Unterdrücken von Störsignalen ist es zweckmäßig, wenn das Störsignal SSi aus einem zweiten Signal SS' ermittelt wird, das aus einer zweiten räumlichen Richtung RSS empfangen wird, die von einer ersten räumlichen Richtung RX abweicht, aus der ein erstes Signal X' empfangen wird, aus dem das näherungsweise ungestörte Signal Xi abgeleitet wird.
  • Vorzugsweise ist die erste räumliche Richtung RX der zweiten räumlichen Richtung RSS entgegengerichtet.
  • Eine Weiterbildung sieht vor, dass das gestörte Signal Yi aus einem dritten Signal Y' abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das zweite Signal SS' empfangen wird.
  • Eine alternativ oder zusätzlich mögliche Weiterbildung sieht vor, dass das gestörte Signal Yi aus einem dritten Signal Y' abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das erste Signal X' empfangen wird.
  • In Hörhilfegeräteanwendungen ist das erste X', zweite SS' und/oder dritte Signal Y' typischerweise ein akustisches Signal, das mittels eines Hörhilfegeräts 10 erfasst wird.
  • Erfindungsgemäß wird also vorgeschlagen, den Verstärkungsfaktor Qi nach folgender Formel (1) zu ermitteln: Qi = Xpi WXi + Ypi WYi / Xpi WXi + Ypi WYi + SSpi .
    Figure imgb0001
  • Für Xpi WXi + Ypi WYi > 0 ist dies gleichwertig mit der Qi = 1 / 1 + SSpi / Xpi WXi + Ypi WYi .
    Figure imgb0002
  • Unter der Annahme, dass Ypi = SSpi + Xpi und WXi + WYi = 1 gilt, ergibt sich damit Formel (3): Qi = 1 / 1 + SSpi / Xpi + SSpi WYi .
    Figure imgb0003
  • Wenn ein Verhältnis (Signal-Rausch-Verhältnis) der Stärke Xpi des ungestörten Signals zu der Stärke SSpi des Störsignals mit v : Xpi/SSpi definiert ist, führt dies zu Formel (4): Qi = 1 / 1 + 1 / v + WYi .
    Figure imgb0004
  • Im einem ersten Extremfall hat das Störsignal eine vernachlässigbare Stärke, so dass v ein sehr hoher Wert ist und sich der Verstärkungsfaktor Qi dann (unabhängig vom Verhältnis zwischen WXi und WYi) näherungsweise wie folgt berechnet: Qi = 1.
    Figure imgb0005
  • In einem zweiten Extremfall ist die Stärke SSpi des gestörten Signals näherungsweise genauso groß wie die Stärke Ypi des Störsignals, so dass die Stärke Xpi des ungestörten Signals dann vernachlässigbar ist, v näherungsweise Null beträgt und sich der Verstärkungsfaktor Qi dann näherungsweise wie folgt berechnet: Qi = 1/(1 + 1/WYi). Wenn die zweite Wichtung WYi zwischen 0 und 1 liegt, ergibt sich damit je nach Größe der zweiten Wichtung WYi für den zweiten Extremfall ein Verstärkungsfaktor Qi, der zwischen 0 und 0,5 liegt.
  • In einem dazwischen liegenden Fall unterscheidet sich die Stärke SSpi des Störsignals nur unwesentlich von der Stärke Xpi des ungestörten Signals, so dass v = 1 beträgt und sich der Verstärkungsfaktor Qi näherungsweise wie folgt berechnet: Qi = 1/(1 + 1/(1 + WYi)). Damit ergibt sich, wenn die zweite Wichtung WYi zwischen 0 und 1 liegt, je nach Größe der zweiten Wichtung WYi für den dazwischen liegenden Fall ein Verstärkungsfaktor Qi, der zwischen 1/2 und 2/3 liegt.
  • Typischerweise wird WYi auf einen Wert eingestellt, der größer als 0,1, vorzugsweise größer als 0,2, insbesondere bevorzugt größer als 0,4, ist. Alternativ oder zusätzlich wird WYi auf einen Wert eingestellt, der kleiner als 0,9, vorzugsweise größer als 0,8, insbesondere bevorzugt kleiner als 0,6, ist.
  • In einem typischen Fall ist näherungsweise v = 0,8 und der Verstärkungsfaktor Qi berechnet sich dann näherungsweise wie folgt: Qi = 1/(1 + 1/(0,8 + WYi)). Damit ergibt sich, eine Dämpfungen um 6 dB = 0,5, wenn WYi = 0,2 beträgt. Bei WYi = 0,8 beträgt die Dämpfung dann etwa 0,6. Wenn WYi kleiner als 0,2 ist, ergeben sich in diesem Fall Dämpfungswerte, die kleiner als 0,5 sind.
  • Mit Formel (4) kann ausgerechnet werden, wie groß (v + WYi) sein muss, damit der Verstärkungsfaktor Qi einen bestimmten Minimalwert Qmin nicht unterschreitet (Qi >= Qmin). Aus Qmin <= 1/(1 + 1/(v + WYi)) folgt für positive Werte von (v + WYi) Formel (5): v + WYi >= Qmin/(1-Qmin).
  • Wenn der Verstärkungsfaktor Qi mindestens 0,5 (der Dämpfungsfaktor also höchstens 6dB betragen) soll, muss v + WYi mindestens 1 betragen (WYi >= 1-v). Dafür muss dann gelten: WYi > = 1 Xpi / SSpi .
    Figure imgb0006
  • Mit WYi = 1 - WXi gilt dann auch WXi <= v, d.h.: WXi < = Xpi / SSpi .
    Figure imgb0007
  • Es kann daher zweckmäßig sein, die in den Ansprüchen definierten und/oder der Beschreibung vorbeschriebenen Ausführungsformen der Beschreibung weiterzubilden, indem die erste Wichtung WXi mittels einer selbsttätigen Steuerung oder Regelung nach oben auf den Wert v = Xpi/SSpi begrenzt oder eingestellt wird und/oder die zweite Wichtung WYi mittels einer selbsttätigen Steuerung oder Regelung nach unten auf den Wert (1 - Xpi/SSpi) = (1-v) begrenzt oder eingestellt wird.

Claims (10)

  1. Verfahren (100) zum Bestimmen eines Verstärkungsfaktors (Qi) eines Hörhilfegeräts, wobei das Verfahren (100) folgende Schritte umfasst:
    - Ermitteln (110) einer Stärke (Xpi) eines näherungsweise ungestörten Signals (Xi),
    - Ermitteln (120) einer Stärke (SSpi) eines Störsignals (SSi),
    - Ermitteln (130) einer Stärke (Ypi) eines gestörten Signals (Yi),
    - Erzeugen (140) des Verstärkungsfaktors (Qi),
    dadurch gekennzeichnet, dass
    das Erzeugen (140) des Verstärkungsfaktors (Qi) folgende Schritte umfasst:
    - Bilden (142) eines Zählers (Zi), wobei der Zähler (Zi) eine Summe mit einer ersten Summenkomponente umfasst, die mittels Multiplikation der Stärke (Xpi) des näherungsweise ungestörten Signals (Xi) mit einer ersten Wichtung (WXi) gebildet wird, und eine zweite Summenkomponente umfasst, die mittels Multiplikation der Stärke (Ypi) des gestörten Signals (Yi) mit einer zweiten Wichtung (WYi) gebildet wird;
    - Bilden (144) eines Nenners (Ni), der als einen ersten Summanden den Zähler (Zi) und als einen zweiten Summanden die Stärke (SSpi) des Störsignals (SSi) umfasst;
    - Ermitteln (146) des Verstärkungsfaktors (Qi) mittels Bildung eines Quotienten (Qi) aus dem Zähler (Zi) geteilt durch den Nenner (Ni).
  2. Verfahren (100) nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Wichtung (WYi) mittels Subtraktion der ersten Wichtung (WXi) von einem konstanten Wert ermittelt wird.
  3. Verfahren (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Wichtung (WXi) mittels einer Handhabe von Hand einstellbar ist und/oder dass die erste Wichtung (WXi) mittels einer selbsttätigen Steuerung oder Regelung einstellbar ist und/oder dass die zweite Wichtung (WYi) mittels einer Handhabe von Hand einstellbar ist und/oder dass die zweite Wichtung (WYi) mittels einer selbsttätigen Steuerung oder Regelung einstellbar ist.
  4. Verfahren (100) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das näherungsweise ungestörte Signal (Xi) ein bandbegrenzter Teil eines ersten Signals (X') ist und/oder dass das Störsignal (SSi) ein bandbegrenzter Teil eines zweiten Signals (SS') ist und/oder dass das gestörte Signal (Yi) ein bandbegrenzter Teil eines dritten Signals (Y') ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Störsignal (SSi) aus einem zweiten Signal (SS') ermittelt wird, das aus einer zweiten räumlichen Richtung (RSS) empfangen wird, die von einer ersten räumlichen Richtung (RX) abweicht, aus der ein erstes Signal (X') empfangen wird, aus dem das näherungsweise ungestörte Signal (Xi) abgeleitet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die zweite räumliche Richtung (RSS) der ersten räumlichen Richtung (RX) entgegengerichtet ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das gestörte Signal (Yi) aus einem dritten Signal (Y') abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das zweite Signal (SS') empfangen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das gestörte Signal (Yi) aus einem dritten Signal (Y') abgeleitet wird, das mit einer Richtungsselektivität empfangen wird, die geringer ist als eine Richtungsselektivität, mit der das erste Signal (X') empfangen wird.
  9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass das erste (X'), zweite (SS') und/oder dritte Signal (Y') ein akustisches Signal ist, das mittels eines Hörhilfegeräts (10) erfasst wird.
  10. Vorrichtung,
    dadurch gekennzeichnet, dass
    die Vorrichtung (10) dazu vorbereitet ist, ein Verfahren (100) nach einem der Ansprüche 1 bis 9 durchzuführen.
EP13171684.7A 2012-08-17 2013-06-12 Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts Active EP2699020B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261684166P 2012-08-17 2012-08-17
DE102013201043.5A DE102013201043B4 (de) 2012-08-17 2013-01-23 Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts

Publications (3)

Publication Number Publication Date
EP2699020A2 EP2699020A2 (de) 2014-02-19
EP2699020A3 EP2699020A3 (de) 2015-04-15
EP2699020B1 true EP2699020B1 (de) 2016-04-13

Family

ID=48698893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13171684.7A Active EP2699020B1 (de) 2012-08-17 2013-06-12 Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts

Country Status (1)

Country Link
EP (1) EP2699020B1 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516646A (ja) * 2000-03-31 2003-05-13 フォーナック アーゲー マイクロホン装置の伝達特性処理方法、同方法を適用するマイクロホン装置及びこれらを適用する補聴器
EP2537351B1 (de) * 2010-02-19 2020-09-02 Sivantos Pte. Ltd. Verfahren zur binauralen seitenwahrnehmung für hörinstrumente

Also Published As

Publication number Publication date
EP2699020A2 (de) 2014-02-19
EP2699020A3 (de) 2015-04-15

Similar Documents

Publication Publication Date Title
EP2180726B2 (de) Richtungshören bei binauraler Hörgeräteversorgung
DE102013201043B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts
EP2506603B1 (de) Hörhilfegerätesystem mit einem Richtmikrofonsystem sowie Verfahren zum Betrieb eines Hörhilfegerätesystems mit einem Richtmikrofonsystem
EP2437258B1 (de) Verfahren und Vorrichtung zur Frequenzkompression mit selektiver Frequenzverschiebung
EP2840809B1 (de) Steuerung der effektstärke eines binauralen direktionalen mikrofons
EP2919485B1 (de) Übertragung eines windreduzierten Signals mit verminderter Latenzzeit
EP2811762B1 (de) Logik-basiertes binaurales Beam-Formungssystem
EP3461147A1 (de) Verfahren zum betrieb eines hörgerätes
EP2595414B1 (de) Hörvorrichtung mit einer Einrichtung zum Verringern eines Mikrofonrauschens und Verfahren zum Verringern eines Mikrofonrauschens
EP3926982A2 (de) Verfahren zur richtungsabhängigen rauschunterdrückung für ein hörsystem, welches eine hörvorrichtung umfasst
EP2503795A2 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
DE102008046040A1 (de) Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
EP2822300B1 (de) Erkennen von Hörsituationen mit unterschiedlichen Signalquellen
EP2373063B1 (de) Hörvorrichtung und Verfahren zum Einstellen derselben für einen rückkopplungsfreien Betrieb
DE102014218672B3 (de) Verfahren und Vorrichtung zur Rückkopplungsunterdrückung
EP1945000B1 (de) Verfahren zur Reduktion von Störleistungen und entsprechendes Akustiksystem
EP2219389B1 (de) Vorrichtung und Verfahren zur Störgeräuschschätzung bei einer binauralen Hörgeräteversorgung
EP2437521B2 (de) Verfahren zur Frequenzkompression mit harmonischer Korrektur und entsprechende Vorrichtung
EP2699020B1 (de) Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts
DE102010041775A1 (de) Verfahren zum Anpassen einer Hörvorrichtung mit Perzentilanalyse und Anpassvorrichtung
EP2373065B2 (de) Hörvorrichtung und Verfahren zum Erzeugen einer omnidirektionalen Richtcharakteristik
DE102010007336B4 (de) Verfahren zum Kompensieren eines Rückkopplungssignals und Hörvorrichtung
DE102013205790A1 (de) Verfahren zum Schätzen eines Nutzsignals und Hörvorrichtung
DE102015201073A1 (de) Verfahren und Vorrichtung zur Rauschunterdrückung basierend auf Inter-Subband-Korrelation
EP2622879B1 (de) Verfahren und vorrichtung zur frequenzkompression

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20150306BHEP

17P Request for examination filed

Effective date: 20150904

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013002545

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04R0025000000

Ipc: H04R0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101ALI20151207BHEP

Ipc: H04R 3/00 20060101AFI20151207BHEP

INTG Intention to grant announced

Effective date: 20160104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 791212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002545

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160726

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160816

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002545

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

26N No opposition filed

Effective date: 20170116

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 791212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240624

Year of fee payment: 12